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ABSTRACT 

One application of the Global Positioning System (GPS) involves placing GPS 

receivers aboard earth orbiting space vehicles to provide in situ tracking information to 

aid in platform precise orbit determination (POD).  In the mid-1990s, the most advanced 

high-precision form of GPS-based orbits was being produced by hybrid classical orbit 

determination and GPS-based techniques.  Given the inherent complexity and 

computational cost of producing dynamics-based orbits, I began studying if a GPS-only 

orbit could be determined and if so, how accurate and precise it could be. 

A much less complex, direct and therefore very efficient approach became apparent 

after iteration: to use an augmented form of undifferenced GPS positioning by processing 

simultaneous measurements from the LEO receiver and precise GPS satellite 

ephemerides and clock offsets.  Pseudorange observables are used to provide coarse 

position solutions and time-differenced, carrier phase observables are used to provide 

precise position change.  To avoid constantly changing GPS satellite-to-receiver pairs, 

carrier smoothing of the pseudoranges is performed in the position domain.  The resulting 

solution represents a kinematic, sequential, least-squares filter / smoother.  The stand-

alone positioning mode coupled with the fundamental dynamics-free nature of the 

processing engine resulted in solidifying the two foundations the final geometric strategy 

filter is based on. 

The thesis question has been answered positively: LEO POD with a GPS-only solution 

utilising a single GPS receiver is possible.  The processed results show that near-

decimetre-level accuracy is attainable when compared against high-calibre hybrid 
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dynamics / GPS orbits for the CHAMP satellite.  A number of refinements and additions 

to this research have also been proposed. 
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1.  INTRODUCTION 

The Global Positioning System (GPS) was initially developed by the United States 

Department of Defense to provide global timing, positioning and navigation capabilities 

to U.S. and allied forces.  The basic operation of GPS involves the measurement, with a 

GPS receiver, of electromagnetic waves transmitted by the earth-orbiting GPS satellite 

constellation and the computation of the travel time of these received signals.  The time 

measurements are converted to distance measurements, which can then be used to 

trilaterate the unknown position and time of the receiver from the known positions of the 

satellite transmitters and signal transmit times.  A number of excellent books describe the 

principles of GPS; some examples are, for introductions: Wells et al. [1987] and El-

Rabbany [2002]; to describe the fundamental GPS operation and processing equations: 

Leick [1995], Hofmann-Wellenhof  et al. [2001], Teunissen and Kleusburg [1998] and 

Misra and Enge [2001]; and to describe fundamental operation and application areas: 

Janiczek [1980] and Parkinson and Spilker [1996]. 

Given the original purpose of GPS, a vast array of additional applications and 

processing schemes have been and are being devised.  One such application involves 

placing GPS receivers aboard earth orbiting space vehicles to provide tracking 

information (in situ range, range-rate, position, and velocity) to aid in platform orbit 

determination.  The determination of artificial satellite orbits has been intensely studied 

for the past half-century and this progress is well represented in many books including 

Escobal [1976], Roy [1982], and recently Montenbruck and Gill [2000].  In the early 

development of GPS, it was observed that the precise, global coverage and ease of use of 

GPS could significantly improve the determination of orbits of Low Earth Orbiters 
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(LEOs).  One of the first prediction scenarios was using GPS to track the U.S. Space 

Shuttle [Van Leeuwen et al., 1980], with the first civilian satellite to carry a receiver 

being Landsat 4 in 1982 [Birmingham, et al., 1983]. 

As the need for more precise, time-stamped locations of LEOs has grown in recent 

years, the demand for GPS-based solutions has grown as well.  On the Spaceborne GPS 

(SGPS) Internet site that I created and maintained [Bisnath, 1999] at the University of 

New Brunswick (UNB), an attempt was made to provide a log of civilian SGPS launches 

and applications.  These applications have been classified as: real-time orbit 

determination; precise (post-processed) orbit determination (POD); attitude 

determination; relative positioning; and time synchronization.  Dozens of SGPS receivers 

are presently in orbit with more planned involving innovative applications. 

1.1.  RESEARCH MOTIVATION AND THESIS STATEMENT 

In the mid 1990s, UNB was contracted by the Canadian Space Agency to investigate 

the use of GPS for space applications.  One of these contracts pertained to the use of GPS 

for orbit determination of a small or micro-satellite.  I co-authored the report [Bisnath and 

Langley, 1996], a by-product of which was the SGPS Internet site previously described.  

This contract fuelled my interest in GPS-based orbit determination research. 

At the time, the most advanced high-precision form of GPS-based orbits was being 

produced by a hybrid classical orbit determination and GPS-based technique called 

“reduced dynamics” developed at the Jet Propulsion Laboratory (JPL) (see, e.g., Wu et 

al. [1991] and Wu and Melbourne [1993]).  This strategy provides a Kalman filter 
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mechanism to near-optimally combine the classical technique’s complex dynamic models 

describing the LEO motion and the relative carrier phase-based measurements of position 

provided by GPS.  (A more detailed account of this technique is given in Chapter 2.)  

Given that this strategy appears to be an ultimate solution: improvements in orbit 

accuracy can come only from improved dynamics, more precise GPS measurements, or 

improved tuning of the Kalman filter, and not an improvement over the orbit 

determination strategy itself, I began to look elsewhere for research advancement. 

One area of interest was situations where GPS provided more accurate, yet less precise 

orbit positions over dynamic models.  Especially at lower altitudes (e.g., less than 

approximately 1000 km), the low resolution of geopotential and drag models meant that 

oversmoothing of LEO trajectories were of concern.  Also, given the inherent complexity 

and computational cost of producing dynamics-based orbits, I began studying if a GPS-

only orbit could be determined and if so, how accurate and precise could it be.  The 

question posed was: Can precise orbit determination of a LEO be accomplished with a 

GPS-only solution?  With the removal of the intentional GPS satellite clock degradation 

referred to as Selective Availability (SA) by the United States government, the thesis 

question became: Is POD of LEOs possible with a GPS-only solution and a single 

spaceborne GPS receiver?  That is, all POD strategies were based on the use of 

spaceborne and terrestrial receivers jointly producing relative LEO positions and the 

removal of SA, as will be explained in Chapter 5, allowed for this situation to change.  

Given the nature of the processing strategy developed, as will be explained in Chapter 3, 

the technique discussed in this dissertation can be generalized to pertain to all platforms, 

even though LEOs were the primary focus of this research. 
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1.2.  CONTRIBUTIONS OF THIS RESEARCH 

The primary and overriding contribution of the research reported here is that the thesis 

question is answered – positively:  LEO POD is possible with a single GPS receiver 

aboard the LEO.  This answer is given with a number of caveats that are provided in the 

body of the dissertation.  Quantitative descriptions of the precision and accuracy of these 

orbits and required processing costs are also provided. 

A GPS data processing strategy has been devised to address the thesis statement 

outlined.  The technique, referred to as the geometric strategy for POD, represents the 

novel combination and application of existing algorithms and research, along with recent 

technological improvements and advances in GPS measurement collection. 

A simulation capability was developed to prove that the concept of a GPS-only POD 

solution was possible.  This solution error simulator was created in software as the first 

stage of fulfilling the goal of the thesis. 

The algorithms and processing software were developed to compute POD solutions.  

The derived positioning filter was realised in software, along with numerous other 

preprocessing, processing, and post-processing modules. 

This research allowed UNB to participate in international studies of the use of GPS in 

precise orbit determination under the auspices of the International GPS Service (IGS), 

and cooperate with the Deutsches Zentrum für Luft- und Raumfahrt (DLR). 
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The other result of the research, aside from the developed processing software, has 

been the generation of numerous papers, presentations, and reports, many of which are 

referred to in this dissertation. 

1.3.  OUTLINE OF DISSERTATION 

The outline of the remainder of the dissertation is now provided.  The logical 

progression of thought is presented as clearly and concisely as possible, though the rapid 

advancement of GPS technology and research means that the state of the art and research 

environment changed significantly over the course of this research.  Therefore some 

material is presented chronologically to provide greater understanding as to the 

methodology followed.  Where necessary, appendices provide additional information 

concerning mathematical derivation and practicalities of the developed software. 

Chapter 2 reviews the principles of classical orbit determination and contemporary 

methods of precise orbit determination with GPS.  Attention is given to the boon that 

GPS has become in terms of an additional or sole position-tracking sensor. 

This concise examination assists in the creation of the UNB geometric strategy 

presented in Chapter 3.  The logical development of the strategy, separate from existing 

strategies, but based on previously developed GPS data processing algorithms and 

technological changes is given.  Detailed derivations of the generic positioning filter and 

the specific LEO POD models are provided. 

In Chapter 4, the proof of concept study for the processing approach is presented.  It 

was an elementary investigation designed to determine if the use of the developed 
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processing strategy was feasible.  The approach relies on the law of propagation of error 

and simulated LEO / GPS satellites / reference GPS receivers geometry and precision. 

The rationale for the revised (present) processing strategy is given in Chapter 5.  

Descriptions of the updated algorithms and a detailed account of the software realisation 

is also provided.  The changes in the strategy allow for not only a more streamlined POD 

process, but for a solidifying of the underlying processing philosophy. 

Chapter 6 contains the processing results from the geometric strategy processor.  

Numerous datasets were investigated, but the processing centred on a number of datasets 

from the CHAMP satellite.  Analysis and resulting software modifications are presented, 

as well as descriptions of the precision and accuracy of the determined orbits. 

Chapter 7 gives conclusions, recommendations for further research, and provides a 

discussion of the potential of this form of GPS data processing for spaceborne 

applications and for other platforms. 

Finally, a complete reference list is provided in Chapter 8. 
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2.  REVIEW OF CONTEMPORARY LOW EARTH ORBITER PRECISE ORBIT 
DETERMINATION STRATEGIES 

The goal of determining the path, trajectory, or orbit of a heavenly body, that is 

astrodynamics, represents one of the oldest realms of science.  No attempt is made here to 

review the long and interesting history of the developments in this field.  Rather an 

attempt is made in section 2.1 to describe the fundamentals of orbit determination.  And 

section 2.2 describes the great aid that GPS measurements have brought to this 

determination process by comparing GPS measurements against those from conventional 

tracking techniques, and details the forms of GPS-based precise orbit determination in 

existence at the outset of this dissertation research. 

2.1.  CLASSICAL ORBIT DETERMINATION 

In astrodynamics, orbit determination refers to deriving orbital parameters from 

observations [Seeber, 1993].  More specifically, satellite orbit determination refers to the 

reduction of tracking measurements of a spacecraft that are influenced by both random 

and systematic errors, using a mathematical force model that is not exact, to derive the 

best estimate of the orbital parameters which fully describe the spacecraft’s motion at any 

other time (after Tapley [1989]).  To ease computational complexity, this problem has 

traditionally been subdivided into two components (e.g., Escobal [1976]): preliminary 

orbit determination and differential correction of orbits (or orbit improvement [Roy, 

1982]). 
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2.1.1. Stages of Orbit Determination 

The first phase of orbit determination consists of determining an approximate orbit 

from a minimum set of observations of the spacecraft.  This represents two-body motion 

in celestial mechanics.  That is, only the mutual attraction of the two bodies, assumed to 

be point masses, is taken into account.  Mathematically, from Newton’s second law of 

motion and law of gravitation the following second-order differential vector equations 

can be developed: 

,
r

GM
3 rr −=&&           (2.1) 

where  is the acceleration vector of the spacecraft, GM is the earth’s gravitational 

constant, and r is the geocentric position vector of the spacecraft.  The solution of 

equations (2.1) requires six constants of integration: three for the first integration 

(velocity constants) and three for the second integration (position constants).  These 

constants are the elements of the orbit, also referred to as the spacecraft state vector: 

r&&

( )
0t0t0t0t0t0t z,y,x,z,y,x &&&         (2.2) 

evaluated for some specific epoch t0.  The state can be represented by a variety of 

parameter representations (see, e.g., Escobal [1976]) including the familiar Keplerian 

elements 

( )
0t0t0t0t0t0t0t0t

Mor,E,nand,,,i,e,a ωΩ ,      (2.3) 

where a is the orbit semi-major axis, e is the eccentricity, i is the inclination, Ω  is the 

right ascension of the ascending node, ω  is the argument of perigee, n is the mean 
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motion, E is the eccentric anomaly, and M is the mean anomaly.  A number of methods 

have been developed for preliminary orbit determination based on the observation type, 

including those developed by Gauss, Laplace, Herrick and Gibbs, and Gibbs [Escobal, 

1976]. 

The second phase of orbit determination consists of collecting more observations 

(tracking measurements) to the spacecraft and fitting these data to an orbit by some 

systematic mathematical means, usually by the method of least-squares, the result being 

(differential) corrections to the preliminary orbit’s parameters [Roy, 1982].  This problem 

can be defined by expanding equations (2.1) to take into account perturbing 

accelerations: 

,
r

GM
3 Prr +−=&&          (2.4) 

where & , GM and r are as defined in equations (2.1), and P represents the vectorial sum 

of the perturbing accelerations acting on the spacecraft.  The primary perturbing 

accelerations consist of accelerations due to the non-sphericity of the earth and the 

inhomogeneity of the earth’s mass density; other celestial bodies (particularly the sun, 

moon, and other planets); solid earth and ocean tides; atmospheric drag; direct and 

indirect solar radiation pressure; relativistic effects; and maneuvering thrusters [Seeber, 

1993].  The magnitudes of these accelerations are functions of a number of parameters, 

most importantly spacecraft altitude. 

r&

With advances in electronic computing, this latter phase of orbit determination is no 

longer separated from the former [Seeber, 1993]. 
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2.1.2. Solution to the Orbit Determination Problem 

Following Tapley [1989], equations (2.4) can be expressed as a system of n non-linear 

first-order differential equations 

)t,(XFX =&         X ,        (2.5) 0X=)t( 0

where the state vector X has been augmented to include spacecraft position, velocity, and 

a set of time-invariant model constants.  F(t) is the force vector and X0 is the known state 

at some initial epoch.  The observations to the spacecraft can be represented by the non-

linear equations 

( ) iit, εXGY ii +=        (i = 1, ..., p),       (2.6) 

where a set of p observations Yi are made at epochs t1, ..., tp, ( )it,iXG  represents the true 

observations, and  represents random measurement errors.  Equations (2.5) can be 

solved as 

iε

( ) ( )i0i t,t,t 0XX Θ= .         (2.7) 

The solution can be performed by analytical or numerical integration; but with present-

day computing power, the latter is more prevalent.  Numerical integration requires an 

orbit determination method and a numerical integration algorithm [Seeber, 1993].  The 

orbit determination method refers to the formulation of the equations of motion, such as 

Cowell’s method and Encke’s method [Roy, 1982].  Equation (2.5) follows Cowell’s 

method.  The spacecraft state for a particular epoch is then calculated using a numerical 
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integration technique, such as the Euler method, multi-step methods, Runge-Kutta 

methods, or collocation methods [Beutler, 1998]. 

When a solution is obtained, then 

( )( ) ( ) i0ii0i εXGεXGY +=+Θ= i0ii0i t,t,~t,t,t, ,     i = 1, …, l    (2.8) 

or Y ( ) εXG 0 += 0t,
~ .         (2.9) 

Equations (2.9) represent a system of p ×  = m non-linear equations in terms of n 

unknown components of the state and m unknown components of the observation error.  

The intractable problem of adjusting these equations is circumvented by linearising the 

observation model prior to adjustment with a truncated Taylor’s series expansion. A 

“best” estimate of the state can then be found, usually in the minimum sum of the squares 

of the observation residuals sense via a least-squares batch estimation process 

(adjustment).  A more computationally efficient approach is to process each epoch of 

observations individually in a sequential estimation algorithm (e.g., sequential least-

squares filter or Kalman filter) rather than with a least-squares batch processor. 

l

2.2.  SPACEBORNE GPS PRECISE ORBIT DETERMINATION 

The application of a SGPS receiver aboard a LEO for the goal of orbit determination 

began in civilian astronautics with the launch of Landsat 4 in 1982 [Birmingham et al., 

1983].  Since this time, there has been steady growth in LEO-based GPS activity (see, 

e.g., Bisnath [1999]).  This progression is due primarily to the characteristics of the GPS 

LEO tracking measurements, the details of which are discussed in the next section. 
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Before tackling this issue and describing SGPS POD strategies – a very good 

assessment of which is given in Yunck [1996], it is worthwhile defining what is meant by 

SGPS POD.  Rather than meaning orbit determination in the classical sense as described 

in the introduction of the previous section, POD represents a precise and accurate 

quantitative description of the LEO path at some past time period.  This can be realised in 

such forms as Special Product 3 (SP3) files containing discrete, time-stamped position or 

position and velocity records of the LEO, which can be interpolated by defined methods 

to any time of interest within that orbital arc.  Estimation of the trajectory outside of the 

period of GPS observations would quickly degrade the precision and accuracy of the 

LEO state. 

2.2.1. Variations Between Conventional and GPS Satellite Tracking 

Measurements 

GPS provides a number of advantages over conventional tracking measurements.  The 

GPS observing geometry provides three-dimensional information from range 

measurements, as opposed to just range, range-rate, or angular measurements.  That is, 

the preliminary orbit determination problem is solved with the production of the SGPS 

receiver navigation solution.  Another appealing aspect of GPS use aboard a LEO is its 

continuous data collection given sufficient power to sustain receiver operations and 

computer storage capacity to record measurements.  Conventional techniques are limited 

to those data collection periods when the spacecraft is in line-of-sight of tracking stations, 

and, in the case of laser ranging, when atmospheric conditions permit measuring.  The 

high costs involved with the operation of conventional tracking stations and their land-
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based nature limits their use and hence reduces data collection quantity and distribution.  

SGPS removes the need for these expensive tracking stations and in the case of 

differential processing only requires additional data from relatively inexpensive terrestrial 

GPS reference stations. 

Differential processing refers to the processing of simultaneously collected GPS data 

(specifically precise carrier phase observables) from a network of terrestrial reference 

receivers, and from the LEO receiver.  This greatly attenuates the major observing errors 

of GPS satellite ephemerides and mis-synchronization of GPS satellite and GPS receiver 

clocks.  The result is accurate, terrestrial reference station-to-LEO receiver vector 

estimates that are a prerequisite for the GPS-based precise orbit determination strategies 

described in the following sections.  Note that although differential carrier phase GPS 

measurements are typically more accurate than those of radar, laser measurements are the 

most accurate [Unwin, 1995]. 

2.2.2. Dynamic Precise Orbit Determination Strategy 

The dynamic strategy has been described in section 2.1.  Again briefly, mathematical 

models of the forces acting on the LEO and mathematical models of the LEO’s physical 

properties (altogether usually referred to as dynamic models) are used to compute a 

model description of the LEO’s acceleration over time via the constraints of Newton’s 

second law of motion.  Double integration of this model using a nominal spacecraft state 

vector produces a nominal trajectory − thus developing the equations of motion of the 

LEO.  A model trajectory is then estimated by selecting the LEO state that best fits (e.g., 
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in a least-squares sense) the pre-processed (undifferenced or differenced) GPS tracking 

measurements. 

An example of the most accurate SGPS dynamic orbit solution compared to satellite 

laser ranging (SLR)/Doppler Orbitography and Radiopositioning Integrated by Satellite 

(DORIS) orbits is that for the ~1300 km altitude TOPEX/Poseidon satellite.  Using 

similar dynamic OD processing and dynamic models for both GPS and SLR/DORIS 

solutions, results of approximately 3 cm, 10 cm, and 9 cm (r.m.s.) for the radial, along 

track, and cross track orbit components, respectively, were obtained [Schutz et al., 1994].  

Ten day arcs comprising double-differenced, ionosphere-free carrier phase and P-code 

observables were used without the degrading effects of Anti-Spoofing (AS).  AS refers to 

the encryption of the P-code by the U.S. military. 

This OD strategy also allows for the simultaneous estimation of other parameters to 

improve the fit between the nominal trajectory and the tracking data, while still 

preserving available measurement strength by means of the dynamic models.  These 

parameters can be classified as perturbing force and geometric parameters (e.g., gravity 

coefficients and terrestrial observing station coordinates), and empirical parameters (e.g., 

once- or twice-per-orbit revolution accelerations) [Yunck, 1996].  Over a long data arc 

(e.g., 6 hours), the effect of noisy instantaneous tracking measurements on the solution 

are reduced, given that the dynamic models are adequate.  However, errors in these 

models will result in steadily growing systematic errors in the LEO state for longer data 

arc lengths.  For example, the need for empirical parameter estimation indicates weakness 

in the dynamic models, which generally increases with decreasing LEO altitude, and 

increasing LEO dynamics complexity. 
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Other tracking system measurements, such as those from SLR and DORIS are 

restricted to a near fully dynamic OD strategy because of their discontinuous tracking and 

only one dimensional observability [Melbourne et al., 1994]. 

2.2.3. Kinematic Precise Orbit Determination Strategy 

In the kinematic or non-dynamic strategy, the trajectory smoothing caused by dynamic 

constraints in the estimation process is removed.  The rationale for this is that, 

particularly at lower altitudes, the actual path of the LEO may be closer to the accurate 

GPS position estimates than the trajectory determined via the precise dynamics.  This 

strategy can be applied by estimating in a Kalman filter formulation, along with the 

spacecraft state, a process noise vector representing three force corrections at each 

measurement epoch.  Increasing the process noise can reduce almost completely the 

effects of the dynamic models.  Simulated results for the ~700 km altitude Earth 

Observing System (EOS) satellite indicate that a radial precision approaching 3 cm r.m.s. 

could be achieved with this approach given a data arc of almost one day [Yunck, 1996]. 

The kinematic OD strategy is therefore actually based on an underlying dynamic 

formulation, however dynamic modelling errors are circumvented.  The strategy relies 

almost entirely on the precision of the GPS observations and the strength of the observing 

geometry − that is, the relative location of the LEO and terrestrial receivers with respect 

to the GPS constellation, and the continuous GPS satellite tracking from the SGPS LEO 

receiver and the terrestrial GPS receiver array.  Until recently, these measurement 

requirements represented severe problems due to receiver limitations [Melbourne et al., 

1994] and insufficient ground arrays [Yunck et al., 1986]. 
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2.2.4. Hybrid Dynamic and Kinematic Precise Orbit Determination 

Strategy 

The previous two strategies each have counterbalancing disadvantages: various mis-

modelling errors in dynamic OD, and GPS measurement noise or outages in kinematic 

OD.  A hybrid dynamic and kinematic OD strategy would down-weight the errors caused 

by each strategy, but still utilise the strengths of each.  One such strategy has been 

devised and is referred to as “reduced dynamic” precise orbit determination [Wu et al., 

1991].  Its basis is again the kinematic correction of the dynamic solution with 

continuous GPS data.  By not completely removing the LEO dynamic and spacecraft 

models, a more accurate solution is possible because sensitivity to mis-modelling and 

GPS measurement error are both reduced – an equilibrium is reached.  The weighting of 

the kinematic and dynamic data is performed again via the Kalman filter process noise.  

The process noise model contains two primary parameters: a time constant τi that defines 

the correlation in the dynamic model error over one update interval, and the dynamic 

model steady state variance σi
2.  When τi → ∞ and  σi

2 → 0, the technique is reduced to 

the dynamic strategy, and when τi → 0 and σi
2 → ∞, it approximates the kinematic 

strategy [Wu et al., 1991]. 

Orbit determination results using the reduced dynamic technique for the 

TOPEX/Poseidon satellite have been consistent with results obtained with conventional 

dynamic techniques using GPS, and SLR and DORIS tracking data.  Moreover, using 

refined dynamic models produces solutions that are even more similar, with differences 

of only a few centimetres (r.m.s.) in altitude [Melbourne et al., 1994]. 
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In the hybrid strategy, the proper weights of the process noise parameters must be 

chosen to give the most accurate orbit solution.  These values can be derived from 

computer simulations, covariance analysis, or can be determined from real data.  Once 

the correction parameter values are determined, this strategy provides equal or better 

accuracy compared to the other two strategies. 
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3.  THE INITIAL UNB GEOMETRIC PRECISE ORBIT DETERMINATION 
STRATEGY 

After studying the conventional orbit determination strategies of the time, it became 

apparent that a more direct approach might be possible, using the strong measurement 

capabilities of the GPS technology – accurate, global, continuous, and direct three-

dimensional positioning.  In this chapter, the development of the initial UNB geometric 

POD strategy is described.  The term “initial” is used because major refinements to this 

approach were later made and are presented in Chapter 5.  The use of the term 

“geometric” is explained in Section 3.1.  The presentation of the initial strategy allows for 

the complete description of the logical progression of thoughts and development of the 

current technique.  Also, the initial approach is still a completely viable option for POD.  

The chapter proceeds as follows: the thought process behind the development of the 

geometric strategy is first given; the related filter research that provides the basis for this 

work is reviewed and acknowledged; and the filter designed is provided, along with 

pertinent models and the least-squares solution to the over-determined problem. 

3.1.  PHILOSOPHICAL AND HISTORICAL FOUNDATIONS OF THE GEOMETRIC 

STRATEGY 

Classical OD was designed to incorporate sparse, often imprecise measurement data 

that are not necessarily three-dimensional in nature.  The advent of SGPS has allowed for 

the direct collection of continuous, accurate, direct, three-dimensional positions.  Also, at 

low altitudes, e.g., below approximately 1000 km, the hybrid strategy tends to reduce to 

the kinematic strategy [Wu et al., 1991], in which the effects of the dynamic smoothing 
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of the GPS measurements by the inadequate dynamic models is removed.  The kinematic 

strategy is required for LEOs that are in such described low orbits and also for LEOs that 

possess complex orbital motion, such as tethered vehicles or spacecraft of complex 

dimension and mass distribution (e.g., a space station).  Given these factors, a much less 

complex, direct and therefore very efficient approach became apparent: basically to use 

an augmented form of GPS relative positioning.  This is to process simultaneous 

measurements from the LEO receiver and individual receivers at known locations from a 

terrestrial array to determine the position of the LEO with respect to the terrestrial 

receivers.  This strategy was first proposed at the 1998 Canadian Aeronautics and Space 

Institute (CASI) Conference and first published in 1999 [Bisnath and Langley, 1999b].  

The name “geometric” was used as the success of the strategy is based solely on the 

geometric strength of the GPS measurements.  Also, the term “kinematic” (i.e., non-

dynamic) was already in use for another form of processing (Section 2.2.3). 

Such a tracking strategy had been advocated in the early development of spacecraft 

tracking with GPS (e.g., Yunck et al. [1986]); however, it was abandoned for dynamic 

strategies due to the depletion of data strength caused by the large number of parameters 

required to be estimated.  At the time, precise GPS orbits were not available and therefore 

had to be estimated simultaneously with the LEO position in the solution.  This would 

have required a large global array of terrestrial reference stations that was then 

unavailable.  Given ideal circumstances, decimetre position component precisions were 

predicted in simulations [Yunck et al., 1986].  If the GPS orbits were not simultaneously 

estimated, LEO position component precision would then be limited to the metre-level. 
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With the advent of global terrestrial receiver arrays such as the one maintained under 

the auspices of the International GPS Service (IGS), precise GPS orbits, a large global 

array of terrestrial GPS reference station data, and associated station coordinate and 

tropospheric zenith path delay estimates became available [Neilan et al., 1997; Gendt, 

1998].  A great deal of effort and expertise are involved in the generation of these data 

products, and the geometric strategy represents an opportunity to utilise these datasets as 

opposed to either re-estimating portions of them or ignoring them altogether.  The idea of 

reducing the computational burden by utilising IGS precise GPS orbits in dynamic OD 

for example has been tested with only minor reductions in orbit accuracies by Davis et al. 

[1997]. 

The inputs to the geometric tracking strategy are precise GPS ephemerides, terrestrial 

array receiver measurements, receiver coordinates and tropospheric zenith path delay 

estimates, and dual-frequency pseudorange and carrier phase SGPS receiver data.  The 

measurement data are not fit against a nominal trajectory determined by dynamic models 

and thus the development of such models is not required.  The double-differenced, 

ionosphere-free pseudorange observable is used to determine noisy (i.e., metre-level) 

absolute LEO position estimates.  The double-differenced, ionosphere-free carrier phase 

observable differenced between adjacent epochs (triple-difference) is used to determine 

highly precise (i.e., sub-centimetre-level) LEO position change estimates.  The use of the 

dual-frequency observables allows for the removal of the vast majority of ionospheric 

effects, the error effects of GPS satellite and receiver clocks is eliminated with the 

double-differencing, and the phase ambiguity terms are removed by the third differencing 

(in time). 
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This measurement processing technique is a derivative of the processes described by 

Yunck and Wu [1986] for LEO orbit determination and Kleusberg [1986] for marine 

navigation, and is a generalised form of carrier-aided pseudorange smoothing developed 

by Hatch [1982].  At the crux of carrier and pseudorange combination is that averaged 

noisy pseudorange range measurements are used to estimate the ambiguity term in the 

precise carrier phase range measurements.  The longer the pseudorange averaging, the 

better the carrier ambiguity estimate.  In effect, the low noise carrier phase information is 

used to map the pseudorange information from all epochs to one epoch for averaging, and 

this is done for every observation. 

LEO

LEO

 

Figure 3.1:  Frequently changing GPS satellite / LEO receiver / 
ground receiver pairing due to LEO orbital motion. 

As can be appreciated from Figure 3.1 however, the averaging intervals are typically 

short in spaceborne applications due to the relatively fast motion of the LEO, ~7.5 km/s 
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for a satellite orbiting at between 500 and 1000 km, resulting in orbital periods of ~1.5 to 

2 hours, necessitating frequent changing of GPS satellite-receiver pairs.  This situation 

does not allow for the highest precision of the technique to be attained, as averaging 

intervals are only a few tens of minutes long.  By performing the averaging in the 

position rather than the range domain, previous position solutions can be used in 

estimating present and future solutions regardless of changing spaceborne / terrestrial 

receiver vectors.  Quiles-Blanco and Martin-Neira [1999] actually describe tests in which 

a Kalman filter realisation of this filter type provides superior performance to a standard 

carrier-smoothing algorithm. 

To summarise, the flow charts of Figure 3.2 compare and contrast the fundamental 

constituents of the three existing tracking strategies described in Chapter 2 with the 

geometric strategy.  As can be readily seen, the latter represents much less processing.  

Firstly, the generation of GPS satellite orbits (and therefore use of GPS satellite dynamic 

models) is not necessary – they are provided by the IGS.  And secondly, the LEO 

dynamic models are not required; only precise, continuous SGPS measurements.  A 

number of key questions arose during this theoretical development process:  One, could 

GPS measurements alone produce near-decimetre-level orbits?  Two, would the 

propagation of IGS product error too greatly contaminate the LEO position solutions?  

And three, would an SGPS receiver provide adequate precise, continuous data to drive 

the filter?  These questions were partially addressed in the simulations of Chapter 4, but 

the underlying concern that dynamics are not available in this approach to bridge 

measurement gaps or increase solution precision would remain until actual data was 

processed. 
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Figure 3.2.  Flow charts of the fundamental constituents of the four 
GPS-based precise tracking strategies.  (a) Dynamic strategy.  (b) 
Kinematic strategy.  (c) Hybrid strategy.  (d) Geometric strategy. 
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3.2.  GEOMETRIC STRATEGY FILTER MODELS AND SOLUTION 

The derivation of the positioning filter is now presented.  First, the combination of the 

pseudorange and carrier phase observables is given.  This is followed by the derivation of 

the positioning model and the filter solution.  Finally, an optimal least-squares smoother 

is derived. 

3.2.1. Combination of the Pseudorange and Carrier-Phase Observables 

The four measurement streams: L1 pseudorange, L1 phase, L2 pseudorange, and L2 

phase can be combined to produce a single precise, unambiguous observable.  The four 

observables can be represented by the following simplified measurement models: 

{ P1t1tt1 ,eIP
t

σ++ρ= }        (3.1) 

{ }Φσε+λ+−ρ=Φ ,NI
t111t1tt1        (3.2) 

{ P2t2tt2 ,eIP
t

σ++ρ= }        (3.3) 

{ }Φσε+λ+−ρ=Φ ,NI
t222t2tt2       (3.4) 

where 1 and 2 represent L1 and L2 observable terms, t is the epoch of observation, ρ is 

the geometric range, I1 and I2 are the pseudorange delay or carrier-phase advance 

imparted by the ionosphere, λ is the carrier wavelength, N is the integer ambiguity, the e 

and ε terms represent the random noise on the pseudorange and carrier-phase 

observables, and the term in braces is the observation precision (1σ).  Note that 

. 100/p ≈σσ Φ
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The linear combination of these four observables removes the ionospheric term 

(ignoring higher-order terms) and hence is referred to as the “ionospheric-free” 

combination.  I1 and I2 can be written as II 11 α=  and , where II 22 α=

( ) 546.1fff 2
2

2
1

2
21 ≈−=α  and ( ) 546

11

.2fff 2
2

2
1

2
12 ≈−=α

2

, where I is a quantity 

proportional to the line-of-sight ionospheric electron content and f1 and f2 are the L1 and 

L2 carrier frequencies, respectively.  Noting that =α−α  and 2
2

2
1

1

2

f
f

=
α
α , equations 

(3.1) through (3.4) can be combined to remove the ionospheric term with data noise 

magnification as dictated by the law of error propagation: 

2α  (3.1) −  (3.3): 1α

{ }p
2
2

2
1ttt ,e~P~ σα+α+ρ=         (3.5) 

where t21t12t eee~ α−α= . 

2α  (3.2) −  (3.4): 1α

{ }Φσα+αε++ρ=Φ 2
2

2
1ttt ,~B~        (3.6) 

where , and 221112 NNB λα−λα= t21t12t
~ εα−εα=ε .     (3.7) 

The basic principle of the second linear combination is to estimate the GPS satellite-to-

receiver carrier phase ambiguity bias (B) by averaging the difference between the carrier-

phase (Φ~ ) and pseudorange ( P~ ) observables.  That is, as long as the satellite-to-receiver 

bias remains constant (i.e., no cycle-slips): 
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And therefore, the best estimate of the range is 

B̂~ˆ tt −Φ=ρ           (3.10) 

or 
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ttttt .   (3.11) 

It must be noted that these two combinations are not optimum when producing a 

single data stream from the four initial streams.  In the first combination, the common 

ionospheric term in the pseudorange and carrier phase equations are treated 

independently, and hence some data strength is lost.  And in the second combination, the 

relative observable weighting is only optimal if σΦ << σP, or else either the number of 

epochs averaged has to be limited or more appropriate weighting must be put into place.  

Small improvements can be obtained if these concerns are taken into account (see, e.g., 

Wu and Melbourne [1993]). 
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3.2.2. Derivation of the Geometric Strategy Mathematical Model 

As described, to avoid constantly changing GPS-satellite-to-receiver pairs, the carrier 

smoothing of the pseudoranges can be performed in the position domain.  The more 

complete observation equations are now used to derive the required mathematical model.  

Continuing from (3.5) and (3.6) 

[ ] tttttt e~TdtdTcP~ ++−+ρ=   and       (3.12) 

[ ] tttttt
~BTdtdTc~ ε+++−+ρ=Φ ,       (3.13) 

where the new terms are as follows: c is the nominal speed of light in a vacuum, dTt and 

dtt are the receiver and GPS satellite clock offsets, respectively, and Tt is the delay due to 

the troposphere.  Again, the subscript t is the epoch of observation. 

In the determination of the LEO receiver position, the tropospheric error does not 

apply (it however must be included in the terrestrial reference station receiver model), 

and the clock terms can be almost completely removed via double-differencing.  Between 

epoch differencing of the double-differenced carrier phase (triple-difference) removes the 

bias term B. 

ttt e~rP~ ′+=∆∇  and         (3.14) 

t,1tt,1tt,1t
~r~

−−− ε′+=Φ∆∇          (3.15) 

where tP~∆∇

t,

 is the double-differenced, ionosphere-free pseudorange observation, 

1t
~

−Φ∆∇  is the triple-differenced, ionosphere-free carrier phase observation, rt is the 
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terrestrial receiver-to-LEO receiver geometric range, rt-1,t is the change in range of the 

LEO receiver with respect to the terrestrial receiver between epochs t-1 and t and te~′  and 

t,1t
~

−ε′

∆Φ



∇
∇

 are the associated processed pseudorange and carrier phase observation errors, 

respectively. 

Finally, linearised and in matrix form, (3.14) and (3.15) represent the final 

mathematical model for the filter: 
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    (3.16) 

where ∇∆Pt and ∇∆Φt-1,t are the vectors of double-differenced pseudorange and triple-

differenced carrier phase observations (the ionosphere-free tilde notation has been left 

out), respectively, δxt-1 and δxt are the corrections to the approximate LEO position 

coordinates at epochs t-1 and t, respectively, At-1 and At are the measurement partials 

with respect to the two position coordinates, et-1 and εt are the processed pseudorange and 

carrier phase vectors observation errors, and Cp and CΦ are the variance-covariance 

matrices of the processed pseudorange and carrier-phase observations, respectively.  As 

can be seen, (3.16) is in the form vAX +=l , which can generate an optimal solution via 

the theory of least-squares. 

3.2.3. Derivation of the Kinematic, Sequential, Least-Squares Positioning 

Filter from the Mathematical Model 

From, e.g., Wells [1997] the general linearised parametric least-squares adjustment 

can be represented by 

 28



 

0
0

0

00
0

0

T

1

=















+

































−

−

w
δx
k
r

A
AI

ICl

,       (3.17) 

where w is the misclosure vector, δx is the vector of corrections to the approximate 

parameters, A is the matrix of measurement partials with respect to the unknowns δx, k is 

the vector of Lagrange correlates, and  is the variance-covariance matrix of the 

observations.  Through the use of matrix partioning this mathematical model can be 

altered to represent the observation model (3.16).  That is, the addition of nuisance 

parameters         and consequently 
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consequently ; : ; ; and 

; and the incorporation of the previous estimate of the LEO position and 

associated covariance ( C ).  The result is 
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The solution of (3.18) is 
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We therefore have a kinematic, sequential, least-squares filter based solely on GPS 

measurement for LEO tracking.  Note that this equation was previously presented in 

Kleusberg [1986]. 

As can be seen, the position estimate at the previous epoch t-1 is used to estimate the 

position at epoch t and so on for the moving LEO.  This equation represents a kinematic, 

sequential, least-squares filter.  This filter is a subset of the Kalman filter as shown in 

Appendix A.  Simply put, from (3.19) the pseudorange measurement contributions are 

basically 

tPtttt C;exAP ∆∇+δ=∆∇         (3.20) 

and can be extracted along with the carrier phase measurement contribution, which is 

essentially 

t,1tt,1ttt1t1tt,1t C;xAxA
−∆Φ∇−−−− ε+δ+δ−=∆Φ∇ .     (3.21) 

The terms in (3.20) can be directly mapped to those of the Kalman filter measurement 

model, and with some rearrangement the terms in (3.21) can be effectively related to 

those of the Kalman dynamic model.  That is, the kinematic, sequential, least-squares 

positioning filter behaves like a Kalman filter because the carrier phase measurements 
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represent its dynamic model – precise change in state information.  This is illustrated in 

Figure 3.3. 

LEO position
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LEO position
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Figure 3.3:  Combination of pseudorange and carrier phase 
observations in the kinematic, sequential, least-squares filter − 
parallels the Kalman filter [Bisnath and Langley, 1999a]. 

3.2.4. The Optimal Least-Squares Smoother for Parameter Covariance 

Finally, since this tracking strategy is performed after-the-fact, data smoothing can be 

performed.  That is, the data arc can be processed in the forward and reverse directions 

and the results can be optimally combined.  The best parameter estimate for an epoch can 

be represented by, e.g., Gelb [1974] 

ttt ˆˆˆ rfs xRxFx += ,         (3.22) 
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where ,  and  are the optimal smoothed, forward filter, and reverse filter 

parameter estimates, respectively, and F and R are the weighting matrices to be 

determined.  Given that the relationship between an estimate  is 

tˆ sx tˆ fx tˆ rx

x̂

rrffss xxxxxxxxxxxx ~ˆ,~ˆ,~ˆ~ˆ +=+=+=⇒+= .    (3.23) 

(3.22) can be written as 

( ) tttt
~~~

rffs xRxFxIRFx ++−+= .       (3.24) 

If we let R = I – F, as it must in this weighting scheme, then 

( ) ttt
~~~

rfs xFIxFx −+= .        (3.25) 

Since { }t
T

t
~~E sss xxP = , applying the law of error propagation to (3.25) results in 

( ) ( T
t

T
t FIPFIFPFP rfs −−+= )

)

,       (3.26) 

or dropping the epoch notation, simply 

( ) ( TT FIPFIFPFP rfs −−+= .       (3.27) 

We can now chose the best weighting of the forward and reverse filter results by way of 

the least-squares criterion.  Therefore, taking the partial derivative of (3.27) with respect 

to F and setting the result equal to zero 0=
∂
∂

⇒
F
Ps  gives 

( 1−+= rfr PPPF )          (3.28) 
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and 

( 1−+=−= rff PPPFIR ) .        (3.29) 

Substituting (3.28) and (3.29) into (3.27) gives 

( ) ( ) ( ) ( ) frfrrffrrffrfrs PPPPPPPPPPPPPPP 1111 −−−− +++++= ,   (3.30) 

which after some manipulation (multiplying through and cancelling) results in 

( )11 −− += rfs PPP          (3.31) 

or 

t
1

t
1

t
1 −−− += rfs PPP .         (3.32) 

Therefore, the result for the parameter covariance is 

ttt rfs CCC += ,         (3.33) 

where C is the smoothed parameter covariance, is the forward filter parameter 

covariance, and is the reverse filter parameter covariance.  This is a fixed-interval 

smoother and as can be seen from (3.33) and Figure 3.4, the smoothed parameter 

covariance is less than or equal to the results from either filter. 

ts tfC

trC
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3.3.  SUMMARY 

The philosophical and historical foundations for the initial geometric strategy have 

been presented.  The filter models, both mathematical and stochastic were developed and 

explained, as was the kinematic, sequential least-squares solution.  The next chapter uses 

these definitions to assess the usefulness of the strategy for POD by use of simulations. 
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Figure 3.4:  Sketch of estimation error functions for forward filter, 
reverse filter, and fixed-interval smoother. 
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4.  GEOMETRIC STRATEGY PROOF OF CONCEPT STUDY 

In order to proceed with the development of the initial geometric POD strategy, since 

such an approach had not been attempted in the literature, it was deemed necessary to 

perform some form of simulation to confirm if the geometric technique would indeed 

provide precisions on the order of a few decimetres; otherwise the strategy would not be 

a viable alternative to existing approaches.  The research carried out for this task 

produced a number of papers and presentations including Bisnath and Langley [1999a] 

and Bisnath and Langley [1999b]. 

The proof of concept consisted of two components: the major component was an 

assessment of the filter viability via an error propagation study, and the minor component 

was a solution interpolation study.  The filter study propagates the expected noise levels 

in the system (i.e., SGPS measurements and infrastructure) through the least-squares 

functional model as is done, for example, in surveying theory pre-analysis.  Given the 

stochastics and geometry of the problem, the expected precision of the solution can be 

estimated.  The interpolation study inputs varying time-spaced discrete LEO coordinates 

into a standard interpolator algorithm to determine if such discrete data can accurately 

represent a LEO orbit.  By successfully addressing these two concerns, justification is 

provided that the geometric strategy is feasible, and therefore the dissertation work is 

worth pursuing. 
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4.1.  FILTER ERROR PROPAGATION STUDY 

The filter error propagation study consisted of first developing the propagation models 

based on the geometric filter and available information on the precision of the 

measurements.  The models were then implemented in software for analysis and 

simulated data were created for processing.  The orbit scenario used was that for the 

proposed BOLAS LEO mission, which will be described.  The results and analysis then 

follow. 

4.1.1. Filter Error Propagation Study Methodology 

To determine how well this processing strategy would work, i.e., with what precision 

could the position of the LEO receiver be determined, the covariance matrix for the 

estimated position unknowns was computed.  Beginning with the set of linear or 

linearised observation equations of the form 

Ax=l ,          (4.1) 

where  is the vector of measurements, x  is the vector of unknowns, and  is the 

matrix of measurement partials (design matrix).  Such observation equations can be 

represented in the form 

l A

12
o;ˆ −σ=+= lll CPrxA ,         (4.2) 

where  is the estimated vector of unknowns,  is the vector of residuals which 

completes the system,  is the (generally diagonal) weight matrix, σ  is the a priori 

variance factor, and C  is the (generally diagonal) matrix of measurement precisions 

x̂ r

lP

l

2
o
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(measurement covariance matrix).  For this application, the system is over-determined, 

that is number( ) > number(x).  The “best” solution to this equation in terms of 

minimising the magnitudes of the residuals is the weighted least-squares estimator 

l

TP

1

1−

( ) 12
o

1T ,ˆ −−
σ== llll l CPAAPAx .       (4.3) 

The covariance matrix for the estimated unknowns is 

( 1T
ˆ

−−= ACACx l ) .         (4.4) 

Therefore, only the mathematical model and the stochastic model are needed for this 

estimate and no actual measurements. 

This estimate only contains direct measurement errors propagated through the 

geometry of the observing strategy.  Other indirect sources of error are not included in 

this estimate.  These two types of errors have been referred to as internal and external 

errors, respectively (e.g., Strang and Borre [1997]).  For the processing at hand, the 

internal errors are the pseudorange and carrier phase measurement noise, and the external 

errors arise from tropospheric zenith delay residuals, and GPS satellite and terrestrial 

reference receiver position uncertainties.  Pseudorange and carrier phase multipath were 

not considered; however, much of the negative effect of such errors would be averaged 

out in the filtering.   can be augmented to include the effects of these external errors 

and hence provide a larger, but more realistic covariance for the estimated parameters 

xC ˆ

( ) ( ) ( ) 11T1T1T11T1T
ˆ

−−−−−−− +=′ ACAACBBCCAACAACAC Bx lllll ,   (4.5) 
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where is the more realistic covariance for the estimated parameters, B is the design 

matrix containing the measurement partials with respect to external error terms, and C

xC′̂

B is 

the covariance matrix of the external error terms.  This pivotal derivation and the specific 

derivations for the total LEO position error covariance that are the centre of this proof of 

concept study are given in Appendix B. 

This expanded covariance procedure has been described by, e.g., Blaha [1974] and 

Strang and Borre [1997] for propagating control monument variances through geodetic 

network least-squares adjustments.  Bierman [1977] adapts the procedure for the square 

root information filter and refers to its use as consider covariance analysis based on 

considering the effects of other error sources. 

Therefore by deriving the B matrix and constructing the CB covariance matrix based 

on the given data, the precision with which the LEO receiver position can be determined 

for a given mission scenario can be estimated. 

4.1.2. Filter Error Propagation Software 

In order to test the proposed tracking strategy, GPS constellation, terrestrial receiver 

array and LEO positions were needed for use in design and covariance matrix 

construction.  Software created primarily to predict the visibility between an arbitrary 

satellite and the GPS satellite constellation [Gerrits and Langley, 1998] was used to 

produce these data.  The software, entitled GGSIM (Gps Geometry SIMulator), is written 

in FORTRAN 77 with Matlab visualisations.  The main inputs (via a command file) are 

the satellite and GPS constellation two line element files.  Other parameter inputs include 
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start and end epoch, and estimation time step.  The Keplerian elements along with the 

orbital perturbation due to the J2 spherical harmonic term of the earth’s gravitational 

potential are used to compute the celestial Cartesian coordinates of all the involved 

satellites.  Vector calculus is then used to compute LEO-to-GPS tracking intervals given 

the constraints of the size and shape of the earth and the field-of-view and orientation of 

the LEO GPS antenna.  The outputs include GPS satellite visibility times and elevation 

angle, azimuth and range information.  The results were verified with the Satellite Tool 

Kit (STK) Version 4.0 commercial satellite tracking software package. 

GGSIM was modified for the purpose of this precision study.  The major changes are 

that the celestial Cartesian coordinates for the visible GPS satellites and for the LEO are 

output, and terrestrial receiver-to-GPS constellation tracking was added to output the 

visible GPS satellites and the terrestrial receiver coordinates.  The flow chart of the 

software to output common GPS satellite and LEO antenna time-stamped positions is 

given in Figure 4.1.  As can be seen, basically the LEO coordinates are computed and the 

GPS satellite coordinates are computed for the epoch of interest.  Then the visibility is 

determined based on the constraints defined above.  The procedure is repeated for each 

GPS satellite and for all epochs of interest.  The LEO, GPS and terrestrial coordinates are 

written to files for further processing. 
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Figure 4.1:  Program GGSIM flowchart of operation. 

The program LEOCOVEST (Low Earth Orbiter COVariance ESTimator) was created 

to process time-stamped GPS, LEO and terrestrial reference receiver celestial Cartesian 

coordinates derived from the GGSIM program and input noise values with the described 

kinematic, sequential, least-squares filter/smoother.  The result is a time series of the 

covariance of the estimated LEO position in radial, along-track and cross-track 

components.  This time series can be analysed in terms of the input error sources.  The 
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program was created with Matlab code.  Flowcharts of the operation of the program are 

given in Figures 4.2 and 4.3. 

In the generalised Figure 4.2, the input parameters and the GGSIM output are first 

used in relative dilution of precision (RDOP) calculations.  RDOP is a measure of 

relative GPS positioning geometric strength (between terrestrial reference receiver and 

SGPS receiver) and is therefore a measure of the relative measurement precision.  The 

pseudorange RDOP is computed with respect to each terrestrial reference receiver.  From 

these time series, values are chosen in terms of a three-epoch moving average to identify 

the best reference station to use for relative LEO position for each epoch of the solution. 

Again, the initial LEO position covariance as well as the design and observation 

covariance matrices for all additional epochs are computed for use in the forward filter as 

described in Appendix B.  The same procedure, but backwards, is carried-out for the 

reverse filter.  Finally, the two filter results are combined as specified in section 3.2.4 to 

produce a smoothed set of results.  At each step of the processing, results are plotted on 

the computer screen and written to file.  

 41



 

Start

End

Compute LEO
receiver noise

GPS constellation and
ter. stn. coordinates LEO coordinates

Compute best moving average
pseudorange RDOP

time series for ter. stns. (1)

Store
results

Store
results

Store
results

Store
results

Compute LEO covariance
estimate time series with
kinematic sequential least
squares forward filter (2)

Compute LEO covariance
estimate time series with
kinematic sequential least
squares reverse filter (3)

Compute final LEO covariance
estimate time series with
kinematic sequential least

squares smoother

Display
results

Display
results

Display
results

Display
results

Start

End

Compute LEO
receiver noise

GPS constellation and
ter. stn. coordinates LEO coordinates

Compute best moving average
pseudorange RDOP

time series for ter. stns. (1)

Store
results

Store
results

Store
results

Store
results

Compute LEO covariance
estimate time series with
kinematic sequential least
squares forward filter (2)

Compute LEO covariance
estimate time series with
kinematic sequential least
squares reverse filter (3)

Compute final LEO covariance
estimate time series with
kinematic sequential least

squares smoother

Display
results

Display
results

Display
results

Display
results

 

Figure 4.2:  Flowchart of the overall operation of program 
LEOCOVEST. 
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Figure 4.3:  Flowchart of the detailed operation of the main 
components of program LEOCOVEST.  (1) Selection of double-
difference measurements.  (2) Forward filter covariance 
computation.  (3) Reverse filter covariance computation. 
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4.1.3. BOLAS Mission Scenario and Data Simulation 

The baseline orbit and GPS receiver used for this analysis were from the proposed 

tethered Canadian Bistatic Observations with Low Altitude Satellites (BOLAS) 

ionospheric science mission [James, 1997] and the Allen Osborne Associates, Inc. 

TurboStar SGPS receiver [Kunze, 1997], respectively.  BOLAS required near-decimetre 

a posteriori satellite positions. The nominal BOLAS orbital parameters are given in 

Table 4.1.  To accommodate the use of GPS on each subsatellite, it was proposed that a 

4π steradian phased antenna array be developed.  In this study, the effect of using both a 

2π steradian zenith-pointing antenna and a 4π steradian antenna (covering both zenith 

and nadir hemispheres) were analysed. 

 
Orbital parameter Value 

Perigee 350 km 
Apogee 780 km 
Period 90 minutes 
Inclination 103° 
Perigee drift rate -2.794°/day 
Right ascension drift rate  1.657°/day 

Table 4.1: Orbital parameters for the proposed BOLAS spacecraft. 

The assumed input noise parameters for the study are given in Table 4.2.  The carrier 

phase and pseudorange noise values were provided by the manufacturer.  The 

pseudorange noise is based on a five minute integration time and the presence of Anti-

Spoofing (AS).  The remaining parameters are defined according to the International GPS 

Service (IGS) documentation [Neilan et al., 1997; Gendt, 1998].  Note that the 

tropospheric error for the ground stations was mapped to the line of sight via the cosecant 

of the elevation angle.  This is a sufficiently accurate mapping function for these 
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preliminary studies.  All signals arriving at the LEO are assumed to be free of 

tropospheric effects.  The effects of ionospheric refraction are assumed completely 

removed by means of the ionosphere-free, dual-frequency observable combination.  The 

effect of signal multipath was not considered, but would degrade the solution if the SGPS 

antenna were located in a high multipath environment. 

Parameter Std. dev.  (cm) 
L1 pseudorange    2.2* 
L2 pseudorange (AS on) 15.8* 
L1 carrier phase   0.02 
L2 carrier phase (AS on) 0.3 
GPS precise ephemerides 5.0 
Ground station coordinates 1.0 
Tropospheric zenith path delay 1.0 

Table 4.2: Input noise parameters for the error propagation study. 
*300 second integration period. 

The BOLAS ground track for the first five hours of one arc is shown in Figure 4.4.  

Scenarios with 24, 32, and 40 globally distributed IGS ground stations were used, with 

ground station GPS satellite tracking elevation mask angles of 10º. 
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Figure 4.4: Example of a tracking scenario showing BOLAS ground 
track for a 5 hour arc. First 24 stations ( ).  Additional 8 stations 
( ).  And final 8 stations ( ). 
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4.1.4. Filter Error Propagation Study Results and Analysis 

In order to observe the performance and characteristics of the geometric strategy, the 

error propagation study was focused on a number of processing parameters including: 

data combination; number of ground stations; data arc length; and GPS-to-LEO signal 

cut-off altitude. 

The first type of analysis was the observation of forward filter convergence.  As can 

be seen in Figure 4.5, approximately 25 minutes of data was all that was required for 

filter convergence.  The convergence occurred smoothly without spikes due to changing 

LEO-terrestrial receiver combinations.  The positioning component noise settled at the 

one to two decimetre-level.  This behaviour was a very encouraging sign that the 

geometric strategy would be successful. 

Figure 4.6 represents a near-optimal situation, in which the most benefit was gained 

from the double-differenced pseudorange and carrier phase observables filtered and 

smoothed over 24 hours, using 32 ground stations, with a LEO elevation mask of zero 

degrees.  As the terrestrial receiver / LEO / GPS constellation geometry changed, few 

centimetre variations in the solution standard deviations were observed, but the overall 

average of these values were less than ten centimetres for each position component.  

These results, although optimistic represent the approximate precision of the geometric 

strategy.  And given that decimetre-level orbits are the state-of-the-art, these simulation 

results represented strong evidence that the technique should be developed. 
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Figure 4.5:  Forward filter convergence. 
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Figure 4.6:  Smoothed results for near-optimal processing scenario.  
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To further understand the sensitivity of the geometric strategy to various processing 

parameters, a few of these parameters were varied and the resulting effects on LEO 

position covariances observed.  Unless otherwise specified, the defaults for the 

processing parameters were: single-differencing; 32 ground stations; 6 hour data arc 

length, with 30 minutes removed from the data arc tails after processing; 300 second 

measurement integration period; no GPS-to-LEO signal cut-off altitude; and AS active. 

Figure 4.7 shows the effects of estimating (the bold lines) or not estimating (the thin 

lines) the receiver clock.  That is, single-differenced pseudoranges and double-

differenced carrier phases versus double-differenced pseudoranges and triple-differenced 

carrier phases, respectively. The use of double-differenced observations resulted in a 

mean radial component error that was approximately 1 cm larger than the along-track 

error and more than 3 cm larger than the cross-track error.  Representing the behaviour of 

the LEO receiver clock with a simple white noise model, the single-differenced solution 

provided marginally more precise results. 

The number of ground stations used for the processing was next investigated.  Given 

that for the simulation, only one terrestrial reference station was used in the processing at 

any one epoch, the improvement by adding ground stations was expected to be minimal.  

And as can be seen from Figure 4.8, this is the case.  The improvement from 24 stations 

to 40 stations came primarily in a half centimetre reduction in the radial component 

position error.  The largest error value also does not change significantly with varying the 

number of reference stations. 
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Figure 4.7: Effect of estimating (bold lines) and not estimating (thin 
lines) LEO receiver clock on component position error. 
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Figure 4.8: The effect of varying the number of ground stations on 
mean component position error. 
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Another processing parameter that does not have a significant effect on the position 

precision was the length of the data arc used in the processing.  The mean position error 

presented in Figure 4.9 can be explained by the fact that the filter converges very quickly, 

and reaches a very reliable steady state. 
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Figure 4.9: The effect of varying the data arc length on mean 
component position error. 

As mentioned, the BOLAS mission called for the use of a 4π steradian LEO GPS 

antenna.  Such an antenna would obviously improve the results of this purely geometric 

approach.  However, the use of dual-frequency GPS signals that pass in and out of 

portions of the earth’s atmosphere would increase the noise in those measurements.  

Therefore, either these types of signals must not be used in processing, or they must be 

subjected to further corrections based on existing physical models for tropospheric and 

ionospheric noise.  In terms of the former method, an altitude cut-off term was created.  
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That is, line-of-sight vectors from GPS satellites to the LEO were not used for processing 

below a certain altitude threshold – the altitude cut-off. 

Figure 4.10 compares the 2π results with a number of 4π results.  For BOLAS, 

orbiting at relatively low proposed altitudes, the effects of introducing a 4π steradian 

antenna with a 1000 km cut-off altitude was negligible compared to the zenith-

hemisphere 2π steradian field-of-view antenna.  However, when the cut-off was reduced 

to 350 km (the approximate altitude of peak ionospheric electron density) the resulting 

mean total displacement position noise decreased from 12.8 cm to 10.7 cm.  Further 

reduction in the altitude cut-off to 50 and 0 km produced few millimetre improvements, 

indicating that the increased low elevation angle data provided by the longer GPS 

satellite data arcs did not improve the precision of the position solution. 
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Figure 4.10: The effect of using a 4π steradian LEO GPS antenna on 
3drss component error. 

 51



 

4.2.  INTERPOLATION STUDY 

In order to utilise discrete GPS-based position estimates in LEO mission applications, 

positions need to be accurately interpolated or approximated to epochs in between these 

estimates to epochs of interest to users of the orbit information.  Since satellite orbits are 

smoothly varying for the most part, with the excepting of thrusters firings, etc., 

interpolation should produce suitable results.  A basic study of the use of interpolation 

was carried out. 

4.2.1. Interpolation Study Methodology and Datasets 

Investigating the use of data interpolation, three parameters were of interest: the order 

of the interpolator, the spacing of the nodes of known functional values (in the case of the 

geometric tracking strategy, position estimates spaced in time as dictated by the 

measurement integration period), and the accuracy to which the interpolation is to be 

carried out.  Of course, the type of interpolator has a significant effect on the results of 

the interpolator.  For this study, a 15th order Lagrange interpolator was used.  The 

Lagrange interpolator was chosen as it is a standard for interpolating satellite orbits, such 

as those of GPS [Remondi, 1989].  Varying the interpolator by one or two orders had 

little effect considering the relatively smooth nature of satellite trajectories. 

A 24 hour, one second dataset of the ERS2 satellite precise earth-centred, earth-fixed 

position estimates was used as a “truth” source  [Gerrits, 2000].  ERS2 orbits at a nominal 

altitude of only 785 km and therefore is significantly perturbed by the earth’s gravity 

field.  The estimates were computed at the Delft University of Technology with satellite 

laser ranging (SLR) measurements, using the GEODYN II software package with all 
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orbit perturbations activated.  Subsets of this data set were selected (depending on the 

node spacing), and processed with the interpolator.  The results were then differenced 

with the original data set to determine the accuracy of the interpolation process. 

4.2.2. Interpolation Study Results and Analysis 

The results for interpolation node spacing of 0 seconds to 180 seconds can be seen in 

Figure 4.11.  The results with spacing up to 300 seconds goes off the scale of the figure.  

The results have been represented in terms of the 99.73 percentile (3σ) interpolation 

error.  That is, 0.27 percent of the errors are greater than or equal to the 3σ value.  If the 

node interval is 90 seconds or less, basically no error is introduced in the LEO position 

solution due to interpolation.  However, if an interval of 120 seconds is used, a small 

interpolator bias of approximately 10 mm is introduced, particularly to the Cartesian Y 

position component.  Using a longer node interval would produce errors at a level equal 

to or greater than the resulting position noise from the above processing.  The use of 

more sophisticated interpolation or approximation procedures might improve these 

results. 

The conclusion, therefore is that for the ERS2 satellite and satellites with similar orbits 

as long as the state estimation interval is not too large, e.g., > 90 seconds, there should be 

no ill effects in orbit accuracy due to interpolation for this altitude LEO. 
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Figure 4.11: The effect of interpolation node interval on 
interpolation accuracy, for tests using ERS2 data. 

4.3.  SUMMARY 

In this chapter, the initial geometric strategy was tested by means of covariance 

analyses in order to assess the level of orbit determination precision capable by means of 

the approach.  The filter error propagation methodology was described, the filter error 

propagation software developed to carry out the analysis was presented, and the test case: 

the BOLAS mission scenario, was described along with its associated simulation data.  

Results from the simulations showed that near-decimetre level precision in each position 

component was possible with the geometric strategy.  This level of precision was 

attainable under a typical SGPS data collection scenario, with the radial component 

solution being a few centimetres weaker. 
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An interpolation study was also carried out to determine the usefulness of the discrete 

geometric solution.  Results indicate that for a LEO, interpolation between two minute 

nodes produces only mm level errors. 

Due to changes in GPS operation, the geometric strategy was revised.  The revision is 

presented in the next chapter. 
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5.  THE REVISED UNB GEOMETRIC PRECISE ORBIT DETERMINATION 
STRATEGY 

Change in the actual GPS operation by the U.S. Department of Defense profoundly 

altered the way in which the algorithms presented in Chapter 4 were subsequently 

implemented.  This change, the shutting off of the intentional GPS satellite clock 

degradation referred to as Selective Availability (SA), and its result is described in the 

next section.  This is followed by the presentation of the two premises of the finalised 

geometric strategy.  Given the significant research (as will be described in detail later) 

into what is often referred to as precise point positioning (PPP), the relationship between 

the independently developed UNB strategy – termed phase-connected, point positioning 

and generic PPP is explained.  The updated observation and solution equations are then 

given with descriptions of the error modelling undertaken.  The chapter ends with a 

description of the processing code developed and used. 

5.1.  THE REMOVAL OF SELECTIVE AVAILABILITY (SA) 

Selective Availability was the intentional dithering of the atomic clocks used by GPS 

satellites in the generation of transmitted signals – this in turn degraded GPS position 

solutions.  SA was introduced by the U.S. military to protect against the exploitation of 

GPS by anti-U.S. and anti-allied forces, by degrading the stand-alone or real-time point 

positioning capabilities of a GPS receiver.  With the advancement of localized GPS 

signal jamming techniques by the U.S. military, growing civilian use of the system, and 

possibly for political reasons (the proposed development of Galileo – a European version 

of GPS and an obvious competitor), the U.S. government de-activated SA on 2 May 2000 
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[OSTP, 2003].  The removal of SA had a profound affect on GPS performance.  In the 

position domain, for stand-alone point positioning, Figure 5.1 illustrates the radical 

improvement. 

 

Figure 5.1:  GPS point positioning accuracy transition through SA 
removal [IGEB]. 

For the algorithms and approach developed and evaluated in the simulations of chapter 

four, the removal of SA meant that a straightforward mathematical interpolation of GPS 

clock offset values over periods of minutes could now be accomplished without 

significant accuracy loss, and therefore double differencing of the pseudorange and 

carrier phase observables to cancel the GPS satellite clock error (and receiver clock error) 

were no longer necessary.  This had two results: one, less observable differencing meant 

increased observable precision as error is no longer propagated through the differencing 

operator; and two, of much greater consequence to the processing strategy, the removal 
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of the need for double-differencing meant that the terrestrial reference receiver network 

was no longer necessary. 

5.2.  PHILOSOPHICAL FOUNDATIONS OF THE REVISED GEOMETRIC STRATEGY – 

PHASE-CONNECTED, POINT POSITIONING 

As introduced in the previous section, the removal of SA resulted in a shift from the 

relative positioning simulation software to the stand-alone positioning processing 

software.  The change in positioning mode coupled with the fundamental dynamics-free 

nature of the simulation processing engine, resulted in the solidifying of the two 

foundations on which the revised geometric strategy filter is based.  This form of filtering 

was given the intuitive name “phase-connected, point positioning”. 

5.2.1. Single-Receiver Positioning Due to Autonomy from Reference 

Receivers 

GPS was originally designed to operate as a stand-alone system – that is, a receiver 

was all the equipment that a user required.  GPS satellite orbit and clock information is 

transmitted to the user receiver, which in turn is responsible for all signal demodulation 

(GPS ranging and satellite navigation messages) and receiver state estimation.  This 

process was modified (or augmented) with differential, and wide area differential 

operation.  As stated, with the removal of SA, the GPS satellite clock parameters can be 

well estimated, rather than eliminated through between-receiver differencing.  Phase-

connected, point positioning reverts back to stand-alone positioning, in the sense that 

only a single receiver is necessary.  However, this is the case because precise GPS 
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satellite orbit and clock parameters are being determined by some global array of 

monitoring receivers and subsequently ingested into the estimation process.  

Fundamentally what is being done is the receiver position / clock solution is being 

“hung” off the precise GPS constellation orbits and clocks.  And therefore the reference 

frame and time scale of the latter will also apply to the receiver estimates. 

For the processing presented in this dissertation, the IGS orbit and clock products were 

used, as they were readily available and represent a filtered average of a half dozen or 

more solutions from scientific organisations around the globe.  With the IGS final 15 

minute orbit and clock product and final 5 minute clock product, parameters were 

estimated with a Lagrange interpolator and supplied to the processor.  Figure 5.2 

illustrates the complete processing flow for the revised geometric POD strategy.  The 

GPS code and phase data; and the precise ephemerides and clock offsets are scanned, 

edited and reformatted by the data preprocessor.  The main processor performs the least-

squares filtering / smoothing and outputs position and position covariance.  If required, 

the solution can be interpolated to provide platform trajectory. 
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Figure 5.2:  Geometric orbit determination strategy processing flow. 
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5.2.2. Receiver Platform Independence Due to Autonomy from Dynamical 

Information 

In Chapter 3, the dynamics-free nature of the processing filter was described, as was 

the fact that this characteristic was the driving force for researching and utilising this 

particular filter.  Again, by using the adjacent-in-time difference of the carrier phase 

measurements in a state-space formalism, the change in receiver position can be precisely 

observed, while not requiring any dynamic information about the platform the receiver is 

aboard.  Therefore a completely kinematic solution is produced.  Of course this also 

means that dynamic models available are not utilised, but this situation is tolerated as two 

aims of the research were to determine the accuracy of such non-dynamic solutions 

versus dynamic ones, and to develop a POD strategy not reliant on dynamic models that 

may not be of high enough fidelity to produce the desired results. 

Figure 5.3 illustrates the phase-connected, point positioning filter operation.  This is an 

advancement of Figure 3.3, and better describes the recursive behaviour of the filter.  

Code estimates are used to initialise the filter.  Code and carrier measurements from the 

original epoch are used, in combination with code and carrier measurements from the 

next epoch, to re-estimate the state at the original and next epoch.  The new state 

covariance is the connective information in the process, as it is used to initialise the next 

estimation epoch.  If not enough code or phase measurements are present at any point of 

the filtering, the estimation process breaks down and the filter must be re-initialised with 

the next available code solution. 

 60



 

initial state and
covariance estimate 

from code

compute functional
and stochastic models

code and carrier
measurements

estimate
filtered state

state covariance
estimate

state
estimate

t-1, t

t-1, t

t-1, t

t-1, t

t

t-1

sequential processing

initial state and
covariance estimate 

from code

initial state and
covariance estimate 

from code

compute functional
and stochastic models

compute functional
and stochastic models

code and carrier
measurements

code and carrier
measurements

estimate
filtered state

estimate
filtered state

state covariance
estimate

state covariance
estimate

state
estimate

state
estimate

t-1, t

t-1, t

t-1, t

t-1, t

t

t-1

sequential processing  

Figure 5.3:  Combination of pseudorange and carrier phase 
observations in the kinematic, sequential least-squares filter. 

5.3.  RELATIONSHIP BETWEEN PHASE-CONNECTED, POINT POSITIONING AND 

PRECISE POINT POSITIONING 

GPS Precise Point Positioning (PPP) is a term apparently coined by Natural Resources 

Canada (NRCan) [Héroux and Kouba, 1995], and referred to undifferenced pseudorange 

stand-alone (or point) positioning, in which precise GPS constellation orbits and clock 

offsets are used, and receiver position, clock offset, tropospheric delay, along with a 

number of other error sources (to be described in section 5.4) are estimated or modelled.  

Lachapelle et al. [1994], Gao [1994] and others performed similar code-based research 

around the same time.  The first account in the literature processing of pseudorange and 

carrier phase measurements from a single receiver to obtain precise positions was by 

Zumberge et al.  [1997].  Since this time, precise point positioning has become a very 
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active research area, and much work has been done in both post-processed and real-time 

scenarios, including that by Muellerschoen et al. [2000], Kouba and Héroux [2001], and 

Gao et al. [2003]. 

The precise point positioning and phase-connected, point positioning architectures are 

similar.  Both use all available pseudorange and carrier phase measurements, rely on 

precise GPS satellite orbits and clocks, and require the estimation of a number of 

parameters, some of which are ignorable in differential processing.  This last point will be 

explained in the next section.  Both techniques are initialised by the pseudorange 

measurements, which are gradually down-weighted as compared to the phase 

measurements as more data are processed by the filter.  The major differences between 

the two approaches are: one, PPP utilises undifferenced phase measurements and 

therefore must somehow estimate the real-valued (float) phase ambiguities, whereas 

phase-connected, point positioning differences the phase measurements in time, slightly 

increasing the phase observable noise, but removing the ambiguity terms so long as cycle 

slips do not occur; and two, unlike phase-connected, point positioning which uses the 

time differenced phase positioning to provide kinematic information, PPP approaches 

require either a transition matrix if a Kalman filter formulation is used, as with the JPL 

approach [Muellerschoen et al., 2000], or the use of process noise in a least-squares filter 

formulation, as with the NRCan approach [Kouba and Héroux, 2001]. 
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5.4.  PHASE-CONNECTED, POINT POSITIONING FILTER DESIGN, MODELS AND 

SOLUTION 

With the fundamental change to GPS data processing made possible by the removal of 

SA and for real data processing rather than simulator results, the revised and expanded 

modelling undertaken is now presented. 

5.4.1. Basic Modelling Requirements For Phase-Connected, Point 

Positioning 

The revised filter was constructed in much the same way as the original simulator 

filter described in section 3.2 – the main difference being the removal of the double-

difference operator on the code and phase observables.  Therefore, following the 

derivations of section 3.2, the filter design, solution, and optimal smoothed solution are 

presented. 

The filter design is reduced to: 
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where (following equation 3.16) Pt and Φt-1,t are the vectors of undifferenced, ionosphere-

free pseudorange and time-differenced carrier phase observations, respectively, δxt-1 and 

δxt are the corrections to the approximate LEO position coordinates and receiver clock at 

epochs t-1 and t, respectively, At-1 and At are the measurement partials with respect to the 

position coordinates, et-1 and εt are the processed pseudorange and time-differenced 

carrier phase observation error vectors, and Cp and CΦ are the variance-covariance 
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matrices of the processed pseudorange and time-differenced carrier phase observations, 

respectively.  The lack of terrestrial reference stations and double-differencing operator 

significantly reduces the matrix construction task. 

The sequential, least-squares solution for this set of equations is the same as that in 

equation 3.19: 
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And the smoothed solution represents the same weighted combination of forward and 

backward filter runs: 

ttt ˆˆˆ rfs xRxFx += ,         (5.3) 

where (as with equation 3.22) x ,  and  are the optimal smoothed, forward filter, 

and reverse filter parameter estimates, respectively, and F and R are the weighting 

matrices to be determined (as discussed in Section 3.2.4). 

tˆ s tˆ fx tˆ rx

When dealing with real rather than simulated GPS data, a number of other basic 

modelling requirements must be met.  The first of these is dealing with carrier phase 

cycle slips caused by the receiver’s inability to maintain phase lock on a carrier signal.  

This may occur for a variety of reasons, such as signal blockage, scintillation, multipath, 

etc.  The approach developed for dealing with cycle slips followed the algorithms 
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developed by Blewitt [1990] and are a revised version (for undifferenced rather than 

double-differenced observables) of the algorithms presented in Bisnath [2000] and 

Bisnath et al. [2001].  The technique automatically detects, determines, and repairs cycle-

slips in dual-frequency, kinematic (and static) GPS data.  Given that the time-differenced 

phase observable is used in the current application, only the detection feature of the 

technique is necessary.  The technique relies on the detection of cycle slips via two 

geometry-free linear combinations of the dual-frequency GPS measurements, namely the 

geometry-free phase: 
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where Pi is the measured pseudorange (in distance units), respectively; λi is the carrier 

wavelength; φi is the measured carrier phase (in cycles); Ni is the number of cycles by 

which the initial phases are undetermined; dioni is the delay due to the ionosphere; mi and 

Mi represent the effect of multipath on the carrier phases and the pseudoranges, 

respectively; and εi and ei represent the effect of receiver noise on the carrier phases and 

the pseudoranges, respectively, and ( ) 11
2

1
14

−−− λ−λ=λ and ( ) 11
2

1
15

−−− λ+λ=λ .  Slips are 

detected for each combination via a number of geometric tests and statistical tests based 
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on the noise of the observables, the results of which when combined represent a high-

resolution, yet straightforward method for detecting cycle slips.  Phase measurements 

containing slips are removed from further computations by the pre-processor. 

In terms of stochastic modelling, the main concern was the input values for the code 

and phase measurement precisions that would provide for a realistic ratio between the 

two observable types.  For example, these values for the CHAMP satellite data 

processing (to be discussed in Chapter 6) were 75 cm for the ionosphere-free 

pseudorange and 2.0 cm for the time-differenced, ionosphere-free carrier phase, and were 

determined based on BlackJack SGPS receiver specifications and data processing 

experience.  The choice of observable noise levels did not have any significant influence 

on the filter so long as good quality, continuous phase measurements are used, resulting 

in the bulk of the solution being provided by the precise change-in-phase data.  To 

increase the realism of these noise values, the carrier phase weights were made a function 

of GPS satellite elevation angle.  Tests indicated that the function cosecant of elevation 

angle produced improved positioning results at the centimetre-level for static, terrestrial 

GPS baselines of tens of kilometres in length [Collins and Langley, 1999] and also for 

spaceborne data processing [Bock et al., 2001].  The cosecant weighting function was 

tested with CHAMP satellite spaceborne data and produced no significant improvement 

in positioning.  This result can be explained by the lack of low elevation angle (i.e., < 10-

15 degrees) data used in the processing with which to down-weight. 

Another stochastic modelling possibility for the GPS data is the de-weighting of 

multipath-corrupted pseudorange measurements.  This can potentially be performed by 

first constructing the so-called pseudo-multipath observable which represents code and 
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phase multipath and noise [Braasch, 1994].  This observable is created by: 1) subtracting 

the L1 carrier phase from the L1 pseudorange; 2) removing the ionospheric delay term by 

estimating the dual-frequency biased ionospheric delay from the L1 and L2 carrier 

phases; and 3) removing the bulk of the ambiguity terms by subtracting the mean of all of 

the observable values from the observable values.  This results in: 

1111111 eEdtrkdTRKmMpm −+−+−≈ ,      (5.6) 

where pm1 is the so-called pseudo-multipath, M1 and m1 represent the effect of multipath 

on the pseudoranges and the carrier phases, respectively; dTRK1 and dtrk1 represent the 

effect of dynamics-induced tracking error on the pseudoranges and the carrier phases, 

respectively (see, e.g., Braasch [1994]); and E1 and e1 represent the effect of receiver 

noise on the pseudoranges and the carrier phases, respectively.  This observable can be 

readily constructed for static and kinematic data alike, but cannot be used to actually 

estimate pseudorange multipath due to the small (few centimetre to decimetre-level) 

residual phase ambiguity term left from step 3 above.  However, it may be possible to de-

weight pseudorange observations which correspond to an above average pseudo-

multipath value.  This was attempted in Bisnath and Langley [2001b], with modest 

success.  More research is needed in this area to make it effective, so the procedure has 

not been applied in the LEO processor, but will be referred to in the potential future 

research section of this dissertation. 
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5.4.2. Additional Modelling Requirements For Phase-Connected, Point 

Positioning 

A number of additional potential position-determination-contaminating phenomena 

must be taken into account in point positioning that would otherwise be cancelled in 

relative positioning.  An excellent review of these correction models is given in Kouba 

and Héroux [2001]. 

The GPS satellite antenna phase centre offset was taken into account.  This is the 

separation vector between the satellite centre of mass, to which precise ephemerides 

refer, and the transmitting antenna phase centre, to which the measured ranges refer.  The 

offsets used for Block II and IIA satellites are 0.279, 0, 1.023 m, for the X (towards the 

Sun), Y (completes right-handed coordinate system) and Z (towards the earth) 

components, respectively, and zero for Block IIR satellites [see, e.g., Kouba and Héroux, 

2001].  Since point positioning relies on the accuracy of GPS satellite coordinates for 

reference frame stability in determining receiver coordinates, any transmitter antenna 

offset would map into receiver position.  A standard transformation (see, e.g., Santos 

[1995]) is required to model the offset and this was applied in the orbit determination 

software. 

Another potential metre-level point positioning error source is the relativity term 

observed in range measurements due to the ellipticity of the GPS satellite orbits, also 

referred to as periodic relativity.  This term is modelled by observing the satellite position 

and velocity in the following equation (after, e.g., ICD [1993]): 

,c/VX2T 2
SSrel

rr
⋅−=         (5.7) 
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where  and  are the GPS satellite position and velocity vectors, respectively, and c 

is the speed of light. 

SX
r

SV
r

Carrier phase wind-up [Wu et al., 1993] can cause decimetre-level phase range error 

in point positioning.  This is the phenomenon whereby the rotation of a transverse wave’s 

transmitter or receiver increases or decreases the phase of the signal resulting in an 

altered (biased) range measurement.  The complex relationship between the transmitting 

GPS satellite’s constantly changing orientation with respect to the receiving antenna’s 

orientation must be modelled (see, e.g., Kouba and Héroux [2001]).  Receiver antenna 

related wind-up is common to all measured carrier signals and maps directly into the 

receiver clock offset term [Wu et al., 1993].  Fortunately with the time differencing of the 

phase observable in phase-connected, point positioning, the effective time-differenced 

wind-up effect is at the sub-millimetre-level. 

This effect is illustrated in Figure 5.4.  In (a) the observed wind-up for GPS PRN29 

observed at 5 minute intervals at the Algonquin Park (ALGO) reference receiver on 31 

March 2002 is estimated by NRCan [Collins, 2002].  The associated time-differenced 

wind-up was computed and is given in (b).  The magnitudes of the wind-up are very 

small and give an indication that even for a fast-moving LEO with an orbital period 12 to 

16 times faster than a static terrestrial station, these time-differenced magnitudes are at 

the sub-millimetre to millimetre level.  Further proof can be seen in Chapter 6, where 

time-differenced, ionosphere-free carrier phase residuals contain no noticeable biases, 

drifts, or significantly large magnitudes. 
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Figure 5.4:  Phase wind-up and rate-of-change of wind-up for 
PRN29 observed at station ALGO on 31 March 2002 (after Collins 
[2002]). 

A number of non-LEO data processing modelling terms are also required for the 

processing of terrestrial receiver measurements.  They are briefly mentioned here for 

completeness and given that some terrestrial data were processed for testing and 

evaluation purposes.  The tropospheric delay plays a significant role in point positioning 

estimation and for related testing conducted in Chapter 6 the UNB3 tropospheric delay 

prediction model [Collins, 1999] was used, as it is accurate and requires no 

meteorological input.  The solid earth-tide model available in DIPOP was used to model 

the displacement effects caused by the sun, moon and other planets on the visco-elastic 

earth.  The effect of ocean loading, also modelled in DIPOP, was not implemented in the 

processing software due to its small effect at the test terrestrial stations. 
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5.5.  REALISATION OF GEOMETRIC STRATEGY IN PROCESSING SOFTWARE 

The computer code created for the processing of GPS data was based on UNB 

DIfferential PrOcessing Package (DIPOP) code [Kleusberg et al., 1993].  DIPOP was 

designed for static, high-precision, long-baseline processing, and its architecture involves 

a pre-processor program and a main processor program, all coded in FORTRAN 77.  The 

geometric POD strategy uses the DIPOP programs as a foundation, closely following 

some modules, while completely diverging from others. 

The major programs used or created in the entire data processing and analysis 

procedure are shown in Figure 5.5.  The pre-processor edits and reformats the 

measurement and GPS ephemeris and clock information, and the main processor, which 

contains the phase-connected, point position filter / smoother estimates LEO positions.  

These two programs form the core of the developed software and are the subject of the 

next two subsections. 

pre-processor

main processor

SP3 generator

SP3 comparator

pre-processor

main processor

SP3 generator

SP3 comparator  

Figure 5.5: Flowchart of data processing and analysis procedure. 

The solution coordinates file is then converted to SP3 format with the SP3 generator 

program.  Since the main processor generates LEO GPS antenna phase centre coordinates 
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and SP3 coordinates are generally related to spacecraft centre of mass, the antenna phase 

centre to centre of mass offset vector is applied after transformation from the LEO 

spacecraft coordinate system to the ECEF coordinate system.  These rotations represent 

LEO attitude and are typically presented in quaternion form as supplied by satellite 

attitude sensor processed output.  DLR (Montenbruck [2002]) provided a routine to 

convert quaternions to vector displacements for SP3 file generation. 

Finally, the capability was created to compare the UNB computed LEO SP3 files 

against orbits generated by other research groups using different processing strategies.  

The SP3 comparator was developed by the European Space Agency (ESA) [Boomkamp, 

2001].  The program relies on Lagrange interpolation of each orbit’s discrete coordinates 

to a temporally common set of coordinates.  The coordinate subset is then differenced 

and various statistics computed. 

5.5.1. Data Pre-Processor: PREGO 

The original PREGO (short for PREprocess GPS Observations) program is the DIPOP 

pre-processor.  PREGO was expanded in the dissertation to include kinematic data, 

specifically kinematic RINEX files.  Figure 5.6 illustrates the flow of data pre-processing 

in PREGO.  The version of PREGO developed for LEO processing utilises an ASCII 

command (input) file to control processing runs.  This file contains, among other items, 

the input observation file name, the desired data arc and sampling interval, and output 

observation and summary file names.  Once the command file has been read, the 

appropriate RINEX observation file is scanned into memory.  The observations are then 

screened for outliers and partial records.  This is followed by cycle slip detection for 
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which an output cycle slip file is created for main processor use.  The ionosphere-free 

pseudoranges are then computed.  During the entire pre-processing run, selected 

processing parameters and output are collected.  These arrays are then written to a 

summary file.  Finally, the UNB formatted observation array is written to file. 

start

end

read RINEX
formatted observations

command file

screen observations

detect
cycle slips

compute iono-free
pseudoranges

write summary
information

write edited
observations

RINEX
observation file

cycle slips
file

pre-processor
summary file

edited observations
file

start

end

read RINEX
formatted observations

command file

screen observations

detect
cycle slips

compute iono-free
pseudoranges

write summary
information

write edited
observations

RINEX
observation file

cycle slips
file

pre-processor
summary file

edited observations
file

 

Figure 5.6: Flowchart of PREGO – GPS data pre-processor. 
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5.5.2. Data Main Processor: KMPROC 

KMPROC (short for Kinematic Main PROCessor) is based loosely on MPROC from 

DIPOP.  The observation and ephemeris file formats have been kept, as well as some of 

the processing structure.  Figure 5.7 illustrates the KMPROC processing flow.  As with 

the pre-processor, the main processor is command file-driven.  This ASCII file contains 

input and output file names, as well as a number of processing parameters: elevation 

mask angle; application of solid earth tide; and GPS satellite arc editing.  The first step is 

to scan the UNB-formatted observation file and the SP3-formatted GPS satellite orbit and 

clock files into memory.  From these data files an initial pseudorange-based point 

position solution trajectory is computed.  With this trajectory an optional elevation mask 

filter can be applied as well as tropospheric delay predictions, and an improved 

pseudorange-based solution can be computed.  (Note that the two-stage pseudorange 

solution is a result of the step-by-step development of the software.)  After the optional 

application of solid earth tide corrections (which are only required for ground-based 

receivers) the pseudorange trajectory and associated solution residuals are written to files.  

(Again, these corrections are applied in a sequential manner due to the step-by-step 

writing of the software.) 

The pseudorange solution provides a basis for the phase-connected, point positioning 

solution, which is next computed.  (The two-stage process is again a product of the 

software evolution.)  The phase-connected, point positioning solution is optionally 

corrected for earth tides and is written to file along with the associated residuals.  The 
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observation arrays are then reversed and the backward filter solution and residuals 

computed and written to files.  Finally, the forward and backward filter solutions are 

combined in a weighted average to produce the smoothed trajectory, which is also written 

to file. 

Given the importance of the phase-connected, point positioning filter implementation, 

it is now explained in detail.  Figure 5.8 illustrates the flow of this subroutine, which 

represents the forward and backward filter solution processes in the Figure 5.7 KMPROC 

flowchart.  The filter solution trajectory is first initialised with the pseudorange solution.  

The process then proceeds epoch-by-epoch, first checking for and applying cycle slip 

information from PREGO and selecting observables from the present and past epochs.  

All deterministic parameters, such as the relativity corrections and GPS satellite orbit and 

clock corrections are then computed.  Finally, the least-squares solution for the LEO 

antenna position and receiver clock offset is iterated (due to the Taylor series expansion 

of the non-linear mathematical model) until solution convergence is achieved. 
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Figure 5.7: Flowchart of KMPROC – GPS data main processor. 
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Figure 5.8: Flowchart of the FORTRAN “filt” subroutine – GPS 
phase-connected, point positioning filter containing kinematic, 
sequential least-squares filter. 
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5.6.  SUMMARY 

In this chapter the geometric strategy was revised due to the removal of SA.  The 

technique evolved from a transmitter / receiver double-differenced approach to a 

transmitter / receiver undifferenced point positioning one.  The term developed to define 

the positioning mode is phase-connected, point position, since the time-differenced phase 

observable is used to remove the integer ambiguity terms.  The revised filter design 

models and solutions were presented, as well as descriptions of the processing software 

modules created to apply the developed algorithms. 

The next chapter will present results and analysis from a number of different data 

sources using the developed software. 
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6.  GEOMETRIC STRATEGY PROCESSING RESULTS AND ANALYSIS 

The software development and processing of test data sets were carried out 

simultaneously.  As additional modelling aspects were undertaken and subroutines added 

to the software, continual testing was performed on static and kinematic data sets to 

gauge the influence and correctness of the modifications.  Section 6.1 summarises some 

of the static results as well as some other initial results on various platforms including a 

LEO.  Section 6.2 reviews the work performed for the IGS LEO Orbit Campaign of 2001, 

including problems encountered, results and analysis of our UNB results, and the overall 

results presented by all of the campaign participants.  The chapter concludes with the 

most important result set of this dissertation from more recent LEO GPS data, which 

more appropriately brings into focus the strengths of the processing approach. 

6.1.  INITIAL DATA PROCESSING 

In order to validate the viability and performance of the processing strategy, a number 

of tests were conducted using the latest version of the developed software at the time.  

This software was brought to realisation in the form of a pre-processor and a main 

processor as described in Chapter 5.  Even though the FORTRAN 77 code was not 

designed to be optimal in terms of processing speed, the presented results were generated 

in minutes on a 1.5 MHz Pentium 5 laptop computer.  Where applicable, mention will be 

made of additional processing or modelling that, with future development, will improve 

the accuracy of the results.  Note that most of these results have been presented earlier by 

Bisnath and Langley [2001a, 2002a, 2002b, 2003] and Bisnath et al. [2002]. 
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To illustrate the platform-independent nature of the technique, three widely varying 

types of data are presented: terrestrial, airborne, and spaceborne.  The only common (and 

required) characteristic of these datasets is that they were collected with geodetic-grade 

receivers – that is, the receivers were capable of measuring high-quality pseudorange and 

carrier phase dual-frequency observables.  The only other data used in the processing 

were the requisite IGS precise GPS constellation orbit and high-rate GPS constellation 

clock offset products. 

6.1.1. Static, Terrestrial Calibration Tests 

The objective of the testing with static terrestrial data was to investigate the 

repeatability of position computations with the technique and to test the performance of 

the technique against positioning results derived from the highest quality geodetic 

techniques. 

The data used for this testing were collected over a one day period on 5 February 2001 

at NRCan station Algonquin (IGS station identifier ALGO) in Algonquin Park, Ontario, 

Canada (latitude 46°N, longitude 78°W).  Note that the data set was chosen at random.  

The NRCan edited for outliers TurboRogue BenchMark receiver output contains 

measurements with a 30 second sampling interval and a 10° elevation mask angle. 

Although LEO data are the prime concern in this research, as described in Chapter 5 

the UNB3 tropospheric prediction model was used for this terrestrial data to compensate 

for tropospheric delay, and therefore un-estimated residual tropospheric delay could 

cause up to few-centimetre errors in the position domain.  The receiver position and clock 
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were estimated at the data sampling interval and this produced a satellite clock modelling 

error – a few centimetres (about 0.1 ns) at the most, arising from the interpolation of the 

available 300 second interval IGS satellite clocks product. 

The first aspect of the processing that was analysed, since this technique relies solely 

on GPS observations, was the geometric strength of the measurements used.  Figure 6.1 

shows the number of satellites tracked and the position dilution of precision (PDOP).  As 

can be seen, there are always at least 5 satellites being tracked in this data set and on 

occasion up to 10.  The average number for the processed data is 7.3.  The PDOP 

typically remains between 1.5 and 3, but a few spikes exist where the PDOP reaches 

approximately 4.5 and 6.  The average PDOP is 2.2.  Given that there is a 10° elevation 

mask angle, these values are reasonable and represent geometrically strong 

measurements.  However, given again the complete reliance on measurements, low 

elevation angle data, e.g., down to 5°, would have aided in improved accuracy position 

results. 

The results of the processing are presented in Figure 6.2.  The error values are 

computed by differencing the estimated position from the benchmark International Earth 

Rotation and Reference Systems Service (IERS), epoch-of-date, International Terrestrial 

Reference Frame 1997 (ITRF97) coordinates, which are known to the one cm level 

[Neilan et al, 1997].  The ITRF97 coordinates were used, since ITRF97 GPS satellite 

orbits were used in the estimation.  As can be seen, the error in each component reaches a 

maximum of ± 50 cm.  The error fluctuates the most in the vertical component.  This is 

 82



 

expected, given that the residual tropospheric delay was not estimated, and the inherent 

limitation brought about by the GPS constellation geometry. 

Figure 6.1:  Number of space vehicles (SVs) and the position 
dilution of precision (PDOP) for static, terrestrial dataset. 

Summary statistics for this data set are given in Table 6.1.  The r.m.s. of the smoothed 

solution is 15 cm in each horizontal component, while the vertical component is 20 cm.  

The smoothed total displacement r.m.s. is just under 30 cm.  Also of note are the few-

centimetre biases that exist in the horizontal components.  Given that such correction 

terms as the residual tropospheric delay, sub-daily earth rotation variations, ocean 

loading, and antenna phase centre variation have not been applied, and that the GPS 

satellite orbits and clocks were interpolated to 30 seconds, these results compare 

favourably with other published single-receiver processing results, e.g., Héroux et al. 
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[2001], which show high accuracies.  This is said, since such other published techniques 

include dynamic information to constrain the solution space – in the case of the 

mentioned reference, process noise values indicating stationary position.  The geometric 

strategy places no a priori covariance constraint on the receiver antenna coordinates. 

Figure 6.2:  Component errors in smoothed position estimates for 
static, terrestrial dataset. 

 

Component bias std. r.m.s.
North  4.4 13.9 14.5 
East -4.3 14.2 14.8 
Up  0.6 19.8 19.8 
3-D  6.2 28.0 28.7 

Table 6.1:  Summary statistics (cm) of component errors in 
smoothed position estimates for static, terrestrial data set. 

 84



 

The forward filter residuals, along with the associated GPS satellite elevation angles, 

are shown in Figure 6.3.  The large initial ionosphere-free, time-differenced phase values 

are due to filter initialisation.  The ionosphere-free pseudorange r.m.s. is 66 cm with 

peak-to-peak variations of 10 m, and the phase observable r.m.s. is 2 cm with peak-to-

peak variations of 15 cm, aside from the initialisation period.  These values appear to be 

reasonable for the particular linear combinations of the pseudorange and carrier phase 

combinations they represent. 

Figure 6.3:  Forward filter observable residuals and associated 
satellite elevation angles for static, terrestrial data set. 
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6.1.2. Various Other Tests 

The next test illustrates the performance of the processing technique for a receiver on 

a kinematic platform – a small airplane in level flight in the vicinity of Sendai Airport, in 

Japan on 5 December 2000.  Figure 6.4 depicts the complete trajectory for the 

approximately 2 hour flight.  The cross pattern of the flight path meant that the aircraft 

reached a maximum horizontal distance of over 50 km from the cross-over area (Sendai 

Airport), at which is located a reference receiver that was used for conventional 

kinematic, relative carrier phase processing.  The conventional solution was obtained 

with commercial software, using automatic processing parameter settings. 

Figure 6.4:  Airborne data set trajectory. 
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Measurement interruption is a casualty of such level, straight flight with banking 

turns.  As can be seen in Figure 6.5, the number of tracked satellites is reduced to five or 

four when the aircraft banks.  The actual number can be lower, but the epochs when 

fewer than four SVs are being tracked are not displayed in Figure 6.5.  The average 

number of tracked SVs is 6.7.  The associated spikes in the PDOP are more acute in this 

case, since not only are the number of SVs reduced, but their sky distribution is far from 

optimum. Hence, even though the mean PDOP is a respectable 2.4, there are PDOP 

spikes over 4 during nearly every turn the aircraft makes.  This had a significant effect on 

both the reference double-differenced solution produced by commercial GPS software 

and the single-receiver solution. 

Figure 6.5:  Number of SVs and PDOP for airborne data set. 
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Figure 6.6 shows the differences between the two solutions for one straight-line 

section of the flight.  Table 6.2 contains the summary statistics of the component 

differences between the two solutions for this period.  The horizontal components show 

50 cm and 70 cm biases in the north and east components, respectively, with standard 

deviations of 5 cm or less.  The up component has a near-one metre drift, causing a 30 cm 

standard deviation, but very little bias.  One possible explanation for the biases and drift 

can be the use of incorrect double-differenced ambiguities in the commercial software 

solution.  This seems to be a strong possibility for a number of reasons.  Firstly, incorrect 

ambiguities can produce such offsets and drifts [Ackermann, 1993].  Secondly, offsets 

and drifts were observed between the used commercial solution and another commercial 

result.  And thirdly, such large biases have not been observed with any other data set 

processed with our technique.  These results present another possible use for this 

technique – the avoidance of incorrectly determined phase ambiguities for long baseline 

kinematic data sets.  As a further test of the geometric strategy, it would be useful to 

process uninterrupted code and phase data from an aircraft. 
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Figure 6.6:  Component differences in smoothed position estimates 
for airborne data set. 

This subsection ends with an early LEO dataset.  Spaceborne data is unique for a 

number of reasons.  The very high velocity of the platform carrying the receiver and its 

high altitude in the atmosphere means that the tracked GPS satellites change constantly; 

there is no tropospheric delay on the received signals; high-fidelity dynamic models are 

typically required for accurate position and orbit determination (especially for LEOs); 

and given precise orbits, this data type is an excellent benchmark for mobile receiver 

positioning. 
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Component bias std. r.m.s.
North 50.3 5.7 50.1 
East 69.1 3.0 69.3 
Up 7.4 33.4 34.8 
3-D 85.8 34.0 92.3 

Table 6.2:  Summary statistics (cm) of component differences in 
smoothed position estimates for airborne data set. 

The spaceborne data set processed consists of three hours of CHAMP [CHAMP, 

2001] data from 4 June 2001.  This LEO orbits at a nominal altitude of 450 km, with a 

nominal period of 90 minutes, and provides dual-frequency pseudorange and carrier 

phase data from a Jet Propulsion Laboratory BlackJack receiver.  Figure 6.7 shows a 

segment of the ground track of the near-polar orbiting spacecraft. 
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Figure 6.7:  Ground track of CHAMP data set. 

The data provided by the CHAMP Data Center is unedited (for blunders and outliers) 

and provided at 10 second intervals.  No elevation mask angle appears be have been 

applied, as angles as low as -10° were computed.  These very low elevation angle 

measurements also have very low signal-to-noise (SNR) values (in BlackJack SNR 
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units).  It was found that using these measurements produced large phase residuals, and 

an SNR rather than an elevation angle cutoff was applied in our data pre-processing to 

attempt to remedy the situation.  This will be expanded upon in section 6.2.2.  The cutoff 

used in this processing was 10 units. 

The purpose of processing these test data was to investigate the geometric strength of 

the spaceborne measurements and to assess the practicality and performance of the 

technique against high-quality CHAMP orbits.  Figure 6.8 shows that the geometric 

strength of the available observations is significantly lower than that for the terrestrial 

data set analysed, even though a relatively good (in terms of data availability) data arc 

was selected.  This occurs, even though the spaceborne BlackJack receiver can track up 

to 8 GPS satellites and much of the time is tracking the maximum number.  The average 

number of tracked satellites is 6.6.  However, the distribution of these tracked satellites 

causes significant measurement strength degradation.  The mean PDOP is 3.1, or almost 

50% larger than that for the terrestrial data set processed.  This circumstance will be 

further discussed later in this section. 
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Figure 6.8:  Number of SVs and PDOP for the CHAMP data set. 

Figure 6.9 shows the total displacement difference of our pseudorange-only and 

smoothed pseudorange / carrier-phase solution and that of the GeoForschungsZen-trum-

determined dynamic orbit.  Only 3-D differences are provided, since the spacecraft 

attitude information was not used.  Note that there are a few small gaps due to the lack of 

sufficient observations after data pre-processing.  Even though the PDOP is relatively 

high for this data set, the determined pseudorange-only solution is quite accurate as 

indicated in Table 6.3.  The 3-D r.m.s. is about 2 m, which is equivalent to 1.2 m in each 

axis assuming equal uncertainty in each axis.  The approximate smoothed solution r.m.s. 

is about 20 cm.  This difference statistic is judged to be good, considering that the 

position accuracy of the dynamic orbit is only somewhat better than 20 cm [Koenig, 
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2001].  That is, the phase-connected point positioning results have an r.m.s. similar to 

that of the benchmark solution. 

Figure 6.9:  Total displacement errors in position estimates for 
CHAMP data set. 

Sol’n. Component bias std. r.m.s. 
Pseudorange   3-D 125 162 205 
 ~1-D 72 93 118 
Smoothed   3-D 28.7 17.1 33.5 
 ~1-D 16.5 9.8 19.3 

Table 6.3:  Summary statistics (cm) of component differences in 
pseudorange-only and smoothed position estimates for CHAMP data 
set. 

Figure 6.10 depicts the forward filter observable residuals and associated GPS satellite 

elevation angles.  Again the data gaps can be clearly seen.  The ionosphere-free 

pseudorange r.m.s. is 90 cm and the ionosphere-free, time-differenced phase r.m.s. is 3 
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cm.  These results compare reasonably well with those from the terrestrial data set, 

indicating high-quality observations fitting well with the mathematical and stochastic 

models. 

Figure 6.10:  Forward filter observable residuals and associated 
satellite elevation angles for CHAMP data set. 

A property of great interest is the GPS tracking which can be seen in the elevation 

angle subplot.  The very low elevation angle tracking performed by the receiver causes 

the late tracking of newly rising SVs due to the eight SV hardware limit.  Given that a 

portion of these very low elevation angle measurements are outliers, it would be of great 

benefit for a GPS-only processing technique, if the low noise, higher elevation angle 

measurements were collected.  This would not only provide more low noise 
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measurements, but more measurements overall, potentially removing most if not all 

position solution gaps. 

6.2.  IGS LEO ORBIT COMPARISON CAMPAIGN 

The IGS recognised in 1998 that there existed an emerging need of many diverse 

organisations for precise orbits for LEOs carrying quality GPS receivers.  To stimulate 

research and collaboration the “Working Group on Low-Earth Orbiters” was created 

[IGS, 2001].  One of the major activities of the Group was to place a call for LEO orbit 

determination proposals as part of a LEO orbit campaign.  UNB submitted a proposal 

which was accepted and this allowed us to participate in the “CHAMP Orbit Comparison 

Campaign” of 2001 [ESOC, 2001] as an Associate Analysis Center (AAC).  The main  

objectives of the campaign were to: offer external reference orbits for all ACCs to 

compare and contrast, so any remaining systematic errors could be identified; determine 

the status of CHAMP orbit precision levels; provide a venue to discuss IGS LEO data 

exchange formats; and allow for analysis of combination solution methods for LEO 

satellites.  Eleven days of CHAMP measurement data were selected (20 May to 30 May 

2001) to be processed by eleven ACCs from North America and Europe. 

6.2.1. The CHAMP Satellite Mission 

CHAMP (CHAllenging Minisatellite Payload), initially described in section 6.1.2, is a 

German small satellite mission designed for geoscientific and atmospheric research being 

managed by GeoForschungsZentrum (GFZ) [CHAMP, 2001].  The satellite was launched 

in July 2000.  The CHAMP satellite’s payload includes a magnetometer, accelerometer, 
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star sensor, GPS receiver, laser retro-reflector, and ion drift meter.  The satellite orbits in 

a near-polar (87° inclination), low altitude (454 km at launch) orbit.  The main scientific 

goals for the LEO are highly precise gravity field, magnetic field, and radio occultation 

measurements over a five year period. 

Figures 6.11 and 6.12 depict the locations of the instruments.  The JPL SGPS receiver 

is shown in Figure 6.13.  A cleanroom photograph of the POD and occultation GPS 

antennas is shown in Figure 6.14. 

 

Figure 6.11:  Front view of CHAMP satellite and instrument 
locations [CHAMP, 2001]. 
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Figure 6.12:  Rear view of CHAMP satellite and instrument 
locations [CHAMP, 2001]. 

 

 

 
Figure 6.13:  CHAMP satellite JPL BlackJack dual-frequency GPS 
receiver [CHAMP, 2001]. 
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Figure 6.14:  CHAMP satellite photograph of, among other 
instruments, POD and occultation antennas [CHAMP, 2001]. 

6.2.2. Preprocessing of CHAMP data anomalies 

It was found that the geometric CHAMP orbit solutions are very sensitive to data 

editing performed in the preprocessor [Bisnath and Langley, 2002a and 2003].  Data 

editing consisted of applying a signal-to-noise filter and a rate-of-change of widelane-

phase minus narrowlane-pseudorange linear combination filter.  The former removes low 

strength signals at the measurement input stage, while the latter eliminates measurements 

that deviate from the norm before the initial estimation process.  This preprocessing 

strategy therefore cleans the data in the measurement domain, without need for post-

estimation residual analysis, as is the case for the University of Berne kinematic POD 

processing [Bock et al., 2003], or need for a reference CHAMP orbit to constrain the 

definition of typical measurement behaviour, as is the case for the kinematic POD 
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processing of the Technical University of Munich [Švehla and Rothacher, 2003] and 

Ohio State University [Grejner-Brzezinska et al., 2002]. 

 

Figure 6.15:  Poor behaviour of measurements at low signal-to-noise 
values. a) Elevation angle (degrees); b) L1 phase signal-to-noise 
(GPS receiver units); c) L1 P-code - L2 P-code rate-of-change (m/s); 
d) L1 phase - L2 phase rate-of-change (m/s); e) widelane phase - 
narrowlane pseudorange rate-of-change (m/s). GPS PRN08, day of 
year 148, 2001. 

Figure 6.15 illustrates an example of data editing. The GPS satellite was tracked to 

almost -15°, causing the signal-to-noise values to approach zero BlackJack units, and the 

rates-of-change of the geometry-free linear combinations to deviate significantly from 
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zero.  The receiver satellite-tracking algorithm is responsible for this situation, producing 

large numbers of low elevation angle satellites tracked in the CHAMP anti-velocity 

direction.  Measurements accumulated from these weak signals are deleted, resulting in 

intermittent poor data availability as can be seen in Figure 6.16.  Before editing, the 

number of SVs was 8 and the PDOP was 1.7.  Given that the azimuth of 180° represents 

the CHAMP velocity direction, most of the SVs are in the aft-quadrant.  After removal of 

the low SNR measurements which degrade the position solution, the number of SVs 

reduced to 5 and the PDOP increased to 4.0. 

 

Figure 6.16:  Example of GPS satellite sky distribution before and 
after data editing.  Day of year 148, 2001, 30.2389 hours. 

6.2.3. Results and Analysis of UNB CHAMP Processing 

CHAMP data provided by the CHAMP Information System and Data Center [ISDC 

2001] was processed for the period of the IGS LEO Orbit Comparison Campaign [ESOC 
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2001]: day of year 140 to 150, 2001.  The resulting UNB solutions were compared 

against JPL solutions.  Each 24 hour CHAMP data arc required less than 30 minutes for 

processing with UNB unoptimised computer code on an 85 MHz Sun server running 

Solaris 7. 

 

Figure 6.17:  Position component differences between UNB and JPL 
for day of year 143, 2001. 

Figure 6.17 shows the position component differences for day 143 – a typical day. The 

radial, along-track, cross-track, and norm r.m.s. (in cm) are 36, 25, 24, and 50, 

respectively.  The forward filter post-fit residual r.m.s. for the ionosphere-free 

pseudorange is 105 cm and for the time-difference, ionosphere-free phase is 9 cm.  The 
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spikes and much of the noise in the positions are due to data gaps and remaining poor-

quality measurements.  This is also evident from the relatively large post-fit residuals. 

 

Figure 6.18:  Daily position component r.m.s. differences between 
UNB and JPL. 

Figure 6.18 illustrates the daily differences between UNB and JPL 24 hour arcs.  The 

position difference r.m.s. ranges from: 30 cm to 57 cm in the radial direction; 21 cm to 39 

cm along-track; 22 cm to 42 cm cross-track; and 43 cm to 76 cm for the norm.  Notice the 

larger error difference in the radial component.  The CHAMP radial component 

represents the nominal "up" component in the topocentric sense, and of course suffers 

from the GPS geometry predicament of having no transmitters below the receiver.  The 

poor overall repeatability is again caused by the lack of continuous, quality GPS 

measurements.  An indication of near-optimum solution comparison can be observed 
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during periods of good continuous data, e.g., between hours 2 and 3 of day of year 150. 

For this short arc, the r.m.s. differences between UNB and JPL are as small as: 13 cm, 10 

cm, 7 cm; in the radial, along-track, and cross-track directions, respectively, and 18 cm in 

the norm. 

6.2.4. IGS Analysis Results 

The European Space Agency was kind enough to maintain all of the AAC orbits, 

develop comparison routines, and perform the comparisons.  Comparisons of each 

AAC’s orbit solutions and laser ranging was also performed to estimate orbit accuracy.  

Table 6.4 gives the results presented during the January 2002 CHAMP Conference 

[ESOC, 2001]. 

AAC r.m.s. (cm) 
CSR (Univ. of Texas)   11.0 
GRGS, (European Space Agency)   12.4 
GFZ   13.9 
JPL   16.2 
CNES   22.8 
NCL, (Newcastle Univ.)   23.8 
ESA   27.8 
UNB   45.0 
AIUB, (Univ. of Berne)   52.1 
UCAR, (Univ. Consortium for Atmospheric Research) 112.5 
Table 6.4:  Associated Analysis Center CHAMP orbit error derived 
from satellite laser ranging (SLR) results for CHAMP orbit 
campaign [ESOC, 2001]. 

Note that the Astronomical Institute of the University of Berne (AIUB) was the only 

other AAC producing geometric orbits in a similar fashion to UNB.  All other solutions 

had the added benefit and complexity of dynamic models. 
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6.3.  IMPROVED QUALITY CHAMP DATASET PROCESSING 

Two specific limitations of the CHAMP data were uncovered in the previous section: 

noisy low elevation angle phase measurements, as compared to those from conventional 

terrestrial geodetic receivers; and a GPS satellite tracking selection algorithm that 

exacerbates the phase noise problem by having the receiver track GPS satellites to low 

elevation angles, rather than switch to higher ones.  Given the geometric strategy total 

reliance on measurements, the above problems had a significant, negative impact on the 

CHAMP orbits that were generated for the IGS campaign. 

From the launch of CHAMP, the BlackJack receiver underwent numerous firmware 

upgrades to both fix problems and improve performance [Meehan, 2002].  By the end of 

2001, it was observed that the tracking algorithm had been altered [Hugentobler, 2002], 

which provided for a much larger percentage of low noise pseudorange and carrier phase 

data for processing of each orbital revolution as compared with the pre-2002 datasets.  

Therefore to evaluate the effectiveness of the developed technique, a more recent dataset 

was selected for processing.  The first week (days 1-7) of January 2002 was selected, 

since these data reflected the firmware changes in the BlackJack receiver, and precise 

orbits had (by the time) been produced for comparison. 

6.3.1. Results and Analysis of UNB CHAMP Processing of Improved 

Quality Dataset 

The 2002 dataset was processed in a similar fashion to the 2001 dataset presented in 

section 6.2.  The analysis is distributed between: an examination of the processing results 

 104



 

from one day; summary results from all of the days; and summary results from portions 

of all of the days. 

 

Figure 6.19:  Number of SVs and PDOP for the CHAMP dataset, 
DOY 001, 2002. 

Figure 6.19 illustrates the measurements available for day of year (DOY) 001, 2002 

after outlier removal.  The mean number of SVs used in the processing is 6.9 and the 

mean resulting PDOP is 3.2.  Even though the number of tracked GPS satellites is 

relatively high, as was the situation in the 2001 dataset, the tracking distribution is such 

that relatively poor PDOPs are still produced.  Also, there are a number of complete data 

outages (as observed in the 2001 dataset) lasting a few minutes, presumably due to 
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routine CHAMP operations.  However, given these concerns, compared with the 2001 

data (see Figure 6.8), the data availability in 2002 is much more consistent. 

The data (CHAMP RINEX observation file and IGS precise ephemeris and clock 

files) were processed as described in Chapter 5.  The appropriate CHAMP attitude file 

was applied to reduce the geometric strategy orbit from CHAMP GPS antenna phase 

centre to CHAMP centre of mass.  The resulting SP3 file was compared against the JPL 

reduced-dynamic orbit of the same date using the ESA orbit comparison routine supplied 

for the 2001 CHAMP Orbit Comparison Campaign [ESOC, 2001].  JPL orbits were used 

in the 2002 comparison because they proved quite accurate in the 2001 IGS orbit 

comparison, and because they were available at the time of data processing / solution 

evaluation.  It was estimated that the proved JPL orbits were accurate to better than 1 

decimetre each component (1σ), as compared with satellite laser ranging results [Kuang, 

2002]. 

The results of the comparison of the UNB and JPL CHAMP orbits for DOY 001, 2002 

are given in Figure 6.20.  Note that to reduce the effects of filtering and interpolation 

error at the extremities of the time series, 30 minutes have been removed from either end 

of the time series of results.  At first glance the results appear similar to those from 2001 

(see Figure 6.17).  Spikes exist in the 2002 results, most noticeably at 49.5 and 66.5 

hours, and the radial differences are greater than the along-track and cross-track 

differences.  The reasons for these two phenomena remain the same: data gaps cause 

filter re-initialisations in the geometric strategy, and as with terrestrial GPS data 

processing, since there are no range measurements from beneath the receiver, the vertical 

positioning component precision is not as good as that of the horizontal components.  
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However, the differences are smaller (note the change in Y-axis scale); in terms of r.m.s., 

the comparison differences between the UNB and JPL orbits are approximately 50% 

smaller for DOY 001, 2002 than for DOY 143, 2001.  This is a direct result of more 

useful data (specifically carrier-phase measurements) available in the 2002 data 

processing.  Table 6.5 summarises the statistics for DOY 001, 2002.  Therefore the 

technique produces approximately 15 cm orbits in the along-track and cross-track 

components and 25 cm in the radial component, as compared to the JPL orbit, which are 

accurate to ~10 cm in all three components.  Also, no significant trends are observed in 

the difference time series. 

 

Figure 6.20:  CHAMP orbit position component differences between 
UNB and JPL for 24 hour arc of DOY 001, 2002. 
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Component diff. (cm) Max. Bias r.m.s. 
Radial 120.3 -2.2 25.1 
Along-track 309.3 -0.1 16.9 
Cross-track 177.0 -5.2 14.0 
Norm 372.7 27.4 33.3 

Table 6.5:  Summary statistics of CHAMP orbit position component 
differences between UNB and JPL for 24 hour arc of DOY 001, 
2002. 

A more revealing set of statistics is presented in Table 6.6.  These summary values 

represent the statistics computed for the 3 hour arc (GPS hours of week: 57-60) from 

DOY 001, 2002.  For this arc there were few data gaps, data outliers, or poor satellite 

tracking geometries, and hence the arc represents a period of realistic performance of the 

geometric POD strategy with geodetic-quality GPS receiver measurements.  As can be 

seen, the r.m.s. errors have been reduced to 20 cm, 13 cm, and 8 cm, radial, along-track, 

and cross-track, respectively. 

Component diff. (cm) Max. Bias r.m.s. 
Radial 51.5 3.9 19.7 
Along-track 40.3 -0.9 12.8 
Cross-track 16.5 0.9 7.9 
Norm 54.4 21.9 24.8 

Table 6.6:  Summary statistics of CHAMP orbit position component 
differences between UNB and JPL for 3 hour arc (hrs: 57-60) of 
DOY 001, 2002. 

The ionosphere-free pseudorange and ionosphere-free, time-differenced carrier-phase 

residuals for DOY 001 are shown in Figure 6.21.  A number of few-minute data gaps can 

be readily observed.  Outliers are present for both observables, particularly the noisy 

pseudoranges.  The major phase outliers can be attributed to filter initialisation epochs 

when pseudorange measurements carry significant weight in the filtering process, such as 

after a data gap.  The minor phase outliers are a result of isolated noisy measurements.  
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The r.m.s. of the residuals are 95 cm and 40 mm for the derived pseudorange and time-

differenced carrier-phase observables, respectively.  The time-differenced carrier phase 

value appears high for the quality of the undifferenced phase measurements from the 

BlackJack receiver, but computation of the residual r.m.s. over the 57-60 hours arc results 

in values of 96 cm and 15 mm for code and phase, respectively.  Therefore, it can be 

stated that the phase measurements fit the mathematical model of the least-squares filter 

well. 

 

Figure 6.21:  Forward filter observable residuals for UNB CHAMP 
solution for DOY 001, 2002. 

Figure 6.22 shows the performance of the geometric strategy through the first week of 

2002, as compared with the JPL orbits.  The day-to-day results are quite similar, varying 
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by only a few centimetres.  The r.m.s. difference for the radial, along-track, and cross-

track components is approximately 25 cm, 15 cm, and 15 cm, respectively.  This few 

decimetre performance therefore represents the precision level of the geometric strategy 

for this level of quality CHAMP data, as compared to reduced dynamic orbits. 

 

Figure 6.22:  CHAMP orbit position r.m.s. component differences 
between UNB and JPL for 24 hour arcs of DOY 001 through 007, 
2002. 

The effectiveness of the strategy when good (i.e., geodetic) quality measurements are 

available from CHAMP is illustrated in Figure 6.23.  The r.m.s. difference values for 

day-to-day best three hour arcs is as consistent as that for the full day arcs, and as 

expected is smaller: 18 cm, 10 cm, and 11 cm, radial, along-track, and cross-track, 
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respectively.  Even though it may be argued that these results do not represent typical 

results for the CHAMP mission, it can be said that for the CHAMP receiver, during 

periods of expected performance, the geometric strategy consistently provides near-

decimetre positioning precision.  And given that the reference JPL orbits are known to 

the decimetre level [Kuang, 2002], the magnitude of the r.m.s. differences presented here 

is even less significant. 

 

Figure 6.23:  CHAMP orbit position r.m.s. component differences 
between UNB and JPL for 3 hour arc of DOY 001 through 007, 
2002. 
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For completeness, the r.m.s. values of the observable residuals are given in Figure 

6.24.  Of note, aside from an outlier on DOY 004, the 3 hour arc iono-free, difference-in-

time, phase residual noise level is extremely consistent at the 15 mm level. 

 

Figure 6.24:  Forward filter observable residuals for UNB CHAMP 
solution for 24 hour arc (-) and 3 hour arc (--) of DOY 001 through 
007, 2002. 
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7.  CONCLUSIONS, RECOMMENDATIONS, AND FUTURE PROSPECTS 

The research carried out for this dissertation is now summarised and pertinent 

conclusions are given in the context of the thesis question: Is POD of LEOs possible with 

a GPS-only solution and a single spaceborne GPS receiver, and if so, how accurate could 

the solutions be?  Recommendations are put forth for the usage of a processing strategy 

such as the one developed, as well as for continuing research in this field.  Finally, some 

thoughts are provided as to the future prospects of this processing strategy in the overall 

precise positioning and navigation industry. 

7.1.  CONCLUSIONS OF THIS RESEARCH 

The initial fundamental goal of this research was the development of a practical and 

precise GPS-only LEO orbit determination procedure.  Such a straightforward technique 

was seen as unique but complementary to existing POD techniques, which require core 

complex dynamic modelling.  Were spaceborne GPS measurements precise, accurate and 

sufficiently abundant to produce useful orbits?  A GPS measurement-only filter was 

devised, based on algorithms developed for various other purposes.  Simulation software 

was constructed and the results indicated that under ideal conditions – good-quality, 

continuous GPS measurements and low signal noise – near-decimetre orbits 

determination was attainable. 

With the removal of the intentional GPS satellite clock degradation of SA by the U.S. 

government, double-differencing of SGPS measurements and terrestrial reference station 

measurements was no longer necessary for the elimination of GPS satellite clock terms in 
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the estimation process; these terms could now be modelled by IGS GPS satellite clock 

products.  Therefore the object of this research effort became the POD of LEOs with a 

GPS-only solution using only a single SGPS receiver. 

The novel processing algorithm devised is based on two principles: dynamics-free 

processing, and single-receiver processing.  The dynamics-free nature of the processing 

strategy arises from the fact that the pseudorange measurements are basically used to 

supply position information, while the carrier phase measurements essentially provide 

position change (or state transition) information.  This is analogous to a Kalman filter, but 

the algorithm is presented in a kinematic, sequential least-squares filter form. 

To practically test the ideas put forth, a complete processing package was created in 

FORTRAN 77 code based on the UNB static processing software DIPOP.  A 

preprocessor was designed to import RINEX SGPS files and SP3 GPS satellite 

ephemerides and clock offset files.  The pre-processor edits the data for outliers and 

reformats the output.  The main processor executes the phase-connected, point 

positioning algorithm, applying all of the pertinent modelling.  Each processor requires 

only tens of seconds to run 24 hours of 10 second CHAMP data on a 1.2 MHz Pentium 4 

processor.  This processing speed bodes well for potential real-time and near-real-time 

applications. 

The thesis question has been answered positively: LEO POD with a GPS-only solution 

utilising a single GPS receiver is possible.  The latest process results show that near-

decimetre-level accuracy is attainable when compared against high-calibre reduced-

dynamic orbits.  Specifically for the CHAMP satellite, the average radial, along-track, 
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and cross-track accuracies for 7 consecutive 24 hour arcs was: 24, 15, and 14 cm, 

respectively.  When 3 hour arcs without data gaps were analysed these statistics improved 

to 18, 10, and 11 cm, respectively.  These values give a clear indication of the positional 

quality of orbits derived by the geometric strategy using the phase-connected, point 

positioning algorithm.  Even though these results are not at the sub-decimetre level, as is 

the case for the reference GPS / dynamic solutions, they approach these accuracies and 

are valuable for real-time and near-real-time applications due to the extremely low 

processing cost.  A key final point is that the GPS /dynamic orbits only reached the sub-

decimetre accuracy level after significant processing, analysis, and tuning of the dynamic 

models.  For example, a new gravity field model was developed for and from the 

reduced-dynamic CHAMP orbits, which allowed for these orbit accuracies.  The 

geometric-strategy-based orbits required none of this analysis and extensive tuning. 

A number of caveats are attached to these results.  The accuracies quoted are 

associated only with the CHAMP data processed in January 2002.  Older CHAMP data 

will definitely produce degraded orbits and newer data may produce enhanced orbits.  

This statement relies on the quantity and quality of observed CHAMP pseudorange and 

particularly carrier-phase measurements.  Other LEOs in differing orbits, carrying 

equivalent GPS receivers would observe comparable segments of the GPS constellation 

and would therefore have similar data availability during processing.  Therefore these 

CHAMP results can be generalized for all LEOs carrying high-quality, dual-frequency 

receivers: near-decimetre POD is attainable with the geometric strategy.  The other major 

caveat is that high-quality IGS GPS ephemerides and clock-offset products be available 

for the corresponding SGPS data. 
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7.2.  RECOMMENDATIONS FOR FURTHER RESEARCH 

A number of refinements and additions can be made to the algorithms and software 

created to improve upon the accuracy and practicality of the work done for this 

dissertation.  In terms of improved mathematical modelling, the effect of phase-windup, 

albeit small, can be added, and for terrestrial and airborne data processing estimation of 

the residual tropospheric delay would be a priority.  An area where additional 

improvement may lie is in stochastic modelling.  Implementation of a pseudorange 

multipath plus noise weighting scheme and more realistic carrier-phase weighting may 

provide an additional few centimetres improvement.  The usage, that is the interpolation, 

of the IGS orbit and clock products can be further investigated and perhaps more accurate 

interpolation schemes can be applied. 

Five major advances can be made to the software.  The first is the implementation of 

some form of residual analysis to overcome problems with anomalous GPS measurement 

data or IGS orbit and clock information, similar to that performed by Bock et al. [2003].  

The second is the importation of predicted IGS orbit and clock products for real-time or 

near-real-time POD, as is done by Muellerschoen et al. [2002] and Kouba and Héroux 

[2001].  The third is the addition of velocity estimation by either interpolation of the POD 

positions, estimating velocity directly from the time-differenced phases, or augmentation 

of the filter to incorporate Doppler measurements and velocity states, such as indicated 

by Kwon et al. [2002].  The fourth advancement would be in the form of faster filter 

convergence period from tens of minutes to minutes, for example by altering the 

mathematical and stochastic models, as suggested by Gao and Shen [2001], or 

incorporating other measurements from, e.g., atomic clocks, inertial systems, etc.  The 
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fifth future addition is the optimization for speed of the FORTRAN code.  The code was 

written for ease in construction and readability.  No significant attempts were made to 

improve processing speed. 

With such algorithm and software enhancements, the geometric strategy can 

potentially provide more accurate orbits than presented here.  And equally as important, 

orbits can be generated for practically any LEO, with similar results, and with little or no 

modifications to the processing software or processing procedure.  This strategy can 

therefore be used in a number of situations including those requiring near-decimetre 

orbits, where rapid solutions are necessary, for an independent verification of dynamic 

models in dynamic solutions, or to use GPS-only orbits as pseudo-observations in 

dynamic solutions by providing high-quality states for limited dynamic smoothing. 

In terms of generic applications, the phase-connected, point positioning filter 

encapsulated in this processing package would be ideal for static and kinematic 

positioning of any platform for which requirements call for near-decimetre-level 

precision and the platform is significantly distant from any GPS base stations as to limit 

or prevent other forms of phase-based positioning.  The caveats here are that copious 

obstructions would cause the filter to continually re-initialise, greatly degrading the 

solution, and that geodetic-quality, dual-frequency receiver data would be required.  Also 

real-time, or near-real-time processing could be accomplished with access to near-term 

predicted IGS orbits and clock products. 
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7.3.  FUTURE PROSPECTS FOR THIS VARIANT OF GPS DATA PROCESSING 

The last two paragraphs of the previous section described a number of general uses for 

varying applications.  As a final commentary, it is worth considering what impact future 

planned and proposed changes to GPS and other GNSSs will have on this form of GPS 

data processing.  The major structural changes include a civilian code on GPS L2 and a 

third GPS frequency, L5; replenishment GLONASS satellites; and perhaps most 

significant, the evolving Galileo constellation – a new GNSS.  Given that the developed 

algorithm is completely measurement-based, improvements to measurement quantity and 

quality will have a direct, positive effect on solution availability, accuracy, precision, and 

integrity.  Combined with advances in mathematical and stochastic modelling, RTK-like 

solutions could potentially be produced – that is, ambiguity-resolved point positioning: 

real-time, few-centimetre positioning with a single GPS receiver and some correction 

signal.  This could also mark the coalescing of range-based WADGPS corrections and 

state-based point-positioning corrections.  This convergence is already taking place in the 

commercial arena with the StarFire and SkyFix XP services (see NavCom [2003], Thales 

[2003] and Bisnath et al. [2003]). 
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APPENDIX A  THE LEAST-SQUARES FILTER AS A SUBSET OF THE 
KALMAN FILTER 

Batch least-squares can be represented in sequential (or recursive) form as (e.g., 

Strang and Borre [1997], Wells [1997]) 

newoldnew ˆˆ lKxLx +=          (A.1) 

or 

( ) newoldnewnewoldnew .,e.i,ˆˆˆ KAILxAKxx −=−+= l      (A.2) 

That is, a new estimate  is equal to a factor L multiplied by the old estimate x  plus 

a factor K multiplied by the observations .  L can be reformulated as in (A.2), where 

 is the matrix of measurement partials with respect to x .  This equation is 

intuitive: the new estimate x  is equal to the old estimate plus a correction.  This 

correction consists of the weighting by K of the difference (the innovation) of new 

observations  and a prediction based on old estimates .  The sequential least-

squares filter with Kalman filter notation is 

newx̂ oldˆ

newl

newA oldˆ

old

newˆ

newl newx̂A

( )t|1ttttt|1tt|t ˆˆˆ −− −+= xAKxx l ,        (A.3) 

1
t

T
tt|tt

−= CAPK , and         (A.4) 

t
1

t
T
t

1
1t|1t

1
t|t ACAPP −−

−−
− += ,        (A.5) 

where the subscript “a|b” represents the estimate at epoch “a” with measurements up to 

and including epoch “b”,  is the vector of estimated parameters, A is the matrix of x̂
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measurement partials with respect to the parameters, l  is the vector of observations, C is 

the associated variance-covariance matrix of the estimated parameters, and K is the filter 

gain matrix. 

The equivalent equations for the Kalman filter are 

1t|1t1t1t|t ˆˆ −−−− = xΦx ,         (A.6) 

( )t|1ttttt|1tt|t ˆˆˆ −− −+= xAKxx l ,        (A.7) 

t
T

1t1t|1t1t1t|t QΦPΦP += −−−−− ,        (A.8) 

( 1
t

T
t1t|tt

T
t1t|tt

−

−− += CAPAAPK ) , and       (A.9) 

( ) 1t|ttt
1

t|t −
− −= PAKIP ,         (A.10) 

where the additional terms are the matrix  relating  to x , and the matrix Q1t−Φ 1t|1tˆ −−x 1t|tˆ − t 

is its associated system noise.  (A.6) and (A.8) represent the Kalman time update or 

prediction, and (A.7), (A.9) and (A.10) represent the measurement update or correction. 

The Kalman filter is equivalent to the sequential least squares filter when  and QI1t =−Φ t 

= 0, that is, xt-1 = xt.  (A.6) becomes 

1t|1t1t|t ˆˆ −−− = xx .          (A.11) 

From (A.11), (A.7) becomes 

( )1t|1tttt1t|1tt|t ˆˆˆ −−−− −+= xAKxx l ,       (A.12) 
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which is equivalent to the least-squares parameter estimate (A.3) as long as the gain 

matrices are equivalent. 

(A.8) becomes 

1t|1t1t|t −−− = PP .          (A.13) 

From (A.13), (A.10) becomes 

1t|1ttt1t|1tt|t −−−− −= PAKPP .        (A.14) 

Introducing and applying the following matrix lemma (e.g., Wells [1997]) 

( ) ( TSTSTRSTSTRTS 1TT11T1 −−−− +−=+ )

)

)

      (A.15) 

results in 

( 1
t

1
t

T
t

1
1t|1tt|t

−−−
−− += ACAPP ,        (A.16) 

which is equivalent to the least squares parameter covariance estimate (A.5).  Finally, 

from (A.13), (A.9) becomes 

( 1
t

T
t1t|1tt

T
t1t|1tt

−

−−−− += CAPAAPK .       (A.17) 

Introducing and applying the following matrix lemma (again, e.g., Wells [1997]) 

( ) ( ) 1TT1T11T1 −−−−− +=+ TSTRSTRTTRTS       (A.18) 

results in 
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( ) 1
t

T
t

1T
t

1
t

T
t

1
1t|1tt

−−−−
−− += CAACAPK .       (A.19) 

Applying (A.5) gives 

1
t

T
tt|tt

−= CAPK ,         (A.20) 

which is equivalent to the least-squares gain (A.4). 
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APPENDIX B  DERIVATION OF AUGMENTED LEO POSITION 
COVARIANCE 

A number of key derivations are presented in this appendix.  The equations developed 

here are not only used for the error study, but also form the basis of the actual position 

filter processor described in Chapter 5.  The extended solution covariance model is given 

first for the general parametric least-squares case and then specifically for the LEO error 

estimator.  The required design matrices and covariance matrices are then derived. 

APPENDIX B.1  DERIVATION FOR GENERIC PARAMETRIC LEAST-SQUARES CASE 

The basic linearised parametric least-squares mathematical observation model is 

represented by 

lCrAδw ;0=−+ ,        (B.1) 

where  is the vector of corrections to the approximate parameters (that is, ), 

A is the matrix of measurement partials with respect to the parameters, w is the vector of 

misclosures, r is the vector of residuals ( ), and C  is the (usually diagonal) 

covariance matrix of the observations.  Using matrix partitioning this model can be 

expanded (e.g., Strang and Borre [1997]) to include additional information 

δ δxx o +=ˆ

ro += ll̂ l
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,     (B.2) 

where  is the vector of corrections to additional unknowns (terms to be considered in 

the adjustment as per Bierman [1977] terminology), A

oδ

o is the matrix of measurement 
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partials with respect to the considered parameters, and wo, ro and C  are the misclosure 

vector, residual vector and covariance matrix, respectively associated with the considered 

parameters.  The unknown  could contain, for example, the coordinates of a control 

monument used in a geodetic network adjustment.  If a least squares adjustment were 

carried-out on all of (B.2), new estimates for  would be obtained.  This estimate would 

be using new observations in w

ol

oδ

oδ

o to obtain estimates for x  which is required, but also 

estimates for δ  which are not required nor desired.  It is assumed that the published 

values of  are the most accurate and should not be altered, but the error attached to 

these values should be propagated through the adjustment.  Hence as described in, e.g., 

Blaha [1974] and Strang and Borre [1997], the additional residual vector r

ˆ

o

oδ

o is set to zero, 

which prevents any adjustment of  and oδ 0o δw −= , making the elements of  so-called 

pseudo-observations 

oδ






0

ooδ

−δ

A−1
l

+ A

CAT

l

w − )





=− oo C

C
rδAw
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and the least-squares solution is given by 

( ) (o ACAxx −= −− 1T1ˆ l .      (B.4) 

As can be seen in (B.3) and (B.4) the affect of adding the pseudo-observations has been 

really to only modify the observation vector.  The effect on the parameter covariance 

though is quite profound.  Applying the law of error propagation gives 
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Given that 
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( ) ( ) ( ) 11T1T1T11T11T
ˆ

−−−−−−−− += ACAACACACAACAACAC ooox llllll .   (B.7) 

The first term of (B.7) is sometimes (e.g., Strang and Borre [1997]) referred to as the 

internal error − the error resulting from direct measurement noise, and the second term as 

the external error − the error resulting from other sources, e.g., control monument 

coordinate variances.  Therefore (B.7) can be represented by 
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Bierman [1997] refers to (B.7) in slightly different terms.  The total covariance is referred 

to as the consider covariance C , and the constituent error sources as the commission 

error C  and the omission error C  (e.g., Yunck [1996]): 

conx̂

comx̂ omx̂

T
ˆˆˆ SSCCC
omxcomxconx += ,        (B.9) 

where , xconx CC ˆˆ = ( ) 11T
ˆ

−−= ACAC
comx l , , and S .  

This last matrix is referred to as the sensitivity matrix and describes the response of the 

oomx CC l=ˆ ( ) oACAACA 1T11T −−−= ll
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estimate  to the parameters .  A final matrix P − the perturbation matrix, can be 

produced 

x̂ oδ

(
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
δ
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D

( ))
omxCSP ˆdiagsqrt= ,        (B.10) 

which describes the effects of a 1σ error in an element of  on the estimated parameters 

.  In this formalism , the vector of corrections to the omission error parameters, are 

referred to as bias parameters.  That is, e.g., uncertainties in control monument 

coordinates bias the results using these coordinates.  However, as is shown in the above 

derivation, it is known formal random errors that are propagated through the adjustment 

process. 

oδ

x̂ oδ

APPENDIX B.2  DERIVATION OF TOTAL LEO POSITION ERROR COVARIANCE 

ESTIMATOR 

This derivation requires applying the parameter covariance estimator (B.7) to the 

kinematic, sequential, least-squares positioning filter model (A.19).  To begin, the filter 

model can be expressed in the form of (B.3) 
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Therefore 
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From (A.19), 
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Let the inverted term in (B.13) be equal to R-1 and 
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Substituting (B.12) and (B.14) into (B.13) and multiplying through gives 
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Factoring out the parameters in (B.15) gives  
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where 
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Therefore the internal and external covariances can now be determined, as well as the 

covariances attributed to each considered term: 
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APPENDIX B.3  DERIVATION OF DESIGN MATRICES 

As per (B.11) the following design matrices of the measurement partials are needed: A, 

D, E, F, and G.  The epoch subscripts are not included and each matrix contains x, y, and 

z elements for each observation equation.  (Only the x component is described here.) 

The ionosphere-free pseudorange observation model (A.12) between receiver “i” and 

GPS satellite “k” is again 
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k
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k
i edtropdtdTcρP ++−+= .      (B.18) 

The double–difference observation model between two receivers: “i” (terrestrial 

reference receiver) and “j” (LEO receiver) and two GPS satellites: “k” and “l” is then 
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and similarly 
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From (B.19), (B.20) and (B.21) the elements of the design matrices can be assembled: 
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and 
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for design matrices F and G. 

APPENDIX B.4  DERIVATION OF COVARIANCE MATRICES 

The pseudorange double-difference covariance CP can be represented by 

T2
PQQCP σ= ,          (B.28) 

where σ  is the variance of the pseudorange observation, and 2
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The example of Q is for two receivers observing four GPS satellites. 

The carrier phase triple-difference covariance CΦ can be represented by 

( )T2 QTTQCΦ Φσ= ,         (B.30) 

where σ  is the variance of the carrier phase observation, Q is as defined in (B.29), and 2
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Note that for both the double-difference pseudorange and the triple-difference carrier 

phase, a reference GPS satellite “book-keeping” approach is not used.  That is, a 

reference satellite is not chosen to form the per-epoch differences with all other satellite 

observations, but rather adjacently recorded satellite observations in the RINEX files are 

differenced. 

The terrestrial reference station and GPS satellite positions covariance matrices are 

represented in celestial coordinates with no dependence between matrix elements.  Also, 

these values are time invariant.  The reference station covariance matrix is 
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where σ  is the variance of each Cartesian component of the station position. 2
stn

The GPS satellite covariance matrix is 
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where σ  is the variance of each Cartesian component of each satellite’s position. 2
sv

Finally, the tropospheric noise terms can be represented by the zenith delay multiplied by 

the simple mapping function cosecant of the GPS satellite elevation angle.  Therefore for 

the four GPS satellite, one epoch case 
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where  is the residual zenith tropospheric variance and el  is the elevation angle of 

GPS satellite “b” with respect to terrestrial receiver “a”. 

2
tropσ b

a

 143



VITA 

Candidate’s full name: Sunil Balkaran Bisnath 

 

 

Universities attended:  University of Toronto at Mississauga 

3359 Mississauga Road North 

Mississauga, Ontario, L5L 1C6 

1989-1993 

Hons. B.Sc., 1993, Surveying Science 

 

University of Toronto at Mississauga 

3359 Mississauga Road North 

Mississauga, Ontario, L5L 1C6 

1993-1995 

M.Sc., 1995, Geography and Planning 

 

University of New Brunswick 

Post Office Box 4400 

Fredericton, New Brunswick, E3B 5A3 

1996-2002 

 

 

Publications: 

Bisnath, S., D. Wells, S. Howden, D. Dodd, D. Wiesenburg and G. Stone (2004).  

“Development of an operational RTK GPS-equipped buoy for tidal datum 

determination.”  International Hydrographic Review, Vol. 5, No. 1, pp. 76-86. 



 

Bisnath, S.B. and R.B. Langley (2003).  “CHAMP orbit determination with GPS phase-

connected, precise point positioning.”  In First CHAMP Mission Results for Gravity, 

Magnetic and Atmospheric Studies, Eds. C. Reigber, H. Lür, P. Schwintzer, 

Springer, Berlin, pp. 59-64. 

Bisnath, S.B. and R.B. Langley (2002).  “High-precision platform-independent 

positioning with a single GPS receiver.” Journal of Navigation, Vol. 29, No. 3, pp. 

161-169. 

Bisnath, S.B., T. Beran, R.B. Langley (2002).  “Precise platform positioning with a single 

GPS receiver.”  GPS World, Vol. 13, No. 4, pp. 42-49. 

Bisnath, S.B., D. Kim, and R.B. Langley (2001).  “A new approach to an old problem: 

carrier-phase cycle slips.”  GPS World, Vol. 12, No. 5, pp. 46-51. 

Bisnath, S.B. and R.B. Langley (1999).  “Precise a posteriori geometric tracking of Low 

Earth Orbiters with GPS.”  Canadian Aeronautics and Space Journal, Vol. 45, No. 

3, pp. 245-252. 

Bisnath, S.B. and R.B. Langley (1999).  A Comparison of the Kinematic GPS and 

Aerotriangulation Results Completed for the New Brunswick Colour Softcopy 

Orthophotomap Data Base Project.  A study commissioned by WaterMark 

Industries Inc, March, 30 pp. 

Bisnath, S.B. and R.B. Langley (1997).  Development of Specifications for the BOLAS 

GPS Receivers and Assessment of Feasibility of Phase Synchronizing an HF 

Interferometer Using GPS.  A study commissioned by Bristol Aerospace Limited, 

December, 38 pp. 

Bisnath, S.B., J.P. Collins, and R.B. Langley (1997).  GPS Multipath Assessment of the 

Hibernia Oil Platform.  A study commissioned by Cougar Helicopters Ltd., July, 34 

pp. 

Bisnath, S.B. and R.B. Langley (1996).  Assessment of the GPS/MET TurboStar GPS 

Receiver for Orbit Determination of a Future CSA Micro/Small-Satellite Mission.  

Final report for Space Technology Branch of the Canadian Space Agency, St-Hubert, 

Que. July, 188 pp. 

 2



 

Bisnath, S.B. (1995).  The Use of Positional Data from the Global Positioning System in 

Geographical Information System Applications.  M.Sc. dissertation, Programme in 

Geomatics, Department of Geography and Planning, University of Toronto. 

Kingston, L.A. and S.B. Bisnath (1995):  “Appendix B:  Geodetic Monument 

Maintenance Report,”  In Wassef, A.M. and G. Gracie.  The Need for Geodetic 

Monument Maintenance in Metropolitan Toronto, Programme in Geomatics, 

University of Toronto. 

 

 

Conference presentations: 

Bisnath, S., D. Wells, S. Howden, and G. Stone (2003).  “The use of a GPS-equipped 

buoy for water level determination.”  Proceedings of OCEANS 2003, 22-26 

September, San Diego, California, MTS / IEEE.  p. 1241-1246. 

Bisnath, S., D. Wells and D. Dodd (2003).  “Evaluation of commercial carrier phase-

based WADGPS services for marine applications.”  Proceedings of The Institute of 

Navigation International Technical Meeting ION GPS / GNSS 2003, 9-12 

September, Portland, Oregon, The Institute of Navigation.  p. 17-27. 

Bisnath, S., D. Wells, S. Howden, D. Dodd, D. Wiesenburg and G. Stone (2003).  

“Development of an operational RTK GPS-equipped buoy for water level recovery.”  

Proceedings of The Institute of Navigation International Technical Meeting ION 

GPS / GNSS 2003, 9-12 September, Portland, Oregon, The Institute of Navigation.  

p. 59-66. 

Bisnath, S., D. Dodd and D. Wells (2003).  “Evaluation of recent developments in high-

precision GPS correction services.”  Proceedings of the U.S. Hydrographic 

Conference 2003, 24-27 March, Biloxi, Mississippi, The Hydrographic Society of 

America. 

Bisnath, S., D. Dodd, D. Wells, S. Howden, D. Wiesenburg and G. Stone (2003).  “Water 

level recovery with an RTK GPS-equipped buoy.”  Proceedings of the U.S. 

Hydrographic Conference 2003, 24-27 March, Biloxi, Mississippi, The 

Hydrographic Society of America. 

 3



 

Bisnath, S.B. and R.B. Langley (2001). "High-precision platform positioning with a 

single GPS Receiver." Proceedings of ION GPS 2001, The 14th International 

Technical Meeting of The Institute of Navigation, Salt Lake City, Utah, 11-14 

September 2001, pp. 2585-2593. 

Bisnath, S.B. and R.B. Langley (2001).  “GPS phase-connected, precise point positioning 

of Low Earth Orbiters.”  Proceedings of the GNSS 2001 Global Navigation Satellite 

Systems Conference, Spanish Institute of Navigation, 8-11 May, Seville, Spain. 

Bisnath, S.B. and R.B. Langley (2001). "Pseudorange multipath mitigation by means of 

multipath monitoring and de-weighting." Proceedings of the International 

Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS 

2001), Banff, Alberta, 5-8 June 2001, pp. 392-400. 

Bisnath, S.B. and R.B. Langley (2001).  “Precise Orbit Determination of Low Earth 

Orbiters with GPS point positioning.”  Proceedings of The Institute of Navigation 

National Technical Meeting 2001, Institute of Navigation, 22-24 January, Long 

Beach, Calif., U.S.A., pp. 725-733. 

Bisnath, S.B. (2000). "Efficient, automated cycle-slip correction of dual-frequency 

kinematic GPS data."  Proceedings of ION GPS 2000, the 13th International 

Technical Meeting of The Institute of Navigation, Salt Lake City, Utah, 19-22 

September 2000, pp. 145-154. 

Langley, R.B., H. Jannasch, B. Peeters, and S. Bisnath (2000). "The GPS broadcast 

orbits: An accuracy analysis."  Proceeding of the 33rd COSPAR Scientific Assembly, 

Warsaw, 16-23 July 2000. 

Bisnath, S.B. and R.B. Langley (2000). "Automated cycle-slip correction of dual-

frequency kinematic GPS data."  Proceedings of the 47th Annual Conference of the 

Canadian Aeronautics and Space Institute, Ottawa, 30 April - 3 May 2000, pp. 121-

125. 

Bisnath, S.B. and R.B. Langley (1999).  “Precise, efficient GPS-based geometric tracking 

of Low Earth Orbiters.”  Proceedings of the 55th Annual Meeting of the Institute of 

Navigation, Institute of Navigation, 28-30 June, Cambridge, Mass., U.S.A., pp. 751-

760. 

 4



 

Bisnath, S.B. and R.B. Langley (1998).  “Precise a posteriori geometric tracking of Low 

Earth Orbiters with GPS.”  Proceedings of the 45th Annual Conference of the 

Canadian Aeronautics and Space Institute, 10-13 May, Calgary, Alta. 

Bisnath, S.B. and R.B. Langley (1997).  “An introduction to the proposed BOLAS 

mission for ionospheric research.”  Presented at the IGS Analysis Center Workshop, 

Jet Propulsion Laboratory, Pasadena, Calif., U.S.A., 12-14 March. 

Bisnath, S.B., V.B. Mendes and R.B. Langley (1997).  “Effects of tropospheric mapping 

functions on space geodetic data.”  Prepared for the IGS Analysis Center Workshop, 

Jet Propulsion Laboratory, Pasadena, Calif., U.S.A., 12-14 March. 

 

 5


	INTRODUCTION
	Research Motivation and Thesis Statement
	Contributions of this Research
	Outline of Dissertation

	REVIEW OF CONTEMPORARY LOW EARTH ORBITER PRECISE ORBIT DETERMINATION STRATEGIES
	Classical Orbit Determination
	Stages of Orbit Determination
	Solution to the Orbit Determination Problem

	Spaceborne GPS Precise Orbit Determination
	Variations Between Conventional and GPS Satellite Tracking Measurements
	Dynamic Precise Orbit Determination Strategy
	Kinematic Precise Orbit Determination Strategy
	Hybrid Dynamic and Kinematic Precise Orbit Determination Strategy


	THE INITIAL UNB GEOMETRIC PRECISE ORBIT DETERMINATION STRATEGY
	Philosophical and Historical Foundations of the Geometric Strategy
	Geometric Strategy Filter Models and Solution
	Combination of the Pseudorange and Carrier-Phase Observables
	Derivation of the Geometric Strategy Mathematical Model
	Derivation of the Kinematic, Sequential, Least-Squares Positioning Filter from the Mathematical Model
	The Optimal Least-Squares Smoother for Parameter Covariance

	SUMMARY

	GEOMETRIC STRATEGY PROOF OF CONCEPT STUDY
	Filter Error Propagation Study
	Filter Error Propagation Study Methodology
	Filter Error Propagation Software
	BOLAS Mission Scenario and Data Simulation
	Filter Error Propagation Study Results and Analysis

	Interpolation study
	Interpolation Study Methodology and Datasets
	Interpolation Study Results and Analysis

	SUMMARY

	THE REVISED UNB GEOMETRIC PRECISE ORBIT DETERMINATION STRATEGY
	The Removal of Selective Availability (SA)
	Philosophical Foundations of the Revised Geometri
	Single-Receiver Positioning Due to Autonomy from Reference Receivers
	Receiver Platform Independence Due to Autonomy from Dynamical Information

	Relationship Between Phase-Connected, Point Positioning and Precise Point positioning
	Phase-Connected, Point Positioning Filter Design, Models and Solution
	Basic Modelling Requirements For Phase-Connected, Point Positioning
	Additional Modelling Requirements For Phase-Connected, Point Positioning

	Realisation of Geometric Strategy in Processing Software
	Data Pre-Processor: PREGO
	Data Main Processor: KMPROC

	SUMMARY

	GEOMETRIC STRATEGY PROCESSING RESULTS AND ANALYSIS
	Initial Data Processing
	Static, Terrestrial Calibration Tests
	Various Other Tests

	IGS LEO Orbit Comparison Campaign
	The CHAMP Satellite Mission
	Preprocessing of CHAMP data anomalies
	Results and Analysis of UNB CHAMP Processing
	IGS Analysis Results

	Improved Quality CHAMP Dataset Processing
	Results and Analysis of UNB CHAMP Processing of Improved Quality Dataset


	CONCLUSIONS, RECOMMENDATIONS, AND FUTURE PROSPECTS
	Conclusions of this research
	Recommendations for Further Research
	Future Prospects For this Variant of GPS Data Processing

	REFERENCES
	
	
	
	
	THE LEAST-SQUARES FILTER AS A SUBSET OF THE KALMAN FILTER
	DERIVATION OF AUGMENTED LEO POSITION COVARIANCE
	Derivation for Generic Parametric Least-Squares Case
	Derivation of Total LEO Position Error Covariance Estimator
	Derivation of Design Matrices
	Derivation of Covariance Matrices









