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Abstract 

The Bay of Fundy has extraordinary water level variations. These variations make 

accurate prediction using conventional harmonic approaches difficult. A possible 

approach to improving the predictions is to apply non-linear methods. Since the errors in 

prediction using harmonic methods appear random, the possibility of this being a system 

exhibiting chaotic behaviour rather than stochastic behaviour is investigated. Errors in 

the prediction are dependant upon the chosen method of analysis in the first place, here a 

least squares spectral analysis is used. The residual time series from the least squares 

analysis is then subjected to a search for the largest Lyapunov exponent using two 

algorithms. Existence of a positive Lyapunov exponent is generally accepted as being 

proof of chaotic behaviour and this existence is investigated. To further enhance the 

investigation the Correlation Dimension is estimated. 

The results are presented and conclusions drawn. With the data sample used no clear 

indication of chaotic behaviour was identified. 
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1.1 Introduction 

Chapter 1 

Approach 

Chaotic behaviour is a non-linear phenomenon. One of the characteristics, although 

not exclusive to chaotic systems, is an extreme sensitivity to initial conditions. For 

dissipative systems, in a chaotic state, the dynamics are generally constrained to a finite, 

lower-dimensional region of state space called a 'strange attractor'. Time series from such 

a system may display apparently stochastic behaviour. The sensitivity to initial 

conditions in chaotic systems complicates long term predictions, even when the system 

is known to be purely deterministic. Here a deterministic system is considered to be one 

which is mathematically defined and under ideal conditions completely known. That is, 

under conditions of zero noise, perfect knowledge of the system and no computational 

error, all future states may be predicted. Real systems are never known perfectly and are 

not noise free. The extreme sensitivity to initial conditions prevents long term 

predictions in real systems which are chaotic. An improvement in the accuracy with 

which short term predictions can be made, compared to statistical forecasts, is gained by 

using the deterministic knowledge. 

This apparently stochastic behaviour in chaotic systems has led researchers in many 

fields to consider the possibility that their data are in fact deterministic chaos rather than 

noise. Remarkable successes have been achieved in a number of fields. There are also 

numerous less substantiated claims. Some of the fields where chaos has been claimed are 

as diverse as medicine (Frank et al., 1990), economics (Brock, 1986), meteorology 
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(Cuomo et al., 1993), biology (Lloyd and Lloyd, 1995), (Arizmendi et al., 1995), 

earthquake predictions (Ouchi, 1993) and oceanography (Yan, 1993). 

The requirements of researchers to classify the nature of their data more completely 

has led to the development of a number of algorithms that distinguish deterministic 

chaos from noise in time series. Two of these were selected and used in this study. It is 

realised that Wolfs algorithm (Wolf et al., 1985) is not ideal for the analysis of real 

world data. A principal reason for the lack of suitability to real world data is the use of a 

fixed time before replacement of the vectors used in the estimation. A consequence of 

this is that a poor selection of points may contribute significantly to the estimated 

quantities. It does, however, form an important part of the literature and is referred to 

extensively, often forming a starting point for further developments. Improved 

algorithms have subsequently been developed. For this reason the second algorithm 

used here, developed by Rosenstein (Rosenstein et al. 1993), is also applied to the data. 

Use of these two approaches by no means exhausts the possibilities, and both suffer from 

the lack of a 'sanity' check. By a 'sanity' check, a gross test of reasonableness is implied -

in a dissipative system the overall system cannot be an expanding one. In Section 6.5 it 

is shown that this sanity check becomes a moot point. 

1.2 Aim 

In this work the water level records from the Bay of Fundy, in eastern Canada, are 

analysed to establish whether deterministic behaviour can be identified. The records used 

are from the permanent tide gauge at the port of Saint John. Since water level variations 

are largely periodic in nature, a significant portion of the signal can be predicted using an 

n period model. Differences between the predicted and observed water level are referred 

to here as the residual signal and represent the errors in the prediction. The magnitude of 
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these errors is significant, up to the order of lm. In the event that low-dimensional 

deterministic chaos could be identified in this residual time series, the possibility of 

increased accuracy in short term predictions would be opened up. 

1.3 Adopted Approach 

The water level record for the period starting from 11111947 and extending for 30 000 

samples was used. Section 3.5 deals with the criteria for the selection of this data record. 

Data were recorded with a sample interval of one hour: 30 000 samples thus represent 30 

000 hours, or 1250 days. Since there are a number of well known periodic components 

in the tidal records, these were removed using a least-squares spectral method. Further 

spectral analysis was performed to identify remaining periodic components. These too 

were removed as they were considered predictable. What remains after removal of all the 

identified periodic components is a residual time series, which may be considered to 

represent the errors in water level predictions using a particular model. More specifically 

X(t) = Z0(t)+ T(t )+S(t) 1.1 

where X(t) represents the observed level, Z0 (t) is the relationship between chart datum 

and mean sea level, T(t) is the harmonic portion of the signal, and S(t) is the residual 

signal. Variations in Z0 (t) were identified as being negligible and consequently Z0 (t) 

was dropped. T(t) was removed from the observed time series leading to S(t) which 

becomes the signal of interest. 

It is important to note that the time series analysed is a natural system that has been 

filtered. This manipulation of the data introduces artefacts which almost certainly affect 

the nature of the data. Since the method of least-squares spectral analysis (LSSA) allows 

for both the identification of periodic elements and the prediction of future states, it is 

3 



argued that the approach remains valid as long as the water level predictions are made 

using LSSA. If the residual time series could be shown to contain deterministic elements 

and could be predicted with an accuracy better than that obtainable with stochastic 

methods, then combining the predicted residual series with the LSSA water level 

prediction should yield improved results. That is both T(t) and S(t) could be predicted 

instead of only T(t). In fact it must be remembered that the time series is already 

contaminated by elements from the measuring apparatus which, in theory, could be 

divorced from the 'true' watellevels. Merry and Vanlcek (1983) use this approach. The 

difference between this work and that of Merry and Vanlcek (1983) is the manner in 

which the residual time series is analysed. 

Modelling of any system occurs in phases which may be broken down into : 

a) Analysis of the data with the aim of identifying their nature. 
b) Interpretation of the data in terms of real world components. 
c) Formulation of the mathematical equations that represent the system which 

generates these data. 
d) Refinement of the model to an optimal solution (in some sense). 
e) Interpretation of the model results in real world terms. 

Only phase a) of this process is undertaken here, and this is undertaken with the specific 

intention of identifying whether deterministic chaos is present or not. 

1.4 Analytical Tools Used 

There is a wealth of computer software freely available, it was decided that the most 

efficient approach was to adopt and use existing software as far as possible. In this 

regard a number of utilities have been used to manipulate the data, either in their original 

form or after modification by the author. A brief summary of the software and tools used 

is given below : 
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1) LSSA - the source code for this algorithm, developed at the University of New 

Brunswick, is freely available and fully described in Wells et al. (1985). It was 

used with only minor modifications. 

2) FET - or the fixed evolution time algorithm by Wolf et al. (1985) which allows for 

identification of deterministic chaos. The source code for this was used with only 

slight modifications. In order to improve computational efficiency a second utility 

BASGEN was used in conjunction with the FET code. This allows for the data to 

be pre-classified spatially and greatly reduces search times during later analysis. 

3) MTRLYAP and MTRCHAOS are two utilities written by Rosenstein et al. (1993). 

The first of these is an analysis tool to assist in the identification of deterministic 

chaos. The second allows the results to be visualised as well as the original time 

series to be further manipulated to establish stability in the solution. Both were 

available only as executable programs and were used unmodified. 

4) GNUPLOT (Williams and Kelley, 1993) was used for all plotting and visualisation 

of data. This is a freely available plotting package capable of generating 

presentation quality output. It is distributed on the Internet and at the time of 

writing could be found at http://www.cs.dartmouth.edu/gnuplot_info.html 

5) Mathcad1 (MathSoft Inc., 1993) is a commercial mathematics package that was 

used to perform Fourier analyses on the time series. It was also used fairly 

extensively when initially gaining an understanding of iterated maps and was then 

used to generate examples of certain maps for presentation. 

1Trademark ofMathSoft, Inc. 
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6) SEARCH (Sprott, 1996) was used to create the example of stretching and folding 

of a strange attractor in Chapter 2. The procedure is somewhat tedious but useful 

when gaining an understanding of the nature of strange attractors. The process 

involves running three programs SEARCH or SIMP ANIM, DISPLAY and a utility 

to create animations. SEARCH and SIMP ANIM search for and find suitable 

candidates from either an iterated map or a set of simple ordinary differential 

equations. These are saved as a bitmap file which can be converted into individual 

files using DISPLAY, still in bitmap format. In the event that an animated display 

is desired the successive frames can be used to generate an animated GIF file. In 

Chapter 2 the single bitmap file containing the 'panes' is presented, i.e., it is simply 

the results of SEARCH. 

1.5 Contributions 

At the time that this work was started the author could find no literature connecting 

non-linear systems in a chaotic state to water level predictions. Due to the physical 

nature of water level variations and the many non-linear processes involved water level 

prediction was believed to be a good candidate. This work is intended to introduce this 

possibility and to take the first steps to identifying whether such elements are present in a 

single data set. From the outset there was no intention of progressing to the point of 

devising models using non-linear processes. It is also hoped that it will initiate a course 

of interest to others in related disciplines. 

During the later stages of this work it came to the author's attention that an as yet 

unpublished paper claiming to improve on tidal predictions, using chaos theory, has been 

written (Frison, 1997a). 
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1.6 Outline 

In order to introduce the reader to the terminology and a layman's understanding of 

chaos theory a brief overview is given in Chapter 2. This concentrates on the topics 

relevant to this work, as developed by others, and makes no attempt to expand on chaos 

theory. 

Tides are a well understood physical phenomenon. Chapter 3 briefly discusses water 

level variation theory. The likelihood of there being chaotic elements in the water level 

signal is discussed. Certain types of systems which are not accounted for in later analysis 

are mentioned. Prior to analysis the measured water level signal is manipulated. How 

this is done and the reasons why are presented. In addition the data requirements are 

discussed. 

The following two chapters, Chapters 4 and 5, deal with algorithms developed by 

Wolf et al. (1985) and Rosenstein et al. (1993) respectively. These algorithms are used to 

analyse the data with the explicit aim of identifying whether it is chaotic or stochastic. 

Chapter 6 presents the results obtained from applying the algorithms of Chapters 4 

and 5 to the water level data. These results are discussed and conclusions drawn. Finally 

proposals with regards to how to proceed further with this work are presented. 
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Chapter 2 

A Brief Overview of Chaos Theory 

2.1 Introduction 

Before proceeding to the specific algorithms used to evaluate the data a brief 

overview of chaos theory is given. Aspects that are covered are mainly those used in the 

subsequent algorithms, however, a more general approach is presented. For a fuller 

understanding of the concepts the reader is referred to the literature referenced in this 

section. 

As stated in Chapter 1 chaotic behaviour is a non-linear phenomenon, characterised 

by an extreme sensitivity to initial conditions. For dissipative systems, in a chaotic state, 

the dynamics are usually constrained to a finite, lower-dimensional, region of state space 

called a strange attractor. Dissipative systems are ones which 'lose' or dissipate 

information, thus the sum of all the Lyapunov exponents is negative. Strange attractors 

and Lyapunov exponents are discussed in Sections 2.4 and 2.5 respectively. Energy 

and/or matter constantly flow through the system from its environment. This enables the 

system to remain in a far-from-equilibrium state (Marshall and Zohar, 1997). A chaotic 

state is considered to be one in which the behaviour is not regular. Time series from such 

a system may display apparently stochastic behaviour. This chapter expands on these 

statements and covers the basics of the theory used in later chapters. 

After removal of periodic components from observed ocean water levels a signal 

remains. This signal may be considered as an observation of a single variable in a 

system. Since no further periodic components can reasonably be identified, the 

remaining signal can be considered as noise and treated stochastically. Traditionally this 
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has been the case. An alternative approach is to consider the signal as a deterministic 

system exhibiting chaotic behaviour. The truth is probably a combination of the two. 

Analysis of such a signal with the express purpose of identifying deterministic chaos 

forms the basis of this work and was undertaken using two measures to quantify the 

system: 

a) Lyapunov exponents 
b) Correlation dimension 

2.2 An Example of a Chaotic System 

Chaotic systems are introduced by means of an example. One of the simplest systems 

known to exhibit chaotic behaviour is the so-called logistic map. Before proceeding it is 

worthwhile noting that 'map' here is used to describe a discrete time system. Continuous 

time systems are referred to as 'flows'. 

Casti (1992, p. 255) discusses the growth over time of an insect population in terms 

of the logistics map. He further notes that the logistic map, in a chaotic region, was often 

employed as a random number generator in the early days of computing. Kugiumtzis et 

al. ( 1994) note that the logistic map has been used to model supply and demand in 

economics in addition to populations in biology. 

The logistic map is an iterated map, it is completely deterministic and defined as 

follows 

2.1 

where x is the state variable and a is an independent parameter. 

For 1 ~ a ~ 4 and an initial condition in the interval [ 0,1] the state variable is 

restricted to the interval [0,1]. For a> 4 the system was observed to be divergent when 
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examined numerically. The behaviour of the system is dependant on the value selected 

for a and varies, with the asymptotic state (for a particular selection of a) changing from 

a fixed point through stable periodic orbits to chaotic behaviour at a ~ 3.57 as a is varied 

(Kugiumtzis et al, 1994). For the case x0 = 0 the solution is trivial with xk = 0 'Vk. 

This behaviour is most clearly demonstrated using a bifurcation diagram, Figure 2.1 

was generated using Mathcad and iterating the logistic map 30 000 times. In general, the 

phase portrait changes gradually as the parameters vary. There are usually parameter 

values for which the phase portrait changes drastically. These abrupt changes in the 

phase portrait due to changes in the parameters are called bifurcations (Hubbard and 

West, 1990). The phase portrait is a representation of the phase space discussed in 

Section 2.6. By plotting the state variable, xk, against the parameter, a, these changes in 

behaviour are apparent. To generate the plot a was incremented while the system was 

0.9 

0.8 

0.7 

0.6 

X 0.5 

0.4 

0.3 

0.2 

1.5 2 2.5 
a 

3 3.5 4 

Figure 2.1 - Bifurcation diagram for the logistic map. Evolution of the attractor as the 
parameter a increases from 1 to 4 is demonstrated. For the a-interval 1 to "" 3.08 the 
stable solution is a fixed point, from "" 3.08 to "" 3.5 a stable period-2 solution exists, 
from "" 3.5 to "" 3.57 a stable period-4 solution exists. As a is further increased there is 
an infinite sequence of period-doubling bifurcations before the onset of chaos. A brief 
period-3 solution occurrs around 3.85. 
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iterated. 

The period doubling route to chaos shown in Figure 2.1 is interesting because it may 

be characterised by certain universal numbers. The spacing between consecutive 

bifurcations approaches a universal constant, called the Feignbaum number after its 

discoverer (Baker and Gollub, 1990). 

Figures 2.2 and 2.3 are time series plots for two of the different stages of evolution. 

Values of a are 3.2 and 3.9 which demonstrate period-2 and chaotic behaviours 

respectively. Period-n implies that the state variable takes on n discrete values when the 

system is iterated. Such time series may represent the observer's knowledge of a system. 

X 

0.4 

0.2 

0~------~------~------~-------L------~ 
0 20 40 

k 
60 80 100 

Figure 2.2 - Time series representing period-2 behaviour for the logistic map, a = 3.2. 

Chaotic behaviour in the logistic map is characterised by an autocorrelation function 

which is essentially zero for all lags except zero and could easily lead to the conclusion 

that the system is white noise (Kugiumtzis et al., 1994). The autocorrelation may be 

estimated from a sample by 
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A 1 N-r 

Rxx (r.M) = --L xnxn+r r = 0,1,2, ... 'm 
N -r n=I 

2.2 

where r is the lag, m is the maximum lag number and, N is the number of observations 

(Bendat and Piersol, 1986). It is required that the data be equally spaced, stationary and 

have a zero mean. The autocorrelation for the logistic map is estimated in Appendix D. 

0.8 

~ : ' 

I 
! 

I 

0.6 i 
I i I, I 

>< I I 
I 

I I, 
0.4 

0.2 

OL-______ L_ ______ L_ ______ L_ ______ L_ ____ ~ 

0 20 40 60 80 100 
k 

Figure 2.3 - Time series representing chaotic behaviour of the logistic map, a= 3.9. 

2.3 Fractals 

Broadly speaking a fractal set may be considered as a set which is self-similar under 

magnification, that is, its appearance remains the same at any magnification. More 

specifically, a fractal is a set F which has the property that F is the union of sets {F;} for 

which each F; is similar to F and F; r'l Fj(i-::;:. j) is empty (or negligible in some sense). 

Each F; can also be decomposed in this way and this can be continued indefinitely 

(Mathematics Dictionary, 1992). 
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Probably the simplest example of this is the Cantor set. This is created by starting 

with a line of fixed length, dividing it into three equal portions and deleting the middle 

third. This yields two lines and a 'gap' of equal length. Each of the remaining lines can be 

divided in the same manner yielding four lines of equal length and three 'gaps'. This is 

illustrated by Figure 2.4. Continuing this process indefinitely leads to a set which 

contains a total line length of zero, given by lim(2/3r. There are a number of simple 
n~oo 

extensions to higher dimensions of this concept such as the Koch Snowflake (Gleick , 

1988) and the Sierpinski Gasket (Casti, 1992). 

n=O-----------------------------------------------------

n=1 ------------------
n=2 ____ _ 

Figure 2.4- Construction of the Cantor set for the steps upton= 2. 

2.4 Strange Attractors 

Phase space is the set of states of a system. For instance the state of a Newtonian 

system is specified when both a position and a velocity is known for each component of 

the system (Hubbard and West, 1990). A trajectory is the path traced by the solution of 

the equations as a function of time. In conservative or chaotic systems where the 

attractor is bounded the trajectory will form orbits as it revisits nearby regions of phase 

space. 

Grebogi et al. ( 1984) define an attractor and a basin of attraction as : 

An attractor is a compact set with a neighborhood such that, for almost 
every initial condition in this neighborhood, the limit set of the orbit as time 
tends to += is the attractor. 

The basin of attraction of an attractor is the closure of the set of initial 
conditions which approach the attractor as time tends to += . 
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As a chaotic system evolves the trajectory in phase space is normally constrained to a 

geometrical structure characterised by stretching andfolding. This geometrical structure 

is the so-called strange attractor. In a system with F degrees of freedom an attractor is a 

lower-dimensional subset ofF-dimensional phase space. Almost all sufficiently close 

trajectories (all points within the basin of attraction) are attracted asymptotically towards 

the attractor. 

In a dissipative system volume is contracted and the volume of the attractor is always 

zero, however, with strange attractors the contraction does not occur in all directions. 

The stretching is caused by the divergence of nearby trajectories, while the folding 

constrains the dynamics to a finite region. Despite having a zero volume the attractor 

may exhibit extremely complex structures. The divergence of nearby trajectories is 

exponential and directly related to the sensitive dependence on initial conditions. This is 

treated more fully under the section on Lyapunov exponents. Eckmann and Ruelle 

( 1985) define a strange attractor to be an attractor with sensitive dependence on initial 

conditions. 

A characteristic of the strange attractor is that its dimension is non-integer, unlike 

ordinary attractors which have integer dimensions. The subset, to which the strange 

attractor is confined, has a non-integer dimension < m, where m is an integer and is 

called the embedding dimension. There are a number of definitions for non-integer 

dimensions, some of which are discussed in Section 2.6. 

As a result of the repeated stretching and folding the structure becomes multi-sheeted 

or Cantor-set like in some directions; accordingly it can be considered a fractal. It is a 

common characteristic of strange attractors that they are fractal in nature. The fractal 

nature of a strange attractor is demonstrated using the Henon map. Equation 2.3 defines 

the map and Figures 2.5, 2.6 and 2.7 show the map and two successive magnifications. 
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The fractal nature is apparent when the figures are compared, as the geometrical 

structure repeats itself with the increased magnification. 

x1(k +I)= 1 +x2(k )-ax~(k) 
x2 ( k + 1) = bx1 ( k ). 

2.3 

This system is chaotic when a= 1.4 and b = 0.3 (Rosenstein et al., 1993). Figure 2.5 

was generated by iterating the system 30 000 times in Mathcad and then plotting each 

value as a point. 

0.4 

0.3 

0.2 

0.1 

C\1 0 X 

·0.1 

-0.2 

-0.3 

-0.4 
-1.5 -1 

Figure 2.5 - The Henon map. 

-0.5 0 
x1 

0.5 1.5 

Computing successive iterations of the Henon map shows that using 14 digits' 

accuracy the error in prediction grows to order 1 by the sixtieth iteration (Eckmann and 

Ruelle, 1985). This means that the solution may lie anywhere on the attractor and 

predictions can no longer be made with any greater accuracy than the bounds of the 

attractor. Computations performed in Mathcad were made using 15 digits of precision. In 

view of this it is important to note that strictly speaking it is not possible to simulate 

chaotic systems on a computer because of the finite set of numbers available, however, 
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for purposes of illustration it suffices. It was supposedly the use of a different calculator, 

with a different precision, that led Lorenz (1963) to note the sensitivity of his weather 

prediction system (Marshall and Zohar, 1997). Ruelle (1989, p. 28), puts this into 

context. 

C\1 
X 

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 
x1 

Figure 2.6 - The Henon map enlarged. 

0.2 .----.----.---.---,...----r----.----,----, 

0.195 

~ 0.19 

++ + + ....... t * + 
+ + + 

++ ++-++ -HI- + + 41- +t- ++ 
+++ ++ + +-++--Hi-++~++-++ 

+ ++ ............... 1"" "tt-HI-.fi-++ +-+i-t+++·~ 
+ ++.,.. + ++ + .,... + + ""' + 0.185 

-Hilt+ + .... ++ +-+ +* + ..... *+ + .... * 0.18 .___ __ L..-__ ..__ __ ..__ __ .....___;_*_+--"'+ .... =-:..o+ ~....,._......_,. __ __._____, 

0.58 0.582 0.584 0.586 0.588 0.59 0.592 0.594 
x1 

Figure 2. 7 - The Henon map further enlarged. 
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Hence, we can ask why should we compute 1 0 000 points if after 60 the 
results are already meaningless. The point is that we have to reformulate 
what is considered as meaningful. In fact, it is clear that if one does not 
make more precise computations, the exact position of the 60th point of the 
orbit is completely indeterminate: it could be anywhere on the attractor; 
however, as far as the statistical properties of the orbit are concerned, this 
must not trouble us because they do not depend on the details of the 
calculations and therefore the existence of the attractor is not in question. 

Although many chaotic systems exhibit fractal structures in phase space there is no 

direct connection between strange attractors and fractals. For example, the attractor for 

the logistic map is observed to consist of a finite number of disjoint intervals in 

0 ~ x ~ 1 (Grebogi et al., 1984 ). This attractor is not strange and does not exhibit a fractal 

nature. Grebogi et al. ( 1984) also provide examples of non-chaotic strange attractors, in 

particular they examine a non-linear oscillator forced at two incommensurate 

frequencies, 

xn+J = f(xn,OJ 
(} n+J = [ (} n + 2nm] mod 2n, 

2.4 

where J(x,O) = J(x,8+2n). 

The definitions adopted by Grebogi et al. ( 1984) help to clarify the relationship 

between chaos and strange attractors. These are : 

Chaotic refers to the dynamics on the attractor. 
Strange refers to the geometrical structure of the attractor. 

For a rigorous treatment of strange attractors the reader is referred to Ruelle (1989). 

A clear demonstration of many of the characteristics discussed in this section is 

achieved by viewing an attractor at successive times. In particular the stretching and 

folding of the attractor are apparent. Using software written by Sprott (1996) Figure 2.8 

was generated. Here a quadratic map given by 
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xk+l = -0.1 + 0.2xk + O.lxk 2 + 0.8 yk + 0.7 zk + -0.5sin( ~) 
Yk+l = xk 

zk+l = Yk 

is iterated with the attractor being displayed for successive times given by t mod 16. 

Figure 2.8- The stretching and folding of a strange attractor. 

2.5 Lyapunov or Characteristic Exponents 

2.5 

Chaotic systems are characterised by the exponential divergence of 'close' 

trajectories. Lyapunov exponents (or characteristic exponents) may be considered a 

measure of this divergence. Lyapunov exponents quantify the rate at which a small 

perturbation to the system will vary, either increase or decrease, that is the average 
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exponential rates of divergence or convergence of nearby orbits in phase space. The 

following description, after Kugiumtzis et al. (1994), defines Lyapunov exponents in a 

non-rigorous manner and allows one to visualise their computation using local Jacobians 

(local linearization) : 

Lyapunov exponents are defined as the logarithms of the absolute value of 
the eigenvalues of the linearized dynamics averaged over the attractor. 

This concept is formalised in Section 2.5.1. 

In order to estimate the Lyapunov exponents we resort to statistics and assume the 

existence of an ergodic probability measure on the attractor. Ruelle (1989, p. 38), gives 

the following definition : 

Ergodicity. An invariant probability measure p is ergodic or 
indecomposable if it does not have a nontrivial convex decomposition : 

p = api + (1 + a)p2 witha * 0,1 

where PI and p 2 are again invariant probability measures and PI* p 2 • 

2.6 

It does not make sense to say that f 1 is ergodic if it is not stated with regards to what 

measure p. If / 1 is a dissipative system, one has to specify which ergodic measure p 

one considers (Ruelle, 1989). Ruelle (1989, p. 44), clarifies this for Lyapunov 

exponents: 

In general, it is exceptional that an attractor carries only one ergodic 
invariant measure p . In typical cases there are uncountably many distinct 
ergodic measures. Nevertheless, as we have already mentioned in part I, in 
physical experiment and in computer simulations it seems that one 
invariant probability measure p is produced more or less automatically by 
the time that the system spends in various part of the space M. Thus, there 
is a selection process of the so-called physical measure p . 

The advantage of the ergodic approach lies in the fact that there are 
important theorems which apply to all ergodic measures, and we do not 
have to worry immediately about which ergodic measure is physical. 
(Furthermore, as noted earlier, there are always some ergodic measures 
on a compact invariant set.) 
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However, many important results of ergodic theory hold for an arbitrary 
invariant measure p . This is the case, for example, of the existence of 
characteristic exponents. 

It is important to note that in the statistical analysis of time series we deal directly 

with time averages. Statistical analysis of chaos does not have very much to do with the 

ergodic problem. It focuses its attention on invariant measures carried by attractors, 

which are assumed to be ergodic (Ruelle, 1989). 

Consider a discrete time evolution equation 

x(n + 1) = f(x(n)), x(i) e R, 2.7 

and the rate at which nearby orbits are separated. The average rate of growth may be 

defined as the number 

2.8 

where Df n is the derivative off composed with itself n times (Ruelle, 1989). In the 

special case of a one-dimensional map there is a single Lyapunov exponent given by 

Equation 2.8. Existence of the limit in Equation 2.8 is guaranteed by the ergodic 

theorem. The existence of this limit can be extended to higher dimensions than 1. This is 

guaranteed by a generalisation of the ergodic theorem to products of matrices; the 

multiplicative ergodic theorem of Oseledec (Ruelle, 1989). This theorem is stated as it 

leads to the formal definition of Lyapunov exponents. 

2.5.1 The Multiplicative Ergodic Theorem of Oseledec 

This section follows Eckmann and Ruelle, ( 1985) : 

Theorem Let p be a probability measure on a space M, and f: M -7 M a 

measure preserving map such that p is ergodic. Let also T: M -7 m x m 
matrices be a measurable map such that 
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where log+ u = max( 0, log u) . 
Define the matrix Txn = T(fn-Jx}··T(fx)T(x). Then, for p-almost all x the 

following limit exists: 

where Txn* represents the adjoint of Txn . 

The logarithms of the eigenvalues of Ax are called characteristic 

exponents (Lyapunov exponents). They are denoted by A1 ~ A2 ~- • •• They 

are almost everywhere constant if p is ergodic. Let A_(I) > A_(z) >··· be the 

characteristic exponents no longer repeated by multiplicity; we call m<i) the 

multiplicity of A_(i). Let E~i) be the subspace of R m corresponding to the 

eigenvalues :::; expA_(i) of Ax. Then R m = E~1 ) :::> E~2) :::>· • • and the following 

holds 

Theorem. For p -almost all x , 

if u e E~i) \ E~i+I). In particular, for all vectors u that are not in the subspace 

E~2) {viz., almost all u), the limit is the largest characteristic exponent A_(I) . 

2.9 

2.10 

2.11 

Under certain circumstances it is necessary to extend the above theorems, this is 

noted by Ruelle (1989, p. 47): 

In some physical applications, like those concerning hydrodynamical 
systems, we shall need a version of these theorems where Rm is replaced 
by an infinite-dimensional space, like a Banach space or a Hilbert space E 
and the T( x) are bounded operators. 

Ruelle (1989) proceeds to show that the theory extends without difficult for certain 

classes of systems. 
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2.5.2 The Spectrum of Lyapunov Exponents 

The spectrum of the Lyapunov exponents is useful as an indicator of the type of 

system beiQ.g described. Using a notation developed by Crutchfield (noted by Ruelle, 

(1989)) we can describe the following systems in three-dimensional space: 

Attracting fixed point (-,-,-) 

Attracting limit cycle (0,-,-) 

Quasiperiodic attractor ( 0,0,-) 

Strange attractor ( + ,0,-) 

In three-dimensional space there are three Lyapunov exponents; these may each be 

described as+, 0, or-. The above notation represents the three Lyapunov exponents in 

decreasing order of magnitude. The existence of at least one positive Lyapunov exponent 

is often taken to indicate chaos in systems which are bounded. Gao and Zheng ( 1994) 

show that the existence of a positive exponent alone is not sufficient to justify an 

underlying strange attractor. In fact they provide an argument that leads to the conclusion 

that white noise will produce a positive exponent, the size of which can be varied 

arbitrarily given a sufficiently large data set. 

Ruelle ( 1987, p. 56), makes the following notes : 

For a discrete time system with t ~ 0, chaos may occur in one (or more) 
dimension(s). 

In the case of a diffeomorphisim, i.e. for a discrete time dynamical system 
where t may be negative as well as positive, chaos occurs only in two (or 
more) dimensions. 
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For a continuous time dynamical system (i.e. a flow) chaos occurs only in 
three (or more) dimensions. 

For a flow there must be at least one local Lyapunov exponent that is zero when the 

system is chaotic (Abarbanel, 1996). Local Lyapunov exponents are a measure of the 

divergence (or contraction) at a point in phase space. 

In a continuous four-dimensional dissipative system there are three possible types of 

strange attractors, (+, +, 0, -), (+, 0, 0, -) and (+, 0, -, -). Changes in the system's 

parameters will generally change the Lyapunov spectrum and may also change the type 

of attractor (Wolf et al., 1985). 

Returning to the sensitive dependence, we note that the magnitudes of the Lyapunov 

exponents quantify the dynamics of an attractor in information theory terms. They 

provide a measure for the rate at which the system processes information, that is, the rate 

at which information is created or destroyed. This leads to the exponents being expressed 

in (bits of information)/s or bits/orbit for continuous systems and bits/iteration for 

discrete systems. The exponents are not always expressed in this form in the literature. In 

order to illustrate this concept as well as that of sensitive dependence consider the 

Lorenz (1963) attractor. Three equations define the system 

X =a(Y- X) 

Y= X(R-Z)-Y. 

Z= XY-bZ 

2.12 

Selecting the parameters to be a= 16.0, R = 45.92 and b = 4.0 results in a positive 

Lyapunov exponent of 2.16 bits Is. Specifying an initial point to a given accuracy 

determines the time for which predictions can be made. Using the Lorenz system with 

parameters as above and specifying an initial point with an accuracy of 20 bits ( 1 part per 

million), we cannot predict further than 20 bits I (2.16 bits Is), or about 9s. Any 
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uncertainty in the initial point will essentially cover the entire attractor after this time, 

reflecting 20 bits of new information that can be gained from an additional measurement 

of the system (Wolf et al., 1985). 

For a detailed treatment of this subject see Eckmann and Ruelle ( 1985) and Ruelle 

(1989). 

2.6 Correlation Dimension 

A second property which is often used to quantify chaos is the correlation dimension. 

Correlation dimension is a characteristic measure of strange attractors (Grassberger and 

Procaccia, 1983). Before proceeding with a discussion of the correlation dimension a 

more general approach to the concept of dimension is taken. Let us introduce the 

definitions of several'dimensions'. The definitions in Sections 2.6.1, 2.6.2 and 2.6.3 are 

taken from the Mathematics Dictionary (1992, p.123). 

2.6.1 Dimension 

Refers to those properties called length, area, and volume. A configuration 
having length only is said to be of one dimension; area and not volume, two 
dimensions; volume, three dimensions. A geometric configuration is of 
dimension n if n is the least number of real valued parameters which can 
be used to (continuously) determine the points of the configuration; i.e .• if 
there are n degrees of freedom, or the configuration is (locally) 
topologically equivalent to a subspace of n-dimensional Euclidean space. 

For more general sets of points it is necessary to use a different definition of dimension. 

Two of these are the fractal (or Mandelbrot) dimension and the Hausdorff (or Hausdorff-

Besicovitch) dimension. 
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2.6.2 Fractal (or Mandelbrot) dimension 

Let X be a metric space. For each positive number E , let N( X, E) be the 
least positive integer M for which there are M balls of radius less than E 

whose union contains X . Then the fractal dimension of X is 

1. logN(X,E) 
D = 1m---"--'------'-

! e-.o log 1j E ' 

which is also the greatest lower bound of positive numbers d such that 

lim sup Ed N(X,E) = 0. 
e--.0 

If X is a fractal that can be divided into N congruent subsets each of which 
can be made congruent to X by magnifying it by a factor of r, then the 
fractal dimension of X is equal to 

2.13 

D! = logN 2.14 
logr 

An example is the Cantor set which has a fractal dimension of (Iog2)/(log3). 

2.6.3 Hausdorff (or HausdortT-Besicovitch) dimension 

Let X be a metric space. For positive numbers E and p, define m;(x) to 

be the greatest lower bound of 

~ 

.~]diameter of Ak Y 
k=l 

where u;=I Ak = X and the diameter of each Ak is less than E . If X is 
compact, one need use only finitely many such Ak . Now define 

The Hausdorff dimension of X is the greatest lower bound of all p for 
which mr (X)= 0, or equivalently, the least upper bound of all p for which 

mr(X) = oo, that is 

Dh = liminf{m;(x) = o} = limsup{m;(x) = +oo} 
e--.0 e--.0 
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An example is the Cantor set which has Hausdorff dimension of (log 2)/(log3). For 

any metric space the Hausdorff dimension is less than or equal to the fractal dimension. 

The quantity me (X) = lim m; (X) is known as the Hausdorff measure in dimension e . 
p~oo 

· Some confusion exists in the literature regarding the names used for the above 

dimensions. The fractal dimension is also the capacity in Kolmogorov terminology. 

Further, Mandelbrot introduced the phrase fractal dimension to denote the Hausdorff 

dimension (Ruelle, 1989). Here fractal dimension is taken to mean the capacity in 

Kolmogorov terminology and the Hausdorff dimension is referred to as such. Further, 

different authors start with differing concepts regarding the geometrical shape used to 

cover the attractor. Here 'balls' are used, following the Mathematics Dictionary (1992), 

however, some authors in the literature, Grassberger and Procaccia (1983), Kugiumtzis 

et al. (1994) use hypercubes of a given dimension and side length. 

2.6.4 Correlation dimension 

The fractal dimension takes only the geometrical structure of the attractor into 

account. No consideration is given to the distribution of points on the attractor. This has 

the disadvantage that all balls count the same irrespective of the frequencies with which 

they are visited, possibly even developing singularities (Grassberger and Procaccia, 

1983). The information dimension is one measure which accounts for this. It can be 

described as the minimum information necessary to specify a point in a set to a given 

accuracy. Let us introduce a probability measure p carried by the attractor. The 

information dimension may then be defined as the minimum Hausdorff dimension of the 

sets X for which p(X) = 1 (Ruelle, 1989). Following Kugiumtzis et al. (1994) the 

information may be measured by 

M 

s(e)= LP)ogpi 2.18 
i=l 
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where pi is the probability of a point being in the ith set defined as pi = J1 i / N , N ~ oo 

and Jli is the number of points in the ith set, and e is the required accuracy. M is, as 

defined above, the least integer number of balls required to cover the attractor. The 

information dimension is then given by 

a= lim -S(e). 2.19 
e~O loge 

Finally we arrive at the correlation dimension, which may be thought of as a 

simplification of the information dimension. The correlation dimension was first defined 

by Grassberger and Procaccia (1983). Their arguments are followed here with some 

changes to terminology to remain consistent with the preceding material. This measure is 

obtained from the correlations between random points on the attractor. Consider the set 

{Xi, i = 1· · · N} of points on an attractor obtained from a time series. Then 

2.20 

where 'l' is a fixed time increment between successive measurements. Since trajectories 

diverge exponentially most pairs of points on the attractor, (Xi, X j ), i :;t: j will be 

dynamically (temporally) uncorrelated pairs of essentially random points. Since 

trajectories are constrained to the finite region of the attractor they will be spatially 

correlated. This spatial correlation is defined as 

C(l) = 1i~ ~2 x {number of pairs (i, j) whose distance lxi- X jl < l }. 2.21 

Grassberger and Procaccia (1983) proceed in their paper to establish that for small 

l' s, C(l) grows like a power C(l)- zv where v is the correlation dimension. The 

correlation dimension may be computed from 
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1. log(.U;) x 
V= Im--'--....:...::.. 2.22 

HO log[ 

where .U; is the number of points in the ith set for a ball with centre x and ( •) x denotes 

the average over all points x. It can also be argued that the correlation dimension 

provides an estimate of other dimensions as the following relationship holds in general 

2.23 

The advantage of the correlation dimension over others is its simplicity of 

computation while still providing a useful indicator. 

2.7 Reconstruction of the Attractor 

Section 2.5.2 discusses the minimum dimensions under which chaos may occur. 

Often only a single variable is observed. It is therefore necessary to reconstruct a higher 

dimensional space in order to investigate the behaviour of the system. 

Several algorithms have been developed to differentiate between stochastic and 

deterministic systems which display chaotic behaviour, using different quantities to 

characterise chaos. In particular, these algorithms concentrate on the ability to 

differentiate when only a single variable from the system has been observed over a time 

period, i.e., when a single variable time series is available. These algorithms almost 

universally use reconstruction of the attractor, also referred to as phase space 

reconstruction, as the first step. By reconstruction we imply that the attractor can be 

characterised; at least its 'nature' can be if not its exact form. In particular we wish to 

preserve the evolution in time of the unknown dynamics (Abarbanel, 1996). 

Reconstruction using time derivatives is often difficult or impossible and an alternate 

approach using time delays is used. The reconstructed attractor is often referred to in the 

28 



literature as a delay portrait. Casti (1992, p. 311) states that, " ... we will obtain a manifold 

having the same geometrical properties as the original phase portrait." 

More specifically let us denote a time series which represents a discrete scalar 

observation of a chaotic time series by x(t). Note that the system function f. the attractor 

dimension d and the measurement function h are unknown. We now seek an embedding 

space in which we can reconstruct the attractor in such a manner that the invariant 

measures are preserved. The simplest method of achieving this reconstruction is by the 

method of delay co-ordinates or time delays proposed by Ruelle and noted by Packard et 

al. (1980). Let k = l, ... ,m from which we generate scalar signals xk(t) such that 

2.24 

where r , called the time delay, is an integer multiple of the sample interval for 

continuous systems or the time interval for discrete systems. This leads directly to an m 

dimensional signal represented by 

x(t)= 

x(t) 
x(t+r) 

x(t + (m -l)r) 

2.25 

Taken's theorem guarantees that for an infinite noise free data series one can almost 

always find an embedding dimension m preserving the invariant measures. He further 

proves that it is sufficient that m ~ 2d + 1 (Takens, 1981). This latter condition is 

sufficient but not necessary and in practice an attractor may be successfully restored with 

an embedding dimension as low as d (Kugiumtzis et al., 1994). 

In theory the actual values for the time delay and the sample interval are irrelevant; in 

practice, however, this is not the case (Kugiumtzis et al., 1994). The sample interval is 
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often restricted or defined by practical considerations. Ideally the sample interval should 

be sufficiently dense to reveal the structure but not overly dense so as to impose too high 

a computational load. It has been suggested by Wolf et al. (1985) that around 12 points 

per mean orbital period is ideal, and that the number of orbits sampled should never be 

sacrificed for an increase in the number of samples per orbit. Selection of the time delay 

can be achieved by several methods, however, it is important that the researcher establish 

the stability of the recovered solutions by varying the time delay. If such stability cannot 

be demonstrated then the solution must be brought into question. What one wishes to 

achieve by the choice of time delays is summarised by Abarbanel (1996) as : 

i) It must be some multiple of the sampling time. 

ii) If the time delay is too short the coordinates x(t) and x(t + r) will not be 

sufficiently independent. 

iii) Due to the sensitivity of chaotic systems to initial conditions x(t) and x(t + r) 
are numerically tantamount to being random with respect to each other if the time 

delay is too long. 

This is not a precise requirement. It is therefore necessary to use a prescription. Two 

such prescriptions that have been used are (Abarbanel, 1996): 

i) The first zero of the linear autocorrelation function, Equation 2.2. 

ii) The first minimum of the average mutual information. 

Only the autocorrelation function was used by the author. The interested reader is 

referred to Abarbanel ( 1996) for a description of the average mutual information. 

Selection of the embedding dimension is often required with no a priori information 

about the dimension of the original system. What we are seeking is an embedding 

dimension which unfolds observed orbits from self overlaps due to projecting the 

attractor onto a too low dimensional space. If we measure two quantities X a (t) and xb (t) 
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from the same system, there is no guarantee that the embedding dimension will be the 

same for each quantity (Abarbanel, 1996). Since the only systems that are of interest are 

low-dimensional systems it is feasible to use increasing embedding dimensions. These 

may then be tested using global false nearest neighbours to ascertain when the attractor 

has been unfolded. Global false nearest neighbours were not used in this work and the 

reader is referred to Abarbanel ( 1996) for an understanding of this technique. 

It is also feasible to test the estimated measures (largest Lyapunov exponent and 

correlation dimension) for stationarity, in fact it is advisable to do so (Wolf et al., 1984). 

Too high an embedding dimension will not affect the reconstruction adversely for noise 

free data, however, it is desirable to identify the lowest meaningful embedding 

dimension. If the embedding dimension used is too high for noisy data, the effect is an 

unnecessary contamination of the data (Wolf et al., 1984). Too low an embedding 

dimension will result in a reconstruction which fails to unfold the attractor. This means 

that the estimates will stabilise above a certain embedding dimension. The lowest of 

these may then be adopted (Rosenstein et al., 1992). It should be noted that the amount 

of data required to successfully reconstruct an attractor increases exponentially with the 

dimension, however, this is largely dependant on the quality of the data (Eckmann and 

Ruelle, 1992). 

In order to demonstrate the technique we return to the Henon attractor (Equation 2.3). 

A single time series, in this case x1 (k), is extracted and the attractor reconstructed. The 

reconstructed attractor is shown in Figure 2.9. As the system is well known and the data 

are virtually free from noise, the stability of the solution is not tested. The geometrical 

nature of the attractor is clearly visible in the reconstructed attractor. A time delay of one 

sample interval is used. 
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1.5 .-----~------~------~----~-------.------. 

-1.5 '--------l..------.....1....-------'---------'--------1---------' 
-1.5 -1 -0.5 0 

s(k+1) 

Figure 2.9- Reconstructed Henon attractor. 

0.5 1.5 

Since the above example is an iterated map and a discrete time system the question of 

whether an attractor generated by a flow can be recovered is raised. In order to offer the 

reader some confidence, but not a rigorous proof, let us consider the Lorenz attractor, as 

given in Equation 2.12. Using a single variable X(t), a time delay of one sample, and an 

embedding dimension of 3, Figure 2.10 was generated. An interval of 0_.01 was used to 

generate the time series and represents the sample interval. It is evident that the 

reconstructed attractor has some geometrical structure and does not comprise random 

data. The fractal dimension of the Lorenz system is === 2.06 . This would lead us to 

anticipate an embedding dimension of 5 to unfold the attractor. Using X(t) we find that 

an embedding dimension of 3 is sufficient (Abarbanel, 1996). 
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Figure 2.10 - Reconstructed Lorenz attractor. 
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Chapter3 

Tides, the Data and Removal of Periodic Components 

3.1. Introduction 

Section 3.2 introduces tidal theory and water level variations. A postulate is made as 

to why water level variations are a likely candidate to contain a chaotic component. The 

remaining sections discuss the actual data used, removal of periodic components and 

data requirements. Reasons for wishing to remove the periodic component are discussed 

in Section 3.3. 

To extract information from a time series in order to reconstruct an attractor and to 

estimate ergodic measures of probability, there have been a number of estimates 

regarding the length of the required time series. Irrespective of which algorithm is being 

used, the longer the data series the higher the probability that the correct solution, or at 

least a repeatable one, is extracted. Since chaos theory is still relatively young, 

algorithms concentrate on extracting the correct information using ideal data sets rather 

than the treatment of irregularly sampled data or data sets with gaps. 

It was with the constraints of 

a) no gaps, and 
b) as long a continuous data set as possible, 

that the start and end points were selected. These requirements are discussed in more 

detail in Section 3.5. 

The water level data supplied extended from 11111947 to 31112/1992 but contained a 

number of gaps. The data were sampled every hour. Gunaratne (1994) identified the gaps 
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in the data. Using his work the longest, continuous data set was identified. This was 

initially used but later shortened to data starting from 1/1/1947 and extending for 30 000 

samples. Reasons for this are discussed in Section 3.5.4. The relevant data were 

extracted, the headers removed and a pseudo time stamp, incrementing by 1 for each 

observation, was added. This was reformatted to a sequential ASCIT file (an extract is 

given in Appendix A) and the mean subtracted to yield a zero mean time series. 

3.2. Tides 

Tides should be considered a combined or integrated response to a variety of natural 

phenomena (Thompson, 1981). Figure 3.1 illustrates some of the major interactions. The 

tidal phenomenon is purely periodic (Vanlcek and Krakiwsky, 1986). Water levels 

represent a combination of the tidal phenomenon and non-astronomic elements which 

may or may not be periodic. 

Vertical 
body tide 

Tide 
generating 

force 

Direct vertical 
response (small) 

Ocean 

Indirect vertical 
response (large) 

Figure 3.1 - Gravity and the ocean. Some of the influences and relationships which 
complicate the tidal phenomenon (after Wells, 1993). 
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The predictability of contributing elements is considered and reasons why certain 

elements are considered likely candidates for a chaotic system postulated. 

3.2.1. Equilibrium Theory of Tides 

In 1687 Sir Isaac Newton published his Equilibrium Theory of Tides. This is the 

simplest of the tidal models and assumes an equilibrium state. The assumption requires 

that the earth be covered with water of uniform density to a uniform depth, has a uniform 

atmosphere, no inertia and is not rotating (Wells, 1993). 

The single most important factor in producing tides is the combined gravitational 

attraction of the moon and sun on the earth. Detailed accounts of how the gravitational 

attractions of the three bodies combine to produce the tide generating force are given in 

Pugh (1996), Thompson (1981) and Wells (1993). This represents the equilibrium 

theory, also known as the astronomic or gravitation tide theory. In this work it is of 

interest to understand which features are explained by the theory and what limitations 

exist. 

The notion of an equilibrium tide is a useful concept to account for the fundamental 

nature of tidal fluctuations (Thompson, 1981 ). Some of the characteristics and 

complexities that can be explained are: 

a) Daily and diurnal tides due to the earth's rotation. 

b) Declinational-type tides which cause the diurnal inequality as well as constituting 

one reason for the biweekly tidal cycle. 

c) Synodic-type tides which result in the quasi-biweekly tidal cycle of spring and neap 

tides. This is related to the phases of the moon which has a period of 

approximately 15 days, hence quasi-biweekly. It should be noted that there is a 
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variability in the periods associated with synodic-type tides. These variations result 

from the orientation of the moon's elliptical orbit to the earth and sun. Figure 3.2 

illustrates this variation. Due to the eccentricity of the orbit, the moon travels 

slowest at apogee (point A) and fastest at perigee (point P). In travelling from 

apogee to perigee and back the speed of the moon will vary, however, the time 

taken to travel from A to P will equal the time taken to travel from P to A. The 

time taken is 14 days, 18 h, 22 min and represents half a synodic month (29.5 

days). In the upper part of Figure 3.2 this represents the time taken to transition 

from full moon to new moon and back due to the sun lying along the direction AP. 

Consider now the situation where the sun lies along the direction DC. The time to 

transition from full moon (point D) to new moon (point C) is 13 days, 22 h, 32 min 

while the transition from new moon (point C) back to full moon (point D) requires 

15 days, 14 h, 12 min (Thompson, 1981). 

d) Anomalistic-type tides resulting from the eccentricity of the moon's orbit. The 

eccentricity results in the moon being closer to the earth at perigee and 

consequently influencing the tide more at perigee. These variations have a period 

of 27.5 days. 

e) Bi-annual changes due to the varying declination of the sun. 

f) Annual variation due to the eccentricity of the earth's orbit around the sun. 

g) An 18.6 year period results from the precession of the intersection of the orbital 

planes of the moon and earth. Moon's precession of node. 

h) The moon's precession of perigee results in an 8.85 year period. 
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Figure 3.2 -The eccentricity (exaggerated) of the moon's orbit and the relative 
position of the sun to the orbit (after Thompson, 1981 ). 

Factors which are not accounted for by the equilibrium theory include, but are not 

limited to. 

a) Friction between the water and the ocean bottom. 

b) Inertia of the water mass. 

c) Corio lis force. 

d) Continents interrupt the passage of the tidal wave (or tidal bulge) as it travels 

around the globe every 24 hours. In addition the effects of irregular coasts and 

continental shelves need to be accounted for. 
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e) The configuration of ocean basins. These introduce resonance and amplification 

effects. 

t) To support long wavelength propagation it is necessary for the water depth to be 

greater than half the wavelength. The average depth of the oceans is only a few 

kilometres while the semidiurnal equilibrium tide has a wavelength of half the 

earth's circumference, or greater than the earth's radius. For a shallow water wave 

the requirement is a uniform depth of 20 km (Wells, 1993). 

3.2.2. Dynamic Tide Theory 

Any theory which wishes to approximate reality must include non astronomic factors 

such as those listed in a) to t) in Section 3.2.1. The first step towards such a dynamic tide 

theory was taken by Laplace in 1775, about one hundred years after Newton formed the 

equilibrium theory. There is still not a complete dynamic theory. Detailed development 

of aspects ofthe dynamic theory may be found in Wells (1993) and Pugh (1996). 

The dynamic theory results in a set of differential equations. Solution of these 

equations is difficult and simplifications are required. Laplace was the first to undertake 

this. He made considerable simplifications. A result of his work was a set of three 

equations which are known as the Laplace Tidal Equations (LTE). These have formed 

the starting point for the development of tidal theories for the past two hundred years. 

3.2.3. Chaos in the water level measurements 

Clearly there is a significant portion of the water level signal which is periodic. 

Periodic components are largely the result of astronomic elements but may also result 

from natural frequencies within basins. The equilibrium theory gives us a global 

characterisation while the dynamic theory takes into account more specific effects. 
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Schwidersk.i (1981) is arguably the most successful at applying the dynamic theory. This 

is achieved by quantifying the Laplace tidal equations as fully as possible. 

Since the most significant portion· of the water level variation is periodic and 

predictable, good approximations can be obtained in general. These models then allow 

for long term prediction with considerable accuracy. In an area such as the Bay of Fundy 

the tides are amplified and predictions, using periodic models, do not produce the same 

quality of results. Carrera ( 1995) analysed water level differences derived from the 

observed and predicted values for a number of stations including St John, New 

Brunswick. Carrera (1995, p. 4) makes the following observation. 

The same vertical and horizontal scales were used in all plots to facilitate their 
comparison. However, in at least one instance, StJohn, NB, difference values fall 
outside the plotted area. The difference values are so large in this case that the 
vertical scale needed to display them would have made it impossible to portray 
meaningfully the output from all other ports. 

It is postulated that these large discrepancies are the result of non-periodic effects in 

the water level being amplified due to the unique nature of the basin. The non-periodic 

effects are known to be caused, at least partially, by the influence of natural systems. 

Some of the non-periodic elements are : 

a) Air pressure results in an inverse barometer effect. This has a seasonal variation as 

the mean air pressure varies between summer and winter as well as short term 

variations. 

b) Seasonal changes in water temperature result in variations in the water density. 

These are known as steric effects. 

c) Piling up or draining of water due to prevailing winds. During storms, surges of 

this nature are often significant. 

d) Non-linearities in the measuring apparatus. 
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Identification of chaos in a number of systems that have an effect on water level have 

been claimed, for example in meteorology (Cuomo et al., 1993), in earthquake 

predictions (Ouchi, 1993) and in oceanography (Yan, 1993). The author believes that the 

possibility exists for such chaotic signals to propagate into the water level signal. 

Further the dynamic tidal theory uses a system of differential equations to represent 

tides. For certain parameters such systems may exhibit chaotic behaviour. The possibility 

that the boundary conditions in the Bay of Fundy provide such a set of parameters cannot 

be discarded. 

Fang and Cao (1995) discuss the difference between structure invariant systems, ones 

in which all the parameters are fixed, and structure variable systems, where not all 

parameters are fixed. It is arguable that many natural systems fall into the latter class. 

Ricard and Bascompt (1993) discuss the problem of transients in natural systems, that is 

the possibility of systems evolving from one attractor to another. Further, the possibility 

of chaotic motion shown by spatially extended systems is discussed. The implication of 

this is that the data sets are not sufficiently long to identify a particular attractor using 

Lyapunov exponents or correlation dimensions. Alternatively, computations are blurred 

across attractors. The analysis performed in this study does not take these possibilities 

into account. 

During the course of this investigation it came to the author's attention that 

identification of chaos in tides is being claimed by (Frison, 1997a) and (Frison, 1997b). 

Baltimore and other stations in the Chesepeake Bay have been examined by Frison 

(1997a). Frison (1997c) claims that a predictor based on non-linear dynamics that they 

have developed is better than the US government approved predictor (a harmmonic 

model). 
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3.3. Removal of Periodic Components 

The most commonly used tidal predictions are based on a harmonic analysis of the 

data, using frequencies related to astronomical constituents. It is widely acknowledged 

that this accounts for the majority of the regular or periodic components in the data. 

Which constituents are used to describe a particular tide is partly based on the amount of 

data and the quality of the data available. A general rule that has been applied in many 

cases is the Rayleigh criteria (Pugh, 1996). This requires that the constituents be 

separated from their neighbouring constituents by at least one full period over the length 

of the data. Using this criteria, a series of length 30 000 hours and a 12 hour period it is 

possible to separate neighbours further than approximately 0.005 hours away. No 

attempt was made to identify periods this finely. 

In addition to astronomic constituents, it is usual to include shallow water terms 

when making shallow water predictions. Shallow water components represented as 

periodic constituents provide a useful approximation of the effects but do not fully 

model such phenomena. 

Further, it is possible that periodic components due to other phenomena, such as 

resonance, may exist. 

In order to improve the probability of the Lyapunov exponent algorithm's success it 

is desirable to have an attractor which is as densely covered by the trajectories as 

possible. When the attractor contains periodic components it may result in trajectories 

from a chaotic signal being spatially separated. Using the algorithms presented in 

Chapters 4 and 5 it is readily seen that this will adversely affect the chances of success. 

By removing the periodic components the volume of the attractor is reduced and the 
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density of the trajectories increased. It is for these reasons that the periodic components 

are removed from the water level signal prior to analysis. 

Removal of the periodic component of the water level series results in a 'residual' 

series, often referred to as the meteorological surge component (Pugh, 1996). More 

formally, this may be expressed as 

X(t) = Z0(t)+T(t)+S(t) 3.1 

where X(t) represents the observed level,Z0(t) is the relationship between chart datum 

and mean sea level, T(t) is the periodic portion of the signal, and S(t) is the 

meteorological surge component. In this work T(t) is not restricted to only astronomical 

components. 

Several methods were considered for the removal of the periodic components 

including: 

a) Application of the existing tidal analysis or 'Blue Book' data. 

b) Digital filtering techniques using an application package such as Matlab. 

c) A spectral analysis with associated removal of components based on the UNB 

least -squares approach. 

It rapidly became apparent that the last approach was the most suitable one of the 

above and this was then adopted and used. Since the data had been analysed previously 

using this tool by Gunaratne (1994) his results were used as a starting point. It should be 

noted that he analysed the whole data series. This meant that he was using a 'gappy' data 

series as well as one which spanned alterations made to the recording gauge. Alterations 

made to the tide gauge include extension of the inlet to the stilling well. Such changes 
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will affect the nature of the signal by altering the damping. It is believed that the tide 

gauge was not altered during the period used for this study. Consequently the results 

obtained by Gunaratne (1994) were found to be less than ideal and further analysis was 

performed. 

3.4. Least-Squares Spectral Analysis (LSSA) 

This method along with the associated software is well described by Wells et al. 

(1985). The interested reader is invited to pursue the subject in the above reference. An 

application of the method is described here. 

Since the source code is freely available at the University of New Brunswick it was 

modified and compiled to run on an ffiM compatible PC. Due to the length of the data 

series it was necessary to increase the size of many of the arrays. The result was source 

code which would not compile and run under DOS. In order to work around this as well 

as allowing for multiple runs to be executed simultaneously a PC running OS/2 was 

used. The software was compiled to run as a native OS/2 application. It is suggested that 

the approach used was not an elegant one and probably not the most efficient, however, 

it was implemented expediently, with minimal changes to the code. Once compiled the 

software was tested using the supplied test data. Since modifications to the software 

were superficial no code listing is included. 

After adopting frequencies which showed significant power in the analysis performed 

by Gunaratne (1994 ), successive runs were made to identify further periodic 

components. These were then introduced into the LSSA as forcing periods. Following 

each run a spectrum of the remaining signal was plotted and examined. In total 

approximately 50 runs were performed using different forcing periods. Appendix B 

contains the results from the run that was finally adopted. A total of 78 periods are 
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included. These are identified purely through the spectral analysis and have not been 

selected to specifically. represent astronomical or other identified periodic components. 

As discussed in Section 3.3 the reason for removing periodic components was to reduce 

the volume of the attractor. Once a point was reached where no further 'significant' 

reduction to the magnitude of the residual time series was reached, the process was 

terminated. As there is no means of quantifying 'significant' in this sense the selection 

was somewhat arbitrary. It can be seen from Appendix B that there are significant 

correlations between some constituents. Further the threshold of 25% of estimated 

magnitude for the standard deviation of constituents is often exceeded, however, all 

constituents exceeding 50% were rejected. 

In Equation 3.1 allowance for a trend component is made, that is temporal variation 

in the relationship between chart datum and mean sea level, represented by Z0 (t). In the 

Bay of Fundy a trend of approximately 3mm/year has been identified (Godin, 1994 ). In 

this case, through the LSSA the trend was identified as being indistinguishable from zero 

and was therefore ignored. For a data series that spans 30 000 hours the trend would 

amount to approximately 1cm. The observations are made at the em level making the 

trend indistinguishable. This results in Equation 3.1 being simplified to 

X(t) = T(t) + S(t) 3.2 

In principal then the 'best , fit' signal based on selected forcing periods is computed as 

T(t), through LSSA, and removed from the observed time series. This yields the 

residual time series S(t) which becomes the signal for further analysis. 

No datum biases were included in the analysis. Justification for this was twofold: 

a) There are no obvious changes throughout the time series. 
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b) The stability of the tide gauge was confirmed by telephone with the Canadian 

authorities for the period used in this analysis. 

The residual time signal has a larger magnitude than normally expected in tidal 

analysis. Comparison with the residual signal obtained by Carrera (1995) shows that the 

LSSA returns a smaller residual time series. However, the LSSA and Carrera (1995) 

results are of a similar order of magnitude. 

Figure 3.3 shows the first 1000 points of the residual time series. 
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Figure 3.3 - Running LSSA on the data produces a residual time series. The first 1 000 
points of this residual ~ime series are shown. 

The spectrum of a chaotic system may well display characteristic frequencies and not 

a strictly uniform spectrum as in white noise (or band limited white noise). In fact it is 

generally important that a mean orbital period be established. In retrospect it may have 

been more useful to remove fewer components. This is discussed in the conclusions 

Section 6.6. Figure 3.4 shows the spectrums for the data series before and after removal 

of the periodic components. When the LSSA software was initially compiled and run the 
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results of the spectra produced were checked using Fourier analysis. The spectra shown 

in Figure 3.4 are from a Fourier analysis of the data and not the results of the LSSA, 

however, both exhibit exactly the same characteristics. 
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Figure 3.4 - Frequency spectra for the time series before and after removal of the 
periodic components. The spectra were generated by running an FFT on the first 214 

points. 

3.5. Data Requirements 

In order to reliably recover the structure of an attractor and estimates of the defining 

characteristics from a time series the data needs to be considered in terms of : 

a) length of the time series, that is, number of samples; 
b) sampling frequency; 
c) quality of the data or signal to noise ratio. 

Chapters 4 and 5 present the two algorithms used for the estimation of Lyapunov 

exponents in this study. Both of these algorithms require that the data be regularly 

sampled and that there are no gaps. A further constraint of these algorithms is that they 

assume that the system being analysed is invariant in terms of the defining parameters, or 
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at least that the parameters vary sufficiently slowly. It is for this reason that a period of 

uninterrupted sampling was selected, in addition to one during which it is believed that 

the characteristics of the equipment use(l to sample the data were not changed 

significant! y. 

3.5.1. Length of the Time Series 

The question of how many samples are required to recover estimates for Lyapunov 

exponents and correlation dimensions is still subject to study. A widely recognised paper 

in this regard is one by Eckmann and Ruelle ( 1992). Their conclusion is presented. 

When measuring the rate of divergence of trajectories with nearby initial conditions, 

a number of neighbours are required for a given reference point. If the reconstructed 

attractor has a diameter d then these neighbours should lie in a ball (n sphere) of radius r, 

where r is small with respect to d. 

r 
-=p<<1 
d 

Eckmann and Ruelle ( 1992) suggest p ~ 0.1. 

They then proceed to the conclusion that the requirement for the length of a data set is 

given by 

3.3 

3.4 

where N is the number of data points and D is the dimension of the attractor. For 

p = 0.1, Equation 3.4 directs us to choose N such that N > lOD. 

There are numerous examples where it is claimed that chaos has been identified 

using time series that are far shorter than this criteria, as well as a number of examples 
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where it is claimed that this is too pessimistic (Kugiumtzis et. al. 1993). If Eckmann and 

Ruelle (1992)'s criteria is to be strictly adhered to it should be noted that the time series 

used in this study, which comprises 30 000 points is only sufficient to estimate 

dimensions and Lyapunov exponents of up to dimension 4. This, however, is not a well 

defined requirement. The algorithms presented in Chapters 4 and 5 were in fact used to 

far higher dimensions. 

3.5.2. Sampling Frequency 

In order to obtain estimates of the ergodic characteristics of an attractor it is 

important that the divergence be monitored for sufficient periods. Since the trajectories 

are followed, what is required is that they are followed for a sufficient distance to ensure 

that the divergence has been correctly estimated. Thus the sampling frequency is as 

important as the number of data points. If the sampling frequency is too high then 

excessive computation time is used and if the sampling frequency is too low then the 

nature of the divergence cannot be tracked. In the presence of noise too high a sampling 

frequency may introduce difficulties in selecting points from different trajectories. 

Wolf et al. (1985) suggest that a sample frequency of about 12 samples per mean 

orbit is close to ideal. It is accepted that given a trade-off between samples per mean 

orbit and the number of orbits it is preferable to increase the number of orbits, provided 

that a minimum of 4 to 6 samples per orbit is maintained. 

After removal of the periodic components the dominant period is 12 hours. This 

results in a mean orbital period of 12 hours. As the data are sampled every hour this 

provides 12 samples per mean orbit. 
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3.5.3. Noise 

Recovery of chaotic systems is simplified as the noise level of the data is reduced. 

When working with known systems to demonstrate an algorithm, it is possible to 

quantify the noise level and to demonstrate robustness in the presence of noise. In real 

life data this is far more difficult as often the aim of the exercise is to differentiate 

between noise and a deterministic signal, that is, to identify whether the signal is 

stochastic or deterministic in nature. When both components are present the task of 

identifying determinism becomes increasingly difficult as the noise level increases. 

There is no a priori way of assessing the level of noise in the data. Normally in tidal 

analysis the residual signal is considered as noise and discarded. In this study the 

periodic portion is discarded and the residual signal retained. 

3.5.4. Shortening of the data set 

Initially a data set comprising around 100 000 observations was used. This 

represented the longest continuous sequence of observations. After running the 

algorithms described in Chapters 4 and 5 for a number of parameters it was noted that 

the solution obtained a steady state fairly rapidly. Solutions were then sought using an 

embedding dimension of 10. These solutions also achieved a steady state long before the 

full data set had been used, typically by 20 000 observations. Since the computation time 

using 30 000 is approximately an order of magnitude less it was decided to use only the 

first 30 000 observations when batch processing solutions. 

An alternative approach was to 'thin' the data by using only every third observation. 

Section 3.5.2 would indicate this to be a better alternative. One of the uncertainties in the 

data is at what points changes were made to the tide gauge. In order to minimise the 

probability of this being the case a data set using a shorter time span was selected. 
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3.6. The Delay Portrait 

As mentioned in Section 2. 7, a first step in the algorithms employed is the 

reconstruction of the attractor in state space. This provides a useful means of visualising 

the data, however, it is important that a sufficiently high dimension be used to 'unfold' 

the attractor in the event of a strange attractor existing. Consequently delay portraits 

were generated for increasing embedding dimensions with differing time delays. No 

significant change in the nature of the portraits was noted. An example, using an 

embedding dimension of 5 and a time delay of 3 hours (samples) is given in Figure 3.5. 

As discussed in Section 2.7 the evolution in time (the trajectories) of the unknown 

dynamics can be preserved. The delay portrait is a projection onto a plane of the 

trajectories in reconstructed phase space. 
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Figure 3.5 - Delay portrait of the reconstructed attractor projected onto the XV plane. 

Reconstruction of the attractor is achieved using the method described in Section 2. 7. 

As the time series is sampled and not continuous, -r in Equation 2.25, is constrained to 

an integer multiple of the sample interval. In the water level data the sample interval is 1 
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hour. Using an embedding dimension of 5 and a time delay of 3 hours this leads to the 

system being described by 

s(t) 
s(t+ 3) 

S(t)= s(t+6) 
s(t+9) 
s(t+12) 

where s(t) represents the residual time series. 

3.5 

The XY plane is formed using the first two vectors of Equation 3.5, with the X vector 

being formed by s(t) and theY vector being formed by s(t + 3). 

The use of dots does not allow a feeling for phase 'continuity', however, lines clutter 

the plot badly. In order to generate the feeling for phase 'continuity' a second plot using 

only the first 200 point is given in Figure 3.6. 
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Figure 3.6 - Delay portrait of the reconstructed attractor projected onto the XY plane 
using only the first 200 points. 
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Prior to removal of the periodic components the delay portrait represented a torus. 

This is not surprising and the author believes that a n-period signal may reconstruct to an 

n-torus. Consider a single period signal. Such a signal can be represented by a circle. 

Next consider a signal composed of two periods. If the two signals are orthogonal the 

second period can be represented as a circle which is perpendicular to the first at any 

given point. Evolving such a signal over time forms a 2-torus. Expanding this notion to 

an n-period signal would result in ann-torus representation. 
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Chapter4 

Determining Lyapunov Exponents I 

The first of two algorithms used to determine Lyapunov exponents is presented in 

this chapter. Wolf et al. (1985) is the source to which the reader is referred. 

4.1. Algorithm 

Wolf et al. ( 1985) provide a definition of Lyapunov exponents which is relevant to 

spectral calculations. As this is the manner in which the calculations are performed, the 

exponents are once again defined. In an n-dimensional space with a continuous 

dynamical system, an infinitesimal n-sphere will deform due to the expanding or 

contracting nature of the flow. This locally deforming nature will cause the n-sphere to 

become an n-ellipsoid and the ith Lyapunov exponent is then defined in terms of the 

length of the principal ellipsoidal axis P;(t) as 

1 1. 11 P;(t) 
A;= 1m- og2-( ) • 

H- t P; 0 
4.1 

In Section 4.4 the estimated exponent is given in bitsls. In order to return the information 

in this form log 2 replaces log as used in Equations 2.8 and 2.11, and a time average is 

used. The orientation of the ellipsoid varies continuously, therefore there is no well-

defined direction associated with a given exponent. Wolf et al (1985, p. 286) state: 

Notice that the linear extent of the ellipsoid grows as 2;.•', the area defined 
by the first two principal axes grows as 2(A..+A.z)t, the volume defined by the 
first three principal axes grows as 2(A..+A.z+A.3)1 , and so on. This property 
yields another definition of the spectrum of exponents: the sum of the first j 
exponents is defined by the long term exponential growth rate of a j-volume 
element. This alternate definition will provide the basis of our spectral 
technique for experimental data. 
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Before considering experimental data Wolf et al. ( 1985) discuss the computation of 

Lyapunov exponents when the equations of motion are known. Monitoring of the long 

term growth of the axes of an infinitesimal sphere could be implemented by defining 

principal axes with initial conditions which are small, and evolving these with the 

nonlinear equations of motion. It is important to recall that there is a limitation to how 

small the initial separation, between trajectories, can be selected due to computer 

limitations. In order for the spectrum of exponents to converge it may be necessary to 

monitor the system for many orbital periods. There is then a likelihood of the principal 

axes finding the global 'fold' on a chaotic attractor. What is actually required is to probe 

the local'stretch'. 

In order to probe only the local stretch Wolf et al. ( 1985) introduce the concept of 

using a phase space plus tangent space. A "fiducial" trajectory is defined as that 

generated by the actions of the nonlinear equations on the centre of the sphere. Wolf et 

al. (1985, p. 290) state that: 

Trajectories of points on the surface of the sphere are defined by the action 
of the linearized equations of motion on points infinitesimally separated 
from the fiducial trajectory. In particular, the principal axes are defined by 
the evolution via the linearized equations of an initially orthonormal vector 
frame anchored to the fiducial trajectory. By definition, principal axes 
defined by the linear system are always infinitesimal relative to the 
attractor. 

They proceed by simultaneously integrating the nonlinear equations of motion and n 

different initial conditions to create the fiducial trajectory and an arbitrarily oriented 

frame of n orthonormal vectors respectively. When applied to systems with known 

equations, the limitations of computer arithmetic manifest themselves by causing the 

axes to collapse to a single direction. In order to avoid this Wolf et al. ( 1985) use 

repeated Gram-Schmidt reorthonormalisation of the vector frame. 
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For experimental data, typically discrete measurement of a single observable, a 

similar approach is adopted. In order to proceed, the phase space is reconstructed using 

the method of delay co-ordinates as discussed in Section 2.7. Since all points then lie on 

the same trajectory, it is necessary to select initial points which are nearby but separated 

temporally by at least one orbital period. The first point can be considered to define the 

fiducial trajectory and the second the principal axis which is sufficiently small that the 

linear approximation holds. The rate of growth of the principal axis, or separation of the 

two points is then monitored. When the separation becomes too large the non-fiducial 

point is replaced with a close point. In order to maintain the orientation, normalisation of 

the vector is required. A replacement point is therefore chosen which preserves the 

orientation within limits and minimises the separation. Each vector is subsequently 

evolved, the exponential growth of these vectors yielding an estimate of A1 • 

4.2. Implementation 

The source code, executable files and documentation for this algorithm have been 

released to the public domain Wolf (1995). The source code was modified to use the 

graphics libraries available to the author and to accommodate large data sets, although 

the data set was later shortened to a length that would fit into the original code. The 

reason for shortening the time series was not because of a computational limitation but 

to avoid the pitfalls discussed in Section 3.5. All routines were compiled to run as native 

OS/2 software to enable multiple runs during batch processing. Wolf et al. ( 1985) have 

published a number of routines. The routine used was 'FET' or the fixed evolution time 

routine for the estimation of the largest Lyapunov exponent. In order to improve 

computational efficiency, a routine was run on the data before FET. This routine, 

'BASGEN', optimises the search functions in FET by limiting the data to be searched for 

each replacement. 
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A much simplified description of the process followed by FET is extracted from the 

documentation which accompanies the software, Wolf (1995, p. 6): 

1) FET creates a multi-dimensional phase space orbit from a one
dimensional time series by delay reconstruction. 

2) Using the database created by BASGEN ...... , FET locates a pair of 
points that are very close to each other in the reconstructed phase space 
orbit. 

3) FET follows each of the points as they travel a short distance along the 
phase space orbit. We can compare the initial separation (ordinary 
Euclidean distance) of these points to their separation at the end of the 
interval. The logarithm (base 2) of the ratio of final to initial separation of 
these points is a local estimate of orbital divergence. 

4) If the two points are still fairly close together at the end of this interval, 
we keep both of them, evolve them a bit further along the orbit, and 
compute the next local value of orbital divergence. If the points have grown 
much further apart, we keep one of the points, and use the database to find 
an appropriate replacement for the other point. 

5) By averaging the local rates of orbital divergence and dividing by the 
total travel time along the orbit we obtain the long time average rate of 
divergence of nearby orbits. The word nearby is important -- our 
contributions come from orbital segments that are reasonably close 
together at all times. 

The above does not replace a careful reading of Wolf et al. ( 1985). 

Prior to running FET it is necessary to run BASGEN. BASGEN will perform the 

time delay reconstruction and generate a database which is optimised for the search 

functions used in FET. User input required for BASGEN is: 

1) The number of data points. The data may be in an AS CIT format or BASGEN 

format. 

2) The time delay (tau or -r ). 
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3) Embedding dimension. 

4) Grid resolution. BASGEN 'bins' data into a grid, FET searches appropriate bins 

thus reducing the number of points to be searched. Within reasonable bounds 

selection of this parameter will affect the efficiency of the computations but not 

the accuracy of the estimates. BASGEN will report the number of non-empty 

'boxes'. a rule of thumb is to aim for an average of 100 points per box. 

FET may then be run on the database generated by BASGEN. User input required for 

FET is: 

1) Time step. The time between samples in the time series in seconds. FET will 

multiply the estimate by this value to produce an estimate in bits/s. If a value of 1 

is entered the estimate is in bits/sample. 

2) Evolution time. The number of samples for which the trajectories must be evolved 

before searching for a replacement point. 

3) Minimum separation. When either the initial points or a replacement point is 

selected a close point is chosen. Errors in the data may result in a large relative 

error in our knowledge of the initial separation. To reduce this relative error it may 

be desirable to impose a minimum separation. It is interesting to note that the 

longer the time series the higher the likelihood of a very close point being found. 

Thus with very long time series a minimum other than zero might be preferable, 

even if the data are virtually noise free. 

4) Maximum separation. After evolving the trajectories for the user specified number 

of samples, the separation is tested to determine whether it should be evolved 
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further, or a replacement point sought. The maximum separation parameter defines 

the largest length scale on which orbital divergence is to be monitored. 

5) Maximum orientation error. FET attempts to preserve the orientation of the line 

segment being evolved. The maximum orientation error specifies the allowable 

change in orientation at replacement. 

There were essentially two phases to the analysis of the data using this software; the 

first part being interactive, the second being batch runs. During the interactive phase the 

output is a graphical representation of the two trajectories being monitored. The input 

parameters are varied and divergence characterised by 'observing'. 

Batch runs are necessary in order to test the stability of any solution. These runs are 

used to compute the estimated exponent while varying the input parameters. The 

computed exponent should show a large degree of independence from these parameters. 

A number of plots showing these results, along with the parameters used, are presented 

in Sections 4.3 and 4.4. Data used throughout this chapter was extracted from the Lorenz 

system, given by Equation 2.12. The parameters used when generating the time series 

from the Lorenz system were G = 16.0, R = 45.92 and b = 4.0 This has the advantage of 

allowing the behaviour of the algorithm to be demonstrated against a known result. The 

time series of the X(t) state was sampled with an interval ofO. 05s. 

4.3. Interactive Runs 

The graphics implementation is primitive and the rate at which information is 

displayed to the screen leaves the user somewhat unsure of exactly what has been 

observed. What is displayed is the divergence of selected points when the trajectories are 

tracked. As new points are selected, so the trajectories are replaced and the divergence 
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repeated. Since the software was run on a moderately high performance PC, the rate at 

which information was processed was too rapid. In order to work around this the 

software was compiled as a DOS program and executed in a virtual DOS machine under 

OS/2. By lowering the priority of the session the speed of execution can be greatly 

reduced. This also allows for the screen to be captured, and two examples are given in 

Figures 4.1 and 4.2 

Figure 4.1 - An interactive screen capture using data from the Lorenz attractor. 

Where Figure 4.1 showed the divergence quite clearly the angle that the segment in 

Figure 4.2 is viewed from is not as informative, however, the divergence of the 

trajectories can still be perceived. It is necessary to view a significant number of 

evolutions to gain a feeling for the behaviour of the data. 

In both Figures 4.1 and 4.2 parameters were used 'which are known to be correct. The 

values used were : 

Sample interval 
Minimum separation 

0.05s 
0.0001 
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Maximum separation 8 
Maximum orientation error 30 
tau 3 

The evolution time that the solution was tracked for was 4 samples for Figure 4.1 and 

6 samples for Figure 4.2. 

Figure 4.2 - A second example of the interactive graphics 

4.4. Batch Runs 

The largest Lyapunov exponent was calculated for the data series using a number of 

different parameters. In each case a single parameter was varied while the rest were held 

constant and the exponent estimated. What is required from the algorithm is a positive 

exponent, however, it is equally important that the solution is shown to be stable. Here 

"stable" is used in the sense that it does not exhibit excessive dependence on the input 

parameters used in the algorithm. Stability of the solution is demonstrated here for four 

of the input parameters. The four parameters that were varied are : 

1) embedding dimension, 
2) evolution time, 
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3) maximum separation, 
4) increasing delay (tau) used in the phase space reconstruction. 

Choice of the limits that the values can reasonably be varied between is briefly 

discussed. 

1) The embedding dimension cannot be smaller than 2 and has a practical upper 

limitation since we are interested in low-dimensional chaos. Further the data 

requirements become excessive for higher orders and even the limit of 10 imposed 

is questionably high. A further practical constraint is the processing time required 

as the dimension increases. 

2) Evolution time has a lower limit which is one sample. The upper limit can only 

reasonably be a few mean orbital periods. This is important to ensure that the local 

stretching is being probed and not the global folding of the attractor. Once an 

estimate of the exponent has been , obtained, the rate at which information is 

generated (or lost) is available and uncertainty in future positions may be roughly 

estimated. 

3) Maximum separation has upper and lower bounds which correspond to the size of 

the attractor and the minimum separation respectively. 

4) Time delay (tau) has a lower bound of one sample. No upper bound is defined, 

apart from that imposed by the length of the data series and the embedding 

dimension selected, however, a practical upper bound of several orbits is realistic. 

In theory selection of this parameter is arbitrary; in practice this proves not to be 

the case due to errors in the data. 

Details of each run are given with the results being plotted in Figures 4.3, 4.4, 4.5 

and4.6. 
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1) Estimated largest Lyapunov exponent for increasing embedding dimension. 

Parameters used : 

Time step 
Evolution time 
Min separating 
Max separating 
Max orientation error 
tau 

0.05 
4 (samples) 
0.0001 
8 
30 
3 (samples) 

Estimated largest Lyapunov exponent for dimensions 3 to 10. 

Results are plotted in Figure 4.3 
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Embedding Dimension 

Figure 4.3 - Estimates for the largest Lyapunov exponent computed for increasing 
embedding dimensions. 

The error bars in Figures 4.3, 4.4, 4.5 and 4.6 show the associated confidence for the 

estimates that the algorithm returns. 

2) Estimated largest Lyapunov exponent for increasing evolution times. 

Parameters used : 

63 



Time step 
Min separating 
Max separating 
Max orientation error 
Embedding dimension 
tau 

0.05 
0.0001 
8 
30 
4 
3 (samples) 

The evolution time is varied from 1 to 10 samples. 

Results are plotted in Figure 4.4 
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Figure 4.4 - Estimated largest Lyapunov exponent for increasing evolution times. 

3) Estimated largest Lyapunov exponent for varying maximum separating values. 

Parameters used : 

Time step 
Evolution time 
Min separating 
Max orientation error 
Embedding dimension 
tau 

0.05 
4 (samples) 
0.0001 
30 
4 
3 (samples) 
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The maximum separation is varied from 1 to 15. 

Results are plotted in Figure 4.5. 
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Figure 4.5 - Estimated largest Lyapunov exponent as the maximum separation before 
replacement of the vector being monitored is increased. 

4) Estimated largest Lyapunov exponent for increasing delay (tau) values. 

Parameters used : 

Time step 
Evolution time 
Min separating 
Max separating 
Max orientation error 
Embedding dimension 

0.05 
4 (samples) 
.0001 
8 
30 
4 

tau is varied from 1 to 10 samples. 

Results are plotted in Figure 4.6 
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Figure 4.6 - Estimation of the largest Lyapunov exponent for increasing values of tau 
(delay). 

It is readily seen in Figures 4.3 through 4.6 that the estimated exponent does not vary 

significantly and in all cases returns a value close to the known value of 2.16 bits/s. 

No attempt is made to establish how robust the algorithm is to noise in the data. In 

reality the algorithm is probably quite sensitive to noise. Wolf et al (1985) discuss the 

use of low pass filtering to remove noise and show that sensitivity to filtering is system 

dependant. In the analysis of water level data, filtering is performed in the sense of 

removing 'known' components, not to remove noise due to high frequency white noise. 
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ChapterS 

Determining Lyapunov Exponents II 

A second approach to determining Lyapunov exponents is introduced and used to 

analyse the data. In addition to estimating the largest Lyapunov exponent this algorithm 

estimates the correlation dimension. For a comprehensive description of the methods set 

out below, the interested reader is referred to the original paper by Rosenstein et al. 

(1993). 

5.1. The Algorithm 

It is suggested by Rosenstein et al. (1993) that alternative algorithms all suffer from 

one or more of the following drawbacks, they are 

1) unreliable for small data sets, 
2) computationally intensive, 
3) difficult to implement. 

Rosenstein et al. (1993) propose an algorithm which they claim avoids these 

drawbacks and is robust to variations in the embedding dimension, number of data 

points, reconstruction delay, and noise level. A summary of their algorithm, which 

follows the original work closely, is given below. 

Consider again the infinitesimal n-sphere as it evolves. As discussed in Section 4.1 

the growth of the principal axis leads to an estimate of the largest Lyapunov exponent. 

This may be considered as measuring the separation along the Lyapunov directions, 

which are dependant on the system flow and are defined using the Jacobian matrix, i.e., 

the tangent map at each point of interest along the flow (Eckmann and Ruelle, 1985). In 

order to compute the Lyapunov spectrum it is thus necessary to preserve the proper 
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phase space orientation by approximation of the tangent map. Rosenstein et al. (1993, p. 

119) use the following argument to support their claim that it is unnecessary to preserve 

orientation when estimating only the largest Lyapunov exponent. 

If we assume that there exists an ergodic measure of the system, then the 
multiplicative ergodic theorem of Oseledec [26] justifies the use of arbitrary 
phase space directions when calculating the largest Lyapunov exponent 
with smooth dynamical systems. We can expect (with probability 1) that 
two randomly chosen initial conditions will diverge exponentially at a rate 
given by the largest Lyapunov exponent [6, 15]. In other words, we can 
expect that a random vector of initial conditions will converge to the most 
unstable manifold since exponential growth in this direction quickly 
dominates growth (or contraction) along the other Lyapunov directions. 
Thus the largest Lyapunov exponent can be defined using the following 
equation where d(t) is the average divergence at time t and C is a 
constant that normalises the initial separation : 

5.1 

In order to proceed the phase space is reconstructed. This is achieved using the 

method of time delays. Rosenstein et al. (1993, p. 120) use a prescription based on the 

autocorrelation function to estimate the lag, " .... the lag where the autocorrelation 

function drops to 1-Ye of its initial value." The reconstructed trajectory can then be 

expressed as a matrix where each row is a phase space vector. Let these phase space 

vectors be represented by X; for i = 1. .. n. A starting point is selected and the nearest 

neighbour located. The mean rate of separation of these points is then used as an 

estimate of the largest Lyapunov exponent. The nearest neighbour, X., is selected by 
J 

searching for the point that minimises the distance to the particular reference point, X j , 

with the constraint that the temporal separation is greater than one mean orbital period. 

Distance is defined in terms of the Euclidean norm. Each pair of neighbours can then be 

treated as nearby initial conditions for different trajectories with the initial separation 

defined as 
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dj(o) = ~?llxj- X;ll· 5.2 
1 

More precisely the estimate of the largest Lyapunov exponent is obtained from 

1 1 M-i d.(i) 
A.1(i) = illt (M- i) ~ln d;(o) 5.3 

where lit is the sample interval, dj(i) is the distance between the jth pair of nearest 

neighbours after i discrete time steps ( i!it seconds). M is the number of reconstructed 

points given by 

M=N-(m-1)1 5.4 

where J is the reconstruction delay, m is the embedding dimension and N is the number 

of points in the time series. Using the definition of A1 given in Equation 5.1 it is 

assumed that the jth pair of nearest neighbours diverge at a rate given (approximately) by 

5.5 

where Cj is the initial separation. Taking the logarithm of each side yields 

5.6 

which represents a set of approximately parallel lines, for j = 1,2, ... , M , each with a 

slope roughly proportional to A1 • The largest Lyapunov exponent is then calculated 

using a least-squares fit to the average line defined by 

5.7 

where ( •) denotes the average over all values of j. 
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An important difference to the approach used by Wolf et al. ( 1985) is now noted. 

Since Wolf et al. (1985) focus on a single 'fiducial' trajectory the algorithm fails to take 

advantage of all the data. By using 'all' of the data it is argued that smaller data sets may 

be used or an improvement under noisy conditions noted. 

Since Rosenstein et al. (1993) use natural logs in their calculations the estimated 

exponent is not in bits/s. The relationship to bits/sis then simply the relationship of log 2 

to In, given by 

log2 A.= 1.44lnA.. 5.8 

An additional advantage of this approach is that the correlation dimension is 

simultaneously calculated with the largest Lyapunov exponent. An implementation of 

the correlation dimension computations was proposed by Grassberger and Procaccia 

(1983). This algorithm is used by Rosenstein et al. (1993). For a given embedding 

dimension m let M be the number of balls needed to cover the attractor. Then the 

correlation sum may be estimated by 

5.9 

where 6( ) is the Heavside function (Grassberger and Procaccia, 1983). Cm(r) may be 

interpreted as the fraction of pairs of points that are separated by a distance less than or 

equal tor. 

5.2. Implementation 

Software based on the above algorithms is freely distributed by Rosenstein et al. 

(1993). It is in the form of two DOS executable files: MTRCHAOS and MTRLYAP. 

The latter is used to estimate the largest Lyapunov exponent as well as the correlation 
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dimension. It has the advantage of allowing for computations to be run in batch mode. 

The former is used to 'examine' the data and the results of the estimates for Lyapunov 

exponents and correlation dimension. MTRCHAOS allows the user to generate data sets 

for a few systems, create delay portraits, compute frequency spectra, generate surrogate 

data sets, estimate delays, and interpret the results from MTRL YAP. 

MTRL YAP is run either from the command line or a batch file. A number of 

parameters are required by the program. These are : 

1) File name. Data is supplied to the routine in an ASCII format. The data file may 
contain time series information from more that a single state of the system. 

2) Time series number. Which of the multiple time series in the file are to be used. 

3) The number of data points to be used. 

4) Embedding dimension. 

5) Reconstruction delay. 

6) Mean orbital period. 

7) Duration for which the divergence is to be tracked. 

MTRL YAP is used to generate the 'analysis' files, from time series data, by 

estimating the curves as described in Section 5.1. MTRCHAOS is then used to plot the 

curves and estimate the slope for a selected portion of the curve. In order to illustrate the 

performance, MTRL YAP is run on a time series derived from the Lorenz system, given 

by Equation 2.12. By using data from a system which is known to be chaotic the 

software is easier to understand than when used on unknown data. Further it provides the 

reader with a reference when examining the results in Chapter 6. The parameters used 

when generating the time series from the Lorenz system were G = 16.0 , R = 45.92 and 

b = 4.0. The time series of the X(t) state was sampled with an interval of 0.01s. 

MTRL YAP was run in batch mode to generate curves for embedding dimensions from 3 

to 10. All other parameters were held constant for these computations. Values used were: 
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Number of data points 

Reconstruction delay 

Mean orbital period 

Monitoring period 

4000 

7 samples 

114 samples 

300 samples 

These have been graphed using GNUPLOT and are given in Figure 5.1. 
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Figure 5.1 - Curves used for estimating the largest Lyapunov exponent. 

The correlation dimension which was simultaneously computed is plotted. These 

curves are given in Figure 5.2 

In both cases a 'straight' portion of the line is required which can be used to obtain a 

good estimate of the slope. For both sets of curves the loss of linearity as time and radius 

increase respectively is expected as the limits of the attractor are reached. MTRCHAOS 

is used to compute the slope of the selected portion of the curve. The slope may be 

interpreted as the largest Lyapunov exponent. Equation 5.7 is used to obtain a least

squares estimate of the slope. In order to illustrate this a screen capture of MTRCHAOS 

is given as Figure 5.3. The estimated value of 1.519 for the largest Lyapunov exponent 
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compares well with the expected value of 1.5 (Rosenstein et al., 1993). Using the 

relationship given in Equation 5.8 this can be converted to bitsls. A value of 2.16 bits/s 

is obtained, this is in good agreement with Wolf et al. ( 1985). 

-2 

-4 

-6 

-8 

-1 0 1 2 
In( radius) 

Dimension 3 -
Dimension 4 -
Dimension 5 -
Dimension 6 -
Dimension 7 -

Dimension 9 -
Dimension 1 0 

3 4 

Figure 5.2 - Curves used to estimate the correlation dimension. 

Figure 5.3 - A screen capture of MTRCHAOS for the Lorenz data. 
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MTRCHAOS allows for the time series in use to be randomised in four different 

ways: 

a) sequence randomised, 
b) phase randomised, no windowing, 
c) phase randomised, windowed, 
d) Gausian scaled. 

Randomising the time series and running the analysis a second time allows the user 

to compare the results of the original data to what is known to be a stochastic time series. 

If the characteristics of the first series are not clear and not significantly different from 

the randomised sequence, the inference is that the original data are from a random 

sequence. It is also worth noting that non-chaotic systems will not return curves of the 

expected form. These aspects are dealt with in Rosenstein et al. (1993). 

As an illustration of the effect of randomising the data, the same series that was used 

in the above plots was randomised using phase randomisation (no windowing) and the 

curves regenerated. The results of the exponent estimates are given in Figure 5.4 and the 

correlation dimension in Figure 5.5. What is noticed immediately is that the exponent 

curves fail to exhibit a linear portion which is parallel among the curves and that the 

correlation curves fail to exhibit the parallel nature seen in Figure 5.2. 

An advantage of this software over that used in Chapter 4 is the ability to view a 

delay portrait of the reconstructed attractor. This offers the user a graphical visualisation 

of the reconstructed attractor and leads to a first impression as to whether there is any 

deterministic structure to the data. Unfortunately the implementation is not very 

sophisticated and somewhat limiting in how the reconstructed attractor can be viewed. It 

is only possible to view the projection on a single plane; it is not possible to rotate the 

reconstructed attractor or to view a projection on an alternate plane. 
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Figure 5.4 - Curves for estimating the largest Lyapunov exponent of the Lorenz data 
after randomising it. 
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Figure 5.5 - Curves for the estimation of the correlation dimension after randomising 
data from the Lorenz system. 

Although the software was compiled to run on DOS, it partially overcomes the 

problem of not being able to multitask by allowing for batch runs when computing 

estimates of the largest Lyapunov exponent and correlation dimension. Since the present 
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investigation involved a lengthy time series and the author wished to derive estimates for 

a number of parameters the computational time was significant. At the same time the 

estimates were being derived simultaneously with those from the algorithm by Wolf et 

al. (1985). Since the software from Wolf et al. (1985) had been recompiled to run on 

OS/2 it was decided to use a virtual DOS machine under OS/2 for these computations. 

This proved to work well and left the computer available for alternative work while 

computations were performed in the background. It also allowed multiple copies of the 

software to be run simultaneously. 

76 



Chapter6 

Results, Conclusions and Recommendations 

As discussed in Section 2.5.2 the existence of at least one positive Lyapunov 

exponent is often taken to indicate chaos in a bounded system. If no positive Lyapunov 

exponents can be identified then the existence of deterministic chaos becomes highly 

unlikely, at least within the parameters examined. 

6.1. Interactive Runs using Wolrs Algorithm 

The implementation, execution and expected results of these interactive runs using 

the algorithm of Wolf et al. (1985) are presented in Chapter 4. A considerable amount of 

time was spent observing behaviours exhibited using a variety of parameters. The 

graphics implementation in Wolf et. al.'s (1985) algorithm is primitive. Section 4.3. 

discusses the displayed information. Each session involves observing the divergence of 

trajectories as they evolve with time. The manner in which the divergence is presented is 

by projecting the two trajectories being tracked onto a plane. This results in considerable 

loss of information as the projection distorts the separation. The separation of nearby 

trajectories is precisely what the observer wishes to monitor. By observing sufficient 

data the user develops up an understanding of how the system behaves. Running the 

algorithm on a long data set results in thousands of graphic presentations for each set of 

parameters. Presenting many thousands of images in this document is not practical. As a 

compromise two screen captures are included. The author's observations are presented. 

This interactive approach does not allow the user to quantify the data, rather it aids in 

the development of an understanding of the behaviour. The author believes that the 

behaviour was erratic and probably more closely aligned to that expected of a stochastic, 
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or very noisy system, rather than a largely deterministic one. Replacements of 

trajectories occur more frequently than desired and the divergence tends to be very 

erratic. 

Figure 6.1 was generated using the following parameters: 

Time step 
Evolution time 
Min separation 
Max separation 
Max orientation error 
Tau 
Embedding dimension 

1 hour (sample) 
3 hours (samples) 
1 em 
30cm 
30° 
3 hours (samples) 
5 

Figure 6.1 - Screen capture from an interactive session. 

Any divergence is small, possibly negative. Figure 6.1 does not represent clear 

divergence of the trajectories as expected for a chaotic system. It is possible that the lack 

of divergence is the result of the projection distorting the image as the trajectories are 

tracked. That is the trajectories are moving further from the plane they are projected onto 

as they evolve. It is only by observing sufficient data that the user understands whether 
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this is the dominant behaviour. Comparison with Figures 4.1 and 4.2 clearly illustrate the 

difference in behaviour when compared to a system which is known to be chaotic. 

A second example is given in Figure 6.2. The same parameters, as used for Figure 6.1, 

were used to generate this example. Here divergence is clearly visible. Figure 6.2 

represents a promising result. After observing sufficient data and varying the parameters 

the user develops an understanding for the nature of the divergence. 

Figure 6.2 - A second example of the interactive graphics. 

The authors understanding, from observing the data with many parameters in this 

manner was that Figure 6.1 exhibits the dominant characteristic. 

6.2. Batch Runs using Wolf's Algorithm 

The largest Lyapunov exponent was calculated for the data series using a number of 

different parameters. In total many runs were performed, however, they may be grouped 

into five 'batches'. What is required from the algorithm is a positive exponent. It is 
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equally important that the solution is shown to be stable in the sense that it is not too 

sensitive to the input parameters. This concept was demonstrated in Section 4.4 where 

the algorithm was used on a known system. The five parameters that were varied are: 

1) Embedding dimension 
2) Evolution time - the duration over which the evolution is 'tracked' in the 

algorithm 
3) Maximum separation before replacement 
4) Minimum separation, if this is too small the signal and noise are not 

differentiated 
5) Increasing delay (tau) used in the phase space reconstruction 

Section 4.1 discusses estimation of the largest Lyapunov exponent using the 

algorithm of Wolf et al. (1985). Section 4.2 presents the actual implementation of this 

algorithm. It is seen that the result is presented in the form of bits/s or bits/sample, 

depending on the parameters used. In this work all computations are performed using a 

time step of 1 hour. This results in the Lyapunov exponent estimates having units of 

bits/sample, since the sample interval is one hour this translates into bits/hour. Section 

2.5.5 discusses how Lyapunov exponents quantify an attractor in terms of information 

theory. In the event that a stable estimate for positive Lyapunov exponent is obtained it 

could then be interpreted as the number of bits of information that the system generates 

per hour. The system represented is that formed by the residual time series after 

removing the periodic components from the water level measurements. It would 

therefore include contributions from the water level variations and artefacts introduced 

by the instrument. This would further lead to an estimate of how predictable the system 

is. 

Choice of the limits that the values were varied between are based on the criteria 

given below. A summary of these limits and the reasons for their selection follows. 
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1) Embedding dimension cannot be smaller than 2 and has a practical upper limitation 

since we are interested in low dimensional chaos. This led to 2 being used as the 

lower limit. An upper limit of 10 was used. Practical considerations regarding the 

computation time involved largely dictated this selection. Data requirements 

versus dimension are discussed in Section 3.5.1. Precise requirements remain an 

open question. This uncertainty is what led to the somewhat arbitrary choice of the 

upper limit. 

2) Evolution time has a lower limit which is one sample. The upper limit can only 

reasonably be a few mean orbital periods. As the mean orbital period is considered 

to be close to 12 hours (samples) for the data this lead to the upper limit of 36 

hours (samples). The lower limit was set to 1 hour (sample). 

3) Maximum separation has upper and lower bounds which correspond to the size of 

the attractor and the minimum separation respectively. Since a minimum 

separation of 1 em was used the maximum separation used started at 2 em. The 

largest value used was 40 em, this represents approximately 25% of the maximum 

range of the time series. The author believes that larger values would fail to probe 

the local behaviour. As initial points are selected which are 'close' a growth 

beyond 25% of the size of the attractor, over a period of several samples, would 

most likely represent an error in selection, of the initial points, rather than 

meaningful orbital divergence. By selecting points which diverge to 25% of the 

size of the attractor within a few hours (samples) it is likely that they have been 

selected over a fold in the attractor. 

4) Minimum separation has upper and lower bounds which correspond to the 

maximum separation and the resolution of the data respectively. The maximum 

separation used was 30 em. This places an upper bound of 29 em on the minimum 
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separation. A value of 0 em was used as the lower bound even though it is unlikely 

to distinguish between noise and signal at this level. Since the noise level is not 

apparent the lower bound is not immediately evident. 

5) Time delay (tau) has a lower bound of 1 hour (sample). This is used as the starting 

value. A maximum value of 20 hours (samples) is used for the reconstruction 

delay, this corresponds to nearly two orbits. In theory the selection of this 

parameter is arbitrary, the results show that it does in fact impact the results. 

Details of each run are given with the results being plotted. 

1) Estimated largest Lyapunov exponent for increasing embedding dimension. 

All runs for calculation of the Lyapunov exponents used the following parameters: 

Time step 
Evolution time 
Min separation 
Max separation 
Max orientation error 

Tau 

1 hour (sample) 
3 hours (samples) 
1 em 
30em 
30° 
3 hours (samples) 

The embedding dimension was varied from 2 to 10. 

Since the time step used is 1 and the samples are hourly, the computed exponents 

represent bits/sample or bits/hour. The results are plotted in Figure 6.3. Error bars on the 

plot show the associated confidence the algorithm returns for each estimate. 

2) Estimated largest Lyapunov exponent for increasing evolution times. 

All runs for calculation of the Lyapunov exponents used the following parameters: 

Time step 
Min separation 
Max separation 
Max orientation error 

1 hour (sample) 
1 em 
30em 
30° 
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Tau 
Embedding dimension 

3 hours (samples) 
5 

Evolution time was varied from 1 hour (sample) to 36 hours (samples). 

Since the time step used is 1 and the samples are hourly, the computed exponents 

represent bits/sample or bits/hour. The results are plotted in Figure 6.4 
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Figure 6.3 - Estimates of the largest Lyapunov exponent, computed for increasing 
embedding dimensions. 
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Figure 6.4 - Estimates of the largest Lyapunov exponent computed for increasing 
evolution times. 
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3) Estimated largest Lyapunov exponent for varying maximum separation values. 

All runs for calculation of the Lyapunov exponents used the following parameters: 

Time step 
Evolution time 
Min separation 
Max orientation error 
Tau is 
Embedding dimension 

1 hour (sample) 
3 hours (samples) 
1 em 
30° 
3 hours (samples) 
5 

The maximum separation was varied from 2 em to 40 em. 

Since the time step used is 1 and the samples are hourly, the computed exponents 

represent bits/sample or bits/hour. The results are plotted in Figure 6.5. 
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Figure 6.5 - Estimates of the largest Lyapunov exponent computed for increasing 
maximum separation. 

4) Estimated largest Lyapunov exponent for increasing minimum separation values. 

All runs for calculation of the Lyapunov exponents used the following parameters: 

Time step 
Evolution time 

1 hour (sample) 
3 hours (samples) 
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Max separation 
Max orientation error 
Tau 
Embedding dimension 

30cm 
30° 
3 hours (samples) 
5 

The minimum separation was varied form 0 em to 29 em. 

Since the time step used is 1 and the samples are hourly, the computed exponents 

represent bits/sample or bits/hour. The results are plotted in Figure 6.6. 
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Figure 6.6 - Estimates of the largest Lyapunov exponent computed for increasing 
minimum separations. 

5) Estimated largest Lyapunov exponent for increasing delay (tau) values. 

All runs for calculation of the Lyapunov exponents used the following parameters: 

Time step 
Evolution time 
Min separation 
Max separation 
Max orientation error 
Embedding dimension 

1 hour (sample) 
3 hours (samples) 
1 em 
30cm 
30° 
5 

tau was varied between 1 hour (sample) and 20 hours (samples). 
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Since the time step used is 1 and the samples are hourly, the computed exponents 

represent bits/sample or bits/hour. The results are plotted in Figure 6. 7. 
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Figure 6.7 - Estimates of the largest Lyapunov exponent computed for increasing 
reconstruction delays. 

Although all of the computations return a positive Lyapunov exponent and some of 

the interactive displays show the behaviour expected, the results cannot be considered 

conclusive. In the interactive sessions the occurrences of clearly divergent traces were 

too erratic to provide confidence in the existence of an invariant measure representing 

divergence i.e. the existence of a positive Lyapunov exponent. In the batch runs the 

solutions show a clear lack of stability and marked dependence on the selected values for 

all parameters. This inevitably leads to the conclusion that the exponent cannot be 

accurately estimated and in fact its existence must be brought into question. Once the 

existence of a positive Lyapunov exponent is doubted, the determinism of the system is 

also brought into question. The doubt exists for the information available, from the 

system, and the parameters under which the behaviour was examined. It does not rule 

out the possible existence of determinism completely. 
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6.3. Batch runs Using Rosenstein's Algorithm 

Based on the work done using Wolf et al. 's ( 1985) algorithm a reconstruction delay 

of 4 hours (samples) was selected. Rosenstein et al. (1993) suggest that a suitable 

reconstruction delay may be selected using the autocorrelation function. This is 

implemented in their (Rosenstein et al., 1993) software using a fast Fourier transform for 

efficiency and returned a delay of 3 hours (samples). 

In order to compute the largest Lyapunov exponent the divergence is tracked for a 

selected period, the In( divergence) is then plotted against time. Since the divergence in 

chaotic systems is exponential this should yield a straight line. Recall from Section 5.8 

that the relationship between the slope of the straight portion of the line and bits/sample 

is given by: 

log 2 A == 1.44ln A 6.1 

By computing the average slope of the straight portion of the line and multiplying by a 

factor of 1.44 the rate at which information is generated (or dissipated) may be computed 

in terms of bits/sample. For the data examined in this work the slope would represent 

the information generated (or dissipated) by the system in units of bits/hour. If the 

divergence is tracked for too long the separation cannot continue to increase due to the 

bounds of the attractor, resulting in a flattening of the curve. By tracking the divergence 

over long periods the algorithm attempts to probe the divergence over folds in the 

attractor. Since the system is bounded this would result in a- value that would 

asymptotically approach zero. Such a result reveals nothing useful about the data in 

terms of chaotic behaviour. It would also reveal nothing useful about the natural system 

being studied. By working with data interactively a suitable evolution period or 'total 

divergence' can be selected. All runs were performed by monitoring the evolution for 
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300 hours (samples). However, this was too long as the curve flattened indicating that 

the attractors bounds had been reached. The data is therefore presented for an evolution 

time of 100 hours (samples). Section 5.1 describes the algorithm in greater detail. 

Reconstruction delays of 3 hours (samples) and 4 hours (samples) were used with no 

apparent differences in the results, those obtained using a reconstruction delay of 4 hours 

(samples) are presented. The mean orbital period was taken to be 12 hours (samples) 

throughout. 

In order to estimate the largest Lyapunov exponent it is necessary to estimate the 

slope of the curve ln(divergence) versus time. Sections 5.1 and 5.2 discuss this. It is 

required that a linear portion of the curve be identified. Figure 5.1 shows curves for 

various dimension of a known, chaotic system. The linear portions of the curves are 

evident. Figure 5.3 illustrates the computation of the slope for such portions of the 

curves. To relate this to values computed using Wolf et al.'s (1985) algorithm it is 

necessary to use the relationship given by Equation 5.8. For the water level data analysed 

this would then quantify the attractor in terms of information theory as discussed in 

Section 6.2. 

Computation of the curves is performed for embedding dimensions from 3 to 10. 

Figure 6.8 represents the resulting curves when a reconstruction delay of 4 is used and 

the evolution tracked for 300 samples. Computation of the slope is then performed. In 

order to present the slope for the whole curve it is computed piece-wise. A 25 point 

'rolling' interval is used and a least squares estimate for the slope obtained for each 

interval. The initial interval comprised samples 1 to 25, the second 2 to 26 through to 

275 to 300. In the event of there being a linear portion to the curves this would result in a 

clear 'plateau' in the curve, representing a near constant slope. These slope computations 

are presented in Figure 6.9. 
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Figure 6.8 - Curves for estimating the largest Lyapunov exponent for embedding 
dimensions 3 to 10. 
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Figure 6.9- Least squares estimates for the slope using a moving window of 25 points. 

It is readily apparent from Figures 6.8 and 6.9 that the algorithm fails to return a 

single value for the largest exponent. Figure 6.8 would show linear portions for all 
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curves with a sufficiently high embedding dimension. This in tum would translate into a 

clear plateau in Figure 6.9 as opposed to a near constant value of 0. 

Correlation dimension is simultaneously estimated as described in Section 5.1. The 

correlation dimension curves should exhibit a parallel, linear nature. Clearly this is 

absent even for the higher dimensions as seen in Figure 6.10. This introduces doubt 

about the existence of a positive Lyapunov exponent. The doubt exists for the 

information available, from the system, and the parameters under which the behaviour 

was examined. It does not rule out the possible existence of determinism completely. 
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Figure 6.10 - Curves for estimation of the correlation dimension. 

Despite the clear indications that the algorithm had failed to identify determinism in 

the solution it was decided to continue the analysis with a surrogate data set. Section 5.2 

discusses the use of surrogate data sets. In all probability the time series being analysed 

contains both deterministic and stochastic elements. It was felt that randomising the time 

series and repeating the analysis would illustrate a change in behaviour which could be 

attributed partially to the fact that both elements exist. 
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6.4. Evaluation of a Surrogate Time Series 

In order to remove any determinism from the data series and allow a comparison to 

the analysis using the original data set the time series was phase randomised. The choice 

to use phase randomisation was arbitrary. Figure 6.11 is a plot of the first 1000 points of 

this randomised data. Figure 3.3 shows the first 1000 points of the residual water level 

signal before randomisation. A comparison of Figures 6.11 and 3.3 shows the effect of 

randomisation and the removal of a mean period. 
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Figure 6.11 - First 1 000 points of the data after phase random ising it. 

Exactly the same analysis as was performed on the original data was then performed 

on the surrogate data set. Figures 6.12 and 6.13 show the plots used to estimate the 

largest exponent and the correlation dimension respectively. A comparison of these plots 

with those in Figures 6.8 and 6.10 show relatively little difference leading to the 

conclusion that the data used to generate Figures 6.8 to 6.10 (the data before 

randomisation) was largely stochastic in nature. 
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Figure 6.12 - Curves for estimating the largest Lyapunov exponent for embedding 
dimensions 3 to 1 0 and the surrogate data set. 
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data set. 

6.5. Conclusions 

Although both algorithms return a positive largest exponent neither show any 

stability. It must therefore be concluded that neither of these methods indicate 

deterministic chaos in the time series analysed. 
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This, however, does not rule out the possibility of deterministic elements existing. 

Possible reasons for their existence being masked may be : 

1) The mean orbit has been incorrectly identified due to the data sampling interval 

being too infrequent. 

2) The data are too noisy. 

3) The determinism exists but at too high a dimension to be useful. 

4) Performance of the algorithms is poor when used on real data. 

5) Identification and removal of 'known' constituents is invalid. 

6) The system's parameters vary with time. 

6.6. Recommendations 

To progress further the author believes the following directions should be pursued. 

1) Obtain a data set which is more frequently sampled. Frison ( 1997b) suggests that a 

sample interval as short as 7 minutes may be required. 

2) There have been advances in the algorithms used. Significant improvements in the 

performance of algorithms when applying them to real world data have been 

achieved. Obtain and make use of more sophisticated software. Possibly from 

Abarbanel ( 1996) as he discusses the availability in the preface to his book. 

3) In Section 3.2.3 the possibility of a structure variable system is mentioned. The 

possibility that the Bay of Fundy tides comprise such a system is worth pursuing. 

Fang and Cao ( 1995) may provide a starting point for such an investigation. 
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4) The existence of transients, as mentioned in Section 3.2.3, could be investigated. 

Approaches have been proposed to cope with these types of data and may include 

the investigation of windowed exponents and local Lyapunov exponents. Ricard 

and Bascompt (1993) may provide a starting point for such an investigation. 
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Appendix A 

A.l. Data Sample 

The first 50 points of the time series used are presented. In the original file the data 

were presented with records containing date and time. This information was stripped and 

a pseudo time added. Column 1 represents the time; the sample interval is 1 hour. 

Column 2 represents the tidal reading in centimetres. In order to simplify the analysis in 

LSSA the mean was subtracted from the data series, resulting in a zero mean time series. 

This explains the number of decimal places in the data as it was not read to this 

accuracy. Readings were made at the centimeters level. 

Pseudo time Reading in em 

1000001 -237.97985 
1000002 -126.97985 
1000003 7.0201541 
1000004 132.02015 
1000005 213.02015 
1000006 228.02015 
1000007 178.02015 
1000008 86.020154 
1000009 -35.979846 
1000010 -163.97985 
1000011 -260.97985 
1000012 -300.97985 
1000013 -262.97985 
1000014 -178.97985 
1000015 -51.979846 
1000016 74.020154 
1000017 179.02015 
1000018 217.02015 
1000019 194.02015 
1000020 118.02015 
1000021 12.020154 
1000022 -123.97985 
1000023 -242.97985 
1000024 -312.97985 
1000025 -309.97985 
1000026 -230.97985 
1000027 -114.97985 
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1000028 24.020154 
1000029 162.02015 
1000030 226.02015 
1000031 260.02015 
1000032 210.02015 
1000033 105.02015 
1000034 -21.979846 
1000035 -157.97985 
1000036 -259.97985 
1000037 -295.97985 
1000038 -259.97985 
1000039 -163.97985 
1000040 -35.979846 
1000041 103.02015 
1000042 211.02015 
1000043 260.02015 
1000044 234.02015 
1000045 146.02015 
1000046 37.020154 
1000047 -105.97985 
1000048 -239.97985 
1000049 -291.97985 
1000050 -279.97985 
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AppendixB 

B.l. LSSA Command File 

The command file used for the final LSSA run is given below. 

LSSA Outpute:\mathcad\work\sj_30th.dat 
e:\fortran\lssa\ident\id26.0UT 
e:\fortran\lssa\ident\id26.PLT 
BATCH 
EQ 
N 

0 

Input data file name 
Output listing file name 
Output plot data file name 
Mode (BATCH or SQNTL) 
EQual or UNequal space series 
Plot time series? (Y or N) 
Datum biases (#,times of biases) 

0 Linear trend switch (O=off,l=on) 
78 163160.725 81580.363 10407.000 8766.231 4382.906 4268.250 661.309 354.367 

327.859 12.42060 12.65834 12.00000 23.93447 25.81934 11.96723 12.19162 12.62600 
12.90537 24.06589 12.22177 12.43822 12.01645 6.21030 4.14020 12.4030 26.86836 
4.09239 4.11400 4.16628 4.19270 6.10334 6.15155 6.26917 6.32917 8.27952 8.38630 
11.57629 11.60695 11.78613 11.98360 12.45590 12.69501 12.87176 13.08807 
13.12727 13.35233 13.39313 13.63226 26.72305 11.418 11.512 11.602 11.621 11.650 
11.764 11.784 11.848 11.886 11.957 
12.276 12.344 12.370 12.430 12.452 
12.912 12.42515 

0 
25.00 . 5000 
1 30 2 2000 

B.2. LSSA Output 

12.026 12.087 12.130 12.151 12.169 12.232 
12.482 12.503 12.547 12.595 13.171 12.6466 

Forced periods (#,periods) 
User function switch (0=no,1=yes) 
Cutoff for listing st.dev. and corr . 

Band #, longest, shortest, # periods 

The first portion of the LSSA output file is listed below. What has been removed are 

the listings of the residuals and the power for each of the 2000 periods used in the 

analysis. 

LSSA: Least Squares Spectral Analysis 
Version 3 (05 Mar 91) 

Saint John tidal data 1947 - 1968 

INPUT COMMAND FILE 
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INPUT DATA FILE 

OUTPUT LISTING FILE 

OUTPUT PLOT DATA FILE 

MODE 
TIME SERIES SPACING 
PLOT TIME SERIES ? 
NO. OF DATUM BIASES 
LINEAR TREND SWITCH (0=0FF,1=0N) 
NO. OF FORCED PERIODS 
VALUES OF FORCED PERIODS 

1M 

e:\mathcad\work\sj_30th.dat 

e:\fortran\lssa\ident\id26.0UT 

e:\fortran\1ssa\ident\id26.PLT 

BATCH 
EQ 
N 

0 
0 

78 
163160.725000000000000 

81580.363000000000000 
10407.000000000000000 

8766.231000000000000 
4382.906000000000000 
4268.250000000000000 

661.309000000000000 
354.367000000000000 
327.859000000000000 

12.420600000000000 
12.658340000000000 
12.000000000000000 
23.934470000000000 
25.819340000000000 
11.967230000000000 
12.191620000000000 
12.626000000000000 
12.905370000000000 
24.065890000000000 
12.221770000000000 
12.438220000000000 
12.016450000000000 

6.210300000000000 
4.140200000000000 

12.403000000000000 
26.868360000000000 

4.092390000000000 
4.114000000000000 
4.166280000000000 
4.192700000000000 
6.103340000000000 
6.151550000000000 
6.269170000000000 
6.329170000000000 
8.279520000000000 
8.386300000000000 

11.576290000000000 
11.606950000000000 
11.786130000000000 
11.983600000000000 
12.455900000000000 
12.695010000000000 
12.871760000000000 
13.088070000000000 
13.127270000000000 
13.352330000000000 



USER-DEFINED FUNCTION SWITCH (0=0FF,1=0N) 
LEVEL FOR LISTING OUTSTANDING ST.DEV. (%) 
LEVEL FOR LISTING OUTSTANDING CORRELATIONS 
SPECTRAL BAND LABEL 
LONGEST PERIOD 
SHORTEST PERIOD 
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13.393130000000000 
13.632260000000000 
26.723050000000000 
11.418000000000000 
11.512000000000000 
11.602000000000000 
11.621000000000000 
11.650000000000000 
11.764000000000000 
11.784000000000000 
11.848000000000000 
11.886000000000000 
11.957000000000000 
12.026000000000000 
12.087000000000000 
12.130000000000000 
12.151000000000000 
12.169000000000000 
12.232000000000000 
12.276000000000000 
12.344000000000000 
12.370000000000000 
12.430000000000000 
12.452000000000000 
12.482000000000000 
12.503000000000000 
12.547000000000000 
12.595000000000000 
13.171000000000000 
12.646600000000000 
12.912000000000000 
12.425150000000000 

0 
25.000000000000000 

5.000000000000000E-001 
1 

30.000000000000000 
4.000000000000000 



NO. OF PERIODS 2000 

SOLUTION FOR KNOWN CONSTITUENTS 

DATUM LINEAR FORCED COSINE SINE USER 
BIAS TREND PERIOD TERM TERM DEFINED AMPLITUDE (SIGMA) PHASE (SIGMA) 

NUMBER 0 0 78 78 78 0 

1- 2 163160.725 .169E+02 -.102E+02 .198E+02 ( .673E+01) 328.80 ( 7.57) 
3- 4 81580.363 -.655E+01 -.663E+01 .932E+01 ( .362E+01) 225.35 ( 10.56) 
5- 6 10407.000 -.398E+01 .384E+00 .400E+01 ( .182E+00) 174.49 ( 2.64) 
7- 8 8766.231 -.285E+01 .283E+01 .402E+01 ( .178E+00) 135.21 ( 2.45) 
9- 10 4382.906 -.198E+01 -.988E+00 .221E+01 ( .409E+00) 206.56 ( 10.00) 

11- 12 4268.250 .606E+00 .523E+01 .526E+01 ( .403E+00) 83.39 ( 4.27) 
13- 14 661.309 .115E+01 -.601E+00 .130E+01 ( .123E+00) 332.39 ( 5.46) 
15- 16 354.367 -.599E+00 .252E+00 .650E+00 ( .123E+00) 157.19 ( 10.90) 
17- 18 327.859 -.143E+00 .868E-01 .167E+00 ( .124E+00) 148.68 ( 42.41) 
19- 20 12.421 .270E+03 - .119E+03 .295E+03 ( .127E+00) 336.25 ( .02) 
21- 22 12.658 -.572E+02 -.268E+02 .632E+02 ( .124E+00) 205.12 ( .11) 

23- 24 12.000 -.368E+02 .347E+02 .506E+02 ( .125E+00) 136.67 ( .14) 

25- 26 23.934 .133E+02 .984E+01 .166E+02 ( .124E+00) 36.42 ( .43) 

27- 28 25.819 -.121E+02 -.628E+01 .136E+02 ( .123E+00) 207.44 ( .52) 

29- 30 11.967 .172E+02 .474E+01 .179E+02 ( .124E+00) 15.36 ( .40) 

31- 32 12.192 .110E+02 -.155E+02 .190E+02 ( .124E+00) 305.45 ( .37) 
33- 34 12.626 .938E+01 -.106E+02 .142E+02 ( .124E+00) 311.49 ( .50) 

35- 36 12.905 .311E+01 .629E+01 .702E+01 ( .125E+00) 63.66 ( 1.02) 

37- 38 24.066 .513E+01 -.937E-01 .513E+01 ( .124E+00) 358.95 ( 1. 38) 

39- 40 12.222 -.486E+01 -.174E+01 .516E+01 ( .124E+00) 199.72 ( 1. 37) 

41- 42 12.438 -.439E+01 .597E+00 .443E+01 ( .131E+00) 172.26 ( 1. 69) 

43- 44 12.016 .116E+01 .388E+01 .405E+01 ( .124E+00) 73.40 ( 1. 76) 

45- 46 6.210 -.413E+01 .994E+00 .425E+01 ( .123E+00) 166.47 ( 1.67) 

47- 48 4.140 -.206E+01 -.184E+01 .276E+01 ( .123E+00) 221.77 ( 2.56) 
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49- 50 12.403 .222E+01 .282E+00 .224E+Ol ( .125E+00) 7.26 ( 3.20) 

51- 52 26.868 .514E+00 .25BE+01 .263E+01 ( .124E+00) 78.74 ( 2.69) 

53- 54 4.092 .112E+Ol -.744E+00 .135E+01 ( .123E+00) 326.46 ( 5.25) 

55- 56 4.114 .73BE-01 -.236E+00 .247E+00 ( .123E+00) 287.35 ( 28.60) 
57- 58 4.166 -.14BE+Ol .932E+00 .175E+01 ( .123E+00) 147.78 ( 4.05) 
59- 60 4.193 -.158E+00 -.364E+00 .397E+00 ( .123E+00) 246.50 ( 17.82) 
61- 62 6.103 .950E+00 -.101E+Ol .139E+Ol ( .123E+00) 313.27 ( 5.10) 
63- 64 6.152 -.187E+00 .341E+00 .389E+00 ( .123E+00) 118.69 ( 18.21) 

65- 66 6.269 .103E+Ol .13BE+01 .172E+Ol ( .123E+00) 53.14 ( 4.11) 
67- 68 6.329 .229E-01 -.349E+00 .350E+00 ( .123E+00) 273.75 ( 20.21) 
69- 70 8.280 -.187E+00 -.330E+00 .380E+00 ( .123E+00) 240.49 ( 18.63) 
71- 72 8.386 -.274E+00 -.109E+01 .113E+01 ( .123E+00) 255.94 ( 6.27) 
73- 74 11.576 .300E+00 .691E+00 .753E+00 ( .124E+00) 66.56 ( 9.41) 
75- 76 11.607 -.579E+00 -.648E-02 .579E+00 ( .124E+00) 180.64 ( 12.29) 
77- 78 11.786 -.142E+01 .135E+Ol .196E+Ol ( .170E+00) 136.33 ( 4.97) 
79- 80 11.984 -.590E+00 -.294E+00 .660E+00 ( .125E+00) 206.50 ( 10.84) 
81- 82 12.456 .747E+00 -.136E+Ol .155E+Ol ( .131E+00) 298.79 ( 4.83) 
83- 84 12.695 .433E+00 -.107E+00 .446E+00 ( .124E+00) 346.10 ( 15.86) 
85- 86 12.872 .130E+Ol -.231E+01 .265E+Ol ( .124E+00) 299.45 ( 2.67) 
87- BB 13.088 .381E+00 -.343E-01 .383E+00 ( .124E+00) 354.86 ( 18.49) 

89- 90 13.127 -.726E+00 .165E+Ol .lBlE+Ol ( .124E+00) 113.68 ( 3.92) 

91- 92 13.352 .292E+00 -.134E+00 .322E+00 ( .124E+00) 335.42 ( 22. 01) 

93- 94 13.393 .608E+00 .273E+00 .667E+00 ( .124E+00) 24.15 ( 10.62) 
95- 96 13.632 -.405E+00 -.600E-01 .409E+00 ( .123E+00) 188.43 ( 17.28) 

97- 98 26.723 -.441E+00 .304E+00 .536E+00 ( .123E+00) 145.43 ( 13.21) 

99-100 11.418 -.105E+OO -.329E+00 .345E+00 ( .124E+00) 252.20 ( 20.51) 
101-102 11.512 -.126E+00 -.622E-01 .141E+00 ( .124E+00) 206.24 ( 50.28) 

103-104 11.602 -.604E+00 .169E-01 .604E+00 ( .124E+00) 178.39 ( 11.78) 

105-106 11.621 -.12BE+00 -.235E+00 .26BE+00 ( .124E+00) 241.39 ( 26.46) 

107-108 11.650 .270E+00 .133E+00 .301E+00 ( .124E+00) 26.27 ( 23.59) 

109-110 11.764 .909E-02 .256E+00 .256E+OO ( .124E+00) 87.97 ( 27.66) 

111-112 11.784 -.853E-01 -.418E-03 .853E-01 ( .170E+00) 180.28 (114.22) 

113-114 11.848 -.416E+00 .123E+OO .434E+00 ( .124E+00) 163.52 ( 16.31) 

115-116 11.886 -.716E-02 .746E+00 .746E+00 ( .124E+00) 90.55 ( 9.49) 

117-118 11.957 .291E+OO -.334E+00 .444E+00 ( .124E+00) 311.06 ( 16.02) 

119-120 12.026 -.116E-01 -.134E+00 .134E+OO ( .124E+00) 265.05 ( 52.89) 

121-122 12.087 -.396E+00 .555E+00 .682E+00 ( .124E+00) 125.49 ( 10.39) 

123-124 12.130 -.283E+OO .116E+00 .306E+00 ( .124E+00) 157.72 ( 23.17) 
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125-126 12.151 -.255E+OO .664E+OO .712E+00 ( .124E+00) 111.00 ( 10.00) 
127-128 12.169 -.579E-01 .208E-02 .580E-01 ( .124E+00) 177.95 (122.85) 
129-130 12.232 .114E+00 -.332E+00 .351E+00 ( .124E+00) 288.93 ( 20.21) 
131-132 12.276 .351E+OO .670E+00 .756E+00 ( .124E+00) 62.36 ( 9.37) 
133-134 12.344 -.366E-01 .423E+00 .425E+00 ( .124E+00) 94. 94 ( 16. 67) 
135-136 12.370 -.857E-01 -.868E+00 .873E+00 ( .124E+00) 264.36 ( 8.13) 
137-138 12.430 .215E+OO -.571E+00 .610E+00 ( .128E+00) 290.59 ( 12.05) 
139-140 12.452 -.758E+OO -.535E+00 .928E+00 ( .132E+00) 215.22 ( 8.13) 
141-142 12.482 -.637E+00 .243E-01 .637E+00 ( .124E+00) 177.81 ( 11.13) 
143-144 12.503 -.487E+00 -.371E+00 .612E+OO ( .124E+00) 217.32 ( 11.58) 
145-146 12.547 -.930E+00 .217E+00 .955E+00 ( .124E+00) 166.86 ( 7.42) 
147-148 12.595 .424E-01 -.276E+00 .279E+00 ( .124E+00) 278.75 ( 25.41) 
149-150 13.171 .523E+OO -.746E+OO .912E+00 ( .124E+00) 305.05 ( 7.77) 
151-152 12.647 .547E+00 -.319E+00 .633E+00 ( .124E+00) 329.75 ( 11.23) 
153-154 12.912 .274E+01 .140E+01 .308E+01 ( .125E+00) 27.03 ( 2.33) 
155-156 12.425 -.234E+01 .287E+01 .370E+01 ( .127E+00) 129.22 ( 1. 97) 
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OUTSTANDING STANDARD DEVIATIONS OF KNOWN CONSTITUENTS 
(LARGER THAN 25.0 % OF ESTIMATED MAGNITUDE) 

NUMBER STANDARD DEVIATION 

1 .707E+01 
4 .369E+01 
6 .184E+00 

10 .391E+00 
11 .391E+00 
16 .124E+00 
17 .124E+00 
18 .124E+00 
38 .124E+OO 
50 .125E+OO 
55 .123E+00 
56 .123E+OO 
59 .123E+00 
60 .123E+00 
63 .123E+00 
64 .123E+OO 
67 .123E+00 
68 .123E+OO 
69 .123E+00 
70 .123E+OO 
71 .123E+00 
73 .124E+00 
76 .124E+OO 
80 .125E+00 
83 .124E+00 
84 .124E+00 
87 .124E+00 
88 .124E+00 
91 .124E+00 
92 .124E+00 
94 .124E+00 
95 .123E+OO 
96 .124E+00 
97 .123E+OO 
98 .124E+00 
99 .124E+OO 

100 .124E+00 
101 .124E+00 
102 .124E+00 
104 .124E+00 
105 .124E+OO 
106 .124E+00 
107 .124E+00 
108 .124E+OO 
109 .124E+OO 
110 .124E+OO 
111 .170E+00 
112 .170E+OO 
113 .124E+00 
114 .124E+OO 
115 .124E+00 
117 .124E+OO 
118 .124E+OO 
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119 .124E+00 
120 .124E+OO 
121 .124E+00 
123 .124E+00 
124 .124E+00 
125 .124E+00 
127 .124E+00 
128 .124E+OO 
129 .124E+00 
130 .124E+00 
131 .124E+OO 
133 .124E+OO 
134 .124E+00 
135 .124E+OO 
137 .128E+00 
142 .124E+00 
143 .124E+00 
144 .124E+00 
146 .124E+00 
147 .124E+00 
148 .124E+OO 
152 .124E+00 

OUTSTANDING CORRELATIONS BETWEEN KNOWN CONSTITUENTS 
(LARGER IN ABSOLUTE VALUE THAN .50) 

NUMBER CORRELATION 

1- 2 -.89624592 
1- 3 -.89429985 
1- 4 -.99775900 
1- 6 -.56790736 
2- 3 .99726391 
2- 4 .87066392 
2- 6 .54568585 
3- 4 .86955151 
3- 6 .53613124 
4- 6 .55490796 
5- 8 -.70335286 
6- 7 .65789060 
9- 12 -.93746551 

10- 11 .92854799 
77-111 .62753286 
78-112 .62744163 
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Appendix C - Source Listings after Wolf et al. (1985). 

C.l. Sorce listing for BASGEN 

$LARGE 
$NOFLOATCALLS 
$NODEBUG 
c 
cTHE ABOVE STATEMENT IS ONLY REQUIRED FOR MICROSOFT FORTRAN 
cCOMPILER FOR IBM PC. IF PC WITH MATH CHIP IS USED PERFORMANCE 
ciS IMPROVED IF RECOMPILED WITH $NOFLOATCALLS OPTION. 
c 

program basgen 
c 

parameter(maxdat=32000,maxbox=6000,maxdim=8) 
c 

c 

integer*2 nxtbox(maxbox,maxdim),where(maxbox,maxdim) 
integer*2 datptr(maxbox),nxtdat(maxdat),target(maxdim) 
integer*4 tau,datcnt,boxcnt,runner,chaser,used 
dimension data(maxdat) 

logical tru 

c storage requirements: 2*maxdat + maxbox*(2*maxdim+l) 
c 

write(*,lll) 
111 format(1x, 'ASCII data file=1 ',\) 

read(*,*) iform 
write(*,222) maxdat 

222 format(1x, 'number of data points (<=',i7, ') ',\) 

c 
read(*,*) datcnt 

if(iform.eq.1) then 
open(unit=1,file='data. ',status='o1d') 

inquire(file='t.1',exist=tru) 
if(tru) then 

open(unit=2,fi1e='t.1') 
close(unit=2,status='delete') 

endif 
open(unit=2,fi1e='t.1',form='unformatted') 
do 10 i=O, (datcnt/8)-1 

read(1,*) (data(8*i+j),j=1,8) 
write(2) (data(8*i+j) ,j=1,8) 

10 continue 

else 

close(unit=1) 
close(unit=2) 

open(unit=1,file='t.1',status='old',form='unformatted') 
do 20 i=O, (datcnt/8)-1 

read(l) (data(8*i+j) ,j=l,B) 
20 continue 

close(unit=1) 
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c 
endif 

datmin=data(l) 
datmax=data(l) 
do 30 i=l,datcnt 

datmin=aminl(datmin,data(i)) 
datmax=amaxl(datmax,data(i)) 

30 continue 
c ENLARGE GRID SO NO POINTS ON OUTER BOUNDARY 

datmin=datmin-.Ol*(datmax-datmin) 
datmax=datmax+.Ol*(datmax-datmin) 

c 
40 
333 

write(*,333) 
format(lx, 'time delay (samples) 

read(*,*) tau 
write(*,444) maxdim 

'. \) 
444 format(lx, 'embedding dimension (<=',i4, ') ',\) 

read(*,*) ndim 
write(*,555) maxbox 

555 format(lx, 'grid resolution (maxbox =',i1, ') ',\) 
read(*,*) ires 

c 
boxlen=(datmax-datmin)/ires 

c 
c INITIALIZE THE GRID 
c 

boxcnt=l 
c 

do 60 i=l,maxbox 
datptr(i)=O 

do 50 j=l,ndim 
nxtbox(i,j)=O 
where(i,j)=O 

50 continue 
60 continue 
c 

do 70 i=l,maxdat 
nxtdat(i)=O 

70 continue 
c 
cMAIN LOOP 
c 

do 140 i=l,datcnt-(ndim-l)*tau 
c 
c DETERMINE TARGET COORDINATES 
c 

80 
c 

do 80 j=l,ndim 
target(j)=(data(i+(j-l)*tau)-datmin)/boxlen 
continue 

c GO TO TARGET BOX, DIMENSION BY DIMENSION 
c IF BOX DOESN'T EXIST, CREATE IT 
c 

runner=! 
chaser=O 
do 130 j=l,ndim 

90 if(where(runner,j)-target(j)) 100,130,110 
100 chaser= runner 
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110 

c 

120 

130 
c 

runner=nxtbox(runner,j) 
if(runner.ne.O) goto 90 

boxcnt=boxcnt+l 
if(boxcnt.eq.maxbox) then 

endif 

TOO MANY BOXES - QUIT 
write(*,*) 'grid overflow at i 
goto 40 

do 120 k=l,ndim 
where(boxcnt,k)=where(chaser,k) 
continue 

where(boxcnt,j)=target(j) 
nxtbox(chaser,j)=boxcnt 
nxtbox(boxcnt,j)=runner 
runner=boxcnt 
continue 

' . 
.~ 

c RUNNER IS TARGET BOX - ADD DATA POINT TO THIS BOX 
c 

nxtdat(i)=datptr(runner) 
datptr(runner)=i 

140 continue 
c 

used=O 
do 150 i=l,boxcnt 

if(datptr(i) .ne.O) used=used+l 
150 continue 
c 

write(*,*) '# 
write(*,*) '# 
write(*,*) '# 
write(*,*) 
write(*,666) 

boxes 
boxes 
boxes 

allocated ',maxbox 
created ',boxcnt 
non-empty ',used 

666 format(lx, 'ok=l ',\) 
read(*,*) iok 
if(iok.ne.l) goto 40 

c 
c WRITE OUT DATA BASE 
c (EMPTY BOXES WRITTEN OUT - WASTES SOME STORAGE SPACE) 
c 

c 

c 

inquire(file='database. ',exist=tru) 
if(tru) then 

open(unit=l,file='database. ') 
close(unit=l,status='delete') 

end if 
open(unit=l,file='database. ',form='unformatted') 
write(*,*) 'writing the database ... ' 

write(l) ndim,ires,tau,boxcnt,datcnt,datmax,datmin,boxlen 

do 160 i=l,boxcnt 
write(l) datptr(i) 
write(l) (nxtbox(i,j),j=l,ndim) 
write(l) ( where(i,j),j=l,ndim) 

160 continue 
c 

do 170 i=l,datcnt 
write(l) nxtdat(i) 
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170 continue 
close(unit=1) 

c 
end 

C.2. Source listing for FET 

$LARGE 
$NOFLOATCALLS 
$NODEBUG 
c 

program fet 
c 

parameter(maxdat=32000,maxdim=8,maxbox=6000) 
c 

c 

c 

common ndim,ires,tau,boxcnt,datcnt,datmax,datmin,boxlen,nxtbox, 
1 where,datptr,nxtdat,data,delay,oldpnt,newpnt,bstpnt, 
2 runner,datuse,dismin,dismax,bstdis,thmax,thbest,evolve 

dimension data(maxdat) 
integer*2 nxtbox(maxbox,maxdim),where(maxbox,maxdim) 
integer*2 datptr(maxbox),nxtdat(maxdat),delay(maxdim) 
integer*4 tau,boxcnt,datcnt,datuse,evolve 
integer*4 oldpnt,bstpnt 
integer*2 xs,xso,ys,yso,xf,xfo,yf,yfo 

logical tru 

c READ IN THE DATA BASE 
c 

c 

open(unit=1,file='database. •,status='old',form='unformatted') 
write(*,*) 
write(*,*) 'reading the database ... • 

read(1) ndim,ires,tau,boxcnt,datcnt,datmax,datmin,boxlen 
c 

do 10 i=1,boxcnt 
read(1) datptr(i) 
read(1) (nxtbox(i,j),j=1,ndim) 
read(1) ( where(i,j),j=1,ndim) 

10 continue 
c 

do 20 i=1,datcnt 
read(1) nxtdat(i) 

20 continue 
c 

c 
close(unit=1) 

write(*,*) 
write(*,*) 'ndim 
write(*,*) • ires 
write(*,*) 'tau 
write(*,*) 'boxcnt 

',ndim 
',ires 
',tau 
• ,boxcnt 
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write(*,*) 'datcnt 
write(*,*) 'datmax 
write(*,*) 'datmin 
write(*,*) 'boxlen 
write(*,*) 

c 

• ,datcnt 
• ,datmax 
• ,datmin 
• ,boxlen 

c READ IN THE TIME SERIES 
c 

open(unit=l,file='t.l',status='old',form='unformatted') 
write(*,*) 'reading the time series ... • 

c 
do 30 i=l,datcnt/8 

read(!) (data (8* (i-1) +j), j=l, 8) 
30 continue 
c 

close(unit=l) 
c 
c READ IN PARAMETERS 
c 

write(*,*) 
write(*,lll) 

111 format(lx, 'time-step (seconds or iterations) ',\) 
read(*,*) dt 
write(*,222) 

222 format(lx, •evolution time (number of samples) ',\) 
read(*,*) evolve 
write(*,333) 

333 format(lx, 'minimum separation at replacement ',\) 
read(*,*) dismin 
write(*,444) 

444 format(lx, •maximum separation for replacement ',\) 
read(*,*) dismax 
write(*,555) 

555 format(lx, •maximum orientation error • ,\) 
read(*,*) thmax 
write(*,*) 

c 
ciNITIALIZE GRAPHICS ROUTINES, INSERT SCREEN LIMITS 
c 

c 

call qsmode(6) 
scalex=639./(datmax-datmin) 
scaley=199./(datmax-datmin) 

inquire(file='fet.out',exist=tru) 
if(tru) then 

open(unit=l,file='fet.out') 
close(unit=l,status='delete') 

endif 
open(unit=l,file='fet.out',status='new') 

do 40 i=l,ndim 
delay(i)=(i-l)*tau 

40 continue 
c 
csome data points at the end are lost ... 

datuse=datcnt-(ndim-l)*tau-evolve 
c 

its=O 
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sum=O.O 
savmax=dismax 

c 
oldpnt=l 
newpnt=l 

c 
cSEARCH FOR NEAREST NEIGHBOR- IGNORE ORIENTATION 

c 
50 call search(O) 

c 

c 

if(bstpnt.eq.O) then 
dismax=dismax*2.0 
goto 50 

endif 

dismax=savmax 
newpnt=bstpnt 
disold=bstdis 
iang=-1 

c EVOLVE POINTS, FIND FINAL SEPARATION, UPDATE EXPONENT 
c 
60 oldpnt=oldpnt+evolve 

newpnt=newpnt+evolve 
c 
c GRAPHICS INTERFACE 
c**************************************************************** 

c 

c 

call qsmode(6) 
do 70 i=O,evolve 

indo=oldpnt-evolve+i 
indn=newpnt-evolve+i 
xso=xs 
yso=ys 
xfo=xf 
yfo=yf 
SCALE DATA TO FIT SCREEN 
xs=int((data(indo) -datmin)*scalex) 
ys=int((data(indo+tau)-datmin)*scaley) 
xf=int((data(indn) -datmin)*scalex) 
yf=int((data(indn+tau)-datmin)*scaley) 
CLEAR THE SCREEN, DRAW CONNECTING LINES 
call qline(xs,ys,xf,yf,1) 
if ( i. gt . 0) then 

endif 

call qline(xso,yso,xs,ys,1) 
call qline(xfo,yfo,xf,yf,1) 

70 continue 
c**************************~************************************* 

c 
c CALCULATION FINISHED 

if(oldpnt.ge.datuse) goto 110 
c 
c FELL OFF TIME SERIES - IN DESPERATION - FIND NEAREST NEIGHBOR 

if(newpnt.ge.datuse) then 
oldpnt=oldpnt-evolve 
goto 50 

end if 
c 

disnew=O.O 
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do 80 i=1,ndim 
p1=data(oldpnt+delay(i)) 
p2=data(newpnt+delay(i)) 
disnew=disnew+(p2-p1)**2. 

80 continue 

c 

c 

disnew=sqrt(disnew) 
if (disnew.lt.0.1*dismin) disnew=0.1*dismin 

its=its+1 
sum=sum+alog(disnew/disold) 
zlyap=sum/(its*evolve*dt*alog(2.0)) 

cPOSITION THE TEXT CURSOR WHILE IN GRAPHICS MODE 
write(*,666) 

666 format(\) 
call qcmov ( 0, 24) 

c 
if(iang.eq.-1) then 

write(*,777) evolve*its,disold,disnew,zlyap 
write(1,777) evolve*its,disold,disnew,zlyap 

else 
write(*,888) evolve*its,disold,disnew,zlyap,iang 
write(1,888) evolve*its,disold,disnew,zlyap,iang 

end if 
777 
888 

format(1x,i8,6x,f12.4,3x,f12.4,8x,f10.4) 
format(1x,i8,6x,f12.4,3x,f12.4,8x,f10.4,8x,i5) 

c 
cLOOK FOR REPLACEMENT ONLY IF FINAL DISTANCE> DISMAX 
c 

c 

if(disnew.le.dismax) goto 90 
call search(1) 
if(bstpnt.ne.O) goto 100 

cNO ACCEPTABLE REPLACEMENT - TAKE NEAREST NEIGHBOR 
c 

goto 50 
c 
cNO NEED FOR REPLACEMENT - KEEP EVOLVING 
c 
90 disold=disnew 

iang=-1 
goto 60 

c 
cREPLACEMENT SUCCESSFUL- START NEW EVOLUTION 
c 
100 newpnt=bstpnt 

c 

disold=bstdis 
iang=int(thbest) 
goto 60 

110 continue 

c 
c 
c 

end 

subroutine search(iflag) 
c 

parameter(maxdat=32000,maxdim=8,maxbox=6000) 
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c 

c 

c 

common ndim,ires,tau,boxcnt,datcnt,datmax,datmin,boxlen,nxtbox, 
1 where,datptr,nxtdat,data,delay,oldpnt,newpnt,bstpnt, 
2 runner,datuse,dismin,dismax,bstdis,thmax,thbest,evolve 

dimension data(maxdat),oldcrd(maxdim),zewcrd(maxdim), 
1 bstcrd(maxdim) 

integer*2 nxtbox(maxbox,maxdim),where(maxbox,maxdim) 
integer*2 datptr(maxbox),nxtdat(maxdat),delay(maxdiml 
integer*4 igcrds(maxdim),target(maxdim) 
integer*4 tau,boxcnt,datcnt,datuse,evolve 
integer*4 oldpnt,bstpnt,runner 

ciF BSTPNT <> 0 ON RETURN- A REPLACEMENT HAS BEEN FOUND. 
c ... BSTPNT POINTS TO IT 
c ... THBEST IS THE CHANGE IN ORIENTATION 
c ... BSTDIS IS THE NEW SEPARATION FROM THE FIDUCIAL POINT 
c ... BSTCRD HAS ITS COORDINATES (NOT PASSED BACK TO "MAIN") 
c 
c SET UP GRID COORDINATES 
c 

do 10 i=1,ndim 
oldcrd(i)=data(oldpnt+delay(i)) 
zewcrd(i)=data(newpnt+delay(i)) 
igcrds(i)=(oldcrd(i)-datmin)/boxlen 

10 continue 
c 
c FIND DISTANCE FROM OLDPNT TO NEWPNT 
c (NOT NECESSARILY 'DISNEW' OF MAIN PROGRAM) 
c 

oldist=O.O 
do 20 i=1,ndim 

abc=oldcrd(i)-zewcrd(i) 
oldist=oldist+abc**2. 

20 continue 
oldist=sqrt(oldistl 

c 
cSKIP BOXES CLOSER THAN DISMIN, INITIALIZE 'BEST' VARIABLES 
c 

c 

c 

irange=int(dismin)/boxlen 
if(irange.eq.O) irange=1 

thbest=thmax 
bstdis=dismax 
bstpnt=O 

30 do 140 icnt=O, ((2*irange+1)**ndim)-1 
icounter=icnt 

c 

40 
c 

do 40 i=1,ndim 
ipower=(2*irange+1)**(ndim-i) 
ioff=icounter/ipower 
icounter=icounter-ioff*ipower 
target(i)=igcrds(i)-irange+ioff 
if(target(i).lt.O) goto 140 
if(target(i) .gt.ires-1) goto 140 
continue 
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c CHECK ALL BOXES ON OUTER PERIMETER OF SEARCH AREA 
c (EXCEPT FIRST TIME THROUGH) 
c 

if(irange.eq.1) goto 60 
iskip=1 
do 50 i=1,ndim 

if(iabs(target(i)-igcrds(i)) .eq.irange) iskip=O 
50 continue 

if(iskip.eq.1) goto 140 
c 
c SEARCH FOR TARGET BOX 
c 
60 runner=1 

do 80 i=1,ndim 
70 if(where(runner,i) .eq.target(ill goto 80 

80 
c 

c 

runner=nxtbox(runner,il 
if(runner.ne.Ol goto 70 
goto 140 
continue 

if(runner.eq.O) goto 140 
runner=datptr(runner) 
if(runner.eq.O) goto 140 

c FOR POINTS IN THIS BOX CHECK ... 
c DISTANCE, ANGLE, NON-ADJACENCY 
c 
90 if(iabs(runner-oldpnt) .lt.evolvel goto 130 

c 

100 
c 

if(iabs(runner-datuse).lt. (2*evolve)) goto 130 

do 100 i=1,ndim 
bstcrd(i)=data(runner+delay(i)) 
continue 

tdist=O.O 
dot=O.O 
do 110 i=1,ndim 

abc1=oldcrd(i)-bstcrd(i) 
abc2=oldcrd(i)-zewcrd(i) 
tdist=tdist+abcl*abc1 
dot=dot+abc1*abc2 

110 continue 

c 

120 

c 

tdist=sqrt(tdist) 

if(tdist.lt.disminl goto 130 
if(tdist.ge.bstdis) goto 130 
if(tdist.eq.O) goto 130 
if(iflag.eq.O) goto 120 
ctheta=amin1(abs(dot/(tdist*oldist)),1.0) 
theta=57.3*acos(ctheta) 
if(theta.ge.thbest) goto 130 
thbest=theta 

bstdis=tdist 
bstpnt=runner 

c GO TO NEXT POINT IN BOX 
c 
130 runner=nxtdat(runner) 
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if(runner.ne.O) goto 90 
c 
140 continue 
c 
c RETURN IF POINT FOUND, ELSE CHECK NEXT LAYER 

c 
cNOTE DEPENDENCE OF# OF BOXES SEARCHED ON DISMAX 

c DISMAX < 1. 5*BOXLEN -> 3**NDIM BOXES (1 LAYER) 

cDISMAX < 2.5*BOXLEN -> 5**NDIM BOXES (2 LAYERS) 

irange=irange+1 
if(irange.le.int(0.5+(dismax/box1en))) goto 30 
return 
end 

120 

ETC ... 



AppendixD 

D.l. Autocorrelation computation 

Computation of the logistic equation, the two point correlation measure as described in 
Casti (1992, p.57) and the autocorrelation measure as described by Bendat and Piersol, 
(1986, p.385). 

Compute the logistic map 

N:= 1000 i :=o .. N x]o:=ol n :=4 Set initial values 

log_dat 0 =xi 0 

Set the maximum lag (r) and limit n 
n = 0 .. N- 40 r = 0 .. 39 

Compute the two point correlation and normalise to 1 for zero lag. 

Sm0 . = log_dat n 

Smrr.n := log_datn+r 

S S _ SmrSm 
m mr----

N- 39 

L(Sm) 
SmMean:=~~ 

N- 39 

V =~Smr 
r L...J r,n 

n 

SmMean = 0.499 

v SmrMean . ---
N- 39 

SMSMR := SmMean·SmrMean 

C : = SmSmr- SMSMR 
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