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ABSTRACT 

The statistical methods for the estimation of variance-covariance components for 

unbalanced data are reviewed in this thesis. Computational aspects of the presented 

methods are compared and their applicability to geodetic data is discussed. 

Prior information about the unknown variance components is introduced within the 

framework of the Generalized Maximum Likelihood (GML) methodology. The inverted 

gamma prior is used to introduce prior information about the variance components, and 

the noninformative prior is used when no prior information is available. The Fisher 

scoring method is applied to the resulting posterior probability density functions and the 

estimating equations are derived. Prior information is also introduced by means of the 

weighted constraints on the unknown variance-covariance components in the dispersion­

mean modeL The estimating equations of the dispersion-mean model with weighted 

constraints are derived, and conditions for equivalence between the dispersion-mean 

model with weighted constraints and the GML estimation are formulated. 

The effect of neglecting the errors of the estimated variance-covariance components, in 

the least squares adjustment, on the covariance matrix of the estimated location 

parameters is discussed. 

The influence of different aspects of the estimation of variance components on the results 

of spatial deformation trend analysis is investigated, based on practical examples. These 
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include the amount of prior information, the choice of the method of estimation, and the 

choice of the error model. 

An efficient numerical algorithm for detecting influential observations, in terms of their 

influence on the results of variance components estimation, is developed and tested on 

geodetic survey data. 

All numerical procedures and algorithms developed in the thesis are demonstrated on 

practical examples. 
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CHAPTER! 

INTRODUCTION 

This chapter outlines motivation and objectives of the research, provides a comprehensive 

summary of previous studies, describes the methodology of the research, summarizes the 

contents of the dissertation, and lists the major contributions of the research. 

1.1 Motivation and Objectives of the Research 

The results of the least squares adjustment of geodetic observations are directly influenced 

by the weights assigned to the observations. Therefore, proper estimation of the variance­

covariance components, and hence the weights of observations, and utilization of all 

available information is of the utmost importance. 

The process of estimating the variance-covariance components can be divided into the 

following three steps: 

(1) formulation of the variance-covariance (error) model, 

(2) estimation ofthe unknown variance-covariance components, and 

(3) statistical testing ofthe estimated components. 

This thesis investigates aspects of step (2), namely, efficient methods of introducing prior 

information within the framework of Bayesian methodology, influence of the estimation of 

variance-covariance components on the covariance matrix of the estimated location 
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parameters, and the problem of detecting influential observations. The fonnulation of the 

optimal variance-covariance model, step (1), is not investigated. As far as step (3) is 

concerned, it is assumed throughout the thesis that the asymptotic covariance matrix of 

the estimated variance or variance-covariance components adequately approximates the 

real covariance matrix, and that the sample is of a sufficiently large size. The problem of 

finding an exact (non-asymptotic) probability distribution function of the estimated 

variance or variance-covariance components is not considered in the thesis. 

The estimation of variance-covariance components for geodetic observations differs, in 

many respects, from the estimation of variance-covariance components for other types of 

data. 

Firstly, geodetic data are inherently unbalanced. The implication of this fact is that, in 

general, only methods suitable for the estimation of variance-covariance components for 

unbalanced data can be applied to geodetic observations. Most of these methods are 

computationally equivalent, or similar to a large degree, even though they are derived 

from different underlying principles. The first objective of this research is thus to provide 

a comprehensive summary of these methods, with an emphasis on their similarities, and the 

merits and demerits of each of them in the context of their application to geodetic data. 
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Secondly, the estimation of variance-covariance components for geodetic data generally 

suffers from small redundancy problems, which, for the most part, is not the case with 

other types of data. This has two important implications. 

The first implication is that, in order to strengthen the estimation process, the available 

prior information concerning the unknown variance-covariance components should be 

utilized. The sources of prior information could be the manufacturer's specifications of 

measurement accuracy, or analyses of physical sources of errors of observations (see, e.g., 

[Chrzanowski, 1974 and 1975) and [Blachut et al., 1979]). Bayesian estimation methods 

make provision for the introduction of prior information. Bayes estimation and interval 

estimation (see, e.g., [Koch, 1987], [Koch, 1988], and [Koch, 1990]) require the 

application of numerical integration techniques and thus, even for a moderate number of 

variance or variance-covariance components, are computationally impractical [Harville, 

1977]. The classical maximum likelihood methods, on the other hand, do not make any 

provision for introduction of prior information. 

There exists, however, an interesting alternative. Harville [1977] proposes to apply 

maximum likelihood methodology to the posterior probability density function, being the 

product of the likelihood function of the data and the prior probability density function of 

the variance components. Harville [1977, p. 336] calls the method the pseudo-Bayesian 

procedure and states that, "The pseudo-Bayesian procedure that estimates 9 by 

maximizing the expression ... [for the natural logarithm of the posterior probability density 
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function with noninformative prior] would seem to be worth investigating". Harville 

[1977] does not, however, investigate the matter any further and does not propose any 

numerical algorithms. Koch [1990] describes the Generalized Maximum Likelihood 

estimation method, the principle of which, as in Harville's pseudo-Bayesian approach, is to 

maximize the posterior probability density function. The resulting estimate of the vector 

of variance-covariance components is called the Generalized Maximum Likelihood ( GML) 

or the Maximum A Posteriori (MAP) estimate. Koch [1990] does not go beyond 

describing the principle of GML estimation, and provides no numerical algorithms for 

finding the solution. 

As the GML method promises to offer a viable and computationally efficient alternative to 

the Bayes and interval estimation methods, one of the main goals of this research is to 

derive computational algorithms (estimating equations) for finding the GML estimates of 

the vector of variance or variance-covariance components under miscellaneous types of 

prior probability density functions. 

The second implication of small redundancy of geodetic data on the estimation of 

variance-covariance components is that the undetected outliers can have a very large 

influence on the estimated components. The definition of outliers is broadened here to 

include such observations that do not conform to the postulated error model, i.e., the 

outliers in the variance-covariance components space are more important than the outliers 

in the location parameters space. The degree of conformity of observations to the 
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postulated variance-covariance components model can be quantified by means of their 

influence on the vector of estimated variance-covariance components. The problem of 

detecting influential observations for the case of estimating the a posteriori variance factor 

is discussed in [Chatterjee and Hadi, 1988]. As the problem of detecting influential 

observations for the more general case of estimating the variance or variance-covariance 

components does not appear to have been solved yet, this forms the next goal of this 

investigation. 

It is an obvious fact that the weights of observations, computed through the process of 

estimation of variance-covariance components, exert direct influence on the results of the 

least squares adjustment. Both the vector of adjusted coordinates (location parameters), 

and its covariance matrix, are affected by the choice of the variance-covariance 

components estimation method, the amount of prior information, and the choice of the 

error model. Resulting changes in the vector of estimated location parameters and its 

covariance matrix affect, in turn, the outcome of spatial deformation trend analysis, and 

hence influence the deformation modelling process. The ensuing objective of this research 

is thus to investigate the magnitude of these influences, based on numerical examples. 

When the weights of observations are computed :from the estimated variance-covariance 

components, the implication is that they are stochastic quantities estimated with a certain 

accuracy. The usual approach is, however, to treat the computed weight matrix of 

observations as fixed and errorless [Searle et al., 1992]. Whereas the vector of estimated 
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location parameters, resulting from the least squares adjustment process, remains largely 

unaffected by this assumption [Kackar and Harville, 1981 ], the covariance matrix of the 

estimated vector of location parameters is, in general, underestimated [Searle et al., 1992]. 

The problem of underestimation of the covariance matrix of the vector of estimated 

location parameters has, in general, not been solved yet. Searle et al. [1992, p. 320] state 

that, "There are . . . a number of classical methods available to correct this variance 

underestimation problem, but unfortunately they can be difficult to implement." Searle et 

al. [1992] propose the use of either the Taylor series expansion method, or the bootstrap 

method to correct the problem. Searle et al. [1992] do not, however, provide any 

solutions and moreover, state [1992, p. 320] that, "Both these methods may lead to 

implementation difficulties: the Taylor series may be an extremely involved calculation, 

while the bootstrap may require enormous computing power." 

The last objective of this research is therefore to investigate the problem of 

underestimation of the covariance matrix of the vector of estimated location parameters. 

1.2 Previous Studies 

As far as the methods of estimation of variance-covariance components are concerned, the 

existing literature is exhaustive. A very extensive bibliography of this subject is given in 

[Sahai, 1979] and [Sahai et al., 1985], while a comprehensive review of the existing 

methods can be found in [Khuri and Sahai, 1985] and [Searle et al., 1992]. 
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The literature relating particularly to geodetic applications of estimation of variance­

covariance components is also vast, as depicted by the following examples: 

1. The Analysis ofVariance {ANOVA) method is applied to geodetic levelling networks 

by Kelly [1991]. 

2. Grafarend et al. [1980] and Grafarend [1984] propose the Helmert-type method of 

estimation of variance-covariance components for geodetic observations. The method 

constitutes an extension to the method proposed by Helmert [1924]. 

3. Grafarend and Kleusberg [1980] use the Helmert-type method to estimate variance 

components for gyrotheodolite observations. The method is also applied to satellite 

ranging data by Sabin et al. [1992]. 

4. Conditions for equivalence between the Helmert-type method and the Minimum Norm 

Quadratic Unbiased Estimation {MINQUE) technique are discussed in [Keirn, 1978], 

[Welsch, 1978] and [Chen, 1983]. 

5. Grafarend [1978) discusses the Best Quadratic Unbiased Estimation (BQUE) and 

MINQUE methods, and formulates conditions for their equivalence. 

6. Application of the Best Invariant Quadratic Unbiased Estimation (BIQUE) method to 

electronic distance measurements on calibration lines is shown in [Koch, 1981]. 

Application of BIQUE to the heterogeneous deformation observations is discussed by 

Schaffiin [1981] and Caspary [1987]. 

7. The problem of estimation of variance-covariance components for repeated 

observations is analyzed in [Schaffiin, 1983]. 
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8. The BQUE method is extended to the condition adjustment with constraints by Yu 

[1992]. 

9. Application of MINQUE to analysis of deformations is discussed by Chen [1983]. 

Chen and Chrzanowski [1985] give an example of the Minimum Norm Quadratic 

Estimation (MINQE) of weights for geodetic levelling networks. Chen et al. [ 1990a] 

apply the MINQE principle to triangulateration and GPS networks. 

10. An extension ofMINQUE theory to the case with singular covariance matrix is given 

in [Sjoberg, 1985] 

11. An extension ofMINQUE to the condition adjustment is shown in [Sjoberg, 1983a], 

and to the condition adjustment with unknowns in [Sjoberg, 1983b]. 

12. The maximum likelihood methods are introduced to the geodetic community by Kubik 

[ 1967 and 1970]. 

13. The Marginal Maximum Likelihood (MML), also called the Restricted Maximum 

Likelihood (REML), method is compared with BIQUE by Koch [1986]. 

14. Application of the Maximum Likelihood (ML) method to repeated EDM observations 

can be found in [Sjoberg, 1980]. 

15. The REML method and its comparison with the Helmert-type estimation method and 

the Iterated Almost Unbiased Estimation (lAUE) procedure of Forstner [1979a and 

1979b] is presented in [Ou, 1989]. 

16. Application of the lAUE algorithm to analysis of levelling data for the final adjustment 

of the North American Vertical Datum of 1988 is presented by Lucas et al. [1985]. 
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17. Bayesian methods of estimation of variance-covariance components, and in particular 

the Bayes and interval estimation methods, are introduced for geodetic applications by 

Koch [1987, 1988 and 1990]. 

18. Ou [1991] discusses the Bayes estimation with the, so called, approximative likelihood 

function, maximization of which results in an estimator equivalent to lAUE. 

The principle of the Generalized Maximum Likelihood (GML) estimation of variance­

covariance components, for geodetic data, is described in [Koch, 1990]. Furthermore, 

GML estimation with noninformative prior, for any type of data, is discussed in the paper 

of Harville [1977], which reviews the maximum likelihood methods of estimation of 

variance components. In both cases, however, only the principle of GML estimation is 

described and the GML estimating equations are not given. 

There exist a large number of publications concerned with detection of influential 

observations (see, e.g., [Belsley et al., 1980], [Chatterjee and Hadi, 1988] and [Fox, 

1991]) for the case of least squares regression analysis. The concept of influence 

functions, introduced by Hampel [1968 and 1974] is discussed, for example, in [Huber, 

1981], [Hampel et al., 1986] and [Chatterjee and Hadi, 1988]. However, the problem of 

detecting influential observations in the estimation of the variance-covariance components, 

with the exception of the trivial case of one variance component being the a posteriori 

variance factor [Chatterjee and Hadi, 1988], has not yet been treated. 
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The problem of the omission of errors of the estimated variance-covariance components in 

the least-squares estimation process, and thus the problem of underestimation of the 

covariance matrix of the estimated location parameters, is discussed in [Searle et al., 

1992]. Searle et al. [1992] propose two potential methods for solving the underestimation 

problem: the bootstrap method and the Taylor series expansion method. No solution is 

given, and the practicality of the proposed methods is questioned. 

1.3 Methodology 

The problem of computationally efficient introduction of prior information into the 

estimation of variance components, within the framework of Bayesian methodology, is 

approached by means of the Generalized Maximum Likelihood (GML) estimation method. 

Two cases are considered. In the first case, the inverted gamma prior (see, e.g., [Koch, 

1990]) is used for introducing the prior information about the variance components. In 

order to find a solution to the resulting optimization problem, the Fisher scoring method is 

applied, and the GML estimating equations are derived. In the second case, the 

noninformative prior is used: to express the fact that there exists no prior information 

about the unknown variance components. As in the first case, the Fisher scoring method 

is applied to the resulting optimization problem and the GML estimating equations are 

derived. In addition, the weighted constraints on the unknown variance-covariance 

components are introduced into the dispersion-mean model, first proposed by Pukelsheim 

[1974]. The least squares procedure is applied to the resulting dispersion-mean model 
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with weighted constraints, and conditions for equivalence with the GML method are 

formulated. 

The problem of analysis of influential observations is approached from the computational 

perspective. The possibility of finding an efficient algorithm which quantifies the influence 

of each observation, without the need to repeat the whole variance-covariance 

components estimation process, is investigated. Investigations are limited to the case 

involving the variance components only. 

The degree to which the covariance matrix of the estimated location parameters is affected 

by the estimation of variance-covariance components is investigated for the case when the 

difference between the true and the estimated covariance matrices of observations is a 

fixed quantity. 

The task of comparing the influence of different factors of the variance components 

estimation process on the results of the spatial deformation trend analysis process is 

approached by analyzing the effect of such factors on the transformed displacement 

components and their confidence regions. 

1.4 Organization of Contents of the Dissertation 

Chapter 2 provides a comprehensive summary of existing statistical methods for the 

estimation of variance-covariance components for unbalanced data. The presented 
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methods are grouped according to their estimation principles, and their computational 

similarities and differences are analyzed. 

Chapter 3 deals with the problem of introduction of prior information. The GML 

methodology is applied for two choices of the priors, namely, the inverted gamma prior 

and the noninformative prior. For both cases, the estimating equations are derived by 

applying the Fisher scoring method to the resulting posterior probability density functions. 

In addition, prior information is introduced into the dispersion-mean model by means of 

weighted constraints on the unknown variance-covariance components. The estimating 

equations, resulting from the application of the least squares principle, are subsequently 

derived. Conditions for equivalence between this method and the GML estimation are 

formulated. 

In Chapter 4, the influence of the estimation of variance-covariance components on the 

covariance matrix of the estimated location parameters is investigated. 

Chapter 5 contains a description of measures of the influence of observations on the 

vector of estimated variance-covariance components and its asymptotic covariance matrix. 

An algorithm for efficient computation of the influence of a single observation on the 

estimated variance components and their asymptotic covariance matrix is derived. 
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In Chapter 6 the process of spatial deformation trend analysis is described. The influence 

of the estimation of variance-covariance components on the results of spatial deformation 

trend analysis is also discussed. 

Chapter 7 implements the proposed methods and procedures. A horizontal monitoring 

network at the Mactaquac hydroelectric generating station near Fredericton, New 

Brunswick, [Chrzanowski and Secord, 1987 and 1990], [Chrzanowski et al., 1989] is used 

to illustrate and test the algorithms and methods derived in this thesis. The GML 

estimating equations, derived in Chapter 3 under noninformative and inverted gamma 

priors, are applied to periodic observations of the Mactaquac network. Estimating 

equations resulting from application of the least squares principle to the dispersion-mean 

model with weighted constraints, derived in Chapter 3, are also applied to the same data. 

The results are compared with the results of REML estimation. In addition, the influence 

of the choice of the estimation method, the amount of prior information, and the choice of 

the error model, on the results of spatial deformation trend analysis process is presented -

based on an analysis of the 1991 and 1993 campaigns of the Mactaquac monitoring 

network. Finally, the procedure for detecting influential observations, proposed in 

Chapter 5, is applied to the 1989 Mactaquac data set. 

Chapter 8 summarizes results of the research, outlines the strategy advocated by the 

author, and presents conclusions and recommendations. 
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1.5 Summary of the Contributions 

The contributions of this research are: 

1. A comprehensive summary of existing methods of estimation of variance-covariance 

components for unbalanced data, with emphasis on their computational similarities and 

differences. 

2. Discussion of the effects of the estimation of variance-covariance components on the 

covariance matrix of the estimated location parameters, in the least squares 

adjustment. 

3. Derivation of the Generalized Maximum Likelihood estimating equations with the 

inverted gamma prior. 

4. Derivation of the Generalized Maximum Likelihood estimating equations with the 

noninformative prior. 

5. Development of the dispersion-mean model with weighted constraints and derivation 

of the estimating equations. 

6. Development of an efficient computational algorithm for analyzing the influence of a 

single observation on the estimated variance components and their covariance matrix. 

7. Analysis of the contribution of various aspects of the estimation of variance 

components - such as the method of estimation, the amount of prior information and 

the error model - on the process of spatial deformation trend analysis. 

8. Analysis of asymptotic properties of the GML estimators. 
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9. Verification of posterior normality of the posterior probability density function with 

either the inverted gamma or the noninformative prior, for the Gauss-Markov model 

with the unknown variance factor. 
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CHAPTER2 

REVIEW OF STATISTICAL METHODS FOR ESTIMATION OF 

VARIANCE-COY ARIANCE COMPONENTS 

This chapter concentrates on statistical methods of estimation of variance-covariance 

components for unbalanced data. As a result, the ANOVA (Analysis Qf Variance) 

methods will get limited attention since they are, in general, not suited to estimation of 

variance-covariance components in unbalanced cases. Emphasis will therefore be placed 

on: 

( 1) maximum likelihood estimation methods, such as ML (Maximum .Likelihood) and 

REML (Restricted Maximum Likelihood), 

(2) Bayesian methods, such as GML (Generalized Maximum .Likelihood), the Bayes 

estimation, and the interval estimation, and 

(3) criteria-based estimation methods, such as MINQE (Minimum Norm Quadratic 

Estimation), BQE (Rest Quadratic Estimation), MIVQUE (Minimum Variance Quadratic 

Unbiased Estimation) and AUE (Almost Unbiased Estimation) methods. 

2.1 Estimation of the Variance-Covariance Components- General Formulation 

Given an extended Gauss-Markov model [Kleffe, 1977], [Schaffrin, 1983], [Rao and 

Kleffe, 1988], [Oswald, 1992], also called a general mixed model: 
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where: I is a vector of m observations, 

A is a given first order design matrix, 

xis a vector ofu unknown location parameters, 

v is a vector of m unobservable random errors, 

T 1, ... , T r are given, linearly independent, symmetric, matrices, 

8 = (81, ... ,8r) is a vector ofr unknown variance-covariance components, and 

0 is the subset of the r-dimensional Euclidean space such that Ce is a positive 

definite matrix, 

the problem at hand ts to find an estimate of the vector of variance-covariance 

components: 

(2.2) 

Generally, there are three distinct ways to get the solution: 

2.1.1 ANOVA Methods 

The ANOV A methods are the methods that work by equating a quadratic form of the 

observations to its expectation, and solving that equation ; they are: 

(1) ANOVA methods for balanced data, 
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(2) general ANOV A methods for unbalanced data, including among others the 

Henderson's methods I, II and III (see, e.g., [Searle et al., 1992]), and the Helmert-type 

estimation method [Grafarend et al., 1980]. 

Even though these methods are inherently heuristic in nature, they have some desirable 

properties, e.g., unbiasedness, or in the case of balanced data, the minimum variance 

property. 

For the balanced data, the quadratic forms are the sums of squares, and the resulting 

estimators have the properties of minimum variance and unbiasedness [Hultquist, 1985]. 

The required computations are always straightforward and simple. The ANOV A 

estimators are best quadratic unbiased (BQUE), and under the assumption that the 

observations are normally distributed, the estimators are best unbiased (BUE). Searle 

[1987] points out that under the assumption of normality of the data, the ANOVA 

estimators are numerically identical to (1) the Restricted Maximum Likelihood (REML) 

estimators, (2) the Iterated Best Invariant Quadratic Unbiased Estimators (Iterated 

BIQUE), and (3) the Iterated Minimum Norm Quadratic Estimators, under the conditions 

ofunbiasedness and invariance (IMINQE(U,I)). 

For the unbalanced data, the quadratic forms of observations are no longer simple sums of 

squares, and the estimators no longer have the property of minimum variance. From all 

the general ANOV A methods for unbalanced data the Helmert-type estimation method, 
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which was introduced by Helmert in 1924, is especially popular among geodetic 

community. Its applications to various types of geodetic data can be found, among 

others, in [Welsch, 1978], [Grafarend et al., 1980], [Grafarend and Kleusberg, 1980], 

[Grafarend, 1984], and [Sabin et al., 1992]. Keirn [1978], Grafarend et al. [1980], and 

Chen [1983] show that the iterated Helmert-type estimation of the variance components is 

numerically equivalent to REML estimation, Iterated BIQUE, and IMINQE(U,I). It can 

be shown [Chen, 1983], however, that this is no longer the case when the iterated 

Helmert-type estimation is applied to the general mixed model, eqn. (2.1 ). 

As reported by Searle [1987] and Searle et al. [1992], regardless of whether the data are 

balanced or unbalanced, ANOV A may produce negative estimates of variances. 

Furthermore, the distributional properties of ANOV A estimators - even under the 

assumption that the data are normally distributed - are generally not known. 

Data are classified as being balanced by referring to properties of the following variance 

components model (see, e.g., [Hartley and Rao, 1967], [Searle and Henderson, 1979] or 

[Searle et al., 1992]): 

I= Ax+ U1b1 + U2b2 + ... + Ur_1br-l + e, 

where: I is a vector of m observations, 

A is a given first order design matrix, 

x is a vector of u unknown location parameters, 
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Ui is an m x ~matrix of known fixed numbers,~~ m, 

bi is a vector of 111j independent random variables from N{ 0, of), 111j ~ m, 

e is a vector of m independent random variables from N{ 0, a2 ) , and 

the random vectors bi and e are mutually independent. 

Since e is a vector of random variables just like each bi, one can define Ur = Iro, br = e and 

ar = a. In such case the variance components model of eqn. (2.3) reads: 

r r 2 T 
l=Ax+.LUibi, with C9 = :Eo:U·U· 

1=1 i=1 I I I ' 
(2.4) 

The variance components model given by eqn. (2.4) can be considered as being a special 

case of the general mixed model, eqn. (2.1 ), in which case: 

r 
v= L U·b· 

i=1 I I> 

Ti = UiUf, fori= 1, 2, ... , r, 

8i = Of, fori= 1, 2, ... , r, 

(2.5) 

(2.6) 

(2.7) 

Searle and Henderson [1979] and Searle et al. [1992] formulate the variance components 

model for balanced data, valid for any multi-factored model. For a linear model of p - 1 

main effect factors this model is given as: 
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(2.8) 

where: y is the vector of observations (equivalent to the vector I in eqn. (2.4)), 

ai are the vectors of effects (corresponding either to the vector x or vectors bi in 

eqn. (2.4)), 

ln. is a summing vector ofn, elements equal to unity, with 1~ =In , and 
J -J J J 

i = [ i P , ... , i d with ij = 0 or 1 for j = 1, 2, ... , p. 

There exist 2P possible terms in eqn. (2.8); however, not all of them have to be present in 

a given model. The dispersion matrix is in tum given by 

(2.9) 

J n. is a square matrix of order n1· with every element unity, with J~ = In . 
J J J 

Searle and Henderson [1979] and Searle et al. [1992] give examples of some linear 

models for balanced data formulated in terms of eqn. (2.8) and eqn. (2.9). For example, 

the 1-way classification model with n observations in each ofm classes, which in classical 

notation is given by 

Yij = J..l + ai + eij, with i = 1, ... , m, and j = 1, ... , n (2.10) 

where: J..1 is a general mean, 

a is the vector of effects, 
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e is the vector of residual errors, and 

var( ai) = a:, var{ eij) = 0:, and the vectors e and a are uncorrelated, 

is given by Searle et al. [1992] as: 

y = {tm ®ln)J.L+(Im ®ln)a+e, (2.11} 

with the dispersion matrix 

(2.12) 

Taking p = 2 in the variance components model for balanced data, given by eqn. (2.8) and 

eqn. (2.9}, we get 

y=(ln2 ®tnJau +(ln2 ®InJaw+(In2 ®lnJaol +(In2 ®InJaoo, (2.13) 

with the dispersion matrix 

Ca = 8u(Jn2 ®JnJ +8w( Jn2 ® InJ +8ol(In2 ®JnJ +8oo(In2 ®InJ. (2.14) 

Assuming that au is fixed and dropping a10 from the model we arrive at the 1-way 

classification model of eqn. (2.11) and eqn. (2.12), where: au = J.l, ao1 = a, aoo = e, 

801 = a; , 800 = a;, n1 = n, and n2 = m. 

If the data are unbalanced then they can no longer be expressed by the variance 

components model ofeqn. (2.8) and eqn. (2.9). In general, geodetic data are unbalanced. 

Kelly [1991] gives levelling measurements as an example of unbalanced data: if the 

levelling measurements are grouped according to the levelling lines along which they are 
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made, then the uneven number of sections in each levelling line implies that the data are 

unbalanced. 

Since, in general, geodetic data are unbalanced, the simplest and the most popular method 

of the estimation of variances- the ANOVA method for balanced data- cannot be applied 

in most of the cases. Therefore, only the methods for estimation of variance-covariance 

components for unbalanced data, such as the methods listed in Subsection 2.1.2 and 

Subsection 2.1.3 and the general ANOV A methods, are universally applicable to geodetic 

data. 

2.1.2. Distribution-Based Methods 

The distribution-based methods approach the problem of estimating variance-covariance 

components by attributing a distribution to the data. Having defined the distribution 

function, the estimates are sought in the form of either the expected values, or the modal 

values. The family of maximum likelihood methods and the Bayesian methods belong to 

this category. 

The family of maximum likelihood methods comprises the Maximum Likelihood (ML) and 

the Restricted Maximum Likelihood (RE:rvtL) methods. The 1v1L estimator of the vector 

of variance-covariance components, e, is defined (see, e.g., [Rao and Kleffe, 1988]) as 

A 

such value, e , that maximizes the likelihood function of the vector of observations: 
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LM( e) = sup a LM' subject toe E E>. (2.15) 

As far as the estimation of variance-covariance components is concerned, because of the 

numerical complexity of the task, the observations are assumed to be normally distributed 

and as a result the likelihood function LM is of the multivariate normal type. In the case of 

the REML estimation, the likelihood function of the projected vector of observations 

(onto the orthogonal complement of the space defined by the columns of the first order 

design matrix A) is solved for maximum. Again, the observations are assumed to be 

normally distributed. 

In the case of the Bayesian methods, either the so called Bayes rule is used to find the 

estimated variance-covariance components, or solution is sought in form of the mode of 

the posterior density function. The principle of the Bayes rule (see, e.g., [Koch, 1990]) is 

to minimize the posterior expected loss under a chosen loss function. The resulting 

estimator is called the Bayes estimator. If the loss function is quadratic, then the estimate 

obtained under the Bayes rule is identical to the expected value of the vector of variance-

covariance components, e, computed with the posterior probability density function, 

p(e11). This is given by Koch [1990] as: 

SB = Jep(ell)d9 with 0 beingtheparameterspace. 
e 
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If the maximum of the posterior density function is sought, then the resulting estimator is 

A 

given by Koch [ 1990] as such value, e , that satisfies: 

(2.17) 

and is called the Generalized Maximum Likelihood (GML) estimator. 

2.1.3. Criteria-Based Methods. 

The criteria-based methods approach the problem of estimating variance-covariance 

components by seeking a _quadratic ~stimator (QE), ITMI, of a linear combination of the 

variance-covariance components, pTe, that will satisfy certain optimality criteria. Criteria 

such as the minimum norm (MINQE), the minimum yariance (MIVQUE), or the minimum 

mean squared error (BQE) are utilized. The estimator is derived by minimizing some 

objective function (the norm, the variance, or the mean squared error) subject to certain 

constraints imposed on the estimator, such as translation invariance or unbiasedness. 

2.2 Maximum Likelihood Methods 

The Maximum Likelihood (ML) method of estimation (see, e.g., [Scholz, 1985]) was 

introduced by Fisher in 1925. The method was first applied to the problem of estimating 

variance-covariance components by Hartley and Rao [ 1967]. The Restricted Maximum 

Likelihood (REML) method, also called the Marginal Maximum Likelihood (MML) 

method, is a variation of the original method of Maximum Likelihood, and was first 

applied in context of estimation of variance-covariance components by Patterson and 

Thompson [ 1971]. 
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2.2.1 Maximum Likelihood (ML) 

The maximum likelihood (ML) method requires that the probability density function of the 

vector of observations is specified. The principle of the method is to find the maximum of 

this probability density function. The ML method can be used for any type of the 

probability density function, but in the case of estimation of variance-covariance 

components, it is customary to assume the multivariate normal distribution for the vector 

of observations. Under this assumption, the probability density function, called the 

likelihood function, is a function of the vector of location parameters, x, and the vector of 

variance-covariance components, 9, and is given by Searle et al. [1992] as: 

LM = LM(x,~ 1) = p(llx,9) = (2xt-f lcort ex~ -~(1- Ax) T C01(1- Ax)]. (2.18) 

Maximization of the likelihood function is equivalent to maximization of the natural 

logarithm of the likelihood function (log-likelihood function): 

lM = ln( LM) = - ; ln(2x)- ~ lnlc91- ~(I- Ax) T C01 (I- Ax). (2.19) 

The ML estimator of the vector of location parameters, x, and the vector of variance­

covariance components, 9, is then defined as the value, a, that maximizes the log­

likelihood function, subject to the condition that the vector 9 belongs to the parameter 

space 9 - defined by the requirement of positive definiteness of the covariance matrix c9, 

and is given by Rao and Kleffe [1988] as: 
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(2.20) 

Ignoring the constraints on the parameter space, 8, the maximum of the log-likelihood 

function can be solved for by applying one of the numerical methods for the nonlinear, 

unconstrained optimization. The two methods that have been most widely used in the 

context of estimation of variance-covariance components are: 

(1) The Newton-Raphson method (see, e.g., [Jennrich and Sampson, 1976], [Harville, 

1977] and [Searle et al., 1992]), which gives the (i+1)-th iterate ofthe vector of location 

parameters, x, and of the vector ofvariance-covariance components, 9, as: 

(2.21) 

where: 

{rATC01TkCa10-Ax)K=• l 
{ m ~ tr{ Cji"rk Cii"rm)- (I-AI) T c;;"r. Cii 1TmCii 1(1- AI)} :.m•l 
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lHMu HMxe 1 
=lHMe. HMeeJ (2.22) 

is the Hessian matrix, and 

(2.23) 

is the vector of likelihood scores. 

(2) The Fisher scoring method (see, e.g., [Jennrich and Sampson, 1976] and [Searle et al., 

1992]), which in the (i+1)-th iteration produces the following vector of location 

parameters, x, and the vector of the variance-covariance components, 9: 

{2.24) 

where: 

(2.25) 

is the information matrix. 
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Taking into account that [Searle et al., 1992]: 

(2.26) 

and using the (i+ 1 )-th ML estimate of the vector of location parameters, 

(2.27) 

with w t. = AT C~1 I, to compute the second term of the vector of likelihood scores, 
"{i) "{i) 

sM , (see eqn. (2.23)) one gets the following iterative equation for estimating the vector 
8 

of variance-covariance components: 

. (A ) { 1 T }r With qR 8(i) = c -I R9. TkRe. I ,where: 
2 {•) {•) k=l 

(2.29) 

Equation (2.27) is identical to the least squares equation with the covariance matrix of the 

vector of observations given by C9~ . In the limit, eqn. (2.27) gives the ML estimator of 
(i) 

the vector of location parameters i . 
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Equation (2.28) forms the basis for the ML estimation of variance-covariance 

components. In the limit, eqn. (2.28) gives the ML estimator of the vector of variance-

A 

covariance components e . 

Hartley and Rao [ 1967] establish asymptotic properties of the ML estimates of variance 

components for the variance components model identical - with the exception that all 

matrices Ui are required to have in each row precisely one element equal to 1 and the 

remaining 11\-1 elements equal to 0, which in tum implies that the matrices U 'f U i are 

diagonal- to the one given by eqn. (2.3). 

Hartley and Rao (1967] assume that the following assumptions (the Hartley-Rao 

conditions) hold true: 

1. The experiment is to be regarded as one of a series of experiments for which m~oo 

and mi~oo (i = 1 ,2, . . . ,r -1 ), in such a way that all positive elements of the diagonal 

matrices u r u i are smaller than a constant R. 

2. As m~oo, all elements of the inverse of the matrix of normal equations, (A Tcij1Af1, 

are in absolute value smaller than Rim. 

30 



3. The base W of the adjoined m by (u+n) matrix M=[AIU11 ... 1Ur1 is of the form 

r 

W=[AIU•] (m by c), where u• contains at least one column from each Ui, n = L mi, 
i=l 

and u+r~c~u+n. 

Under these assumptions Hartley and Rao [1967] establish that: 

1. If the maximum likelihood estimate of the vector of variance components provides the 

global maximum of the likelihood, it is weakly consistent. 

2. MLE of the vector of variance components is asymptotically efficient, and it is 

asymptotically normally distributed with the mean 9 0 (the true parameter) and 

covariance matrix equal to the inverse of the information matrix computed at 90 . 

Applicability of the Hartley - Rao conditions to geodetic networks, and, in particular, to 

the deformation monitoring network at the Mactaquac hydroelectric generating station 

near Fredericton, New Brunswick [Chrzanowski and Secord, 1987 and 1990] and 

[Chrzanowski et al., 1989], is discussed in Chapter 7. 

Miller [1977] considers a more general situation, where the Hartley-Rao condition (1) 

requiring that all positive elements of the diagonal matrices u r u i are smaller than a 

universal constant R, is dropped. 
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Rao and K.leffe [1988] consider asymptotic properties ofMINQE and ML estimators in a 

sequence of the following random effects models: 

where bn has independently distributed subsets, bn = (bfn, ... ,b~(n)n)T, with 

(2.31) 

supA.maxl:in(9) < oo V'9 E Er, where (2.32) 
i.n 

A..n.x denotes a maximum eigenvalue of a matrix and lUI stands for the Euclidean norm of a 

matrix. The covariance matrices l:in ( 9) are linear functions of 9 E 0 such that they are 

semi-positive definite for each i and n. The vector of variance-covariance components, 9, 

is said to belong to the interior of the parameter space 0 if 

(2.33) 

Assuming multivariate normality of I they prove that if the iterative process given by eqn. 

(2.28) converges then MLE is weakly consistent. Rao and Kleffe [1988] also prove that, 

if it exists, MLE is asymptotically efficient, and asymptotically normal with the asymptotic 

covariance matrix expressed by: 

(2.34) 
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If the matrix of normal equations, AT c: 1 A , is rank deficient, then its regular inverse may 
9 

be replaced by any generalized inverse. In particular, the generalized inverse may be 

computed by replacing the first order design matrix, A, by a matrix A • of dimension m by 

u·, with u· = rank(A), composed of any u*linearly independent columns ofthe matrix A, 

taking a regular inverse of the normal equations matrix [Harville, 1977], and augmenting 

the resulting matrix with u - u • rows and column of zeros. 

As reported by Jennrich and Sampson [1976], while the Newton-Raphson algorithm 

converges faster in the neighbourhood of the maximum, the Fisher scoring algorithm 

performs better farther away from the solution point, and shows better robustness toward 

poor starting values. If the starting values are very poor, the Newton-Raphson algorithm 

may converge to a point that is not the global maximum, and in some instances it may not 

converge at all [Harville, 1977]. Since the expected values of second-order partial 

derivatives of the log-likelihood function 1M are easier to compute than the derivatives 

themselves [Harville, 1977], the Fisher scoring method requires less computer time than 

the Newton-Raphson procedure. This is achieved, however, at the expense of a slower 

rate of convergence. In addition, the Fisher scoring method provides the user directly 

with the asymptotic covariance matrix of the estimates, without the need for additional 

computations, as is the case with the Newton-Raphson method. 
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Ifthe constraints on the parameter space E> (see eqn. (2.1)), requiring that the covariance 

matrix C0 is positive definite, are imposed, then the maximization problem to be solved is 

of the nonlinear constrained optimization type. Harville [1977] proposes the following 

methods for the solution of the maximum likelihood problem with constraints: 

1. The interior methods, belonging to the family of the penalty techniques, that force 

each iterate to stay within the constraint space by subtracting a penalty function (the 

penalty increases to infinity at the boundary of the constraint space) from the original 

likelihood function. 

2. The gradient projection technique that projects the original search direction (the 

direction obtained by the unconstrained gradient method) onto the space defined by 

the active constraints. 

3. The transformation technique that, by the transformation of the variables, transforms 

the constrained maximization problem into the unconstrained one. 

With any of the above given numerical methods (1, 2 or 3), poor choice of the 

approximate starting values may adversely affect the final results, resulting in estimates 

that are not the ML estimates of the vector of variance-covariance components [Koch, 

1986]. Even if the starting values are carefully chosen [Harville, 1977] there is, in general, 

no assurance that the solution to the maximization problem will yield the ML estimates. 

Harville [ 1977] suggests that one of the possible solutions to this problem would be to 

perform several computations using different starting points. If all of these computations 
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result in the same estimates, then one can be reasonably sure that the ML estimates have 

been found. 

A 

The ML estimator of the vector of variance-covariance components, e , is translation 

invariant (see [Harville, 1977] and [Rao and Kleffe, 1988]); however, it is biased as it 

does not take into account the loss of the degrees of freedom resulting from the estimation 

of the vector of location parameters x. 

Not much is known about the small sample properties ofML estimators [Scholz, 1985], 

and the asymptotic covariance matrix may be unrealistic for samples of small size. 

Numerically, the ML estimation is identical to the iterated MINQE with the condition of 

invariance: IMINQE(I) [Rao, 1979]. 

2.2.2 Restricted Maximum Likelihood (REML) 

The Restricted Maximum Likelihood (REML) method of estimation of variance-

covariance components constitutes an extension of the ML method. As in the ML 

estimation method, the REML method requires that the probability density function of the 

vector of observations is specified. Again, the vector of observations is customarily 

assumed to have the multivariate normal distribution. In contrast to the ML method, 

however, the REML estimators are obtained by maximizing the likelihood function of the 

vector of linearly independent error contrasts, as opposed to the maximization of the 
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likelihood function of the vector of observations in the ML method. The vector of error 

contrasts is defined by Searle [ 1979] as a vector of linear combinations of observations 

that are invariant to Ax. This may be thought of as a projection of the vector of 

observations, I, onto the orthogonal complement of a space defined by the column vectors 

ofthe first order design matrix A [Koch, 1986]. It can be proven (see [Harville, 1977] or 

[Searle et al., 1992]) that, ifKTI is such a vector, then: 

(2.35) 

which is equivalent to K being a product of matrices U and N, where: 

(2.36) 

is a projection matrix, and U is any matrix of full row rank, 

rank(U) = m-rank(A) = m-u*. (2.37) 

It can be proven that the REML method is invariant with respect to the choice of the error 

contrasts. The resulting likelihood function differs only by a constant when an alternative 

set oflinearly independent error contrasts is chosen [Harville, 1977]. 

* The resulting (orthogonal complement) likelihood function LR, which is a likelihood 

function of the vector of error contrast, is a function of the vector of variance-covariance 

components, e, and does not depend on the vector oflocation parameters x. It is given by 

Searle et al. [1992] as: 
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which differs only by a proportionality factor [Harville, 1977] from an alternative 

expression: 

(2.39) 

where (see [Searle et al., 1992] and [Rao and Kleffe, 1988]): 

( T )-I T Ra = K K C9K K , and, (2.40) 

under the assumption that KTK =I and KKT = N (see eqn. (3.43), 

(2.41) 

As reported by Harville (1977], all statistical inferences concerning REML estimation are 

based on m-u • linearly independent error contrasts. As a result, it makes no difference 

which subset of error contrasts is used for estimation, as the likelihood function for any 

subset differs only by a proportionality factor. In particular, if the matrix of normal 

equations, AT c;1 A, is rank deficient, then its regular inverse may be replaced by any 

generalized inverse without affecting the results of estimation. One of the possible 

choices for a generalized inverse is the regular inverse of the dimension u • by u •, with u • = 

rank( A), of the reduced normal equations matrix (A*) T c;1 A • -with A • being an m by u • 

matrix composed of any u • linearly independent columns of the matrix A - augmented by 

• u-u rows and columns of zeros. In subsequent formulae, whenever the regular inverse is 
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used, it will be implicitly understood that in the case of rank(A)<u, the matrix A will be 

replaced by A • and the number of unknown location parameters, u, will be replaced by u •. 

Instead of maximizing the orthogonal complement likelihood function, its natural 

logarithm can be maximized: 

or, alternatively: 

(2.43) 

The REML estimation method can also be viewed as an application of the method of 

maximum likelihood to the marginal likelihood function (see, e.g., [Koch, 1988], [Koch, 

1990] or [Searle et al., 1992]) obtained from the original likelihood function LM by 

integrating the vector of location parameters, x, in the following way: 

-co -co -co -co 
(2.44) 

The marginal log-likelihood function resulting from the natural logarithm of the marginal 

likelihood function LR, 

(2.45) 
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is identical, up to a constant c, to the orthogonal complement log-likelihood function 

shown in eqn. (2.43). 

The first derivative ofthe log-likelihood function 1~, eqn. (2.42), with respect to the i-th 

variance-covariance component is computed as follows: 

1 at1 K(K1c9Kr1K11 

2 rei 
(2.46) 

which on using eqn. (2.40) becomes 

(2.47) 

Then, using (see, e.g., (Searle et al., 1992]) 

8lniAI = tr(A _1 8A) 
aa. aa. ' 

I I 

(2.48) 

which holds for a regular symmetric matrix A being a function of~' and using (see, e.g., 

[Koch, 1990]) 

(2.49) 

we get 

(2.50) 

and because of eqn. (2.40) 
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01~ 1 tr( ) 1 T -=-- RaT +-1 RaTRal 00· 2 ., l 2 ., I ., • 
I 

(2.51) 

Similarly, the first derivative of the log-likelihood function 1;, eqn. (2.43), with respect 

to the i-th variance-covariance component can be derived by computing the following 

derivatives: 

01; _ 1 Oinlca I .!. OlniA r C91 AI .!. 01 r Rei 
ooi - 2 ooi 2 ooi 2 ooi · (2.52) 

Using eqn. (2.48) and eqn. (2.49), we get 

(2.53) 

This becomes, on using (see, e.g., [Searle et al., 1992]) 

(2.54) 

(2.55) 

which is identical to eqn. (2.51). 

Thus, the vector of likelihood scores is for all three log-likelihood functions given as: 

(2.56) 
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The Hessian matrix is given by Searle et al. [1992] as: 

The Restricted Maximum Likelihood method is also known as the Marginal Maximum 

Likelihood (MML) method (see, e.g., [Rao, 1979] or [Rao and Kleffe, 1988]}. The 

REML (MML) estimator of the vector of variance-covariance components 9 is defined as 

the value, e ' that maximizes the orthogonal complement (marginal) log-likelihood 

function, subject to the condition that the vector 9 belongs to the parameter space e, and 

is given by Harville [1977] as: 

(2.58) 

If the constraints imposed by the definition of the parameter space E> are ignored, then the 

maximization problem to be solved is of the nonlinear, unconstrained optimization type. 

As in the ML estimation method, the two numerical methods that have been most widely 

used in the context of the REML estimation of variance-covariance components are: 

(1} The Newton-Raphson method (see, e.g., [Jennrich and Sampson, 1976], [Harville, 

1977] and [Searle et al., 1992]) which gives the (i+ 1 )-th iterate of the vector of variance-

covariance components, 9, as: 
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(2.59) 

where: 

HR (a) is the Hessian matrix, and 

sR (a) is the vector of likelihood scores. 

(2) The Fisher scoring method (see [Jennrich and Sampson, 1976] and [Searle et al., 

1992]), which in the (i+1)-th iteration produces the following estimate of the vector of 

variance-covariance components a: 

where: 

(2.61) 

is the information matrix. 

Taking into account that [Searle et al., 1992]: 

one gets the following set of scoring equations: 
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(2.63) 

In the limit, eqn. (2.63) gives the REML estimator of the vector of variance-covariance 

A 

components 9. 

Under the Hartley- Rao conditions (see Subsection 2.2.1) the asymptotic properties ofthe 

REML estimates of variance components are the same as the asymptotic properties of the 

ML estimates, since REML essentially constitutes only a reparametrization ofML [Silvey, 

1975]. 

A proof that, under certain conditions, REMLE is weakly consistent, asymptotically 

efficient, and asymptotically normal, with the asymptotic covariance matrix : 

(2.64) 

can be found in Rao and K.leffe [1988]. 

If the constraints on the parameter space 0 are not ignored, then the maximization 

problem given by eqn. (2.58) is of the nonlinear, constrained optimization type. The 

nonlinear constrained optimization techniques, listed in Subsection 2.2.1 in the context of 

ML estimation, may also be applied to such estimation problem. 
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In general, the REML method suffers from the same problems as the ML method, i.e., the 

problems concerned with the appropriate choice of the approximate starting values of 

variance-covariance components, and the problems with estimates falling outside of the 

parameter space e. 

As the REML estimators account for the loss of degrees of freedom resulting from 

estimation ofx, they are unbiased. For balanced data, the REML solutions are identical to 

the ANOVA estimates [Searle, 1987]. Numerically, the REML estimation is identical to 

the iterated MINQE with the conditions of invariance and unbiasedness: IMINQE(U,I) 

[Rao, 1979]. REML is also numerically equivalent to the iterated BIQUE. 

2.3 Bayesian Methods 

2.3.1 Bayesian Approach to the Estimation of Variance-Covariance Components -

General Formulation 

As in the maximum likelihood methods, the Bayesian methods require that the distribution 

function of the vector of observations is specified. In contrast to the other methods, 

however, the Bayesian methods treat the unknown variance-covariance components as 

random quantities. The Bayesian methodology requires, therefore, that some distribution 

function (prior probability density function) is assigned to the vector of variance­

covariance components, expressing the existing prior knowledge about this vector. 
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Application of the Bayes' Theorem results in the posterior density function, that is later 

used to find estimates of the vector of variance-covariance components. 

The Bayes' Theorem (as applied to the problem of estimation of variance-covariance 

components) states that the posterior probability density function, p(e11), of the vector of 

variance-covariance components, e, given the vector of observations, I, is proportional to 

the product of the prior probability density function, p(e), of the vector of variance-

covariance components, a, and the likelihood function, p(11e), (probability density 

function of the vector of observations, I, given the vector of variance-covariance 

components 6): 

p(eii) = cp(e)p{lle). (2.65) 

The proportionality factor, c, is given as: 

(2.66) 

where the density function of the vector of observations, p(l), may be obtained from the 

joint density function ofl and e, p(1,6), as a marginal density: 

(2.67) 
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A linear model with unknown variance-covariance components, which is equivalent to the 

general mixed model, eqn. (2.1), ofthe classical (non-Bayesian) approach, is defined by 

Koch [1987] as: 

(2.68) 

where: E{ II x) is the expected value of the vector of observations, I, under the condition 

that the vector of location parameters, x, is given, 

A is a given first order design matrix, 

x is the random vector of location parameters with prior probability density 

function p(x), 

T 1, ... , Tr are given, linearly independent, symmetric matrices, 

a is the random vector of variance-covariance components with prior probability 

density function p(a), 

e is the set of all a E E r such that 

:o( II a) - the covariance matrix of the vector of observations I - is positive definite. 

Under the linear model with unknown variance-covariance components, eqn. (2.68), and 

under the assumption that the vector of observations, I, is normally distributed, the 

likelihood function (the density function of the vector of observations, I, given the 

parameters x and a), is identical to the ML likelihood function LM, eqn. (2.18). This is 

given by Koch [1987] as: 
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(2.69) 

As indicated by Harville [1977], the preferable approach is to avoid dealing with the full 

likelihood function, eqn. (2.69), and use a marginal likelihood function instead, i.e., a 

function that does not depend on the vector of location parameters x. To obtain the 

likelihood function, p{tl9), that depends only on the vector of variance-covariance 

components, 9, the vector of location parameters, x, is removed through integration of the 

likelihood function p( 11 x, 9). The resulting marginal likelihood function: 

(2.70) 

is identical to the marginal likelihood function LR, eqn. (2.44), and differs only by a 

proportionality constant from the orthogonal complement likelihood function L'; , eqn. 

(2.39), which serves as a basis for the REML estimation. 

As in the REML estimation method, the problem of rank deficiency of the matrix of 

normal equations, AT Cj;1 A, may be dealt with by replacing the first order design matrix, 

A, by an m by u • matrix A • comprised of any u • linearly independent columns of the 

matrix A, with u • = rank( A). 

Koch [ 1990] proposes two approaches to the problem of the choice of the prior 

probability density function for the vector of variance-covariance components e. 
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In the first approach, it is assumed that there is no prior information concerning the vector 

9. The so-called noninformative prior (Jeffiey's prior) probability density function (see, 

e.g., [Harville, 1977] or [Koch 1990]) is chosen for the prior probability density function, 

which is proportional to the square root of the determinant of the information matrix 

JR(9)- associated with the marginal likelihood function LR: 

(2.71) 

where: 

(2.72) 

The posterior probability density function, p(91t), of the vector of variance-covariance 

components, 9, given the observations, I, resulting from the application of Bayes' 

Theorem, is then: 

The posterior probability density function, eqn. (2. 73), is later used to find the Bayes 

estimate of the vector of variance-covariance components. It is also used for the purpose 

of interval estimation and testing of statistical hypotheses. 
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In the second approach, Koch [1990] assumes that there exists some prior information 

about the vector of variance-covariance components e, and that the vector of variance-

covariance components is composed of the sub-vector of variance components being 

strictly positive, and the sub-vector of covariance components which can take both 

positive and negative values. 

Koch [1990] asserts that, since the variance components admit only positive values, the 

choice of the prior probability density function for these components must reflect this fact. 

Two alternatives for the choice of the prior distribution function for the variance 

components are given: 

(1) the inverted gamma distribution, which, assuming that the o variance components are 

independent, has the following probability density function: 

(2.74) 

with: bi > 0, Pi> 0, and 0 <8i <oo, fori= 1,2, ... ,0, 

where: eo. is the prior value (mean of the prior distribution) of the i-th variance 
I 

component, and 
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Valli is the variance of the prior distribution for the i-th variance component, 

and (2) the truncated normal distribution, which, assuming that the o variance components 

are independent, has the probability density function of the following form: 

(2.75) 

with: k2i > 0, and 0 < ei < oo, fori= 1,2, ... ,0' 

where: 90. is the prior value of the i-th variance component, 
I 

Ve0. is the variance of the prior information for the i-th variance component, and 
I 

kti and k2i are the parameters of the truncated normal distribution for i-th variance 

component. 

The truncated normal distribution is a valid choice for the prior probability density 

function provided the relationship ve < e~. holds. 
oi 1 

Arguing that since the (r-o) covariance components, compnsmg the sub-vector of 

covariance components may take both positive and negative values, Koch [1990] proposes 

the multivariate normal distribution for a prior. The probability density function of this 

form of prior, assuming that the (r- o) covariance components are independent, is: 

(2.76) 
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In his choice of informative priors Koch [1990] does not take into account constraints on 

the parameter space, 8, implied by the requirement of positive definiteness of the 

covariance matrix C9. The only constraint on the parameter space assumed by Koch 

[1990] is that the variance components are strictly positive. There are no constraints on 

the sign of covariance components. As a result, it is possible to find such a set of variance 

and covariance components (with variance components being positive numbers) for which 

the covariance matrix C9 is negative definite [Gupta, 1995]. Moreover, the normal 

distribution, used as a prior for the covariance components, assigns positive probability to 

impossible situations, such as the case when the covariance matrix is negative definite 

[Knight, 1995]. 

2.3.2 Bayes Estimation 

As indicated before, estimation of the vector of variance-covariance components is based 

on the posterior probability density function. The estimation process may be viewed as a 

statistical decision problem (see, e.g., [Silvey, 1975] or [Koch, 1990]), with an associated 

loss function r..(e,a). The posterior expected loss ofthe estimation is defined as: 

E[r..(e,a)] =Jr..( a, a) p(el•)de . 
® 

(2.77) 
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A Bayes estimator is defined as the value 0 that minimizes the posterior expected loss. 

The statistical decision that minimizes the posterior expected loss is called the Bayes rule 

[Koch, 1990]. 

If the quadratic loss function, 

L(e,9) = (e-9) T P(e-9), (2.78) 

with P being a positive definite matrix of constants, is chosen, then it can be proven 

[Koch, 1990) that the Bayes estimator is given by the expected value of the vector of 

variance-covariance components, e, computed with the posterior probability density 

function, p{elt), as: 

(2.79) 

The covariance matrix of the Bayes estimate, 98 , is given by Koch [1990] as: 

var(8) = E{[e- E(8})[8- E(8))T} = f[a- E(8})[8- E(8))T p{ajt)d8 . (2.80) 
e 

Regardless of whether the informative or noninformative priors are used, the integral in 

eqn. (2. 79), required to get the Bayes estimate, the integral in eqn. {2.80), required to get 

its covariance matrix, and the integral in eqn. (2.67), required to get the proportionality 

constant, cannot be solved analytically [Koch, 1990). Numerical integration techniques, 

such as the Monte Carlo methods, have to be applied to solve for these quantities. 
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2.3.3 Interval Estimation and Hypothesis Testing 

The posterior probability density function, p( 911), may also serve for interval estimation of 

the vector of variance-covariance components, 9, or in other words, for the computation 

of the confidence regions. A Bayesian confidence region of content 1-a, also called a 

region of highest posterior density (see, e.g., [Koch, 1990]), is defined as the subspace B 

of the parameter space E> that satisfies the following conditions: 

P(e E BII) = I p(9II)de = 1-a, and 
B 

(2.81) 

Regardless of whether the informative or noninformative priors are used, the integral in 

eqn. (2.81), required to get the Bayesian confidence region of the vector of variance-

covariance components, cannot be solved analytically [Koch, 1990]. Numerical 

integration techniques have to be applied to find the solution. 

The posterior probability density function p(e11) can be used for the hypotheses testing. A 

statistical testing of a null hypothesis Ifo: 9 E 0 0 versus an alternative hypothesis H1: 

9 E E>I> can be viewed as a statistical decision problem, with an associated loss function L: 
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=0 for t=J 

T 1e E 0· H·) ~ 1> J with i,j E {o,1}. (2.82) 

:;t: 0 for i :;t: j 

Applying the Bayes rule to the posterior expected losses for accepting ~ versus H1, 

under the assumption that 0 1 is the complement of 0 0 one gets the following rule [Koch, 

1990]: 

(2.83) 

where: 

(2.84) 

Ifthe same loss is assigned to both incorrect decisions, i.e., rejection of the null hypothesis 

if it is true, or acceptance of the null hypothesis if it is not true, then the ratio given by 

eqn. (2.83) is reduced to the ratio of posterior probabilities, called the posterior odds, 

resulting in the following rule: 

(2.85) 

If the simple hypothesis is tested, i.e.,~: e = 90 versus H1: 9 = 9 1, and the same loss is 

assigned to both incorrect decisions then the posterior odds are reduced to the ratio of the 
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values of the posterior probability density function computed at eo and el, resulting in the 

following rule: 

(2.86) 

Regardless of whether the informative or noninformative priors are used, the integral in 

eqn. (2.84), required to compute the posterior odds, cannot be solved analytically 

[Koch, 1990]. Numerical integration techniques have to be applied to find the solution. 

The simple hypotheses can, however, be tested without any additional computational 

effort, using eqn. (2.86). 

2.3.4 Generalized Maximum Likelihood (GML) Estimation 

It may be argued (see, e.g., [Lindley and Smith, 1972] or [Harville, 1977]) that, with the 

exception of trivial cases, the computational effort involved in solving for the 

proportionality factor, eqn. (2.66), and the Bayes estimate of the variance-covariance 

components, eqn. (2. 79), makes the task impractical. Because of this fact, it is sometimes 

proposed (see, e.g., [Harville, 1977] or [Koch, 1990]) that the expected values are to be 

replaced by the modal values, which are obtained by applying the principle of maximum 

likelihood estimation to the posterior probability density function p{ eli). The resulting 

estimator is known as the Generalized Maximum Likelihood (GML) estimator, or the 

Maximum a Posteriori (MAP) estimator [Koch, 1990]. 
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Similar to the maximum likelihood approach, instead of maximizing the posterior 

probability density function, p(e11), itself, one may maximize its natural logarithm: 

(2.87) 

The GML estimator ofthe vector of variance-covariance components, 9, is defined [Koch, 

1990] as the value, e' that maximizes the natural logarithm of the posterior probability 

density function lp, subject to the condition that the vector 9 belongs to the parameter 

space 0 - defined by the requirement of positive definiteness of the covariance matrix (see 

eqn. (2.68)): 

lp(e) = SUPe lp' subject toe E e . (2.88) 

If the constraints on the parameter space are ignored, then one of the numerical methods 

for non-linear unconstrained optimization, such as the Newton-Raphson or the Fisher 

scoring method (see Section 2.2), may be applied to solve eqn. (2.88). 

It can be proven (see Appendix B) that, under certain regularity conditions GML 

estimators are asymptotically normal with the covariance matrix given by the inverse of 

the information matrix, Jp, computed at e : 

(2.89) 
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where, 

Jp(O) = _,J{m :.~. }r J · l I J i,j=l 

(2.90) 

Asymptotic properties of GML estimators are analyzed in Appendix B. 

To obtain the exact confidence regions, e.g., the highest posterior density regions (see 

eqn. (2.81)), numerical integration techniques have to be applied. Similarly, numerical 

integration has to be applied to compute the posterior odds, eqn. (2.85), required for 

testing statistical hypotheses involving the estimated vector of variance-covariance 

components. 

If the noninformative prior is used, then, as reported by Harville [1977], for the ordinary 

fixed ANOV A model, the GML estimation method produces estimated variance 

components having uniformly smaller mean squared error than both the ML and the 

REML estimates. 

The GML estimated variance-covariance components are not, in general, unbiased. 

With the exception of simple ANOVA models [Harville, 1977], the GML method has not 

yet been applied to the estimation of variance-covariance components. As the problem of 

GML estimation for the more general models has not been solved yet, it will be the subject 

of investigation in Chapter 3 of this thesis. 
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2.4 Criteria-Based Methods 

All criteria-based methods approach the problem of estimation of the vector of variance-

covariance components by seeking a quadratic estimator, y = ITMI (where M is a 

symmetric matrix to be determined), of a linear combination of the variance-covariance 

components, y =pTe (where p is a known vector), that minimizes a certain optimality 

criterion, such as the norm, the variance or the mean squared error, subject to some 

constraint, such as translation invariance or unbiasedness. 

The quadratic estimator, y = ITMI, is said to be translation invariant if (see, e.g., [Rao 

and Kleffe, 1988]): 

(2.91) 

which is equivalent to: 

MA=O. (2.92) 

The translation invariance property is especially desirable in the case of geodetic networks 

where it implies that, regardless of the definition of the origin of the coordinate system in 

which the network is coordinated, the results of the estimation of variance-covariance 

components do not change. 

The quadratic estimator, y = IT M I, is said to be unbiased for y = p T 8 if and only if (see, 

e.g., [Rao and Kleffe, 1988]): 
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(2.93) 

which is equivalent to: 

(2.94) 

2. 4.1 Minimllm Norm Quadratic Estimation (MINQE) 

The Minimum Norm Quadratic Estimation method (MINQE) was developed by Rao 

[1971a]. Given the general mixed model, eqn. (2.1), the principle of the method is to 

minimize the norm of the difference between a quadratic estimator, y =11M I, of a linear 

combination ofthe variance-covariance components, y = p19, and the "natural estimator", 

y 0 =v1Av, of y. The difference between the quadratic estimator, y, and the "natural 

estimator'', y n, is given by Rao and Kleffe [1988] as: 

Y-Yn = 11 MI-v1 Av= (Ax+v) 1 M(Ax+v) -v1 Av 

= x TAT MAx+ x TAT Mv + v T MAx+ v 1Mv- v T A v (2.95) 

Minimization of the norm of the difference between the quadratic estimator, y , and the 

"natural estimator'', y n, eqn. (2.95), is equivalent [Rao and Kleffe, 1988] to minimization 

ofthe norm: 
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(2.96) 

The MINQE of y =pTa is therefore a quadratic form y = ITMI, where M is chosen to 

minimize the norm given by eqn. (2.96), for a suitable choice of norm (subsequently 

assumed to be the Euclidean norm). 

By imposing constraints on the estimator y, we get the following types ofMINQEs: 

1. Unbiased: MINQE(U), 

2. Invariant: MINQE(I), 

3. Unbiased and invariant: MINQE(U,I). 

For other types ofMINQEs see [Rao and Kleffe, 1988]. 

The concept of the "natural estimator'' is, in the general case, somewhat intuitive. Rao 

and K.leffe [1988] give the following development for the definition of the "natural 

estimator'', starting from the simplest model being the Gauss-Markov model with the 

unknown variance factor a=~: 

I=Ax+v, v-(O,Ca =ai). (2.97) 

Under the condition that the vector of location parameters, x, is known, the natural 

estimator of a is then given as: 
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(2.98) 

The concept of the "natural estimator'' can be easily extended to the following variance 

components model: 

I= Ax+v, with 

(2.99) 

where Ti is a diagonal matrix that has its IDj elements being equal to one on the diagonal, 

in positions whose indices correspond to the indices of the IDj elements of the sub-vector 

vi of the vector of unobservable random errors, v, and zeros elsewhere. Under the 

condition that the vector of location parameters, x, is known, the "natural estimator" of 

r 
the linear combination of the variance components, 'Y = Lpiei =pre, is 

i=1 

r( v!v.J r(p. l r [r ] y =L p.-1- 1 =Ll-1 vrT.vj=L(J.L.vrT.v)=vT !:(J.L.T.) v=vrAv, (2.100) 
D ·-I I m ·-I m I ._1 I I ._1 I I 

1- i 1- i 1- 1-

where the vector J.1 = (J.LI> J.L2, ... , J.l.r) T can be thought of as a solution to the following 

linear equation: 

(2.101) 

or, taking into account eqn.(2.99), 

{d m.}~ J.L=p. 
1 1=1 

(2.102) 

61 



By analogy to the variance components model given by eqn. (2.99), the concept of the 

"natural estimator'' is finally extended to the general mixed model (eqn. (2.1)). 

Under the assumption that the vector of location parameters, x, is known, the "natural 

estimator'' of the linear combination of the variance-covariance components, 

r 
y = ~Piei =pTe, is given as: 

i=l 

(2.103) 

where the vector J.1 = (JJ.1, JJ.2 , ... , J.lr) T is a solution to the following linear equation: 

(2.104) 

The MINQE(U,I) - Unbiased and Invariant - of y is obtained by minimizing the Euclidean 

norm given by eqn. (2.96) subject to the condition of unbiasedness, eqn. (2.94), and 

invariance, eqn. (2.92). Minimization of this norm results in the set of linear equations, 

given by Rao [1979] as: 

(2.105) 

where: 

(2.106) 
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(2.107) 

(2.108} 

with 9 being the initial vector of approximate variance-covariance components. The 

MINQE(U,I) of'Y =pre is y =pre, where S is a solution to eqn. (2.105). 

The MINQE(U) - Unbiased - of 'Y is obtained by minimizing the Euclidean norm given by 

eqn. (2.96) subject to the condition of unbiasedness, eqn. (2.94). This minimization 

results in the set oflinear equations, given by Rao [1979] as: 

where: 

s -e=q -· UO U9 
(2.109) 

(2.111) 

(2.112) 

with Xo and K being the prior value and dispersion ofx, respectively. The MINQE(U) of 

'Y =pTe is y =pre, where S is a solution to eqn. (2.109). 
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The MINQE(I) - Invariant - of y is obtained by minimizing the Euclidean norm given by 

eqn (2.96) subject to the condition of invariance, eqn. (2.92). Minimization of this norm 

results in the set oflinear equations, given by Rao [1979] as: 

s -9= q -, 
19 UI9 

(2.113) 

where: 

(2.114) 

The MINQE(I) ofy =pTa is y =pTe, where a is a solution to eqn. (2.113). 

The MINQE estimates, which are computed with the initial vector of approximate 

variance-covariance components, may be used as a new set of approximate values for 

recomputing MINQE. The limiting estimator, if it exists, is called IMINQE (Iterated 

MINQE). The iterative procedure yields estimators that are, in general, not dependent on 

the choice of initial values. The (i+ 1 )-th iterated MINQE is a solution of 

(2.115) 

A 

where: 9(i) is the MINQE from the i-th iteration, 

S is identical to either Sm, eqn. (2.1 06), Su, eqn. (2.11 0), or ~' eqn. (2.114), and 

q is identical to either qUI, eqn. (2.1 07), q0, eqn. (2.111 ), or qUI, respectively. 

The limiting value, if it exists, satisfies the equation: 
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(2.116) 

which is called the IMINQE equation. All three types of MINQE: (U,I), (U), or (I), can 

be solved for by applying the iterative procedure shown in eqn. (2.115). The limiting 

estimators are called IMINQE(U,I), IMINQE(U), and IMINQE(I), respectively. 

The IMINQE(U,I) may exist as a solution to eqn. (2.116), although it does not have to be 

approached through the sequence of estimates following the iterative procedure shown in 

eqn. (2.115). An alternative computational scheme exists (see [Rao, 1979] and [Rao and 

Kleffe, 1988]), which preserves the sign of the variance-covariance components at each 

iteration step. This procedure, called the Iterated Almost Unbiased Estimation (lAUE) 

(cf. Subsection 2.4.4), gives the estimate of the k-th variance-covariance component, 

resulting from the (i+ 1 )-th iterative step, as: 

(2.117) 

The IMINQE(U,I) estimators are globally best, invariant, almost unbiased, asymptotically 

normal, consistent (provided MINQE(U,I) itself is consistent), and efficient in the class of 

invariant asymptotically normal estimators. The asymptotic covariance matrix of the 

IMINQE(U,I) of the vector of variance-covariance components is given by Rao and 

Kleffe [1988] as: 
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( ") -1 var e = 2Sme. (2.118} 

Numerically, IMINQE(U,I) is identical to the REML estimation and to the Iterated 

BIQUE. IMINQE(I} is numerically equivalent to the ML estimation of the variance-

covariance components. 

2.4.2 Best Quadratic Estimation (BQE) 

The general algorithms for the Best Quadratic Estimation (BQE) of variance-covariance 

components in the general mixed model, eqn. (2.1}, were developed by LaMotte [1973]. 

The Best Quadratic Estimation method is a generalization of the concept of Best 

Quadratic Unbiased Estimation (BQUE) by Townsend and Searle [1971]. 

The problem at hand is to find a quadratic estimator, y = ITMI, (where M is a symmetric 

matrix to be determined) of a linear combination of variance-covariance components, 

y =pTe, (where pis a known vector) that has minimum mean squared error. The mean 

squared error of an estimator y ofy is defined (see, e.g., Read (1985]) as: 

(2.119} 

where b is the bias. 

Under the assumption that the vector of observations, I, is normally distributed [LaMotte, 

1973], the objective function, being the mean squared error of y, has the following form: 
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The mean squared error of y, eqn. (2.120), is subsequently minimized subject to the 

conditions ofunbiasedness, eqn. (2.94), or both invariance, eqn. (2.92), and unbiasedness. 

Under the condition ofunbiasedness (eqn.(2.94)) the bias term in eqn. (2.120) disappears 

and the mean squared error of y becomes identical to the variance of y : 

(2.121) 

The Best Quadratic Unbiased Estimator (BQUE) of y is obtained by minimizing the mean 

squared error, eqn. (2.120), subject to the condition of unbiasedness, eqn. (2.94). 

Minimization results in the following set of linear equations, given by Searle et al. [1992] 

as: 

(2.122) 

where: 

(2.123) 

(2.124) 

(2.125) 

(2.126) 
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with e and xo being the pre-assigned values for the vector of variance-covariance 

components and the vector oflocation parameters, respectively. The BQUE of y =pTe is 

y = p T9, where 9 is a solution to eqn. (2.122). 

The Best Invariant Quadratic Unbiased Estimator (BIQUE) ofy is obtained by minimizing 

the mean squared error, eqn. (2.120}, subject to the condition of unbiasedness, eqn. 

(2.94}, and invariance, eqn. (2.92). Under the condition ofinvariance, the second term in 

the expression for the mean squared error disappears, and the objective function to be 

minimized is of the following form: 

(2.127) 

Minimization of eqn. (2.127) results in the set of linear equations, given by Caspary 

[1987] and Searle et al. [1992] as: 

(2.128) 

where Sma is given by eqn. (2.106) and qUia is given by eqn. (2.107). The BIQUE of 

y =pTe is y = p T9, where 9 is a solution to eqn. (2.128). Numerically, BIQUE is 

identical to MIVQUE (under the assumption that the vector of observations is normal}, 

and to MINQE(U,I}. 

The BIQUE estimator, which is computed with a pre-assigned vector of approximate 

variance-covariance components, is only locally best. In order to obtain globally best 

estimate, an iterative procedure must be employed. Estimates of the variance-covariance 
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components from the initial step are used as the new approximate values for the next 

iteration step. The iteration process is continued until convergence is achieved. The 

Iterated BIQUE is numerically equivalent to IMINQE(U,I), and to the REML estimation. 

2.4.3 Minimum Variance Quadratic Unbiased Estimation (MIVQUE) 

The Minimum Variance Quadratic Unbiased Estimation algorithm can be found in [Rao, 

1971b]. Given the general mixed model, eqn. (2.1), the principle ofMIVQUE [Swallow 

and Searle, 1978] is to find an unbiased and invariant quadratic estimator, y = ITMI, 

(where M is a symmetric matrix to be determined) of a linear combination of variance-

covariance components, y =pre, (where p is a known vector) that has the minimum 

variance property: 

ar( ) 2 ( a term depending on M ) 
v ITMI = 2t~C9M} + d th ku . =minimum. 

an e rtosts parameters 
(2.129) 

In the general case, i.e., with the vector of observations having unspecified distribution, 

the variance of the quadratic form y = IT M I is a function of the moments of the vector of 

observations- up to the fourth order. 

If the condition of normality is additionally imposed on the vector of observations, then 

the kurtosis parameters are identical to zero [Swallow and Searle, 1978], and the variance 

function to be minimized takes the following form: 
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(2.130) 

Under the assumption that the vector of observations is normally distributed the variance 

of this estimator is identical to the mean squared error given by eqn. (2.127}, and the 

Euclidean norm given by eqn. (2.96). As a result, MIVQUE is numerically equivalent to 

BIQUE, and to MINQE(U,I) [Swallow and Monahan, 1984]. 

2.4.4 Almost Unbiased Estimation (AUE) 

The concept of Almost Unbiased Estimation (AUE) was developed by Hom et al. [1975] 

and Hom and Hom [1975]. The AUE [Rao and Kleffe, 1988] relies on the principle of 

minimization of the following criterion: 

f(M) = 2tr( C9M)2 , (2.131) 

subject to the condition ofinvariance, eqn. (2.99), and "almost" unbiasedness: 

(2.132) 

where e is the initial vector of approximate variance-covariance components. 

If the initial, approximate values of the variance-covariance components are proportional 

to the true values, then AUE is unbiased [Lucas et al., 1985]. In reality, this condition is 

never satisfied, and the estimators are always biased. The bias, however, always remains 

relatively small- hence the name: Almost Unbiased Estimator. 
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The AUE of the k-th variance-covariance component is given by Forstner [1979a and 

1979b] and by Rao and Kleffe [ 1988] as: 

(2.133) 

where ek is the k-th component of the vector of initial, approximate values of variance-

covariance components. 

The AUE estimates can be used as approximate starting values for the next iteration. The 

limiting estimator, if it exists, is called the Iterated Almost Unbiased Estimator (lAUE) 

(cf Subsection 2.4.1). The lAUE estimate of the k-th variance-covariance component 

resulting from the (i+1)-th iterative step is expressed (see, e.g., [Rao and Kleffe, 1988]) 

as: 

(2.134) 

An interesting property of lAUE is that the variance-covariance components do not 

change sign through the entire iteration process [Hom and Horn, 1975]. This property is 

especially attractive in the context of estimation of variance components, which are by 

definition non-negative, and would remain non-negative if the iterative process started 

with non-negative values. The lAUE can be regarded as an alternative computational 

method for solving the REML scoring equations, eqn. (2.63), or, equivalently, for 
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obtaining the IMINQE(U,I) - if the solution exists. The lAUE is slightly more 

computationally efficient than the Fisher scoring method when applied to REML 

estimation method, eqn. (2.63), or, equivalently, than the IMINQE(U,I) iterative 

procedure given by eqn. (2.125), as it does not require inversion of an r by r matrix at 

each iteration step. It should be pointed out that if r (the number of variance-covariance 

components) stays relatively small, then the gain in computational efficiency is 

insignificant. Moreover, the lAUE does not provide the asymptotic covariance matrix of 

the estimated variance-covariance components at each iteration step. 

2.5 Comparison of the Reviewed Methods 

Despite the fact that there exist a substantial number of various statistical methods for 

estimation of variance-covariance components for unbalanced data, most of these methods 

are numerically equivalent. In other words, even though each method is derived from 

different basic principles, the computational algorithms, and hence the numerical results, 

are, under certain restrictions, the same. 

As far as the computational procedures are concerned, the broadest classification of the 

discussed methods is classification into non-iterative and iterative methods. 

The non-iterative methods include: (i) general ANOV A methods with the Helmert-type 

estimation method as an example, (ii) MINQE methods, (iii) BQE methods, (iv) MIVQUE 

method, and (v) AUE method. The following relationships exist between these methods: 
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1. MINQE(U,I) is numerically equivalent to BIQUE, to MIVQUE under the restriction 

of normality of observations to AUE (under the assumption that the initial, 

approximate values of the variance-covariance components are proportional to their 

true values), to the Helmert-type estimation (for variance components only), and to 

the first step REML estimation. 

2. MINQE(I) is numerically equivalent to the first step ML estimation. 

The iterative methods include: (i) the iterated Helmert-type estimation method, (ii) the ML 

method, (iii) the REML method, (iv) GML methods, (v) Iterated MINQE methods, (vi) 

Iterated BQE methods, and (vii) the lAUE method. The following relationships exist 

between these methods: 

1. REML estimation is numerically equivalent to IMINQE(U,I), to iterated BIQUE, 

lAUE (which may be regarded as one of the algorithms for solution ofREML), and to 

the iterated Helmert-type estimation (for variance components only). 

2. ML estimation is numerically equivalent to IMINQE(I). 

From all the presented methods, only the Bayesian methods make a provision for 

introduction of prior information about the unknown variance-covariance components. 

While the computational approach of the GML method is similar to that of the maximum 

likelihood methods (ML and REML), the other two Bayesian methods, i.e., the Bayes 

estimation and the interval estimation (see Subsection 2.3.2 and Subsection 2.3.3), employ 

completely different computational procedures. It should be noted that both of these 
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methods (Bayes estimation and interval estimation) are computationally involved, and 

therefore impractical for all but trivial cases (cf. Subsection 2.3.4). 

As far as the general ANOV A methods are concerned, because of their non-uniqueness 

and lack of optimal properties, they should be regarded as inferior to the other presented 

methods for estimating variance-covariance components for unbalanced data. 
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CHAPTER3 

INTRODUCTION OF PRIOR INFORMATION: GML ESTIMATION 

OF VARIANCE COMPONENTS AND THE DISPERSION-MEAN 

MODEL WITH WEIGHTED CONSTRAINTS 

As shown in Section 2.3, application of the Bayesian methodology to the estimation of 

variance-covariance components results in the posterior probability density function, 

p{ 911), of the vector of variance-covariance components a. This posterior probability 

density function constitutes the foundation for subsequent estimation of a. Neither the 

Bayes estimation (see Subsection 2.3.2) nor the interval estimation (see Subsection 2.3.3) 

methods can be solved analytically. In general, they require extensive application of 

numerical integration techniques which, because these techniques are computationally 

intensive, makes them practicable only for variance-covariance models that involve a 

limited number of components. The Generalized Maximum Likelihood ( GML) 

methodology, on the other hand, is much simpler computationally, as it does not require 

numerical integration to get the point estimate of the vector of variance-covariance 

components. 
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The principle of the Generalized Maximum Likelihood estimation is applied in this chapter 

to the estimation of the variance components in the following variance components model: 

I=Ax+v, v-(o,C9 =8 1T1 +82T2+ ... +8rTr), (3.1) 

where: I is a vector ofm observations, 

A is a given first order design matrix, 

x is a vector of u unknown location parameters, 

v is a vector of m, normally distributed, unobservable random errors, 

T 1> ... , Tr are given, linearly independent, positive semi-definite diagonal 

matrices, and 

8 = (81> ... ,Or) is a vector ofr unknown positive variance components. 

In Sections 3.1 and 3.2, under the assumption that the constraints on the parameter space, 

implied by the requirement of positiveness of the variance components, are ignored, the 

Fisher scoring method is used to find a solution to the following non-linear unconstrained 

GML optimization problem: 

(3.2) 

where lp is the natural logarithm of the posterior probability density function. Two types 

of priors are used in this approach. First, the inverted gamma probability density function, 

eqn. (2.74), is used as an informative prior. Then, the Jeffrey's prior, eqn. (2.71), which is 

proportional to the square root of the determinant of the information matrix associated 

with the marginal likelihood function, eqn. (2.44), is used as a noninformative prior: this 
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expressing the lack of prior knowledge about the variance components. As the application 

of the Fisher scoring method requires that the expressions for both the information matrix 

and the vector of scores of the posterior probability density function are known, these two 

expressions - for both types of priors - are derived in this chapter. 

In Section 3.3, the principle of mixed estimation (see, e.g., [Bossler, 1972], [Belsley et al., 

1980], [Vanicek and Krakiwsky, 1986] or [Wells, 1990]) - which allows, in the least 

squares adjustment method, the introduction of prior information about the vector of 

location parameters, x, in the form of weighted constraints - is extended to the dispersion­

mean model. The dispersion-mean model reformulates the general mixed model, eqn. 

(2.1 ), in such a way that the resulting model is linear in terms of the vector of variance­

covariance components [Searle et al., 1992]. A link between the mixed estimation of the 

dispersion-mean model, i.e., estimation of the dispersion-mean model with weighted 

constraints, and the GML methodology is subsequently investigated. Finally, the form of a 

hypothetical prior probability density function, p(9), that would result in the estimating 

equations of the dispersion-mean model with weighted constraints, if the Fisher scoring 

method were applied to the GML optimization problem with such prior, is derived. 

With the exception of the dispersion-mean model with weighted constraints the covariance 

components are not investigated in this chapter. 
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To simplify the notation, in this chapter in all subsequent formulae, Re will be replaced by 

Rand Pe will be replaced by P. 

3.1 GML Estimation with Inverted Gamma Prior 

The prior distribution function of the vector of variance components is represented by the 

inverted gamma distribution (cf. Section 2.3.1) in this chapter. 

Assuming that the variance components are independent, the inverted gamma probability 

density function has the following form: 

J( 1 )pj+l I b·)l 
p(e) oc P{ ei ex~\- a: J 

with: hi> 0, Pi > 0, and 0 <9i < oo, fori= 1,2, ... ,r, 

e~. 
Pi=~+2,and 

9oi 

where eo. is the prior value (mean of the prior distribution) of the i-th variance 
1 

component, and 

(3.3) 

V9Di is the variance of the prior distribution for the i-th variance component. 

The posterior probability density function results from application of the Bayes' Theorem 

eqn. (2.65), which with the marginal likelihood function p(lle) = LR, eqn. (2.44), gives: 
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(3.4) 

Taking the natural logarithms ofboth sides we get: 

lp = ln(p(Sil)] = c+ln[p(S)]+ln(LR) = c+ln[p(e)]+lR 

= c- ±[(Pi+ 1)1n(ei)]- ±(bi)- _!_lnlcel- _!_lolA rc01AI- lrRI, 
i=l i=l ei 2 2 2 

(3.5) 

where c is some constant. 

3.1.1 Derivation of the Vector of Scores 

The expression for the vector of scores, which is defined as a vector of r partial first 

derivatives oflp with respect to the variance components Sk: 

(3.6) 

is derived from eqn. (3. 5). 

As seen in eqn. (3. 5), the vector of scores can be decomposed into the sum of the vectors 

of first derivatives of the natural logarithm of the prior, ln(p(S)] and the marginal log-

likelihood function lR, eqn. (2.45), as: 

(3.7) 
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where the first derivative of the marginal log-likelihood function is given by Koch [1990] 

as: 

(3.8) 

To get an expression for the vector of scores, the first derivative of the natural logarithm 

of the prior probability density function, ln(p(e)), is derived as follows. 

The partial first derivative of the natural logarithm of p(9) with respect to the k-th 

variance component is 

(3.9) 

As a result, the first derivative of the natural logarithm of the prior probability density 

function, ln(p(9)), with respect to the vector of variance components, is: 

= aln(p(e)) = { (lbk _ Pk + IJ}r 
spo ae c e2 e 

k k k=l 
(3.10) 

Taking into account the results of eqn. (3.7), eqn. (3.8), and eqn. (3.9) the vector of 

scores is finally given as: 
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(3.11) 

where sR is the vector of marginal likelihood scores (see eqn. (2.56)) and qR is the vector 

of quadratic forms of observations in the REML scoring equations (see eqn. (2.63)). 

3.1.2 Derivation of the Information Matrix 

The expression for the vector of scores, sp, eqn. (3 .16), is utilized in this chapter to derive 

the Hessian matrix, Hp, which is defined as an r by r matrix of second partial derivatives of 

the natural logarithm ofthe posterior probability density function, lp, with respect to the k-

th and m-th variance components, ek and em: 

{ 
&lp }r -&lp - asp 

HP = m 00 00 - 0000 - 00 . 
k m k,m=l 

(3.12) 

Subsequently, the information matrix, Jp, which is defined as a negative of the expected 

value (where the expectation is taken with respect to the vector of observations) of the 

Hessian matrix Hp, 

(3.13) 

is derived. 
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Accounting for the relationships given in eqn. (3.5), the Hessian matrix, Hp, can be 

decomposed into the sum of the Hessian matrix of the natural logarithm of the prior, 

ln(p(8)], and the Hessian matrix of the marginal log-likelihood function, lR, as: 

(3.14) 

where the Hessian matrix of the marginal log-likelihood function, HR (see eqn. (2.57)), is 

given by Koch [1990] and Searle et al. [1992] as: 

(3.15) 

The Hessian matrix of the natural logarithm of the prior probability density function, Hp0, 

is derived as follows. 

From the results of eqn. (3.10), with k :t: m, we find that the second partial derivative of 

the function ln(p(8)] with respect to k-th and m-th variance components is equal to zero: 

(3.16) 

With k = m, the second partial derivative of the function ln(p(8)] with respect to k-th and 

m-th variance components is found to be: 
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(3.17) 

As a result of eqn. (3 .16) and eqn. (3 .17), the Hessian matrix of the natural logarithm of 

the inverted gamma probability density function is given as: 

_ & ln(p(e)] _ { (Pk + 1 _ 2bk J}r 
H PO - Wa8 - d 2 3 · 

ek ek k=l 

(3.18) 

Finally, following from equations (3 .15) and (3 .18), we find the Hessian matrix of the 

natural logarithm of the posterior probability density function, lp, with the inverted gamma 

distribution function chosen for a prior, to be: 

The information matrix, JR, is subsequently derived from the Hessian matrix, eqn. (3 .19), 

as: 

(3.20) 

where JR is the marginal likelihood information matrix (see eqn. (2.61)), and is given by 

Searle et al. [1992] as: 
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Since the expectations in eqn. (3.20) are taken with respect to the vector of observations, 

I, the expected value of the Hessian matrix HPO is: 

(3.22) 

Therefore, the information matrix of the posterior probability density function, p( 811), with 

the inverted gamma distribution function chosen for a prior, is finally found to be: 

(3.23) 

J.l.J Application ofthe Fisher Scoring Method 

In this section the Fisher scoring method is used to obtain the estimating equations for the 

vector of variance components. Application of the Fisher scoring method to the natural 

logarithm of the posterior probability density function, lp, eqn. (3.5), yields the following 

expression: 

(3.24) 

A 

where: a(m) is the GML estimate of the vector of variance components from m-th 

iterative step, 

Jp is the information matrix, eqn. (3.23), and 
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Sp is the vector of scores, eqn. (3 .11 ). 

As shown in eqn. (3 .11 ), the vector of scores can be decomposed into two parts: 

Sp = Spo +SR, (3.25) 

where sro is the first derivative of the natural logarithm of the prior probability density 

function, eqn. (3 .1 0): 

_ Bln(p(9)] _ { (bk _ Pk + 1J}r 
spo - ae - c e2 e , 

k k k=l 

(3.26) 

sR is the vector of marginal likelihood scores: 

(3.27) 

qR is the quadratic form of observations in the REML scoring equations (see eqn. (2.63)), 

(3.28) 

Introducing the results of eqn. (3.23) and eqn. (3.25) into the Fisher scoring equations, 

eqn. (3.24), and making use ofthe following relationship (see, e.g., [Searle et al., 1992]): 

we get 
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Subtracting and adding the following product: 

(3.31) 

(where Sk(ml is the is the GML estimate of the k-th variance component from m-th 

iterative step) from the vector of scores, sp ( eqn. 3 .25), we get: 

S(m+l) = S(m) +[Jpo(S(m)) + JR(e(m))]-l 
x [spo(e(m)) + qR(e(m))- JR(e(m))e(m)- Jpo(e(m))e(m) + Jpo(e(m))e{m)] 
= [Jpo(e{m)) +JR(e(m))r1[spo(e<m)) +qR(e(m)) +Jpo(e(m))e(m)] 

(3.32) 

= [Jp(e<m))r1 qp(e<m)). 

with 

qp = Spo +qR +Jpo8 = 

{ ( bk _ Pk +l)}r { _!_ T }r { (2bk _ Pk +l)}r 
c 2 8 + c I RTkRI + c 2 8 

ek k k=l 2 k=l ek k k=l 

(3.33) 

Taking into account the results ofeqn. (3.32) and eqn. (3.33) we get the final form ofthe 

Fisher scoring equations as: 
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(3.34) 

A 

In the limit, eqn. (3.34) yields the GML estimator (with the inverted gamma prior), 8, of 

the vector of variance components. The asymptotic covariance matrix of this GML 

estimator is given by the inverse of the information matrix (see Appendix B) as: 

(3.35) 

3.2 GML Estimation with Noninformative Prior 

The prior distribution function for the vector of variance components is represented in this 

chapter by the Jeffi"ey's noninformative prior, the probability density function of which is 

given by eqn. (2.71). For the sake of completeness, the expressions for the probability 

density function of the noninformative prior and the posterior probability density function, 

which are given in Subsection 2.3.1, are repeated in this section. 

Under the assumption that the likelihood function of the vector of observations is identical 

to the marginal likelihood function, eqn. (2.44), the noninformative prior probability 

density function for the vector of variance components has the following form: 
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(3.36) 

where JR is the information matrix (see eqn. (2.61)) associated with the marginal 

likelihood function. 

The posterior probability density function results from application of the Bayes' Theorem, 

eqn. (2.65), which with the marginal likelihood function, eqn. (2.44), and the 

noninformative prior probability density function, eqn. (3.36), gives: 

(3.37) 

By taking natural logarithms ofboth sides of eqn. (3.37) we get: 

(3.38) 

where c is some constant. 

3. 2.1 Derivation of the Vector of Scores 

The vector of scores, being a vector of r partial first derivatives of IN with respect to the 

variance components ek: 

(3.39) 

is derived in this section. 
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As seen in eqn. (3.37), the vector of scores can be decomposed into the sum ofthe vector 

offirst derivatives ofthe natural logarithm ofthe noninformative prior, ln[p(9)], and the 

marginal log-likelihood function lR, eqn. (2.45): 

(3.40) 

where the first derivative of the marginal log-likelihood function is given by Koch [1990] 

as: 

s = OlR = { (-.!...JRT ) +.!.ITRT Rl)}r 
R 00 c 2 "\ k 2 k · 

k=l 

(3.41) 

The first derivative of the natural logarithm of the noninformative prior 

(3.42) 

where: 

(3.43) 

R = Ca1[ 1-A(A TCa1A)-1 A TCa1 J, and (3.44) 

r 
C9 = ~T9· ~ ... 

i=l 
(3.45) 

is derived as follows. 
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Searle at al. [1992] give the following rule for taking a derivative of the natural logarithm 

of the determinant of a regular symmetric matrix A, being a function of~' with respect to 

~: 

atniAI = {A -1 aA) . 
aa. aa. 

I I 

(3.46) 

Using this rule we get the first partial derivative of the natural logarithm of the 

determinant of JR as: 

(3.47) 

The next step is to find the first partial derivative of the information matrix JR 

(3.48) 

where 

B.iu _ {ktr{RT;RT;) J 
ook- ook (3.49) 

Using the chain rule for the matrix functions [Magnus and Neudecker, 1988] we get the 

derivative of (ij)-th component of the information matrix, JR, with respect to the k-th 

variance component, ek, as: 

(3.50) 
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Derivation of an expression for the first derivative, eqn. (3.50), of (i,j)-th component of 

the information matrix, JR, with respect to the k-th variance component, ek, will be 

divided into two steps. In the first step the derivative matrix av Ojij = [njij (R)] 2 will 
ecR Ixm 

be derived. In the second step an expression for the derivative matrix 

avecR [ ( )] . 
:::a = DR Sk 2 wtll be found. 
vuk m xi 

The differential and the derivative matrix of the scalar function jij of the matrix R can be 

computed by means of the "identification theorem for matrix functions" [Magnus and 

Neudecker, 1988]. In the case of a scalar function of a matrix, this theorem implies that, 

in order to find the derivative matrix Djij(R) , the differential djij has to be converted into 

the following form: 

(3.51) 

where (njij(R)] 2 is the Jacobian (derivative) matrix, and X is some matrix such that 
lxm 

[ ] T Ojijlxl 
Djij(R) 2 = ( vecX) = av R . 

lxm ec 2 m xi 

(3.52) 
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Starting from: 

J· .. = _!_tr(RTRT) 
IJ 2 I J ' 

and applying the identity (see, e.g., [Searle, 1982]): 

tr{ AT B) = ( vecA) T vecB, 

we get the following expression for the differential djij: 

djij = {~tr(RTiRTJ ]= ~tr[d(RTiRTj)] = ~tr[d(RTJRTj + RTid(RTj)] 

= _!_tr(dRTRT· +RTdRT·) = _!_tr(TRT-dR)+_!_..JT·RTdR) 2 I J I J 2 I J 2 U\ J I 

(3.53) 

(3.54) 

(3.55) 

Applying "the identification theorem for matrix functions", eqn. (3.51), to the expression 

for the differential djij• eqn. (3.55), we finally find the derivative matrix Djij to be: 

(3.56) 

(2) The derivative matrix av;,cR = (»R(ek)] 2 
k m xl 

The matrix function R of the scalar ek, R(ek) = R{P[c9(ek)]}, will be treated as a 

superposition of the following three functions: 
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(3.57) 

(3.58) 

(3.59) 

The derivative matrix, DR(ek), will be computed by means of the chain rule, as the 

product of the following three derivative matrices: 

[DR(e )) = iJvecR = iJvecR iJvecP iJvecCa 
k m2xl OOk iJvecP iJvecCa OOk 

(3.60) 

The three derivative matrices, DR, DP, and DC9, are derived as follows. 

(2a) The derivative matrix of R with respect to P 

For a matrix function of a matrix, the "identification theorem for matrix functions" implies 

that, in order to find the derivative matrix DR(P), we have to arrive at the following form 

ofthe differential d(vecR): 

where DR(P) is the Jacobian (derivative) matrix, and X is some matrix such that 

iJvecR 2 
(DR(P)) 2 2 =X= m xl 

m xm iJvecP 2 
m xi 

(3.62) 
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Starting from eqn. (3.57): 

R(P) = ~1-A(ATPAr1 ATP ]= P-PA(A TpAr1 A Tp, (3.63) 

we get the following expression for the differential dR: 

dR(P) = dP-{PA(ATPA)-1 A 1 P ]= dP-d(PA)(A1 PA)-1 A 1 P-PA{(A1 PA)-1 A1 P J 

= dP-dPA(A 1 PA)-1 A 1P-PA{~(A 1PA)-1]A 1 P+(A 1 PA)-1 d(A 1 p)} 

= dP- dPA(A1 PA)-1 A 1 P-PA[ -(A1 PA)-1 A 1 dPA(A1 PA)-1 A 1 P+(A 1 PA)-1 A 1 dP J 

= dP-dPA(A1 PA)-1 A 1P+PA(A1 PA)-1 A 1 dPA(A1 PA)-1 A 1P-PA(A1 PA)-1 A 1 dP 

= ldPI- ldPB+B1 dPB-B1 dPI, 

where: 

Applying the following matrix identity (see, e.g., [Searle, 1982]): 

vec(ABC) =(cT ®A)vecB 

to eqn. (3.64) we get: 

d[vecR(P))m2x1 =(lmxm ®Imxm)d(vecP)m2x1 -(B!oon ®Imxm}d(vecP)m2x1 

+(B!oon ®B!oon}d(vecP)m2x1 -(Imxm ®B!oon}d(vecP)m2x1 

(3.64) 

(3.65) 

(3.66) 

= [(Imxm ® Imxm) -(B!oon ® Imxm} +{B!oon ®B!oon) -{lmxm ®B!oon)]d(vecP)m2x1 . 

(3.67) 
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Applying the "identification theorem for matrix functions", eqn. (3. 61 ), to the expression 

for the differential d(vecR), eqn. (3.67), we finally find the derivative matrix DR to be: 

8vecR 
[DR(P)) m2xm2 = 8vecP = 

[( I ®I )-(BT ®I )+(BT ®BT )-(1 ®BT )] . mxm mxm mxm mxm mxm mxm mxm mxm m2xm2 

{2b) The derivative matrix of P with respect to C9 

(3.68) 

It follows from the "identification theorem for matrix functions", eqn. (3.61), that in order 

to find the derivative matrix DP, the differential d(vecP) has to be converted into the 

following form: 

d( veeP)= Xd( vecCa) = [»P(Ca)]m2xm2 d(vecCe) , (3.69) 

where DP(C8) is the Jacobian (derivative) matrix and X is some matrix such that 

(3.70) 

Starting with eqn. (3.58): 

we get the following expression for the differential dP: 

(3.71) 
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Application ofthe matrix identity given in eqn. (3.66) to eqn. (3.71) yields: 

Applying the results of eqn. (3.69) to the expression for the differential d(vecP), eqn. 

(3.72), we finally find the derivative matrix DP to be: 

(2c) The derivative matrix of Ce with respect to 9k 

In the case of a matrix function of a scalar, the "identification theorem for matrix 

functions" implies that, in order to find the derivative matrix DC8(80, the differential 

d(vecC0) has to be converted into the following form: 

(3.74) 

where DCe(Sk) is the Jacobian (derivative) matrix, and X is some matrix such that: 

8vecCe 2 

(nce(ek)] 2 = vecX = OO m xl . 
m xl k 

lxl 

(3.75) 

Differentiating both sides of eqn. (3.59), we get the following expression for the 

differential dC0: 

(3.76) 
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This becomes on vectorizing both sides of eqn. (3. 76) 

(3.77} 

Applying the "identification theorem for matrix functions", eqn. (3.74), to the expression 

for the differential d(vecC9), eqn. (3.77), we subsequently get: 

[ ( )] 8vecC9 
DCa ek 2 = !lO = vecTk . 

m xl vok 
(3.78) 

Finally, accounting for the results derived in points (2a), (2b), and (2c}, the derivative 

matrix ofR with respect to the k-th variance component, ek, is: 

[»R{ek}]m2xt = [DR(P))m2xm2 [»P{ Ca}]m2xm2 [»Ca{ek}]m2xt 

= [(1®1)-(BT ®I)+(BT ®BT)-(1®BT)L2xm2 (3.79) 

x [-{cat® Cet}L2xm2 {vecTk)m2xt· 

To simplifY the form of eqn. (3. 79}, the following two matrix identities, which are given by 

Searle [ 1982) as: 

(A®B)(C®D) = AC®BD, (3.80) 

and 

vec(ABC) = ( CT ® A)vecB, (3.81) 

will be used. The development is then as follows: 
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(»R(ek)]m2x1 =[(I® I)-{B1 ®I) +{B1 ®B1 )- {I®B1 )L2xm2 x [-{Ca1 ® Ca1)L2xm2 

x { vecTk)m2xl 

= -[(ca1 ®C81)-(u1 ca1 ®Ca1)+(B1 Ca1 ®B1 Ce1)-(ca1 ®B1 Ca1)L2xm2 

X ( vecTk)m2xl 

= -(c01 ®C01)vecTk +{B1 C01 ®Ca1)vecTk -{B1C01 ®B1 C01)vecTk 

+{Ca1 ®B1 C01)vecTk 

= -vec(Ca1TkC01) + vec{Ca1TkCa1B)- vec{B1Ca1TkCe1B) + ve~B1Ce1TkCa1 ). 

(3.82) 

Finally, with B given by eqn. (3.65) and P by eqn (3.58) we find the expression for the 

derivative matrix ofR with respect to the k-th variance component, Sk, to be: 

[»R(ek)]m2xl = -vec(PTkP)+vec[PTkPA(A1PAf1A1 P J 
-vee[ PA(A 1PAf1 A 1PTkPA(A 1PAf1 A Tp J +vee[ PA(A 1PAf1 A 1PTkP J 
=-vee{ PTkP[ I- A( A 1PAf1 A 1P ]} +vee{ PA(A 1PAf1 A 1PTkP[ I- A( A 1PAf1 A 1P ]} 

= vec{[PA(A1PAf1A1PTkP-PTkP ][I-A(A1PAf1A1P ]} 

= vec{[PA(A1PAf1A1P-P ]Tk[P-PA(A1PAf1A1 P ]} (3.83) 

= -vec(RTkR). 

Coming back to the original objective, i.e., derivation of the first partial derivative of the 

(ij)-th element of the information matrix, JR, with respect to the k-th variance component, 

Sk, by making use of the results given in eqn. (3.56) and eqn. (3.83), we get: 
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!~ = [njij(ek)Lxl = [»jij(R)]1xm2 (»R(ek)]m2xl 

= ±lve~TiRTj +TjRTi}r[-ve~RTkR)] 

= -±[ve~TjRTi)r vec{RTkR)- ~ [ve~TiRTj)r ve~RTkR). 

Applying the following matrix identity (see, e.g., [Searle, 1982]): 

to eqn. (3.84), we get 

(3.84) 

(3.85) 

:i~ = [njij(ek)] 1x1 = -k[ve~TjRTi)r ve~RTkR) -±[ve~TiRTJr ve~RTkR) 

= _! .. JTRTRTkR) _!tr(T·RTRTkR) 2 l£\ I J 2 J I . 

Applying further the following matrix identity (see, e.g., [Searle, 1982]): 

tr(AB) = tr{BT AT), 

to eqn. (3.86), we get 

a.iij [ . ( )] 1 tr{ ) 1 tr{ ) -= D•·· 8k =-- TRTRTkR -- TRTRTkR 
ffik Jlj lxl 2 I J 2 J I 

= -±tr{TiRTjRTkR)- ktr{RTkRTiRTJ 

= -tr{RTiRTjRTk)· 
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Finally, writing the results of eqn. (3.88) in matrix form, we find the first derivative of the 

information matrix, JR, with respect to the k-th variance component, 9k> to be: 

(3.89) 

The results of eqn. (3.89), together with eqn. (3.43), yield the final fonn of the first partial 

derivative of the natural logarithm of the noninfonnative prior probability density function 

with respect to the k-th variance component, ek, given as: 

(3.90) 

The derivative of the natural logarithm of the noninfonnative prior, eqn. (3.36), with 

respect to the vector of variance components follows with 

(3.91) 

Taking into account the results given in eqn. (3.41), eqn. (3.90) and eqn. (3.91), we get 

the final expression for the vector of scores as: 
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(3.92) 

3.2.2 Derivation of the Information Matrix 

The expression for the vector of scores, eqn. (3.92), will be utilized in this section for 

derivation of the Hessian matrix, HN, which is defined as an r by r matrix of second partial 

derivatives of the natural logarithm of the posterior probability density function, IN, with 

respect to the k-th and m-th variance-covariance components, ek and em: 

(3.93) 

Subsequently, the information matrix, JN, which is defined as a negative of the expected 

value (where the expectation is taken with respect to the vector of observations) of the 

Hessian matrix HN, 

(3.94) 

will be derived. 
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Considering the relationship given in eqn. (3.37), the Hessian matrix HN can be 

decomposed into the sum of the Hessian matrix of the natural logarithm of the 

noninformative prior probability density function, In( p( 9)), and the Hessian matrix of the 

marginal log-likelihood function IR: 

where HR is the Hessian matrix ofthe marginal log-likelihood function (see eqn. (2.57)). 

The expression for the Hessian matrix of the natural logarithm of the noninformative prior 

probability density function, 

(3.96) 

is derived as follows. Using the previously derived expression for the first partial 

derivative ofthe natural logarithm ofthe noninformative prior probability density function, 

eqn. (3.90), and applying the following matrix identity (see, e.g., [Searle, 1982]): 

tr{ AT B) = ( vecA) T vecB, (3.97) 

we determine the second partial derivative as: 
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(3.98) 

To develop eqn. (3.98) further, the following two partial derivatives have to be derived: 

aJ-t 
(1) Derivation of a8 R 

m 

Applying the rule for taking the first derivative of an inverse of a regular symmetric 

matrix, given by Koch [1990] as: 

(3.99) 

and using the results ofeqn. (3.89), we get 

(3.100) 
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cflJR 
(2) Derivation of ro ro 

k m 

Taking derivatives of all terms in eqn. (3.89) with respect to the m-th variance component, 

am' we get 

(3.101) 

The first partial derivative of fij with respect to the m-th variance component, em, is 

computed by applying the chain rule, which results in 

Of·· 
Derivation of an expression for the derivative ro11 , eqn. (3.102), will be broken down 

m 

Of· 
into two steps. In the first step the derivative matrix Bv~R = [nfij(R)] 1xm2 will be 

derived. In the second step an expression for the derivative matrix 

a;cR = [nR(em)] 2 will be found. 
m m xl 
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of· 
(2a) Derivation of av •J = [nfij (R)] 2 ecR lxm 

The differential and the Jacobian (derivative) matrix of the scalar function fij of the matrix 

R can be computed by means of the "identification theorem for matrix functions". For a 

scalar function of a matrix this theorem implies that, in order to find the derivative matrix 

Dfij(R), the differential dfij has to be converted into the following form: 

dfij = tr( X T dR) = ( vecX) T d( veeR) = [nfi/R)] 2 d( veeR) m2x1 , 
lxm 

(3.103) 

where [nfij(R)] 2 is the Jacobian (derivative) matrix, and X is some matrix such that 
lxm 

Of .. 
[Dfij(R)] 2 = ( vecX) T = iJv •Jtxl . 

lxm ecR 2 
m xl 

(3.104) 

Differentiating both sides of the following equation: 

(3.105) 

and applying the matrix identity (see, e.g., [Searle, 1982]): 

t~A TB) = ( vecA) T vecB, (3.106) 

yields the following expression for the differential d:tij: 
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= tr[dRTiRTjRTk +RTidRTjRTk +RTiRTjdRTk] 

= tr{ TiRTjRTkdR) + tr( TjRTkRTidR) + tr{ TkRTiRTjdR) 

= [ ve~ TkRTjRTi)] T d( veeR) + [ ve~ Ti RT kRTJ] T d( veeR) + [ ve~ TjRTi RTk)] T d( veeR) 

= [ve~TkRTjRTi +TiRTkRTj +TjRTiRTk)r d(vecR). 

(3.107) 

Applying once again the "identification theorem for matrix functions", eqn. (3 .1 03), to the 

expression for the differential dfjj, eqn. (3 .1 07), we finally find the derivative matrix Dfjj to 

be: 

(2b) Derivation of a;R = [nR{em)] 2 
m m xl 

As proven before (see eqn. (3.83)), this derivative can be expressed as: 

a;cR = [nR{em)] 2 = -[vec{RTmR)] 2 • 
m m xl m xl 

(3.109} 

Coming back to the original objective, i.e., derivation of an expression for the first partial 

derivative of the scalar function fjj with respect to the m-th variance component, em, we 

get: 
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= -[ ve~ TkRTjRTJr ve~RTmR)- [ ve~ TiRTkRTJr vec(RTmR) 

-[ve~TjRTiRTk)r ve~RTmR). 

Applying the matrix identity given in eqn. (3 .1 06) to eqn. (3 .11 0) we get: 

-[ve~TjRTiRTk)r v~RTmR) 

(3.110) 

=-{(TkRTjRTi)TRTmR ]-{(TiRTkRTj)TRTmR ]-{(TjRTiRTk)TRTmR J 

(3.111) 

Finally, writing the results of eqn. {3 .111) in the matrix form, we find the second 

derivative of the information matrix, JR, with respect to the k-th and m-th variance 

components, ek and em, to be: 
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= { m tr{ TiRTjRTkRTmR) + tr( TjRTkRTiRTmR) + tr( TkRTiRTjRTmR)} ~.j=l (3.112) 

= {mtr(RTiRTjRTkRTm +RTjRTkRTiRTm +RTkRTiRTjRTm)}~ .. 
l,j=l 

Applying the results of eqn. (3 .1 00) to the expression for the second partial derivative of 

the natural logarithm of the noninformative prior probability density function, eqn. (3.98), 

we get: 

(3.113) 

Applying the matrix identity given in eqn. (3 .1 06) to eqn. (3 .113), taking into account that 

f}J f}J 
the matrices JR_1, OO R , and OO R are symmetric, and making use of the previously derived 

k m 

expressions (eqn. (3.43), eqn. (3.89), and eqn. (3.112)), we find that the second partial 

derivative of the natural logarithm of the noninformative prior probability density function 

IS gtven as: 
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(3.114) 

where: 

The Hessian matrix ofthe natural logarithm of the noninformative prior probability density 

function follows with: 

BJR -t a.JR)l}r 
00 JR 00 J . 

m k k,m=l 

(3.115) 

Taking into account the previous developments (eqn. (2.57), eqn. (3.45), and eqn. 

(3 .115) ), the Hessian matrix of the natural logarithm of the posterior probability density 

function, IN, is given as follows: 
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(3.116) 

where HR is the marginal likelihood Hessian matrix (see eqn. (2.57)). 

The information matrix is subsequently derived from the Hessian matrix, eqn. (3 .116), as: 

(3.117) 

where JR is the marginal likelihood information matrix (see eqn. (2.61)): 

(3.118) 

Since the expectations in eqn. (3 .117) are taken with respect to the vector of observations, 

I, the expected value of the Hessian matrix HNo is: 

(3.119) 

Accounting for the results of eqn. (3 .114), eqn. (3 .117), and eqn. (3 .119), we can finally 

express the information matrix, JN, as: 
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(3.120) 

3.2.3 Application of the Fisher Scoring Method 

Application of the Fisher scoring method yields the following expression: 

O(m+l) =O(m) +[JN(e(m))r1sN(e(m)) 

= O(m) +[JNo(O(m)) + JR(e(m) )r1[sNo(0(m)) + sR(e(m))], 
(3.121) 
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where: e(m) is the GML estimate ofthe vector ofvariance components from the m-th 

iterative step, 

JN is the information matrix, eqn. (3 .120), and 

sN is the vector ofGML scores, eqn. (3.92). 

Taking into account that the vector of marginal likelihood scores (see eqn. (3.27) and eqn. 

(3.29)) can be expressed as: 

(3.122) 

and subtracting and adding the product JNo(e(m))e(m) from the vector of GML scores, 

EJ(m+l) = EJ(m) +[JNo(e(m))+JR(e(m))rl 
x [sNo{e(m)) + qR{e(m))-J R{e(m)~(m) - JNo{e(m)~(m) + JNo{e(m)~(m)] 

= [JNo(e(m)) + JR(e(m) )r1(sNo(9(m)) + qR(e(m)) + JNo(e(m)~(m)] 
= [JN(a(m))r1 qN(a(m))· 

(3.123) 

In the limit, eqn. (3 .121) yields the GML estimator (with the noninformative prior), 9 , of 

the vector of variance components. The asymptotic covariance matrix of such GML 

estimator (see Appendix B) is given by 

(3.124) 
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3.3 Application of the Principle of Mixed Estimation to the Dispersion-Mean Model 

In this chapter the dispersion-mean model is analyzed in the context of the introduction of 

prior information by means of weighted constraints on the vector of variance-covariance 

components. A link between the dispersion-mean model with weighted constraints and 

the GML estimation method is subsequently explored; the posterior probability density 

function that would result in the estimating equations of the dispersion-mean model with 

weighted constraints if the Fisher scoring method were applied to the GML optimization 

problem, eqn. (3.2), with such posterior probability density function, is found. 

3.3.1 Principle of the Dispersion-Mean Model 

The general mixed model, eqn. (2.1 ), can be reformulated in such a way that it is linear in 

terms of the vector of variance-covariance components, 9. Such a model, which was -

according to Searle et al. [1992] - first introduced by Pukelsheim [1974], is called the 

dispersion-mean model. Similarly to the criteria-based methods (see Section 2.4), the 

objective is to find a quadratic estimator, ITMI (where M is a symmetric matrix to be 

determined), of a linear combination ofthe variance-covariance components, pTe, subject 

to the constraint of translation invariance, eqn. (2.92). Under these assumptions, the 

general mixed model, eqn. (2.1), can be reformulated in the following way [Searle et al., 

1992]: 
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with a projection matrix defined as 

and using an identity, 

we get, 

vec(ABC) =(CT ®A)vecB 

11 MI = 11 NMNI = ve~I1NMN1) = [(N1)1 ®11 N]vecM 

= ( vecM) 1 (N I® Nl) = ( vecM) 1 l. 

(3.125) 

(3.126) 

(3.127) 

It can be proven [Searle et al., 1992] that the expected value of the vector l can be 

expressed as: 

E(l) = c::A9, or (3.128) 

l=c::A9+v, (3.129) 

where: 

(3.130) 

v is a vector of errors. The model described by eqn. (3.129) is called a dispersion-mean 

model. 

It can also be proven [Searle et al., 1992] that if the vector of observations, I, is normally 

distributed, then the covariance matrix of the vector of observables, l, in the dispersion-

mean model can be expressed as 
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var(l) = C1 = (NC9N ® NC9N)(I + S}, (3.131} 

where Sis a vee permutation matrix (see [Searle et al., 1992]}. A generalized inverse of 

this covariance matrix, eqn. (3 .131 }, being a weight matrix of the dispersion-mean model, 

is given by Searle et al. [1992] as: 

(3.132) 

Application of the method of least squares to the dispersion-mean model, eqn. (3.129), 

with the weight matrix given by eqn. (3 .132) yields the following normal equations [Searle 

et al., 1992]: 

cJ\ T C( cJ\ 8 = cJ\ T C(l , (3.133} 

with 

(3.134) 

T - { 1 T }r cJ\ C1 l = c -I RTi R I = qR , 
2 i=l 

(3.135) 

where: JR is the REML information matrix (see eqn. (2.61)), and 

qR is the vector of quadratic forms in the REML scoring equations, eqn. (2.63). 

Since the elements of both the dispersion-mean model design matrix, cJ\, and the 

covariance matrix, C" are functions of the vector of variance-covariance components, 8, 
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the normal equations, eqn. (3.133), have to be solved iteratively. The solution to the 

normal equations, in the m-th iterative step, is then: 

(3.136) 

These iterative equations, eqn. (3.136}, are exactly the same as the REML scoring 

equations, eqn. (2.63), which result from application of the Fisher scoring method to the 

marginal log-likelihood function, eqn. (2.45). 

3.3.2 The Dispersion-Mean Model With Weighted Constrains 

In the case of the Generalized Least Squares estimation of the vector of location 

parameters, x, in the model, 

I=Ax+v, v-(o,c1), (3.137) 

where C1 is a known positive definite covariance matrix, prior information about the 

vector of location parameters, x, can be introduced by means of pseudo-observations, 

which are sometimes called the weighted constraints [Wells, 1990]. The resulting model, 

called a parametric model with weighted constraints, is then of the following form: 

I= Ax+v with P1 = q-t 

Xo = lx+6 with PI = c;1, 
0 0 

(3.138) 

where 6 is a sub-vector of errors corresponding to the vector of pseudo-observations Xo· 
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Application of the method of least squares to the parametric model with weighted 

constraints, eqn. (3.138), yields the following normal equations (see, e.g., [Merminod and 

Rizos, 1989]): 

(3.139) 

In the similar fashion, the existing prior information about the vector of variance-

covariance components, a, can be introduced in the dispersion-mean model, eqn. (3.129), 

by means of pseudo-observations of the variance-covariance components or, in other 

words, weighted constraints on the vector a. The resulting dispersion-mean model with 

weighted constraints reads: 

l = c2\a +" with PI = Cl 
a0 =Ia+B with Pe =C91 , 

0 0 

(3.140) 

where Ceo is the covariance matrix associated with the vector of pseudo-observations of 

variance-covariance components, a 0 . 

With 

(3.141) 

the dispersion-mean model with weighted constraints reads 

(3.142) 
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Application of the least squares methodology to the dispersion-mean model with weighted 

constraints, eqn. (3 .142), leads to the following normal equations: 

(3.143) 

where: 

T -1l Tc- -1l -1 d cl\.P~=~ ,~+ce ,an 
0 

(3.144) 

T Tc- l""t-19 cl\. pl. = c1\ ,l +"'-e o• 
0 

(3.145) 

which, after some rearrangement, can be written as: 

(3.146) 

Since the elements of both the information matrix, JR, and the vector of quadratic forms, 

CJR, are functions of the vector of variance-covariance components, 9, the normal 

equations, eqn. (3 .146), have to be solved iteratively. The solution to the normal 

equations, in the m-th iterative step, reads: 

J.J.J Conditions for Equivalence with GML Estimation 

As discussed in Section 2.3, application of the Bayes' Theorem, eqn. (2.65), to the 

problem of estimation of the vector of variance-covariance components, 9, with the 

marginal likelihood function, eqn. (2.44), assigned to the data and some prior probability 

density function, p(9), assigned to the vector 9, results in the following posterior 

probability density function: 
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p(91I) ex: p{9)LR, with (3.148) 

LR cx:lcal-tiA1 C91AI-t ex~--ii1RI). (3.149) 

As discussed in Subsection 2.3.4, application ofthe Fisher scoring method to the natural 

logarithm of a posterior probability density function yields the GML estimate of the vector 

of variance-covariance components. The task now is to find such prior probability density 

function, p(9), that will produce the iterative equations of the dispersion-mean model with 

weighted constraints, eqn. (3.147), when the Fisher scoring method is applied to the 

natural logarithm of the posterior probability density function, 

(3.150) 

Application of the Fisher scoring method to the function 10 , eqn. (3.150), results in the 

following expression (cf. eqn. (3.24) and eqn. (3.121)): 

a(m+l) = a(m) +[J o(9(m))r1 so(e(m)) 

= O(m) + [Joo(O(m)) + JR(e(m))r1(soo(0(m)) +sR(a(m))] · 
(3.151) 

where the vector of scores, s0 , is defined as: 

(3.152) 

with the vector of marginal likelihood scores (see eqn. (2.56) and eqn. (2.62)) given as: 

(3.153) 
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the information matrix, J0 , defined as: 

(3.154) 

Introducing the results ofeqn. (3.153) into the scoring equations, eqn. (3.151), and adding 

and subtracting the product J 00 (e(m) )e(m) from the vector of scores, so, we get: 

e(m+l) =e(m) +[Joo(e(m))+JR(e(m))rl 

x[sno(O(m)) +Joo(O(m))O(m)- Joo(O(m))O(m)- JR(O(m))O(m) +qR(O(m))] (3.155) 

= [JR(a<m>) + Joo(a<m>)r1[qR(a<m>) + soo(a<m>) + Jno(a<ml)a<ml). 

If the scoring equations, eqn. (3 .155), were to be equivalent to the normal equations of the 

dispersion-mean model with weighted constraints, eqn. (3.147), the following conditions 

would have to be fulfilled: 

(3.156) 

(3.157) 

Substituting Co~ for J no( a(m)) in eqn. (3 .157) we get: 

(3.158) 
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... 
The relationship given in eqn. (3.158) will hold true for each e(m) if the following 

differential equation is fulfilled: 

aloo = ~=-I(e -e) ae ~o o . (3.159) 

Solving this differential equation results in the following natural logarithm of the prior 

probability density function: 

(3.160) 

where c is some constant. Since c may take any value, one may choose it to be such that 

the following relationship holds: 

(3.161) 

which results in 

p(e) ex: exp(- ~eTC,o~e +eTC,o~eo +c) ex: exp[ -~(e -e0 )T Ca;(e -eo)] , (3.162) 

which in tum implies that the prior distribution of the multivariate normal type: 

N{ e 0 , Coo ) . It should be noted that, since the variance components are by definition 

positive, the multivariate normal distribution is not an appropriate choice for the prior for 

the variance components. Moreover, in the general mixed model, eqn (2.1 ), it is possible 

to find prior values of variance-covariance components that lead to negative definite 

covariance matrices, but nevertheless have positive prior probability associated with them 

[Knight, 1995]. 
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CHAPTER4 

INFLUENCE OF ESTIMATION OF VARIANCE-COVARIANCE 

COMPONENTS ON THE COVARIANCE MATRIX OF THE 

ESTIMATED LOCATION PARAMETERS 

The usual approach to least squares estimation of the general mixed model (extended 

Gauss-Markov model) of eqn. (2.1) is to neglect the uncertainty that is introduced by 

errors associated with the estimation of variance-covariance components (see [Searle et 

al., 1992]). As discussed in Chapter 1, the covariance matrix of the vector of observations 

is treated as fixed and errorless, even though it has been estimated with some error- due 

to the fact that the estimated variance-covariance components are not fixed quantities. 

The effect of this simplification is that the covariance matrix of the estimated location 

parameters is always underestimated, resulting in the confidence regions for the estimated 

location parameters that are too small. This may adversely affect decisions based upon 

statistical testing of hypotheses involving the least squares residuals and the estimated 

location parameters. 

As reported by Searle et al. [1992], the covariance matrix of the estimated location 

parameters is always underestimated. Replacing the weight matrix P8 , computed at the 

vector of true variance-covariance components, with the weight matrix P9, computed at 
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the estimated vector of variance-covariance components, leads to an estimator i9 that is 

consistent but has larger variance than i 9 . To account for this increase of variance Searle 

et al. [1992] propose the use of the bootstrap method or the Taylor series expansion. The 

solution, however, is not given. 

In this section the effect of estimation of variance-covariance components on the 

covariance matrix of the estimated location parameters will be discussed. 

Frrst, let us observe that the information matrix for the ML method of estimation, given by 

eqn. (2.25), is a block diagonal matrix composed of the information matrices for the 

vector of location parameters and variance-covariance components. In tum, the inverse of 

this information matrix is also a block diagonal matrix composed of the separate inverses 

of the two blocks, and hence has no cross elements between the location parameters and 

the variance-covariance components. 

Then, for the experiment fulfilling the Hartley-Rao conditions [Hartley and Rao, 1967], as 

given in Subsection 2.2.1, the inverse of the information matrix given by eqn. (2.25) is the 

asymptotic covariance matrix of the vector of unknown parameters - including both the 

location parameters and the variance components. Thus, asymptotically (as the number of 

observations increases to infinity) estimating variance components has no effect on the 

covariance matrix of the estimated location parameters [Knight, 1997]. 
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To asses the effect of using the estimated covariance matrix (computed using the 

estimated variance-covariance components) rather than the exact covariance matrix 

(computed using the true variance-covariance components) on the covariance matrix of 

the estimated location parameters, in the least squares adjustment, the following 

development is proposed by Knight [1997]. 

First, the vector of observations, I, is transformed to make its covariance matrix identity. 

Then, the vector of location parameters, x, is transformed to make AT A = I and translated 

to zero. The resulting model reads 

I = Ax+ v with C1 = I , 

with the least squares estimate of the vector of location parameters is given as 

i =A Tl, 

and the vector of least squares residuals being 

(4.1) 

(4.2) 

(4.3) 

Suppose next that least squares estimation is based on a wrong covariance matrix I + W, 

where W is small. The resulting least squares estimate of the vector of location 

parameters reads: 

(4.4) 
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Applying repeatedly 

(I-z)-1 = i(-z)k (4.5) 
k=O 

and neglecting the terms of order two or higher in W we get 

iw =[A T(l- W)Ar1 A T(l- W)l = (1-A TwAf1(A T -A Tw)t 

= {I+A TwA)(A T -A Tw)t =[AT -A TW{I-AA T)] I (4.6) 

=i-ATWv. 

The covariance matrix of i w follows with 

(" ) E(" AT ) E{""T ""TWTA ATW""T +ATW""TWTA) (4 7) var xw = xwxw = xx -xv - vx vv . . 

Neglecting the fourth term (being quadratic in W) and noting that for fixed W 

expectations of the second and the third term are zero (because v and i are 

uncorrelated) we finally get: 

var(iw} = E{xxT) = var{i). (4.8) 

This proves that using the estimated covariance matrix of observations, in place of the true 

covariance matrix, has no effect on the covariance matrix of the least-squares estimated 

vector of location parameters - up to the first order terms. 
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CHAPTERS 

ANALYSIS OF HOMOGENEITY OF THE DATA: DETECTION OF 

INFLUENTIAL OBSERVATIONS 

As far as the estimation of variance-covariance components is concerned, analysis of 

geodetic data is generally handicapped by small redundancy. As a result, undetected 

outliers will have a disproportionally high influence on the estimates, resulting in distorted 

values of the estimated variance-covariance components. In addition, because of the 

aforementioned problem with small redundancy, some observations (not necessarily being 

the outliers of the least squares adjustment) may have excessively high influence on the 

estimated components due to, e.g., misspecification of the error model or nonhomogeneity 

of the data. In the extreme cases, this problem may manifest itself in negative estimates of 

variances or negative definiteness of the resulting covariance matrix of observations. 

The existing approach to minimizing the influence of outlying observations on the process 

of estimation of variance-covariance components for geodetic data [Caspary, 1987], 

[Chrzanowski et al., 1994] is to detect and remove potential outliers during the least 

squares adjustment process, performed prior to the estimation of variance-covariance 

components and using the empirical weights of observations. Since the covariance matrix 

of observations may be in error - as it is only approximate, possibly based on 

manufacturer's specifications and pre-analysis of sources of errors - some of the outliers 
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may not be detected by the statistical testing procedures. Once the outlying observations 

have been removed, the next step is to estimate the unknown variance-covariance 

components. The third step in the detection of outliers is to readjust the network after 

estimating the variance-covariance components, using the estimated components to 

compute the covariance matrix of observations. The data is screened again for outliers, 

and if new ones are found, then the outlying observations are removed and the estimation 

of variance-covariance components is repeated. This iterative procedure is continued until 

all outliers are removed from the data. The drawback of this method is that the outliers 

not detected in the first step will influence the estimation of variance-covariance 

components resulting in unrealistic values and, hence, overestimated covariance matrix of 

the observations. This in effect will make detection of additional outliers in the 

subsequent steps increasingly difficult, since the confidence regions used, for example, in 

the t-test of studentized residuals will be unrealistically large as well. 

Since, as mentioned above, the number of degrees of freedom in geodetic networks is 

usually comparatively small, one or otherwise a small number of observations may have a 

disproportionally high influence on one or more of the estimated variance-covariance 

components and their variances, in some cases almost uniquely determining their value. In 

other words, removal of such influential observation would drastically change the results 

of estimation. Such influential observations must be thoroughly analyzed to determine 

whether they belong to the same error model as other observations in the given group. 
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The presence of influential observations may also signal the presence of undetected 

outliers in the data. 

This chapter addresses the analysis of data in terms of the presence of highly influential 

observations and undetected outliers, and their influence on the results of the estimation of 

variance-covariance components. 

5.1 Influence Function 

The influence of a single observation on the vector of the estimated variance-covariance 

components may be described by the influence function. The influence function expresses 

A 

the effect that adding one observation with value y has on a functional (estimate) 9 at a 

distribution F, and is defined by Hampel et al. [1986] as: 

[ 

A ] a((l-s)F+say)-9(F) 
IF y;9(F) =lim , 

s-+0 s 
(5.1) 

where~ denotes the pointmass 1 at y. 

The influence function, eqn. (5.1), is defined in terms of asymptotic values of the 

estimator. There exist, however, the finite-sample versions of the influence function. 

These approximations can be found in, e.g., [Hampel et al., 1986] and [Chatterjee and 

Hadi, 1988] and include among others: 

(1) the empirical influence function, which for an estimator {9m;m ~ 1} and a sample 
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(5.2) 

(2) the sensitivity function, which for an estimator {em; m :=:: 1} and a sample 

(3) the sample influence function, which for an estimator {em;m :=:: 1} and a sample 

Maximum influence of outliers on the estimate 9 can be quantified by the unstandardized 

A 

gross-error sensitivity of the estimate 9 , which is given by Hampel et al. [ 1986] as: 

(5.5) 

where Ill denotes the Euclidean norm. The unstandardized gross-error sensitivity, eqn. 

(5.5), is not invariant to changes of scale of the parameters. To overcome that problem, 

Hampel et al. [1986] propose two alternative measures of maximum sensitivity of the 

A 

estimate 9 to outliers, namely: 

(1) the self-standardized sensitivity which is defmed as 

1 

'Y: = supy{IF[y;Q(F)]T {var[e(F)]}-1IF[y;Q(F)]}2 , (5.6) 

(if var[e(F)] is nonsingular, else by oo) where var[e(F)] is the asymptotic covariance 

A 

matrix of the estimator 9 , and 
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(2) the information-standardized sensitivity which is defmed as 

1 

'Yi = supx { IF[x;Q(F)y {J[S(F)]}-1IF[x;Q(F)]}2 , (5.7) 

if J[9(F)] exists, where J(9(F)] is the information matrix of the estimator 9. 

In the case of the maximum likelihood type estimation, the influence function is shown by 

Hampel et al. [1986] to be 

(5.8) 

where: s[y;S(F.)] is the scores function, 

A a is the maximum likelihood type estimator, 

a. is a fixed parameter value, and 

F. is the corresponding distribution, F. = F( a.). 

Taking into account the formulae for the vector of scores (see eqn. (2.23), eqn. (2.56), 

eqn. (3.11), and eqn. (3.92)) for all maximum likelihood type estimators considered in this 

thesis (ML, REML, and GML) the influence function is unbounded in terms of the vector 

of observations. For the REML and GML estimators this is due to the influence of 

observations on the vector of quadratic forms of observations 

(5.9) 

and for the ML estimator through 
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(5.10) 

As a result, an arbitrarily large outlier can cause an arbitrarily large change in the vector of 

estimated variance or variance-covariance components. 

Approximating the influence function by the fmite-sample sensitivity function: 

(5.11) 

where e<i) is the vector of estimated variance or variance-covariance components when 

the i-th observation is removed, we get the following expression for the self-standardized 

gross-error sensitivity function: 

1 

'Y 5(1J = m{( Q- Q(i)) T[ var(a)r1(Q- Q(i))} 2. (5.12) 

5.2 Computational Aspects of Detection of Influential Observations 

As far as ML, REML, and GML estimation of variance or variance-covariance 

components is concerned, one of the most computationally expensive tasks is the 

computation of the matrix R 9 : 

(5.13) 

In the case of ML estimation of variance-covariance components, the matrix Ra takes 

part in computation of the vector of quadratic forms of observations: 
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(5.14) 

in the iterative procedure given by eqn. (2.28). When the REML estimation method is 

used, the matrix R0 takes part both in computation of the vector of REML scores, 

through the vector of quadratic forms of observations, qR, and in computation of the 

information matrix JR: 

(5.15) 

For both GML type estimators considered in this thesis, i.e., GMLE with the inverted 

gamma prior and GMLE with the noninformative prior, the matrix R 0 takes part both in 

computation of vectors of GML scores (see eqn. (3.11) and eqn. (3.92)), and in 

computation of the GML information matrices (see eqn. (3.23) and eqn. (3.120)). As far 

as the dispersion-mean model with weighted constraints is concerned, the matrix R 0 

takes part both in computation of the vector of quadratic forms, qR, and the REML 

information matrix JR - in the iterative procedure given by eqn. (3.147). As a result, an 

efficient algorithm allowing quick and effective computation of matrix ~i) (where ~i> 

denotes the R 0 matrix computed for a sample with i-th observation removed) from the 

elements of the matrix R9 would considerably decrease the computational burden 

involved in the detection of influential observations. In other words, it would make 

possible the computation of e(i)' for each observation h. without the need to perform the 

estimation process each time an i-th observation is removed. Such an algorithm, however, 
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would allow us to compute only one step estimates of the vector of variance components, 

thus making the interpretation process somewhat more difficult. 

An algorithm for expressing the elements of the matrix R(i) in terms of the elements of the 

matrix R 9 (for the simpler case involving only the variances, i.e., with the covariance 

matrix c9 being a diagonal matrix) is derived in the following subsections. 

5.2.1 The Effect of Omitting an Observation on the Inverse of the Matrix of Normal 

Equations 

To simplify all subsequent derivations, without any loss of generality, the i-th observation 

is assumed to be the last observation in the vector of observations, I. 

For the diagonal weight matrix the following relationship holds: 

A TPA = A(li)P(i)A(i) + aipiia[, 

where: A(i) denotes the A matrix with the i-th row omitted, 

P(i) denotes the P matrix with the i-th row and i-th column omitted, 

ai denotes the i-th column of the AT matrix, and 

Pii denotes the i-th diagonal element of the P matrix. 

Applying the Sherman-Morrison-Woodbury theorem [Chatterjee and Hadi, 1988], 

133 

(5.16) 



to the expression for the matrix of normal equations, eqn. (5.16), and substituting 

U=ATPA, (5.18) 

V =-ai, (5.19) 

WT =af, and (5.20) 

X= Pii• (5.21) 

one gets the inverse of the matrix of normal equations, with the i-th observation removed 

from the sample, as: 

( T )-1 T( T )-1 
( T )-1 ( T T)-1 ( T )-1 A PA aiai A PA 
A(i)P(i)A(i) = A PA- aipiiai = A PA + fp T{ T )_1 . (5.22) 

-a· A PA a· Pn 1 1 

5.2.2 The Effect of Omitting an Observation on the R9 Matrix 

The problem at hand is to find a functional relationship between the elements of the R(i) 

matrix and the elements of the R9 matrix. 

The R9 matrix can be expressed as the difference between the weight matrix P and the 

matrixM: 

The R(i) matrix can in tum be expressed as: 
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=P(i) -P(i)A(i)(Al)P(i)A(i)rt Al)P(i) 

=~o-~oG(i)~o=~o-M(i). 

(5.24) 

To find a functional relationship between the elements of R(i) and Re , such relationship 

will be first derived for the elements of matrices G(i) and G, and then for the elements of 

matrices M(i) and M. 

The relationship between the elements of the G and G(i) matrices is derived as follows. 

The matrices G and G(i) are given as: 

(5.25) 

(5.26) 

The (r,c)-th element of the matrix G can be expressed as: 

T( T )-1 8rc = ac A PA ar • (5.27) 

The (r,c)-th element of the matrix G(i) is then: 
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[ T( T )-1 I T( T )-1 ] T T _1 ac A PA ai ai A PA ar 
=ac(A PA) ar+ X T( T )_1 

-a· A PA a· Pu 1 1 

(5.28) 

Having found the functional relationship between the elements of G and G(i)• eqn. (5.28), 

one can derive a functional relationship between the elements of the matrices M and M(i)· 

The matrices M and M(i) are given as: 

M=PGP,and (5.29) 

(5.30) 

The (r,c)-th element of the matrix M is thus expressed as: 

(5.31) 

the (r,c)-th element of the matrix M(i) as: 
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(5.32) 

Applying the results of eqn. (5.32) to the expression for the R(i) matrix, eqn. (5.24), a 

functional relationship between the elements of the R 0 and R(i) matrices is found. As 

seen in eqn. (5.23) and eqn. (5.24) the matrices R0 and ~i) can be expressed as: 

R0 =P-M,and (5.33) 

(5.34) 

The (r,c)-th element and the (c,c)-th element of the matrix R0 can therefore be expressed 

as: 

(5.35) 

(5.36) 

The (r,c)-th element and the {c,c)-th element of the matrix R(i) are then: 
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(5.37) 

(5.38) 

Finally, the expression for the matrix ~i> is found as: 

{ }
m-1 

m-1 r ·f· 

R(i) = {m rrc(i)t,c=1 = m rrc- ~ .. IT , 

11 r,c=1 

(5.39) 
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where, 

ReA = {m rrc}m -1 . r,c-
(5.40) 

5.3 Intluence of a Single Observation on the Asymptotic Covariance Matrix of the 

Vector of the Estimated Variance-Covariance Components 

The influence of the i-th observation on the asymptotic covariance matrix of the estimated 

variance or variance-covariance components can be measured by comparing values of 

A A 

some scalar function of the covariance matrices var(9(i)) and var(9 ). If the ratio of 

determinants of these covariance matrices is used, then the resulting measure is similar to 

COVRATIO (see [Belsley et al., 1980]) or VRi (see [Chatterjee and Hadi. 1988]) which 

measures the influence of an observation on the covariance matrix of the vector of 

estimated location parameters in the least squares regression. If the ratio of determinants 

of the asymptotic covariance matrices is used, then such measure (called here VR) is given 

by: 

det[ var( a(i))] 
VR(lJ = [ C)] det var 9 

(5.41) 

Other measures of the influence of an i-th observation on the asymptotic covariance matrix 

of the estimated variance or variance-covariance components include the ratio of the 

determinants of the information matrices (resulting in a measure similar to the Andrews-

Pregibon statistic [Andrews and Pregibon, 1978]), and a logarithm of a ratio of volumes of 
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the r-dimensional asymptotic error ellipsoids (resulting in a measure similar to the Cook­

Weisberg statistic [Cook and Weisberg, 1980]). Other possible measures include a ratio 

of maximum eigenvalues and the ratio of traces of the asymptotic covariance matrices. 
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CHAPTER6 

INFLUENCE OF ESTIMATION OF VARIANCE-COVARIANCE 

COMPONENTS ON SPATIAL DEFORMATION TREND ANALYSIS 

In this chapter the concept of spatial deformation trend analysis will be reviewed, with the 

special emphasis put on the Iterative Weighted Similarity Transformation procedure. 

Subsequently, the effect that the estimation of variance-covariance components has on the 

spatial deformation trend analysis process, and, in particular on the Iterative Weighted 

Similarity Transformation, will be discussed. 

6.1 Principle of Spatial Deformation Trend Analysis 

There are a number of alternative procedures for detection of unstable reference and 

object points (see [Chrzanowski, 1981]). Most of them rely on statistical testing of some 

datum invariant quantities, in order to confirm stability of the network points. This 

chapter will concentrate on the Iterative Weighted Similarity Transformation process 

[Chen, 1983], which is a part of the UNB Generalized Method of Deformation Analysis 

[Chrzanowski et al., 1986]. 

When deformation measurements are performed by geodetic methods, two main types of 

geodetic monitoring networks are distinguished [Chrzanowski et al., 1986]: absolute 
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networks and relative networks. The absolute networks are comprised of (1) points 

established outside the deformable body constituting a reference network which in tum is 

used to determine absolute displacements of the object points, and of (2) object points. 

The relative networks, are such networks in which all the surveyed stations and observed 

points are located on or within the deformable object 

In the case of the absolute networks the main objective of deformation trend analysis is to 

identify the stable reference points. Once the stable reference points have been identified, 

they may subsequently serve as the computational base for determination of the true 

displacement field of the object points. 

As far as the relative networks are concerned, the main goal of deformation trend analysis 

is determination of the deformation pattern in space or both in space and time domains. 

The trend analysis for the relative networks is more complex than for the absolute 

networks, since in addition to the possible single point movements, all the points may 

experience relative movements caused by deformation of the object itself. 

The Iterative Weighted Similarity Transformation may be used both for the analysis of 

stability of the reference points and for the trend analysis of the relative networks. 

The concept of spatial deformation trend analysis and, in particular, the Iterative Weighted 

Similarity Transformation procedure, is inherently connected with the theory of free 
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networks and the problem of datum defects. A free network is a network that does not 

contain enough information to be located in space. It suffers from datum defects, i.e., it 

can be freely translated, rotated or scaled in space. In the case of deformation surveys by 

geodetic methods one has to assume that the monitoring network is a free network, since 

no point can be assumed to be stable prior to the analysis [Chen et al., 1990b]. If a 

monitoring network is a free network [Chen, 1983] then the matrix of normal equations is 

singular, and, hence, there is an infinite number of solutions for the vector of location 

parameters, x. In other words, if x1 is a solution then x2 = x1 + H t is also a solution, 

with H being a matrix of coefficients defmed by the equations of the similarity (Helmert) 

transformation, and t being an arbitrary vector. A Helmert transformation matrix for a 

three dimensional geodetic network with undefmed location, orientation and scale, 

coordinated in a left handed coordinate system, is given by [Caspary, 1987] as: 

r 1 

I : 
uT =j oo 

~-zl 

I y~ 
l X~ 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

1 

0 

0 

y~ 

0 1 

0 I 
1
o I 

-ym I' (6.1) 

X~ I 

o I 
z~ J 

where the first three rows of the matrix uT correspond to translations along x, y and z, 

respectively, the next three rows to rotations about x, y and z, respectively, and the last 
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row to the scale of the network. The coordinates x? ,y? and z? refer to the center of 

gravity of the network. 

The Helmert matrix H has a property of being a null matrix of the first order design matrix 

[Chen, 1983]: 

AH=O. (6.2) 

The datum parameters are the quantities that define the location of a free network in 

space. The number and type of datum parameters required to define a free network 

corresponds to the number and type of its datum defects. To overcome a problem of 

singularity of the normal equations, the datum equations have to be added to the 

observation equations, one for each datum defect of the network. In such case, the 

Gauss-Markov model with datum constraints [Caspary, 1987], [Chen et al., 1990b], reads: 

I= Ax+ v, v- (o.c. = <r~Q}, 

T D x=O, (6.3) 

where: 

vector of observations I is normally distributed, 

C. is the covariance matrix of observations, 

a5 is the unknown variance factor, 

Q is the cofactor matrix of observations, 

144 



DTx = 0 are the datum equations, 

rank(D) = rank(H) = number of datum defects, and 

H is a matrix of coefficients defined by the equations of the similarity (Helmert) 

transformation. 

Application of the least squares procedure to the Gauss-Markov model with datum 

constraints, eqn. (6.3), results in the following solution [Chen et al., 1990b] for the 

estimated vector of location parameters (vector of adjusted coordinates): 

(6.4) 

with the cofactor matrix of the estimated location parameters (adjusted coordinates) given 

as 

There are two alternative methods (alternative to the solution method given by eqn. (6.4) 

and eqn. (6.5)) for solving the Gauss-Markov model with datum constraints, eqn. (6.3). 

The principle of the first of them [Chen et al., 1990b] is to introduce pseudo-observations 

with small variances in lieu of the datum equations. The principle of the second method 

[Caspary, 1987] is to deal only with a subset of any u· (u*=rank(A)) linearly independent 

columns of the first order design matrix A. The resulting design matrix, A •, created by 

deleting d columns from matrix A (with d being the number of datum defects: 
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d=dim(A)-rank(A)), has a rank defect of zero, and the normal equations are no longer 

singular. 

When two epochs of measurements are analyzed, the vector of displacements can be 

thought of as the difference between the vector of adjusted coordinates from epoch 2, i 2 , 

and the vector of adjusted coordinates from epoch 1, i 1, 

(6.6) 

The cofactor matrix of the vector of displacements is then simply a sum of the cofactor 

matrices of the vectors of adjusted coordinates from epoch 1 and epoch 2: 

(6.7) 

Owing to the fact that we are dealing with free networks, the vector of displacements, 

eqn. (6.6), and its cofactor matrix, eqn. (6.7), may be biased by the preselected datum. 

This may result from, e.g., the network having different types of datum defects in epoch 1 

and epoch 2, unstable points being used in definition of the datum in at least one of the 

epochs, or different datum constraints being used in both epochs (e.g., due to the damage 

of some points). As a result, the vector of displacements may not show a true picture of 

displacements. To alleviate this problem a transformation to a common datum is required. 

The Weighted Similarity Transformation [Chen, 1983] procedure is capable of performing 

such a task. It transforms the vector of adjusted coordinates and its cofactor matrix from 

one datum to another one, without the need to repeat the least squares adjustment 

process. If iu is any solution for the estimated vector of coordinates and Qi is its 
u 
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cofactor matrix, then the transformed vector of the estimated coordinates (transformed to 

the datum defmed by the datum equations DTx = 0), and its cofactor matrix read: 

,. S" x= Xu, (6.8) 

T QA =SQA s 
I Xu ' 

(6.9) 

with the similarity transformation matrix defmed as: 

(6.10) 

where: W is a datum weight matrix defining the new datum, and 

D T = H T W is a transpose of the datum equations matrix. 

If all of the points in the network are of the same importance in defining the datum, then 

W = I, and the resulting solution is the inner constrained solution. 

Since, as aforementioned, the vector of displacement components may be biased by a 

change of the datum definition between two epochs, a method for finding such a location 

of the datum that results in the least biased vector of displacements is required. A method 

for finding such a datum location, called the Iterative Weighted Similarity Transformation 

(IWST) method, was first proposed by Chen [1983]. It uses a principle of Weighted 

Similarity Transformation (eqn. (6.8), eqn. (6.9) and eqn. (6.10)). The objective of the 

method is to solve for such a datum weight matrix W (cf. eqn. (6.10)) that will minimize 

the first norm of the vector of displacements: 
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lldJil = min· (6.11) 

The optimization problem given in eqn. (6.11) is, in general, non-linear and the solution 

requires iterations [Chen, 1983]. The iterative process is always started with the datum 

weight matrix W being the identity matrix, ie., the vector of displacements and its 

cofactor matrix are transformed to the inner constraints datum. At each subsequent 

iteration step the weight matrix is redefmed as: 

(6.12) 

where di is the i-th displacement component, and 

u is the number of displacement components. 

The Weighted Similarity Transformation is then performed with the redefined weight 

matrix given by eqn. (6.12). The transformation process (eqn. (6.8), eqn. (6.9), eqn. 

(6.10) and eqn. (6.12)) is repeated until convergence is achieved. 

Once the Iterative Weighted Similarity Transformation has converged, the transformed 

displacement vector of each point is tested against its confidence region, using the 

following statistic: 

(6.13) 

where: dj is a sub-vector of displacement components of point j, 
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Q d. is a cofactor sub-matrix of the displacement sub-vector a j' 
J 

ud is the dimension of the displacement sub-vector dj, 

~P is the pooled estimated variance factor from epoch 1 and epoch 2, and 

dfP is the number of its degrees of freedom. 

The statistic T is compared against the value of F{ 1-a; ud , df P) , where a is the 

significance level, arising from the F distribution. If the statistic T is larger than the F 

value then a given point is flagged as unstable. This is equivalent to graphically comparing 

the displacement of each point against its confidence region (error ellipsoid, error ellipse 

or error bar) at a specified significance level a. 

6.2 Influence of Estimation of Variance-Covariance Components on the Iterative 

Weighted Similarity Transformation 

As mentioned above, statistical decisions regarding stability of the points of a monitoring 

network are made by comparing the value of statistic T, eqn. (6.13), against the F value: 

F( 1-a; ud , df P) . If the covariance matrices of observations for both epochs were 

estimated through the process of estimation of variance-covariance components (in the 

general mixed model, eqn. (2.1)) or variance components (in the variance components 

model, eqn. (3.1)) then the statistic Treads: 
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(6.14) 

In the limit, once IWST converges, the covariance matrix of the vector of transformed 

displacement components is given as: 

(6.15) 

where S is the fmal similarity transformation matrix, 

(6.16) 

(6.17) 

Ci1 and Ci2 are the covariance matrices of the vectors of adjusted coordinates from 

epoch 1 and epoch 2, respectively, where 

(6.18) 

The transformed vector of displacement components is given as: 

(6.19) 

where the vector of adjusted coordinates is expressed as 

(6.20) 
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The estimation of variance or variance-covariance components affects primarily the 

covariance matrix of the vector of adjusted coordinates, eqn. (6.18), through the changes 

in the covariance matrix of observations, due to such factors as the estimation method, the 

choice of the error model or the amount of prior information. The vector of adjusted 

coordinates (in both epochs), eqn. (6.20), is also affected. 

The final similarity transformation matrix, eqn. (6.16), is affected by changes in the vector 

of displacement components, eqn. (6.6), through the datum weight matrix, eqn. (6.12). 

Changes in the initial vector of displacement components, d, being the result of changes in 

the vectors of adjusted coordinates - for both epochs, will cause changes in the datum 

weight matrix, W, propagating through the iterative process of IWST. 

The similarity transformation matrix, eqn. (6.16), is also influenced by changes in the 

vector of adjusted coordinates which are used in computing the rotation and scale 

elements in the Helmert matrix H (see eqn. (6.1)). This effect is, however, likely to be 

insignificant as the changes of the adjusted coordinates are small in comparison with the 

diameter of a typical geodetic network. 

As a result, both the final covariance matrix of the transformed displacement components, 

eqn. (6.15), and the vector of the transformed displacement components, eqn. (6.19), will 
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be affected, thus changing the values of the T statistic, eqn. (6.14), and therefore 

influencing statistical decisions concerning stability of the reference points. 

The influence of various aspects of the estimation of variance components on the results of 

the spatial deformation trend analysis will be further investigated in Chapter 7, based on 

the analysis of the Mactaquac monitoring network [Chrzanowski and Secord, 1987 and 

1990], [Chrzanowski et al., 1989]. 
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CHAPTER7 

NUMERICAL EXAMPLES 

In this chapter the proposed methods and procedures, derived in Chapters 3 and 5 are 

tested on the data from periodic surveys of a horizontal monitoring network at the 

Mactaquac hydroelectric generating station near Fredericton, New Brunswick, 

[Chrzanowski and Secord, 1987 and 1990], [Chrzanowski et al., 1989]. First, the GML 

estimating equations with the noninformative and the inverted gamma priors and the 

estimating equations resulting from application of the least squares principle to the 

dispersion-mean model with weighted constraints, all derived in Chapter 3, are applied to 

periodic observations of the Mactaquac network. The results are compared with the 

results of REML estimation. Subsequently, the influence of the choice of the estimation 

method, the amount of prior information, and the choice of the error model, on the results 

of the spatial deformation trend analysis process is quantified - based on the results of the 

1991 and 1993 surveys of the Mactaquac monitoring network. Finally, the algorithm for 

detecting influential observations, derived in Chapter 5, is applied to the 1989 Mactaquac 

survey data set. 
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7.1 Estimation of Variance Components for the Mactaquac Monitoring Network: 

Campaigns of 1986, 1989, 1991 and 1993 

In this section the results of the estimation of variance components for a geodetic 

horizontal monitoring network (Fig. 7.1 ), located in the vicinity of the Mactaquac power 

generating station (see [Chrzanowski and Secord, 1987 and 1990] and [Chrzanowski et 

al., 1989]) are presented. Four campaigns are analyzed (see Table 7.1). The 1986 and 

1989 campaigns involve only distance measurements. The 1991 and 1993 campaigns 

involve both distance and direction measurements. 

Table 7.1 Summary of the Mactaquac monitoring network: campaigns of 1986, 1989, 

1991 and 1993 

Year Number of Number of Number of Instruments Used 
Stations Distances Directions 

1986 28 252 - KemME3000 

1989 28 254 - KemME3000 

1991 32 193 83 Tellurometer MA 200 
KemE2 

1993 32 182 80 Tellurometer MA 200 
KemE2 
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C-200 

Figure 7.1 Mactaquac Horizontal Monitoring Network 
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For all four campaigns the weighting scheme for distance observations [Chrzanowski et 

al., 1994] is based on the following model: 

2 2 b2r.;2 as= as+ s • (7.1) 

where a§ is the variance of the distance observation, a~ and b~ are the unknown variance 

components, and L is an approximate fixed value for the true distance being measured. It 

should be noted that even though the exact true distances are not known, the effect of 

using the approximate values in eqn. (7.1) (being either the measured distances themselves 

or the distances derived from the initial least squares adjustment) will be negligible for all 

practical purposes, as the measurements of distances in geodetic networks are performed 

with very high accuracy, and since the error model, eqn. (7.1), is only an approximation of 

the stochastic model of the electro-optical distance measurement process. 

As far as the campaigns of 1991 and 1993 are concerned, the variances of direction 

observations are computed from the following model: 

db =a~. (7.2) 

where af> is the unknown variance component (the variance of a direction measurement). 

The empirical, a priori, values of variance components for all four epochs are given in 

Table 7.2 [Chrzanowski et al., 1994]. It should be mentioned here, that the values given 

in Table 7.2 were arrived at by means of the trial and error approach and did not result 

from the rigorous analysis of the sources of errors [Chrzanowski, 1995]. Moreover, some 

of the observations were assessed to be the outliers and were removed from the analyzed 
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data sets. In particular, the 1989 data set used by the author differs from the 1989 data set 

used to obtain the variance components given in Table 7.2, as the number of removed 

outlying observations is not the same. As a result, the estimated values of the variance 

components, presented later in this section, are not directly comparable with the a priori 

values given in Table 7 .2. It should be noted that the empirical, a priori, values of 

variance components are used in this section solely for the purpose of introducing prior 

information. 

Table 7.2 The empirical, a priori, values of variance components 

[Chrzanowski et al., 1994] 

Epoch a~ [mm2] b~ [ppm2] at [sec2] 

1986 0.25 9.0 -

1989 0.09 16.0 -

1991 0.09 4.0 0.81 

1993 0.09 4.0 0.64 

In this section, the following four estimation methods are used with the Mactaquac data: 

1. the REML method, 

2. the GML method with the inverted gamma prior, 

3. the GML method with the noninformative prior, and 

4. the dispersion-mean model with weighted constraints. 
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As far as the REML estimation method is concerned, the estimating equation presented in 

Chapter 2 (eqn. 2.63) is applied. In all other three cases the estimating equations derived 

in Chapter 3 (eqn. 3.34, eqn. 3.123, and eqn. 3.147) are used. 

The software "MINQE", version 1.2, [Chrzanowski et al., 1994] is used for REML 

estimation, while a modified and partly rewritten, by the author, version of the "MINQE" 

software is used in the other three cases. 

7.1.1 Conformity with the Hartley-Rao Conditions 

In Chapter 2 (Subsection 2.2.1) the Hartley-Rao conditions [Hartley and Rao, 1967], 

required for establishing asymptotic properties of the ML estimates of variance 

components, are given. In this subsection conformity of the Mactaquac monitoring 

network with the Hartley-Rao conditions is investigated. 

Hartley and Rao [1967] analyze a series of experiments for which the number of 

observations increases to infinity, and for which the Hartley-Rao conditions 1, 2 and 3 

(see Subsection 2.2.1, page 30) hold. They establish that in the limit the ML estimate of 

the vector of variance components, provided it is computed at a global maximum of the 

likelihood function, is weekly consistent, asymptotically efficient and asymptotically 

normally distributed with the mean equal to the true value of the vector of variance 

components (8o) and the covariance matrix equal to the inverse of the information matrix 

computed at 80 • 
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Hartley and Rao [1967] consider the variance components model given by eqn (2.3). 

They further restrict this model by requiring that all matrices Ui have in each row one 

element equal to 1 and all the remaining elements equal to 0. One of the implications of 

this restriction is that the matrices urui are diagonal. In this subsection, the general 

mixed model given by eqn. (2.1), restricted to the variance components models implied by 

eqn. (7.1) and eqn. (7.2), will be considered. 

Let us first consider applicability of the Hartley-Rao conditions to the Mactaquac network 

for the first two epochs (1986 and 1989). As far as the epochs of 1986 and 1989 are 

concerned, the network consists of distances only, and with the stochastic model given by 

eqn. (7.1), the variance components model reads: 

with 

l=Ax+v, v-{O,Ce=a~T1 +b~T2 ), v-Nm{O,Ce). (7.3) 

(7.4) 

(7.5) 

Using the notation of eqn. (2.3) and eqn. (2.4) we can express this variance components 

model as: 

(7.6) 

where 
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(7.7) 

(7.8) 

with b1 and b2 being vectors of m independent random variables from N(O,a~) and 

N( 0, b~), respectively, and hence, the covariance matrix of the vector of observations 

given by 

(7.9) 

The first Hartley-Rao condition requires that as the total number of observations and the 

number of observations corresponding to each random factor (variance component) 

increases to infinity all positive elements of the diagonal matrices UfUi remain smaller 

than some constant R. Using the variance components model for epochs 1986 and 1989, 

given by equations (7.6) to (7.9), we fmd that there always exists R > 0 such that 

(7.10) 

(7.11) 

and is given by: 

R ~ max(l,L1}, i = 1,2, ... ,m. (7.12) 

The second Hartley-Rao condition, which requires that all elements of the inverse of the 

matrix of normal equations are smaller than Rim (where R is some constant and m is the 

total number of observations), ensures consistent estimation of all elements of the location 
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vector. This condition is satisfied if all repeated observations in the network are 

distributed evenly, i.e., there is no such situation where, e.g., only one distance is 

remeasured an increasing number of times. 

The third Hartley-Rao condition is the condition for estimability of the vector of location 

parameters and the vector of variance components. It requires that the base W of the 

adjoined matrix M=[AIU11...1Ur1 is of the form W=[AIU•], where u• contains at least one 

column from each Ui. This implies that all column vectors of the design matrix A are 

linearly independent, and that at least one column vector of each matrix Ui is linearly 

independent from all column vectors of A. 

For the Mactaquac network of epochs 1986 and 1989 the adjoined matrix M is of the 

following form: 

(7.13) 

where U1 and U2 are given byeqn. (7.7) and eqn. (7.8), respectively. The column vectors 

of the design matrix A are all linearly independent if the datum defects have been 

eliminated and the network does not suffer from the configuration defects, i.e., there are 

no points in the network that are determined by a single distance observation. One of the 

many possible forms of u· is: 

(7.14) 
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where the matrix {d Li}~=l corresponds to the first p observations. 

For epochs 1991 and 1993 the Mactaquac network consists of both distance and direction 

observations. Using the stochastic models for distance and direction observations, given 

by eqn. (7.1) and eqn. (7.2), we fmd the variance components model to be: 

(7.15) 

with 

(7.16) 

[{ L2}m1 0] 
T2 = d ~ i=l 0 , and (7.17) 

(7.18) 

where m1 and m2 is the number of distance and direction observations, respectively 

(m1 + m2 = m). Equivalently, using Hartley and Rao's [1967] notation, we can express 

this variance components model as: 

(7.19) 

where 

(7.20) 
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(7 .21) 

(7.22) 

with b1 and b2 being vectors of m1 independent random variables from N{O,a~} and 

N{ 0, b~), respectively, and b3 being a vector of m2 independent random variables from 

N{ O,a~). The covariance matrix of the vector of observations is given by 

(7.23) 

The frrst Hartley-Rao condition, requiring that all positive elements of the diagonal 

matrices U[Ui are smaller than some constant R, is verified as follows. From the 

variance components model for epochs 1991 and 1993 (see equations (7.15) to (7.23)), 

we see that if R is chosen as 

R ~ max{l, LT}, i = 1,2, ... ,m1 , (7.24) 

it will satisfy the frrst Hartley-Rao condition given by: 

(7.25) 

(7.26) 

(7.27) 
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As for the epochs of 1986 and 1898, the second Hartley-Rao condition is satisfied for the 

epochs of 1991 and 1993 if all repeated observations in the network are distributed 

evenly. 

The third Hartley-Rao condition is verified as follows. For epochs 1991 and 1993 the 

adjoined matrix M is given as: 

(7.28) 

where ul, u2 and u3 are given by eqn. (7.20), eqn. (7.21) and eqn. (7.22), respectively. 

Again, the column vectors of the design matrix A are all linearly independent if the datum 

defects have been eliminated and the network does not suffer from the configuration 

defects. There are no configuration defects in the geodetic network of the type analyzed 

here if, and only if, each point of the network is determined by at least two observations (2 

distances, or 2 directions, or 1 distance and 1 direction). The matrix u* of a dimension m 

by m may be expressed, e.g., as: 

[
{d Li}~=l 

u*= o 
0 

0 

(7.29) 

where the matrix {d Li}~=l corresponds to the ftrst p distance observations. 

It should be noted that the Hartley-Rao conditions are formulated for the variance 

components model (cf. eqn. (2.3)) for which all elements of matrices Ui (and hence of Ti) 

are known fixed numbers. As discussed before (see Section 7.1), even though the exact 
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true distances Li (used in eqn. (7.5) and eqn. (7.17)) are not known the approximate 

values being, e.g., the distances derived from the initia11east squares adjustment of a 

network with an approximate covariance matrix of observations, can be treated as known 

fixed numbers as they do not change with additional observations (they will stay the same 

as m1 -+ oo ). 

Based on the presented arguments, it may be concluded that the Mactaquac monitoring 

network, for all four campaigns, fulfills the Hartley-Rao conditions - under the 

assumptions specified above. As a result, the asymptotic properties of the ML estimates 

of variance components, as established by Hartley and Rao [1967], may be applied for 

analyzing the results of the estimation of variance components, provided the number of 

observations is sufficiently large. 

7.1.2 Discussion of the Results 

A complete listing of the results of the estimation of variance components for the 

Mactaquac monitoring network, for all four epochs and all four analyzed methods of 

estimation, is given in Appendix C in Tables C.l to C.22. 

As far as the REML (Section C.l) and the GML with the noninformative prior (Section 

C.3) methods of estimation are concerned, the values of the estimated variance 

components, their asymptotic standard deviations and the speed of convergence are given. 
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For the GML with the inverted gamma prior (Section C.2) and the dispersion-mean model 

with weighted constraints (Section C.4) estimation methods the prior values of the 

components (means of the prior distribution), the values of the standard deviations of the 

priors, the values of the estimated variance components, their asymptotic standard 

deviations and the speed of convergence are given. For both these methods the results are 

tabulated for the values of the standard deviations of the priors ranging from 1 to 16 times 

the value of the prior. 

The results of the estimation, in a graphical form, are also given in Figures C.1 to C.20 in 

Section C.5 and C.6. In order to facilitate comparison of different methods of estimation, 

the charts are organized on an epoch by epoch basis. 

The values of the estimated components, for all four campaigns and all four methods of 

estimation, together with the prior values (means of the prior distribution) are shown in 

Figures C.1 to C.lO (Section C.S). To simplify interpretation by expressing the results in 

more intuitive units (i.e., millimeters, parts per million, and seconds of arc) the square root 

values of the variance components are given. 

To facilitate the assessment of the impact of both the method of estimation and the 

amount of prior information on the level of uncertainty associated with the estimates 
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(tightness of the confidence intervals) the ratios of the estimated components to their 

asymptotic standard deviations are given in Figures C.11 to C.20 (Section C.6). 

Both the REML and the GML with the noninformative prior estimation methods do not 

introduce any prior information about the variance components. From the examination of 

the results given in Tables C.1 to C.6 and C.12 to C.17 and Figures C.1 to C.20, the 

following conclusions can be drawn: 

1. As far as the rate of convergence is concerned, both methods gave comparable results 

(see Tables C.1 to C.6 and C.l2 to C.17). 

2. The GML estimated variance components were consistently larger than their 

counterparts estimated with the REML method (see Figures C.1 to C.2 and C.5 to 

C.10). 

3. The asymptotic standard deviations of the GML estimated variance components were 

consistently larger than their corresponding values obtained from the REML 

estimation method (see Tables C.l to C.6 and C.12 to C.17). 

4. The ratios of the estimated components to their asymptotic standard deviations were 

consistently smaller for the GML method than for the REML method (see Figures 

C.ll to C.12 and C.15 to C.20). The only exception was the b~ component for the 

1993 campaign, as shown in Figure C.19. Thus, introduction of the noninformative 

prior appears to have decreased the significance of the estimated components. 
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Both the GML with the inverted gamma prior estimation method and the dispersion-mean 

model with weighted constraints make a provision for introduction of prior information 

concerning the unknown variance components. When comparing the results produced by 

these two methods with the REML results the following was observed: 

1. The rate of convergence varied widely between all three estimation methods. In most 

cases introduction of prior information reduced the speed of convergence (see Tables 

C.l to C.6, C.7 to C.ll and C.l8 to C.22). 

2. When very low weights were assigned to the prior values (means of the prior 

distribution), the variance components estimated using the dispersion-mean model 

with weighted constraints were virtually identical to the REML estimated values (see 

Figures C.l to C.2 and C.5 to C.lO). The results of GML estimation, even when high 

standard deviations were assigned to the prior values (means of the prior distribution), 

in general differed from the REML estimates. 

3. The same observation applies to the asymptotic standard deviations of the estimated 

variance components (see Tables C.l to C.6, C.7 to C.ll and C.l8 to C.22). 

4. The following trends were observed when analyzing the uncertainty of the estimated 

variance components: 

a) Introduction of prior information for the a~ component (see Figures C.ll, C.l5 

and C.l8), by means of the GML method with the inverted gamma prior, reduced 

its significance. No similar trend could be observed for the dispersion-mean model 

with weighted constraints. 
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b) Introduction of prior information (see Figures C.l2, C.16 and C.l9) increased, in 

general, significance of the b~ component. 

c) The effects of introduction of prior information on the uncertainty of the a~ 

component were mixed (see Figures C.17 and C.20). 

When comparing the results of the GML with the inverted &amma prior estimation method 

with the results obtained from the dispersion-mean model with wei&hted constraints it was 

found that: 

1. The rate of convergence differed considerably between the two analyzed methods. 

The increase of the amount of prior information (decrease of the standard deviations 

of the priors) did not appear to have had any significant impact on the rate of 

convergence (see Tables C.7 to C.ll and C.18 to C.22). 

2. The estimates derived using the dispersion-mean model with weighted constraints 

were much more strongly attracted towards the prior values (means of the prior 

distribution) than the GML estimates; even though, initially (i.e., when very high 

standard deviations are assigned to the priors) the GML estimates were closer to the 

prior values (see Figures C.l to C.lO). 

3. The asymptotic standard deviations of the estimated variance components differed 

significantly between the two methods. No discernible pattern of differences could, 

however, be observed (see Tables C.7 to C.ll and C.l8 to C.22). 
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4. Significance of the estimated components was much more strongly affected by the 

change of the amount of prior information in the dispersion-mean model with weighted 

constraints than in the GML method. In particular: 

a) For both methods, the ratio of the estimated component to its asymptotic standard 

deviation decreased with the increase of the amount of prior information for the a~ 

component (see Figures C.ll, Cl3 and C.l8). The only exception was the 

campaign of 1991 (see Figure C.l5). 

b) The ratio increased, and thus the uncertainty of the estimation became smaller 

when more prior information was added, in the case of b~ component (see Figures 

C.l2, C.l4, C.l6 and C.l9). 

c) The influence of the amount of prior information on the uncertainty of the ab 

component was much smaller than on the uncertainty of the two variance 

components corresponding to the distance observations. In general, the 

uncertainty of the estimation decreased slightly when more prior information was 

added (see Figures C.l7 and C.20). 

When estimating the variance components for the Mactaquac data, some computational 

problems were encountered. They were: 

1. Complete lack of convergence, encountered when using: 

a) the REML and GML with the noninformative prior estimation methods with the 

1989 data set (see Table C.2 and C.l3), and 
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b) the GML method with the inverted gamma prior, and the ratio of the standard 

deviation of the prior to the prior value (mean of the prior distribution) of 1, with 

the 1991 data set (see Table C.9). 

2. Lack of convergence when the estimation process starts with the default initial values 

of unknown variance components. This phenomenon occurred when processing the 

1989 data, using the GML method with the inverted gamma prior (see Table C.8). 

3. Very slow rate of convergence arising when: 

a) the GML method with the inverted gamma prior was applied to the 1989 and 1991 

data sets (see Tables C.8 and C.9), and 

b) the dispersion-mean model with weighted constraints was used with the 1989 data 

set (see Table C.19). 

In the case of the 1989 data, where both the REML method and the GML method with 

the noninformative prior failed to produce any results, introduction of prior information 

about the unknown variance components forced the iterative process to converge. 

Lack of convergence when using the default initial values of variance components was 

overcome by using better initial values - closer to the final estimates. 

Slow convergence encountered when processing the 1989 data set appears to have arisen, 

to some extent, from the presence of undetected outliers in the data. It is worth to note 

that both the REML method and the GML method with the noninformative prior failed to 
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produce any results for the 1989 data set, due to divergence of the computational 

procedure. However, as indicated in Section 7.3, removal of all formal outliers from the 

1989 data set caused the REML estimation process to converge. 

7.2 Influence of the Estimation of Variance Components on the Spatial Defonnation 

Trend Analysis Process 

The influence of the estimation of variance components on the deformation trend analysis 

process, in particular on the results of the Iterative Weighted Similarity Transformation 

(IWST), is analyzed in this section, based on the 1991 and 1993 Mactaquac campaigns 

(see Section 7.1).The influence of the error model, the method of estimation, and the 

amount of prior information on the transformed displacement components and their 

confidence regions and on the IWST results is investigated. 

For the 1991 campaign a 3 parameter error model was used for the estimation of variance 

components. The model comprises the a~ and b~ terms (see eqn. 7.1)- for the distance 

measurements- and the a~ term (see eqn. 7.2) for the direction measurements. For the 

1993 campaign two error models were considered: the 3 parameter model consisting of 

the a~, b~, and a~ terms, and a 2 parameter model consisting of the b~ and a~ terms. 

7.2.1Influence of the E"or Model 

The influence of the choice of the variance components model on the results of the spatial 

deformation trend analysis is investigated in this subsection - for the REML estimation 
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method. For the 1991 data the 3 parameter variance components model was used. For 

the 1993 data either the 2 parameter or the 3 parameter model was utilized. 

The results of IWST, for all the reference network points, are shown in Figures 7.2 and 

7.3. Figure 7.2 depicts the transformed displacements and their error ellipses for the case 

when the 2 parameter error model is used for the 1993 data. Figure 7.3 shows the IWST 

outcome for the 3 parameter case. The displacement field and the error ellipses, for both 

error models, are compared in Figure 7 .4. 

It is seen that the reference points REF-200, REF-201 and REF-202, which were assessed 

to be stable when the 2 parameter model was used, were showing to have undergone 

significant movements when the 3 parameter model was adopted. On the other hand, 

points C-100 and C-200, assessed to be unstable under the 3 parameter model, turned out 

to be stable when the 3 parameter model was utilized. Altogether, the results of IWST, 

being the verdict whether a point is stable or not, changed for 5 out of 14 reference points 

with the change of the error model for the 1993 epoch. 

It is seen in Figure 7.4 that the displacement vectors were only moderately affected by the 

change of the error model. The impact of the error model on the error ellipses of the 

displacement vectors was, however, much more pronounced; the change of the error 

model caused changes of both the size and the orientation of the error ellipses. 
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7.2.2 Influence of the Method of Estimation 

The influence of the method chosen for the estimation of variance components on the 

results of the spatial deformation trend analysis is examined in this subsection. As before, 

the 3 parameter variance components model was used for the 1991 data while either the 2 

parameter or the 3 parameter model was utilized for the 1993 data set 

It was observed that the impact of the choice of the variance components estimation 

method on the displacement field and the error ellipses resulting from IWST was much 

Jess prominent than the impact of the error modeL The largest difference occurred 

between the REML and the GML with the inverted gamma prior (with the ratio of the 

standard deviation of the prior to the prior value of 2) estimation methods, for the 3 

components error model. 

The results of IWST for the case when the GML with the inverted gamma prior estimation 

method was used, are shown in Figure 7.5. The comparison with the REML case is 

depicted in Figure 7 .6. 

It is seen that the results of IWST changed only for one reference point: C-500, which 

changed designation from stable to unstable when the variance components estimation 

method changed from REML to GML with the inverted gamma prior. 
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7.2.3 Influence of the Amount of Prior Information 

The way the amount of prior information affects the results of the spatial deformation 

trend analysis is investigated here. Again, the 3 parameter variance components model 

was used for the 1991 data while either the 2 parameter or the 3 parameter model was 

utilized for the 1993 data set 

The variability in the amount of prior information had less impact on the results of IWST 

than all other analyzed factors. The results of IWST were the same for all ratios of the 

standard deviations of the priors to the prior values (means of the prior distribution) 

(ranging from 2 to 16), for both the GML with the inverted gamma prior and the 

dispersion-mean model with weighted constraints estimation methods. 

The largest difference, noticeable mainly in the shape and size of the error ellipses of the 

transformed displacement components, was seen when the results of IWST were 

compared for the two cases when the dispersion-mean model with weighted constraints 

estimation method was used: in the first case with the ratios of the standard deviations of 

the priors to the prior values (means of the prior distribution) set to 2 (Figure 7.7); in the 

second case with the ratios set to 16 (Figure 7.8). The IWST results are compared in 

Figure 7.9. 
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7.2.4 Discussion of the Results 

As far as the influence of the estimation of variance components on the spatial 

deformation trend analysis process is concerned, the amount of prior information had the 

smallest effect from all the discussed factors. The change of the ratio of the standard 

deviations of the priors to the prior values (means of the prior distribution) appears to 

have had a pronounced effect only in the case of the dispersion-mean model with weighted 

constraints when using the 3 parameter model for the epoch 1993. In the case of the 

dispersion-mean model with weighted constraints, the effect of introduction of prior 

information decreased to almost zero with the increase of the ratio of the standard 

deviations of the priors to the prior values (means of the prior distribution). 

The second in magnitude was the influence of the choice of the method of estimation. All 

four discussed estimation methods affected the results of the spatial deformation trend 

analysis in a very similar way. 

The choice of the error model had by far the largest influence on the results of the spatial 

deformation trend analysis process, for all the methods. 

As far as the influence of all three analyzed factors on the transformed displacements 

versus their influence on the elements of the transformed error ellipses is concerned, the 

confidence regions were in all cases affected much more strongly than the displacements 

themselves. 
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7.3 Analysis of Homogeneity of the Data: Mactaquac Monitoring Network 

(Campaign of 1989) 

In this section the campaign of 1989 is chosen to demonstrate the proposed approach to 

the analysis of homogeneity of the data, by means of the algorithm for detecting influential 

observations, developed in Chapter 5 of this thesis. The epoch of 1989 is chosen because 

of the problems encountered when estimating variance components with the 2 parameter 

model (eqn. 7.1), affecting all four estimation methods. For the REML method and the 

GML method with the noninformative prior, the estimation process did not produce any 

results as it diverged (see Subsection 7.1.2). Introduction of prior information by means 

of either the inverted gamma prior or the weighted constraints on the unknown variance 

components in the dispersion-mean model produced a solution. Convergence was, 

however, very slow and in the case of GML estimation with the inverted gamma prior the 

iterative process was very sensitive to the choice of the approximate starting values. 

When the original data set was used, i.e., when no observations were removed, and the 

empirical , a priori, values of the two variance components (see Table 7 .2) were used to 

compute the covariance matrix of observations, the least squares estimation process 

produced six observations flagged as outliers (see Table 7.3). All six flagged residuals 

failed the 't-test by a small margin. As mentioned above if neither of the flagged 

observations were removed the REML iterative process diverged for the 2 parameter 

model. 
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Table 7.3 Rejected residuals (tau-max criterion used) 

From To Residual [m] Critical Point 

(at 95%) 

REF-H)() M-1 0.0019 0.0016 

C-400 PR-1 0.0071 0.0068 

I-3 M-1 0.0040 0.0035 

M-1 TK-7 0.0020 0.0018 

M-1 REF-100 0.0019 0.0016 

TK-7 I-3 0.0029 0.0025 

Since the REML iterative process diverged, it was extremely difficult to quantify the 

influence of each observation, as it changed drastically from one iterative step to another. 

From the two of the variance components the a~ term changed very little from one step to 

another remaining at around 4 mm2 , while the b~ term jumped between 0.2 ppm2 and 

1.2 ppm2 diverging more with each iteration. As a result, the influence of each 

observation changed between even and odd steps. In the latter case, which resulted in the 

b~ component of about 1.2 ppm2 , distance observation from TK-1 to PR-1 had the 

largest positive effect on the b~ component and its removal increased the value of the b~ 

term by up to 60%. The six formal outliers had also a positive effect on the b~ 

component - ranging from 2% to 30%. In the former case, which resulted in the b~ 

component of about 0.2 ppm2, also the same distance observation (from TK-1 to PR-1) 

had the largest positive effect on the b~ component. Removal of this observation 
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increased the value of the b~ components to about 1 ppm2 (over 500% increase). The six 

formal outliers had also a pronounced positive effect on the b~ component- ranging from 

17% to 215%. In all cases the variance ratio VR(h) (eqn. 5.41) remained practically 

insensitive to the removal of any single observation, showing no more than a few percent 

change. 

In the next step the distance observation from TK-1 to PR-1 was removed and the REML 

estimation process was repeated. The process converged (albeit very slowly) to the 

following set of values: 

a~ = 3.85 mm2 ± 0.63, and 

b~ = 1.14 ppm2 ± 1.75. 

Influence of the six formal outliers on the estimation process is shown in Table 7 .4. The 

largest positive influence on the b~ component was exerted by the distance from C-200 to 

C-600 ( 46% ). This may be explained by the fact that there was a significant discrepancy 

between the distance from C-200 to C-600 and the distance measured in the opposite 

direction: from C-600 to C-200, of over 5 mm. The distance from C-600 to C-200 had on 

the other hand a large negative influence on the b~ component (-183%). The a§ 

component was largely unaffected by any single observation. The variance ratio VR(h) 

remained again practically insensitive to the removal of any single observation. 
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In the fmal step, in addition to the distance observation from TK-1 to PR-1, all formal 

outliers were removed from the data and the REML estimation process was repeated. The 

estimation process converged in just over 10 iterations to the following set of values: 

a~ = 3.10 mm2 ± 0.57, and 

b~ = 1.95 ppm2 ± 1.69. 

Observation from M-1 to 1-3 had the largest positive influence on the b~ component 

(26% ). A large positive influence on the b~ component was also exerted by the distance 

from C-200 to C-600 (22%). The distance from C-600 to C-200 had again the largest 

negative influence on the b~ component (-79%). As before, the a~ component was not 

significantly affected by any single observation. The variance ratio VR(~) was again 

insensitive to the removal of any single observation. 

Table 7.4 Influence of formal outliers on the b~ term 

From To Influence on b~ Term 

[%] 

REF-100 M-1 39.6 

C-400 PR-1 -0.1 

1-3 M-1 23.1 

M-1 TK-7 6.0 

M-1 REF-100 39.6 

TK-7 1-3 5.0 
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If all the formal outliers were initially removed, then the REML iterative process 

converged, albeit very slowly (over 40 iterations were required), to the following set of 

values: 

a~ = 3.43 mm2 ± 0.60, and 

b~ = 1.45 ppm2 ± 1.70. 

The distance from TK-1 to PR-1 had the largest positive effect on the b~ component; its 

removal increased the value of b~ by 58%. Observations M-1- 1-3 and C-200- C-600 

had also a very large positive influence on the b~ component (33% and 22% respectively). 

The distance C-600 - C-200 had the largest negative influence on the b~ component 

( -129% ). Neither the a~ component nor the variance ratio VR(h) was significantly 

affected by any single observation. The results of the estimation could not, however, be 

accepted as final, as the b~ component was smaller than its standard deviation and the 

convergence was very slow. Removal of the distance observation exerting the largest 

positive influence on the b~ term resulted in the estimation process of step 3, which 

suffered neither of the aforementioned deficiencies. 

It should be noted that the efficiency of all computations described in this section was 

significantly improved with the help of the numerical algorithm for recomputation of the 

R9 matrix - derived in Chapter 5 - making the process of detection of influential 

observations computationally feasible. 
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CHAPTERS 

SUMMARY. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Recommended Strategy for Estimation of Variance or Variance-Covariance 

Components for Geodetic Observations 

In this chapter a strategy for the estimation of variance or variance-covariance 

components, advocated by the author, is presented. The following two cases are 

considered. 

(1) No prior information about the unknown variance or variance-covariance components 

is available. 

If the general mixed model (eqn. 2.1) is used, then the Restricted Maximum Likelihood 

(REML) estimation method should be chosen. If the variance components model of 

eqn.(3.1) is used then either REML or the Generalized Maximum Likelihood (GML) 

method with the noninformative prior is recommended. From these two methods the 

REML method is substantially more efficient computationally. The REML method 

produces the estimates of variance or variance-covariance components that are unbiased 

and invariant to the choice of the vector of location parameters. The REML estimates are 

identical to the Iterated BIQUE and the IMINQE(U,I) estimates. The GML estimates are 
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invariant to the choice of the vector of location parameters. They are, however, no longer 

unbiased. 

(2) Some prior information about the unknown variance or variance-covariance 

components is available. 

In such case either the GML method with the inverted gamma prior or the dispersion­

mean model with weighted constraints can be used. The GML method with the inverted 

gamma prior (applicable only to the variance components model of eqn.(3.1)) takes into 

account the fact that the variance components are, by definition, positive. The GML (with 

the inverted gamma prior) estimates do not, however, approach either the REML 

estimates or the GML (with the noninformative prior) estimates with the increase of the 

variances of the priors. The dispersion-mean model with weighted constraints is not 

recommended, as the prior probability density function implied by it, is improper for either 

the variance or the variance-covariance components models. 

8.2 Summary of Results and Conclusions 

As far as numerical procedures are concerned, many of the statistical methods for 

estimation of variance or variance-covariance components for unbalanced data are, under 

certain restrictions, equivalent The following relationships exist between these methods: 

1. MINQE(U,I) is numerically equivalent to BIQUE, to MIVQUE under the restriction 

of normality of observations to AUE (under the assumption that the initial, 
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approximate values of the variance-covariance components are proportional to their 

true values), to the Helmert-type estimation (for variance components only), and to 

the first step REML estimation. 

2. MINQE(I) is numerically equivalent to the first step ML estimation. 

3. REML estimation is numerically equivalent to IMINQE(U,I), to iterated BIQUE, 

lAUE (which may be regarded as one of the algorithms for solution of REML), and to 

the iterated Helmert-type estimation (for variance components only). 

4. ML estimation is numerically equivalent to IMINQE(I). 

The general ANOV A methods are non-unique and lack optimal properties. As a result 

they should be regarded as inferior to other estimation methods. 

While the computational approach of the GML methods is similar both in principle and in 

scope to that of the maximum likelihood methods (ML and REML), the other two 

Bayesian methods, ie., the Bayes estimation and the interval estimation, employ 

completely different computational procedures. Both the Bayes estimation and the 

interval estimation require extensive computations and are essentially impractical for cases 

involving more than a few components. 

Introduction of prior information about the unknown variance components into the 

estimation process can be efficiently accomplished by means of the Generalized Maximum 

Likelihood (GML) method. If the inverted gamma distribution function is chosen for the 
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prior, then the GML estimating equations, resulting from application of the Fisher scoring 

method to the posterior probability density function, constitute a straightforward extension 

of the REML estimating equations. The estimated components and their asymptotic 

standard deviations do not, in general, approach the values of their REML estimated 

counterparts with the increase of the ratio of the standard deviations of the priors to the 

prior values of the unknown components (means of the prior distribution). It is found that 

introduction of prior information may cause the estimation process to converge in cases 

where the REML method diverges. 

Prior information can also be introduced by means of the weighted constraints on the 

unknown variance-covariance components in the dispersion-mean model Application of 

the least squares methodology to the resulting dispersion-mean model with weighted 

constraints yields estimating equations that are equivalent to the GML scoring equations 

with the multivariate normal prior. It should be noted that the multivariate normal prior is 

not a proper choice for either the variance or variance-covariance components as it assigns 

positive probabilities to negative definite covariance matrices. 

When no prior information is available, the GML approach can be used with the 

noninformative prior. The results of the GML estimation with the noninformative prior 

are similar to those obtained with the REML method. As far as the rate of convergence is 

concerned, both methods give comparable results. While the GML estimated components 
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are consistently Jarger, their significance is in general smaller than that of the REML 

estimated counterparts. 

Using the estimated covariance matrix of observations, in place of the true covariance 

matrix, has no effect on the covariance matrix of the estimated vector of location 

parameters, up to the first order terms. 

As far as the influence of various aspects of the estimation of variance components on the 

results of the spatial deformation trend analysis process is concerned, the choice of the 

error model has by far the Jargest impact. The effect of prior information and the choice 

of the estimation method is much smaller. 

The effectiveness of the proposed procedure for the detection of influential observations is 

demonstrated in the thesis. It is shown that observations that are not flagged as outliers by 

the 't-test used in the least squares adjustment process may have very pronounced 

influence on the results of the variance components estimation. 

8.3 Recommendations for Related Future Research 

It is recommended that further research be performed in the following areas: 

1. The effect of using the estimated covariance matrix of observations, in place of the true 

covariance matrix, on the accuracy of the estimated location parameters was discussed 
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in this thesis. It is recommended that the influence of neglecting the errors of the 

estimated variance-covariance components be investigated. 

2. The principle of GML estimation was applied in this research to the variance 

components model, using either the inverted gamma prior or the noninformative prior. 

It is recommended that applicability of the GML principle to the more general variance­

covariance components models, with other choices of priors, be investigated. 

3. It is recommended that the GML estimating equations, derived for the cases involving 

the inverted gamma and the noninformative priors, be tested with other types of 

variance components models, using other types of geodetic data. 

4. The choice of the error model had by far the largest influence, from all the analyzed 

aspects of the process of estimation of variance components, on the results of spatial 

deformation trend analysis. It is, thus, recommended that more research be done in the 

area of proper formulation and statistical testing of the error model. 

5. The procedure for the detection of influential observations, proposed in this research, is 

limited to the variance components model It is recommended that possibility of 

extending this procedure to the more involved variance-covariance components models 

be investigated. 

6. The procedure for the detection of influential observations should be further tested with 

the data sets involving more than one type of observable and more complicated 

variance components models. 

7. Throughout this research it was assumed that the asymptotic covariance matrix of the 

estimated variance or variance-covariance components adequately represented the error 
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structure of the estimated components. Since, especially for the small sample size, such 

assumption may not always be justified it is recommended that more research be done 

in the area of interval estimation and statistical testing of the variance-covariance 

components. 

8. Posterior normality of the posterior probability density function (with both the inverted 

gamma and the noninformative priors) was verified in this research for the Gauss­

Markov model with the unknown variance factor. It is recommended that the 

asymptotic properties of of the posterior probability density function, for both choices 

of priors, are investigated for more general variance components models. 
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APPENDIX A 

NOTATION 

first order design matrix 

covariance matrix of observations (function of 9) 

datum equations matrix 

vector of displacements components 

expectation 

Helmert transformation matrix 

influence function 

ML Fisher information matrix 

REML Fisher information matrix 

vector of observations 

ML likelihood function 

ML log-likelihood function 

REML likelihood function 

REML log-likelihood function 

mean squared error 

probability density function 
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Q cofactor matrix 

s similarity transformation matrix 

tr(.) trace 

v vector of residuals 

var(.) variance 

vee matrix operator stacking the columns of a matrix one under the other 

to form a single column 

X vector of unknown location parameters 

vector of variance-covariance (variance) components 

Kronecker product operator 

{ } 
p q 

a-· 
m g i=l,j=l 

matrix A of order p x q composed of the elements ~j• where ~j is the 

element that is in the i-th row and j-th column of A 

{ }
p 

a-· 
m g i,j=l 

square matrix of order p x p composed of the elements ~j 

diagonal matrix of order p x p, where~ denotes the i-th element on the 

diagonal 

column vector u oft elements, where ~ denotes the i-th element of u 

row vector u T oft elements, where ui denotes the i-th element of u T 
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APPENDIXB 

ASYMPTOTIC PROPERTIES OF GML ESTIMATORS 

In Chapter 2 (Subsection 2.2.1) the Hartley-Rao conditions [Hartley and Rao, 1967] for 

establishing asymptotic properties of ML estimators of the variance components are given. 

Under these assumptions Hartley and Rao [1967] prove that if the MLE of the vector of 

variance components provides the global maximum of the likelihood, it is weakly 

consistent, asymptotically efficient, and asymptotically normally distributed with the mean 

90 (the true parameter) and the covariance matrix equal to the inverse of the information 

matrix computed at 9o-

In the GML approach prior knowledge about the unknown variance components, 

expressed by the prior probability density function, modifies the likelihood function, 

resulting in the posterior probability density function. The prior probability density 

function does not depend on the data while the likelihood function does. Intuitively, as the 

amount of data increases (e.g. , as in the Hartley-Rao model, cf. eqn. (2.3), m~oo and 

lllj~oo) prior information becomes less relevant and the GML estimator approaches the 

ML estimator. 
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Consider an experiment fulfilling all three Hartley-Rao conditions. The posterior 

probability density function is, in general case, given by the Bayes' Theorem (eqn. (2.65)) 

as: 

p{elt) = c p(9) p(ll9). (B.l) 

Taking natural logarithms of both sides we get: 

ln[p(alt)] = c1 + ln[p(9)] + ln[p(ll9)]. (B.2) 

As mentioned before, in the GML approach we may consider a posterior probability 

density function to be a modified likelihood function. The maximum likelihood method is 

applied then to a posterior probability density function as if it were a likelihood function. 

To prove consistency of GMLE one has to prove that, analogously to the Lemma 1 of 

Hartley and Rao [1967], for any fixed 9 different from 90 (true parameter) 

(B.3) 

where var0 denotes the variance when the true parameter 9o holds. 

Since the prior probability density function does not depend on the data, we get: 

var0 {m-1 In[p{91t)]} = var0 { m-1 ln(p(9)) + m-11n[p{ll9)]} = var0 {m-1 ln[p{ll9)]}, (B.4) 

which by Lemma 1 of Hartley and Rao [1967] is O(m-1). The remainder of the proof of 

consistency of GMLE follows then the argument of Hartley and Rao [1967]. 
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To prove asymptotic efficiency of GMLE one has to prove that the second derivatives of 

the natural logarithm of the posterior probability density function taken at the true value of 

the vector of parameters (8o) converge in probability to their expectations. To prove this 

hypothesis one only has to prove, as in [Hartley and Rao, 1967], that the variances of the 

second derivatives are O(m). It follows from eqn. (B.2) that the second derivative of the 

natural logarithm of the posterior probability density function is equal to the sum of the 

second derivative of the natural logarithm of the prior and the second derivative of the 

log-likelihood function. Since the prior does not depend on the data, the variance of the 

second derivative of the natural logarithm of the posterior is the same as the variance of 

the log-likelihood function, which in tum is proven by Hartley and Rao [1967] to be O(m). 

Applying the arguments of Hartley and Rao one can subsequently prove that the GMLE of 

the vector of variance components is asymptotically normally distributed with mean 8o and 

the covariance matrix equal to the inverse of the information matrix computed at 90 • 

Instead of analyzing the asymptotic properties of the GML estimators of variance 

components one may try to formulate the asymptotic properties of the posterior 

probability density function. 

Bernardo and Smith [1993] give the following development for establishing properties of 

the posterior probability density function as the number of observations, m, increases to 
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infinity. They expand the natural logarithms of the prior and the likelihood function about 

their respective maxima, J!p and am' obtaining: 

ln(p(9)] = ln[p(JJ.p)] + ~ (e- JJ.p) T Hp(9- J!p) + Rp, and (B.5) 

where Rp and Rm are the remainder terms and 

{ a2 ln(p<e>] I }r 
Hp = m ae.ae. ~P 'and 

1 J i,j=l 

(B.7) 

(" ) = f a21n[p(IIe)] I A }r 
Hem l m ae.ae. &=em ' 

1 J i,j=l 

(B.8) 

are the Hessian matrices of the natural logarithm of the prior and the log-likelihood 

function computed at their respective maxima. Assuming regularity conditions, ensuring 

that Rp and Rm remain small as the number of observations increases to infinity, Bernardo 

and Smith [ 1993] arrive at the following asymptotic form of the posterior probability 

density function: 

with 

p(ell) oc ex~~ {9- J1p)THp(9- JJ.p) + ~ (9-0m)T H(am)(e-am) J 

oc ex~~ (e- JJ.m)T Hm(e- JJ.m) ], 
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(B.11) 

Thus, the posterior probability density function will, subject to regularity conditions, 

converge to a multivariate normal distribution whose mean is a matrix weighted average 

of the prior modal value and the maximum likelihood estimate, and whose covariance 

matrix is a negative of an inverse of a sum of the Hessian matrices of the natural 

logarithms of the prior and the likelihood function computed at their respective maxima: 

(B.l2) 

The regularity conditions required for the above development to hold are given by 

Bernardo and Smith [1993] as follows. Let {pm(9),m = 1,2, ... } be a sequence of 

posterior densities for 9 of the form p m ( 9) = p( alii' ... ' 1m). Let J1m be a strict local 

maximum of Pm satisfying for all m: 

(B.13) 

with 

(B.14) 

being a positive definite matrix. Under these assumptions, Bernardo and Smith [1993] 

show that the following conditions are sufficient to ensure that the posterior distribution 

function is asymptotically equivalent to a multivariate normal distribution function 
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(1) "Steepness". "-max, -+0 as m-+oo, where "-max, is the largest eigenvalue of~. 

(2) "Smoothness". For any e > 0, there exists Nand B > 0 such that, for any m >Nand 

8 e B6 (JJ. m), H m ( 8) exists and satisfies 

(B.15) 

where I is the r x r identity matrix, A(e) is a r x r symmetric positive semidefinite 

matrix whose largest eigenvalue tends to zero as e--+0, and the neighbourhood B0 is 

defmedas 

B6(8*) = {8 e e;l8- 8*1 < B}. (B.16) 

(3) "Concentration". For any B > 0, 

faa(flm) Pm (8) d8-+ 1 as m-+ oo. (B.17) 

An alternative form of condition (3) is given by Bernardo and Smith [1993] as: 

( 4) For any B > 0, there exists an integer N and c, d e 9t+ such that, for any 

m> Nand 8E B6(Jlm), 

ln[p0 (8)] -ln[p0 (m 0 }] < -c[(8- m 0 } T :t;1(8- m 0 }t. (B.18) 

In Chapter 3, the principle of GML estimation is applied to the variance components 

model, eqn. (3.1), using the inverted gamma probability density function as an informative 

prior and the Jeffrey's prior as a noninformative prior. The asymptotic properties of the 

posterior probability density function, for these two choices of priors, will be discussed 

below. Posterior normality will be proven below only for the case of the single unknown 
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variance factor in the Gauss-Markov model (cf. eqn. (2.97)). Formulation of a proof of 

posterior normality in more general cases is not attempted here. 

The Gauss-Markov model with the unknown variance factor 8 = a5 reads: 

1 =Ax+ v, v- (o,c9 = 81). (B.19) 

The Hessian of the marginal log-likelihood function is a scalar of the following form: 

(B.20) 

The information matrix (a scalar in this case) is in tum found as: 

1 1 m-u 
J R = -tr(RIRI) = -tr(R) = - 4-. 

2 2a5 2~ 
(B.21) 

The Hessian of the inverted gamma prior, given by eqn. (3.18), is computed as 

(B.22) 

where p and b are positive constants (cf. eqn. (2.74)). The inverse of the posterior 

Hessian, being a sum of HR (eqn. (B.20)) and Hro, eqn. (B.22)) approaches thus zero as 

the number of observations, m, increases to infinity, which verifies condition (1). 

Condition (2) can be verified by observing that the posterior Hessian is a continuous 

function of a5. 
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Condition (4), and thus condition (3), is verified as follows. The natural logarithm of the 

posterior probability density function, given by eqn. (3.5), is computed as: 

lp =c-(p+l)In{~)- ~- ~In(aij'")- ~~~• ~TAl} IT:' 

=c-(p+ l)In{<io)-~- ~ m(c;.<m-•>J-im~ TAl-~. 
(B.23) 

The second derivative of lp with respect to 8= era. being a sum of HR and HPO, is 

determined in tum as: 

(B.24) 

and, for sufficiently large m, is strictly negative, which in tum makes lp strictly concave, in 

the neighbourhood of the GMLE of e (llm.). The remainder of the proof follows the 

approach presented in Bernardo and Smith [1993, pp. 293-294]. By the strict concavity 

oflp, for any B> Oand 8E Ba(J.lm), we have, for some e+ between 8 and J.lm• with angle 

lp(8) -lp(J.lm) = ( e- J.lm)Vlp( e+) = ~- J.lmiiVlp( e+) Ieos<!> < -c~- J.lml 

<-c.[( e- J.lm}l:~( e- J.lm)]~ 

where: 
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This concludes the proof of posterior asymptotic normality for the case when the inverted 

gamma function is used as a prior. 

The proof of asymptotic posterior normality with the noninformative prior is analogous to 

the proof presented above. The Hessian of the noninformative prior is computed from 

eqn. (3.114) and (3.115) as: 

1 { 2a4 [ 2a.4 ]} =-2 tr - 0- tr(3RRRR)-tr(RRR)-0-tr(RRR) . 
m-u m-u 

(B.27) 

= _!_ tr{ 2a6 rl3( m - u) - 2( m- u) lJ} = ~. 
2 m-u ag ag a0 

It follows then from eqn. (B.21) and eqn. (B.27) that as the number of observations, m, 

approaches infinity the inverse of the posterior Hessian approaches zero, which proves 

condition (1). 

As before, condition (2) follows from the fact that the posterior Hessian, being a sum of 

HR and HNo• is a continuous function of a5. 

Condition (4) is proven as before by observing that the second derivative of the natural 

logarithm of the posterior probability density function, given by eqn. (3.38) as 
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(B.28) 

is, for sufficiently large m, strictly negative in the neighbourhood of llm· Using the result 

of eqn. (B.21) we find: 

1 {m-uJ 1 {_2m} 1 { 1 I T 1] ITRI 1 =c+-1 -- --ln on --1 -A A ---
N 2 cr6 2 ° 2 cr5u 2 

(B.29) 

1 {m-uJ 1 ( 2(m-u)} 1 I T I VTV =c+-1 - 4- --1n CJo --lnA A---. 
2 cr0 2 2 2cr5 

The second derivative of lN with respect to e = a-5 is computed as: 

(B.30) 

which verifies the assumption. 
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APPENDIXC 

RESULTS OF THE ESTIMATION OF VARIANCE COMPONENTS 

The results of the estimation of variance components for all four epochs, using the REML, 

GML with the inverted gamma prior, GML with the noninformative prior and the 

dispersion-mean model with weighted constraints estimation methods, are listed below. 

C.l REML Estimation 

The REML method was applied to campaigns of 1986, 1989, 1991, and 1993. The 

iterative process was always started with initial values of 1.0 being assigned to the 

unknown variance components. The convergence criterion was set to 0.001%. 

Table C.l REML estimation: 1986 campaign, 2 parameter model 

Method of Estimated Standard Speed of 
Estimation Component Deviation Conver-gence 

REML a~ = 1.689 mm2 0.311 7 iterations 

b; = 1.660 ppm2 1.030 

Table C.2 REML estimation: 1989 campaign, 2 parameter model 

Method of Estimated Standard Speed of 
Estimation Component Deviation Convel'2ence 

REML 2 2 a8 =--- mm --- Diverges 

b2 2 s= ---ppm ---
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Table C.3 REML estimation: 1989 campaign, 1 parameter models 

Method of Esdmated Standard Speed of 
Esdmadon Component Deviadon Conver2ence 

REML a~ =4.417 mm2 0.441 1 iteration 

hi = 46.42 ppm2 4.63 1 iteration 

Table C.4 REML estimation: 1991 campaign, 3 parameter model 

Method of Esdmated Standard Speed of 
Esdmadon Component Deviadon Conver2ence 

REML a~ = 0.299 mm2 0.102 8 iterations 

hi = 3.644 ppm2 0.802 

a~ = 1.053 sec2 0.190 

Table C.5 REML estimation: 1993 campaign, 3 parameter model 

Method of Esdmated Standard Speed of 
Esdmadon Component Deviadon Conver2ence 

REML ai = 0.948 mm2 0.202 6 iterations 

hi = 0.596 ppm2 0.692 

a~ = 0.631 sec2 0.119 

Table C.6 REML estimation: 1993 campaign, 2 parameter models 

Method of Esdmated Standard Speed of 
Esdmadon Component Deviadon Conver2ence 

REML a~ = 1.107 mm2 0.140 10 iterations 

a~ = 0.626 sec2 0.118 

hi= 13.82 ppm2 1.73 6 iterations 

a~ = 0.591 sec2 0.111 
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C.2 GML Estimation with Inverted Gamma Prior 

The GML estimation method with inverted gamma prior was applied to campaigns of 

1986, 1989, 1991, and 1993. The values of prior variance components were chosen to be 

identical to the empirical values given in Chapter 7 (Table 7 .2). The iterative process was 

always started at the set of prior values. The convergence criterion was set to 0.001%. 

Table C.7 GML estimation with inverted gamma prior: 1986 campaign, 2 parameter 

model 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
GMLwith 

(j2 - 2 a~ = 1.259 mm2 0.262 10 iterations 
as. - aso 

Inverted Gamma 
(jb2 

- b2 bg = 3.348 ppm2 0.885 - So 
So 

Prior -2 2 a~ = 1.380 mm2 0.266 9 iterations 
(j 2 - aso as. 

(jb2 
So 

= 2bg0 bg = 2.778 ppm2 0.854 

Prior -4 2 a~ = 1.416 mm2 0.268 9 iterations 
(j 2 - aso 

as. 

components: 
(jb2 

So 
=4b~0 b~ = 2.607 ppm2 0.847 

a~0 = 0.25 mm2 -8 2 2 6 2 0.268 9 iterations 
(j 2 - aso a5 = 1.42 mm 

as. 

b2 -9 ppm2 
(jb2 So -

So 
= 8bg0 bg = 2.562 ppm2 0.845 

a 2 = 16a~0 a~ = 1.429 mm2 0.268 9 iterations 
as. 

(jb2 = 16b~0 b~ = 2.550 ppm2 0.844 
So 
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Table C.8 GML estimation with inverted gamma prior: 1989 campaign, 2 parameter 

model 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
GMLwith - 2 a~ = 3.382 mm2 0.512 38 iterations (*) 

Gz - aso 
as. 

Inverted Gamma 2 b£ = 4.077 ppm2 1.059 
CJbz = bso 

So 

Prior 2 a~ = 3.527 mm2 0.505 36 iterations (*) 
Gz = 2aso 

as. 

CJbz = 2b~0 bi = 3.317 ppm2 0.995 
So 

Prior -4 2 ai = 3.573 mm2 0.503 (**) 
Gz - aso a so 

components: 
(Jb2 = 4 b~0 b£ = 3.082 ppm2 0.974 

So 

aio = 0.09 mm2 Gz = 8aio a~ = 3.585 mm2 0.502 (**) 
a so 

b~0 = 16 ppm2 CJbz = 8 b£o b£ = 3.020 ppm2 0.968 
So 

CJaz = 16a~0 a~ = 3.588 mm2 0.502 (**) 
So 

CJbz = 16b~0 
So 

b£ = 3.004 ppm2 0.967 

(*) Started at the set of prior values initially diverges very rapidly, then finally converges 

after a lengthy process; 

(**) Started at the set of prior values diverges and has to be restarted with closer 

approximated starting values. 
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Table C.9 GML estimation with inverted gamma prior: 1991 campaign, 3 parameter 

model 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
GMLwith - 2 2 2 --- diverges 

O'a2 - aso as=--- mm 
So 

Inverted Gamma 
O'b2 = bio 

So 

b2 2 s =---ppm ---

Prior 
O'a2 

Do 
- a2 - Do 

2 2 a0 =---sec ---

C1 2 = 2aio ai = 0.234 mm2 0.107 converges to 
a So 

Prior 
O'b2 = 2 bio 

So 
hi = 3.749 ppm2 0.822 within 6% after 

components: -2 2 a~ = 0.984 sec2 0.181 40 iterations 
0'2 - aoo aDo 

ai0 = 0.09 mm2 
O'a2 

So 

-4 2 - aso ai = 0.257 mm2 0.102 converges to 

b2 -4ppm2 
O'b2 So -

So 
=4bio hi = 3.626 ppm2 0.822 within 10% after 

a~= 0.81 sec2 0'2 =4a~o a~ = 0.985 sec2 0.182 20 iterations 
aDo 

C1 2 = 8aio ai = 0.244 mm2 0.106 converges to 
a So 

O'b2 = 8 bio 
So 

hi = 3.698 ppm2 0.825 within 1% after 

0'2 =8a~o a~ = 0.985 sec2 0.182 20 iterations 
aDo 

C1 2 = 16aio a~ = 0.255 mm2 0.103 converges to 
a So 

O'b2 = 16bi0 
So 

hi = 3.637 ppm2 0.823 within 8% after 

C1 2 = 16a~0 a~ = 0.985 sec2 0.182 20 iterations 
aDo 
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Table C.lO GML estimation with inverted gamma prior: 1993 campaign, 3 parameter 

model 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
GMLwith 

O'a2 
- 2 - aso 

So 
a~ = 0.658 mm2 0.166 8 iterations 

Inverted Gamma 2 
O'b2 = bso 

So 
b~ = 1.760 ppm2 0.576 

Prior 2 a~ = 0.595 sec2 0.112 
O'a2 =aDo 

Do 

O'a2 
-2 2 a~ = 0. 728 mm2 0.167 8 iterations - aso 

So 

Prior 
O'b2 = 2 b~o 

So 
b~ = 1.421 ppm2 0.543 

components: -2 2 a~ = 0.593 sec2 0.113 0' 2 - aDo 
aDo 

a~0 = 0.09 mm2 
O'a2 =4a~0 

So 
a~ = 0.750 mm2 0.167 10 iterations 

b~0 =4 ppm2 
O'b2 = 4bio 

So 
hi = 1.313 ppm2 0.530 

a~ = 0.64 sec2 -4 2 a~ = 0.592 sec2 0.113 
0' 2 - aDo 

aDo 

O'a2 = 8a~0 
So 

a~ = 0.756 mm2 0.167 10 iterations 

O'b2 = 8 bg0 
So 

bg = 1.284 ppm2 0.527 

-8 2 a~ = 0.592 sec2 0.114 0' 2 - aDo 
aDo 

a 2 = 16a~0 a~ = 0.758 mm2 0.167 10 iterations 
a So 

O'b2 = 16b~0 b~ = 1.277 ppm2 0.526 
So 

a 2 = 16a~ a~ = 0.592 sec2 0.114 
aDo 
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Table C.ll GML estimation with inverted gamma prior: 1993 campaign, 2 parameter 

model 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
GMLwith 

<1b2 = b~o b~ = 13.15 ppm2 1.68 5 iterations 
So 

Inverted Gamma 2 a~ = 0.558 sec2 0.105 
O'az =aDo 

Do 

Prior 
O'bz = 2b~0 b~ = 13.26 ppm2 1.69 6 iterations 

So 

2 a~ = 0.555 sec2 0.106 
O'az =2aoo 

Do 

Prior 
<1b2 

So 
=4b~0 b~ = 13.29 ppm2 1.70 6 iterations 

components: 2 a~ = 0.555 sec2 0.106 
O'az =4aoo 

Do 

b2 -4ppm2 2 b~ = 13.29 ppm2 1.70 6 iterations So - <1b2 = 8bso 
So 

a~ =0.64sec2 
<1a2 = 8a~0 a~ = 0.554 sec2 0.106 

Do 

<1b2 = 16 b~0 b~ = 13.29 ppm2 1.70 6 iterations 
So 

<1a2 = 16a~0 a~ = 0.554 sec2 0.106 
Do 

C.3 GML Estimation with Noninformative Prior 

The GML method with noninformative prior was applied to campaigns of 1986, 1989, 

1991, and 1993. The iterative process was always started with initial values of 1.0 being 

assigned to the unknown variance components. The convergence criterion was set to 

0.001%. 
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Table C.l2 GML estimation with noninfonnative prior: 1986 campaign, 2 parameter 
model 

Method of Estimated Standard Speed of 
&timation Component Deviation Conver2ence 

GML with Noninf a~ = 1.701 mm2 0.327 5 iterations 

Prior hi = 1.785 ppm2 1.112 

Table C.l3 GML estimation with noninfonnative prior: 1989 campaign, 2 parameter 
model 

Method of Estimated Standard Speed of 
&timation Component Deviation Conver2ence 

GML with Noninf. 2 2 as=--- mm --- Diverges 

Prior b2 2 s =---ppm ---

Table C.14 GML estimation with noninfonnative prior: 1989 campaign, 1 parameter 
models 

Method of Estimated Standard Speed of 
Estimation Component Deviation Conver2ence 

GML with Noninf. a~ = 4.462 mm2 0.447 1 iteration 

Prior hi= 46.88 ppm2 4.65 1 iteration 

Table C.15 GML estimation with noninfonnative prior: 1991 campaign, 3 parameter 
model 

Method of Estimated Standard Speed of 
&timation Component Deviation Conver2ence 
GMLwith ai =0.319mm2 0.113 10 iterations 

Noninformative hi = 3.678 ppm2 0.847 

Prior a~ = 1.087 sec2 0.199 
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Table C.16 GML estimation with noninformative prior: 1993 campaign, 3 parameter 
model 

Method of Estimated Standard Speed of 
Estimation Component Deviation Convereence 
GMLwith a~ = 0.950 mm2 0.219 7 iterations 

Noninformative hi = 0.734 ppm2 0.793 

Prior a~ = 0.654 sec2 0.126 

Table C.17 GML estimation with noninformative prior: 1993 campaign, 2 parameter 
models 

Method of Estimated Standard Speed of 
Estimation Component Deviation Convereence 
GMLwith. a~ = 1.123 mm2 0.143 10 iterations 

Noninformative a~ = 0.650 sec2 0.125 

Prior hi = 14.02 ppm2 1.77 6 iterations 

a~ = 0.613 sec2 0.118 

C.4 The Dispersion-Mean Model with Weighted Constraints 

The dispersion-mean model with weighted constraints was applied to campaigns of 1986, 

1989, 1991, and 1993 to estimate the variance components. The values of prior variance 

components were chosen to be identical to the empirical values listed in Table 7 .2. The 

iterative process was always started at the set of prior values. The convergence criterion 

was set to 0.001%. 
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Table C.l8 Dispersion-mean model with weighted constraints: 1986 campaign, 
2 d 1 parameter mo e 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
Dispersion- - 2 a~ = 0.835 mm2 0.168 15 iterations 

O'a2 - aso 
So 

Mean Model 
(jb2 

- b2 b~ = 5.135 ppm2 1.060 - So 
So 

with Weighted -2 2 a~ = 1.287 mm2 0.242 14 iterations 
0'2 - aso 

a so 

Constraints 
(jb2 =2b~0 b~ = 2.936 ppm2 1.032 

So 

-4 2 a~ = 1.559 mm2 0.288 11 iterations 
O'a2 - aso 

So 

Prior 
(jb2 =4b~0 b~ = 2.015 ppm2 1.027 

So 

components: 
O'a2 = 8a~0 a~ = 1.654 mm2 0.304 9 iterations 

So 

a~0 = 0.25 mm2 
(jb2 = 8bg0 bg = 1.752 ppm2 1.029 

So 

b2 -9 ppm2 
0'2 = 16a~0 a~ = 1.680 mm2 0.309 9 iterations So -

as. 

(jb2 = 16b~0 bg = 1.683 ppm2 1.030 
So 
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Table C.l9 Dispersion-mean model with weighted constraints: 1989 campaign, 
2 d 1 parameter mo e 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
Dispersion- - 2 a~= 0.412 mm2 0.085 31 iterations 

<Ta2 - aso 
So 

Mean Model 
<Tb2 = b~o b~ = 28.38 ppm2 3.14 

So 

with Weighted 
<Ta2 =2a~0 a~ = 0.979 mm2 0.160 0.1% conv. 

So 

Constraints 
<Tb2 = 2b~0 b~ = 16.72 ppm2 2.30 in 20 iterations 

So 

<Ta2 =4a~0 a~ = 1.977 mm2 0.283 0.03% conv. 
So 

Prior 
<Tb2 =4b~0 b~ = 7.003 ppm2 1.688 in 40 iterations 

So 

components: 
<T 2 = 8a~0 a~ = 3.019 mm2 0.442 28 iterations 

a so 

a~0 = 0.09 mm2 
<Tb2 = 8b~0 b~ = 2.894 ppm2 1.622 

So 

b~0 = 16 ppm2 0'2 = 16a~0 a~= 3.739 mm2 0.571 0.01% conv. 
a so 

<Tb2 = 16 b~0 b~ = 1.388 ppm2 1.690 in 40 iterations 
So 
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Table C.20 Dispersion-mean model with weighted constraints: 1991 campaign, 
3 d 1 parameter mo e 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
Dispersion-

O'a2 
So 

- a2 - So a~ = 0.215 mm2 0.060 18 iterations 

Mean Model 
O'b2 = b~o 

So 
b~ = 4.034 ppm2 0.717 

with Weighted 
O'a2 

Do 

- 2 -aDo a~ = 1.044 sec2 0.183 

Constraints 
O'a2 

-2 2 a~ = 0.261 mm2 0.083 11 iterations - aso 
So 

O'b2 = 2 b~o b~ = 3.810 ppm2 0.762 
So 

Prior -2 2 a~ = 1.051 sec2 0.188 
0' 2 - aDo 

aDo 

components: 
0' 2 =4a~o a~ = 0.287 mm2 0.096 10 iterations 

a So 

a~0 = 0.09 mm2 O'b2 = 4bg0 bg = 3.697 ppm2 0.788 
So 

bio =4ppm2 -4 2 a~ = 1.053 sec2 0.190 
0' 2 - aDo 

aDo 

a~ = 0.81 sec2 0' 2 = 8a~o a~ = 0.296 mm2 0.100 9 iterations 
a So 

O'b2 = 8 bgo 
So 

bg = 3.659 ppm2 0.798 

-8 2 a~ = 1.053 sec2 0.190 0' 2 - aDo 
aDo 

a 2 = 16ag0 ai = 0.298 mm2 0.102 9 iterations 
a So 

O'b2 = 16bi0 
So 

hi = 3.648 ppm2 0.801 

0' 2 = 16a~0 a~ = 1.053 sec2 0.190 
aDo 
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Table C.21 Dispersion-mean model with weighted constraints: 1993 campaign, 
3 d 1 parameter mo e 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
Dispersion-

O'a2 
- 2 ai = 0.328 mm2 0.072 10 iterations - aso 

So 

MeanMode1 - b2 b~ = 3.410 ppm2 0.708 
O'b2 - So 

So 

with Weighted 
O'a2 

Do 

- 2 -aDo a~ = 0.652 sec2 0.120 

Constraints 
O'a2 

So 
=2aio ai = 0.510 mm2 0.116 12 iterations 

O'b2 = 2 hio hi = 2.301 ppm2 0.707 
So 

Prior 
0'2 =2a~o a~ = 0.651 sec2 0.121 

aDo 

components: -4 2 ai = 0.724 mm2 0.161 12 iterations 
0' 2 - aso 

a So 

ai0 = 0.09 mm2 
O'b2 = 4bio hi = 1.335 ppm2 0.706 

So 

bio =4ppm2 
0'2 =4a~o a~ = 0.644 sec2 0.121 

aDo 

a~ = 0.64 sec2 0' 2 = 8aio ai = 0.871 mm2 0.188 10 iterations 
a So 

O'b2 = 8 b~0 
So 

b~ = 0.822 ppm2 0.697 

-8 2 a~ = 0.636 sec2 0.120 0' 2 - aDo 
aDo 

0' 2 = 16a~0 ai = 0.927 mm2 0.167 12 iterations 
aSo 

O'b2 = 16b~0 
So 

hi = 0.655 ppm2 0.526 

0' 2 = 16a~0 a~ = 0.632 sec2 0.119 
aDo 
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Table C.22 Dispersion-mean model with weighted constraints: 1993 campaign, 
2 d 1 parameter mo e s 

Method of Standard Estimated Standard Speed of 
Estimation Deviation of Component Deviation Convergence 

the Prior 
Dispersion-

O'bl 
- b2 b~ = 12.47 ppm2 1.46 7 iterations - So 

So 

Mean Model 2 a~ = 0.601 sec2 0.112 
O'a2 =aDo 

Do 

with Weighted 2 b~ = 13.39 ppm2 1.64 6 iterations 
O'b2 =2bso 

So 

Constraints 
O'a2 =2a~0 a~ = 0.594 sec2 0.112 

Do 

O'b2 =4b~0 b~ = 13.71 ppm2 1.70 6 iterations 
So 

Prior 
0' 2 = 4a~o a~ = 0.592 sec2 0.112 

aDo 

components: 
O'bl = 8 b~o 

So 
b~ = 13.79 ppm2 1.72 6 iterations 

b2 -4ppm2 2 a~ = 0.591 sec2 0.112 So- O'az =8aoo 
Do 

a~o = 0.64 sec2 2 b~ = 13.81 ppm2 1.73 6 iterations 
O'b2 = 16b50 

So 

O'al = 16a~0 a~ = 0.591 sec2 0.112 
Do 
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C.S Comparison of the Estimated Variance Components 

The results of the estimation of variance components for all four epochs, using the REML, 

GML with the inverted gamma prior, GML with the noninformative prior and the 

dispersion-mean model with weighted constraints estimation methods, are given below in 

graphical form in Figures C.l to C.lO. The results are given on an epoch by epoch basis, 

separately for each component. To facilitate interpretation the square roots of the 

estimated variance components are given. The prior values (means of the prior 

distribution), which were used in the GML with the inverted gamma prior and the 

dispersion-mean model with weighted constraints estimation methods, are also indicated in 

all figures. 
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C.6 Ratios of the Estimated Variance Components to their Asymptotic Standard 

Deviations 

The ratios of the estimated variance components to their asymptotic standard deviations, 

expressing the tightness of the asymptotic confidence intervals, are given below in Figures 

C.ll to C.20 - in the same order as the corresponding estimates appearing in Figures C.l 

through C.lO. 
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