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Abstract

This dissertation describes a new self-learning navigation �lter associated with

probability space and non-Newtonian dynamics. This new �lter relies basically on

the information contained in measurements on the vehicle: position �xes, velocities

and their error statistics. The basic idea behind this new navigation �lter is twofold:

(1) A cluster of the observed position �xes contains true kinematic information about

the vehicle in motion, (2) A motion model of the vehicle associated with the error

statistics of the position �xes should be able to get, to a large extent, the information

out of the measurements for use. We base the new �lter on an analogy. We consider

the statistical con�dence region of every position �x as \source" tending to \attract"

the undetermined trajectory to pass through this region. With these position �xes

and their error statistics, a virtual potential �eld is constructed in which an imaginary

mass particle moves. To make the new �lter 
exible and responsive to a changing

navigation environment, we leave some parameters free and let the �lter determine

their values, using a sequence of observations and the criterion of least squares of the

observation errors. We show that the trajectory of the imaginary particle can well

represent the real track of the vehicle.

The new navigation �lter has been tested with both simulated and real navigation

data, as an estimator, predictor, smoother and blunder detector. Its ability to accept

navigator's intervention has also been tested. Compared with the Kalman �lter,

the new �lter requires the uncertainties of observations to be known only relatively

(cofactor matrix) and is able to o�er a better navigation when the vehicle is under

dynamic maneuvers and the data rate is small, but with a slower processing speed.
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Chapter 1

introduction

Navigation deals with the kinematics of vehicles [Anderson, 1966; Wells, 1976]. The

three classical functions of time in kinematics are motion, velocity and acceleration,

although higher order time derivatives may be signi�cant in some cases. Thus the ten

basic navigation parameters are the three components of each of these three vectors,

plus a time tag. Usually we must be satis�ed with a subset of these ten parameters.

In this dissertation, we assume that when a vehicle is traveling, instantaneous position

�xes and the corresponding error statistics can be obtained. Our purpose here is to

estimate the present position of the vehicle and predict its position at the next time

instant.

1.1 navigation systems and requirements for pre-

cise navigation �lters

Existing navigation systems available to navigators include classical ground-based

radio positioning such as Loran, Tacan, Omega; satellite positioning such as GPS

and Transit; and self-contained dead-reckoning systems such as inertial positioning,
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gyrocompass and ship's log (used at sea). The radio positioning and satellite posi-

tioning can provide accurate and bounded long-term position information, while the

self-contained inertial positioning can provide only accurate short-term position in-

formation (due to uncompensated gyro drift, all inertial navigation systems exhibit

an unbounded position error). Each system has its own advantages and disadvan-

tages. Descriptions of these can be found in many articles; for example, Wells and

Grant [1981], Enge and McCullough [1988], Dove and Miller [1989], Bachri [1990] and

Napier [1990].

It seems that satellite navigation systems will become a utility with a much wider

range of applications than classical ground-based radio navigation aids. User re-

quirements for satellite navigation systems can generally be satis�ed by the following

properties of the system: (1) accuracy (of centimetre level), (2) availability (when-

ever and whereever in the world), (3) integrity (blunder detection being possible) and

(4) continuity (positioning rate of 2 Hz) of function; but the use of ground-based

navigation system like Loran-C may continue for a rather long time [Stich, et al.,

1994].

Table 1.1 gives an overview of applications which require precise velocity and

position in exploration geophysics and resource mapping [Schwarz, et al. 1989], and

Table 1.2 gives the requirements for navigation in agriculture [Abidin, 1993].

Table 1.3 gives the accuracies of some classical ground-based navigation services

[Ackroyd and Lorimer, 1990] and we see that they are not able to meet the above

requirements. Di�erential GPS can o�er a positioning accuracy of 5 metres. The

di�erential GPS with carrier-smoothed code can reach an accuracy level of 1 metre.

With ambiguity-resolved carrier phase it can give a positioning accuracy at the cen-

timetre level. Table 1.4 shows data processing accuracy of PNAV software [Ashtech,

1993], precise di�erential GPS navigation and surveying software, a typical commer-

cial software. With the development of science and technology, we can expect more

accurate positioning in future. PNAV is able to resolve integer ambiguity on-the-
y
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Table 1.1: RMS accuracies required for various precise trajectory applications

TASK RMS accuracy required for position and velocity
position (m) velocity (cm/s)

gravity (sea) 20 < 10
gravity gradiometry (air) 20 < 10

relative geoid 1 10
3D seismic (land, sea) 1 - 3 50

aeromagnetics 1 30
resource mapping

1:50 000 2 100
1:20 000 0.5 25
1:10 000 0.1 5

Table 1.2: Requirements for navigation in agriculture

kind of navigation examples of tha tasks required accuracy
rough navigation soil sample acquisition
of the vehicle detection of tram lines �1 m

mineral fertilizer spreading
navigation liquid manure spreading

of tractor and solid manure spreading �10 cm
harvest machine application of pesticides

soil cultivation
tractor drilling

implement guidance hoeing �1 cm
plowing

Table 1.3: Accuracies of some classical ground-based navigation services

navigation service accuracy
Omega 2-3 nautical miles (95% probability level)
Loran-C 100-500 metres dependent on geometry and range

(95% level)
Decca 50-200 metres in good-to-fair geometry

3



Table 1.4: PNAV data processing accuracy, PDOP < 4:0

processing mode accuracy (m)
unsmoothed C/A-code 3-5
pseudo-range
smoothed C/A-code 1-3
pseudo-range
smoothed P-code 0.2-1
pseudo-range
C/A-code pseudo-range 1-3 in �rst 2-10 minutes, 0.1-1.0
+ carrier phase, thereafter. Best results (0.05-0.3 overall)

oat integer ambiguity can be achieved by forward and backward

processing
pseudo-ranges + 0.5-2 in �rst 2-4 minutes, 0.1-0.5
carrier phase, 
oat thereafter. Best results (0.05-0.3 overall)
integer ambiguity can be achieved by forward and backward

processing
pseudo-ranges and carrier 0.01-0.1 when the ambiguities are �xed
phase, �xed integer
ambiguity

4



(carrying out initialization in kinematic mode [Hofmann-Wellenhof, et al., 1992]).

But in order to do this in a short period, the following requirements have to be met:

(1) The dual frequency observables must be available.

(2) At least 5 satellite are used.

(3) PDOP < 5:0.

(4) The baseline separation, the distance between base station and rover receiver,

must not be over 10 kilometers.

Even so, the time to resolve integer ambiguity varies from 20 seconds to several

minutes, depending on the number of satellites, satellite geometry, receiver noise

level and data collection interval. Elimination of major errors and biases in the

observations is required for a reliable ambiguity resolution. A chosen procedure for

the elimination can a�ect the time and reliability of the ambiguity resolution. The

update rate of the measurements is also important. For example, if an automobile

is tracked, one should have a two- to �ve-second update rate; an aircraft requires

at least a one-second update rate [Ashtech, 1993]. It is possible to use the single

frequency observables for OTF, but it may take 50 minutes to resolve the ambiguities

[Deloach, et al., 1995]. All the above requirements or limitations, in fact, often make

the OTF solution impossible.

From the above, we can see that many existing navigation services, especially

those of classical kinds, are not able to meet the more stringent requirements for

precise position and velocity determination. Even with most advanced positioning

equipment, a centimetre level accuracy can not always be achieved. It seems that

the requirement of tractor implement guidance for drilling, hoeing and plowing in

agriculture can not be met by any navigation service. To get a solution in which the

random error e�ect has been reduced, one still needs navigation �lter.

In many circumstances, the detection of blunders or the test of the reliability of the

coming data, are required. For example, as we have pointed out, the chosen procedure

5



for the elimination of the major errors and biases in observations can a�ect the relia-

bility of the ambiguity resolution. That means even with most advanced equipment

there is a need to test the reliability of the solutions. No doubt, a navigation �lter

with blunder detection function is still useful. We think, there will be more activities

in future which will require a more precise position and velocity determination.

1.2 existing navigation �lters and their limitations

Navigation problems are commonly solved by combining two di�erent kinds of in-

formation; observations of the motion of the vehicle, and a model of the associated

\process" derived from some basic physical laws and represented by a di�erential

equation. Here, the associated \process" may be either the motion of the vehicle,

or the error of the determinated motion, described by a state vector [Minkler and

Minkler, 1993]. The existing navigation �lters can be classi�ed into two kinds, ac-

cording to whether their models are of random type or not. One is represented by

the Kalman �lter in which the \process" is modeled as a random process. The other

is represented by a polynomial �lter in which the \process" model is a deterministic

model.

Kalman �lter is the method most often used nowadays. It is based on some

assumptions (see Chapter 2) and if all the assumptions are met it can o�er optimal

estimation and prediction. It has been very successfully applied in the space industry.

But in marine navigation, the application has not been so successful. The di�culty

of its application in marine navigation is related to its \process" model given a priori

by the navigator. Realistically, in many environments, the a priori \process" model

does not represent reality, especially in a marine environment. Dove and Miller [1989]

wrote: \ The lack of recently published papers describing the use of Kalman �lters in

marine navigation does suggest that perhaps there has not been hoped for progress

in this area.".

6



In a polynomial �lter (see Chapter 2), the associated \process" is modeled by a

polynomial. The purpose of the �lter is to �t the polynomial based on a sequence

of observations made on the vehicle. The navigator has to select the degree of the

polynomial in advance. Then biases or systematic errors will arise when the true

\process" is not adequately approximated by the polynomial model, but the random

errors will be large when the degree is large [Morrison, 1969].

1.3 a considered alternative and the motivation

The di�culty of the application of the existing �lters in marine navigation is usually

not related to measurements since precise observations of positions and velocity of the

vehicle can be obtained. In light of this, we try to develop an alternative �lter which

relies solely on information frommeasurements of the vehicle: position �xes, velocities

and their error statistics (covariance matrice) and allows the navigator to intervene.

Here, we have assumed that the measurement errors are Gaussian distributed, so the

covariance matrice can then fully describe the uncertainties of the measurements. A

cluster of observed position �xes contains kinematic information about the trajectory

of the vehicle. We wish to extract this kinematic information and use it in the

navigation.

Real force �elds, which a�ect the trajectories of real particles, are routinely repre-

sented as gradients of corresponding potential �elds. We base our �lter on an analogy

where we consider position �xes as \force sources" tending to \attract" the undeter-

mined trajectory to pass through these �xes. When the vehicle is traveling, it is

assumed that instantaneous position �xes, and the corresponding error statistics, are

obtained from one positioning system or another. Based on these position �xes and

their error statistics, a virtual potential �eld is constructed in which an imaginary

mass particle is forced to move. The potential �eld caused by a single position �x

(we call it \position potential" �eld) should re
ect the accuracy of the position �x.
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The more accurate the position, the stronger it should attract the particle. Also the

force generated by the position �x should monotonically decrease with the closeness

of the particle to the source (the position �x). It is obvious that we are talking about

a non-Newtonian potential �eld.

The impetus for our research was in Inzinga and Van���cek's [1985] attempt to cre-

ate a navigation �lter based on the same motivation. In this attempt, the chosen

position potential function was related to the error function for the Gaussian prob-

ability function. In this way, the force produced by the position potential �eld on

the particle was directly and simply linked with the probability associated with the

position �x. But the equation of the motion of the particle based on the position

potential function was very di�cult to treat analytically.

1.4 methodology and scope of the research

To realize the above idea, we must �rst select a proper potential function for an

individual position �x, i.e., the position potential function. Using this function we

can establish a real-time position potential �eld for position �xes. To be 
exible and

to re
ect the changing navigation environment, the potential function is endowed

with some parameters the values of which are allowed to change. Then we can set up

an equation (of the motion of the imaginary mass particle) which has to be solved to

get the equation for the state of the motion. We call this equation of the state of the

motion brie
y a \motion model".

But without the parameters and some initial conditions, it is not possible to

generate a unique trajectory. Accordingly we require some further information to

narrow down our trajectory choice and to select the trajectory along which we believe

the motion is taking place. We want the �lter to determine (learn) the parameters and

the initial conditions from the observations. The parameters and initial conditions in

the motion model are related to the observations by the so called \observation model".
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After the observation model has been constructed, a criterion is set up so that the

selection procedure becomes best in some clearly de�ned sense. The criterion and the

observation model basically form a �ltering technique, the learning component of the

new navigation �lter.

This is a Self Learning (the parameters and initial conditions determined by the

�lter itself) �lter that uses Probability space (the error statistics of observed posi-

tion �xes used) and Non-Newtonian Dynamics (non-Newtonian potential �eld). For

simplicity, we call it the SLPND �lter or simply SLPND.

The SLPND is designed to perform functions of an estimator, predictor, smoother

and blunder detector while easily accepting navigator's interventions. Here, word

`estimator' means SLPND used to estimate the state of the vehicle at present; word

`predictor' means SLPND used to predict the state at the next time instant; and word

`smoother' means SLPND used to get the smoothed state of the vehicle, for detail, see

Section 4.3. We shall con�ne ourselves to two dimensional navigation problems, but

this does not mean that the basic idea can not work with three dimensional problems.

1.5 outline of the dissertation

This dissertation is composed of eight chapters and three appendices. The contents

of the chapters are as follows.

Chapter 2 brie
y describes the existing navigation �lters. This chapter lays a

basis for comparisons between the existing navigation �lters and the SLPND.

Chapter 3 presents in detail the basic ideas behind the SLPND. In this chapter

a \position potential function" is selected and a real-time position potential �eld is

built. Then the equation of the motion of a free particle in the �eld is formulated

and solved. At the end of this chapter, the \motion model" is derived.

Chapter 4 introduces the SLPND's computational aspects and functions. The

motion model and the observations are combined to form a �lter. The least squares
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of the observation error is brought in as a criterion for the selection of the unknown

parameters. Both nonlinear and linear least squares methods are brie
y discussed.

All the necessary formulas for computation are derived or summoned. The SLPND

as an estimator, predictor, smoother and blunder detector, is then discussed.

Chapter 5 presents the SLPND's navigation results with simulated vehicle tracks.

Some SLPND's features are pointed out.

Chapter 6 presents some SLPND's navigation with two real vehicle tracks. Again,

some SLPND features are pointed out.

Chapter 7 shows comparisons between the SLPND and the existing navigation

�lters. First, the comparisons are made conceptually. Then numerical comparisons

of navigation results, obtained independently from the SLPND and Kalman �ltering

technique are made.

Chapter 8 summarizes the research, makes conclusions and recommends some

points for further study.

Appendix I contains the procedure for the solution of the equation of the motion

of the free particle using Taylor series.

Appendix II describes the coordinate transformation for diagonalization of a co-

variance matrix.

Appendix III contains some derived mathematics formulae needed in the compu-

tations.

1.6 research contributions of this dissertation

The main contributions of this research can be summarized as follows:

1. The creation of a new navigation �lter, with a strategy and concepts quite

di�erent from any existing data processing methods.

2. The discovery of the analytic solution for the equation of motion of the particle

and the derivations of all the necessary mathematical formulae for the new �lter.
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3. The realization of the new �lter in computer software.

4. The evaluation of the new �lter using both simulated and real data.

5. Comparisons between the new �lter and the existing navigation �lters.
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Chapter 2

existing navigation �lters

In this chapter, we brie
y describe two basic types of existing navigation �lters; one

is the polynomial �lter and the other is the Kalman �lter. Because nowadays Kalman

�lter is the most often used navigation �lter, we will give it more attention.

2.1 polynomial �lter

We assume that a single aspect of the \process" of a vehicle (one of the components

of motion, or one of the component of the error vector of the motion if a nominal

trajectory is available) can be adequately approximated by the following polynomial,

sk =
mX
i=0

�i�i(tk); (2.1)

where,

s is the aspect of the vehicle at the time instant tk,

�i(tk) is the i-th term of the selected polynomial that is a function such as, for

example, a particular algebraic function, the Legendre function.

�i is the i-th unknown coe�cient of the polynomial.

We also assume that the motion of the vehicle is observed. This gives rise to a

sequence of observations and we retain the most recent j+1 of them in a \push-down
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table", calling them

lk; tk

lk�1; tk�1

...

lk�j; tk�j :

The purpose of the polynomial �lter is to �t the \process" model eqn:(2:1) to these

2� (j + 1) numbers in the sense of a well de�ned criterion, such as the least squares

for optimization. An observation model is then established to realize this. The

observation model can be written as

l+ v = ��; (2.2)

where

l =

0
BBBBBBBB@

lk�j

lk�j+1
...

lk

1
CCCCCCCCA
; � =

0
BBBBBBBB@

�0

�1
...

�m

1
CCCCCCCCA
;

v is the error vector associated with l and is assumed to be Gaussian, and � is a

Vandermode's matrix,

� =

0
BBBBBBBB@

�1(tk�j) �2(tk�j) � � � �m(tk�j)

�1(tk�j+1) �2(tk�j+1) � � � �m(tk�j+1)
...

�1(tk) �2(tk) � � � �m(tk)

1
CCCCCCCCA
: (2.3)

The least squares solutions for eqn:(2:2) can be found in Van���cek and Krakiwsky

[1986]. Thereafter the resulting polynomial is taken to be an estimate of the aspect

of the \process" which is associated with this sequence of observations. The prediction
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of the aspect at the next time instant can be obtained by replacing tk in eqn:(2:1)

with tk+1.

If the \process" has more than one independent aspect which are observed, as

many polynomial �lters as the observed aspects are needed [Morrison, 1969]. All

these �lters are completely unconnected, and operate entirely independently.

The major advantage of the polynomial �lter is that it does not require much

knowledge about the true \process". If the polynomial is of an adequate degree, it

will automatically seek out the signal in the presence of the observation errors and

give us its reasonable estimate. The major disadvantage of the polynomial �lter is

that users have to select the degree of the polynomial in advance [Morrison, 1969]. In

fact, in many navigation environments we have no idea about the proper degree of the

polynomial. If the true \process" is not adequately approximated by the polynomial

model, the biases or systematic errors would arise, while increasing the degree of the

polynomial the variances of quantifying the random errors would increase [Morrison,

1969].

2.2 Kalman �lter

The standard Kalman �lter can be described as follows. Consider a discrete-time

state-space system described by the linear state and output equations [Minkler, 1993]

Sk = �k�1Sk�1 +Gk�1wk�1 (2.4)

lk = HkSk + vk k = 1; 2; : : : ; (2.5)

where

Sk is an n-dimensional (system) state vector at the k-th time instant,

wk�1 is a discrete-time p-dimensional random noise from the system \process",

lk is an m-dimensional vector representing the measurement of the system at

k-th time instant,
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vk is a discrete-time m-dimensional random noise from the system measurement,

�k�1 is an n�n nonsingular state transition matrix at the (k�1)-st time instant,

Gk�1 is an n� p system associated matrix at the (k � 1)-st time instant,

Hk is an m� n observation matrix at the k-th time instant.

Further, suppose that the system \process" and measurement noise and the system's

initial state satisfy the following three assumptions:

1. The \process" and measurement noise random processes, fwig and fvig, are
uncorrelated zero-mean white-noise random processes with known auto-covariance

functions and E(viviT ) is nonsingular for all i � 1. Then, the auto and cross covari-

ance functions of fwig and fvig can be expressed as

E(wiw
T
j ) = f Qi i = j

0 otherwise
(2.6)

E(vivT
j ) = f Ri i = j

0 otherwise
(2.7)

E(wiv
T
j ) = 0 for all i; j; (2.8)

where Qi is known symmetric positive semi-de�nite matrices, and Ri is nonsingular.

2. The initial system state, S0, is a random vector that is uncorrelated with the

\process" or the measurement.

3. The initial system state, S0, has a known mean, E(S0), and a known covariance

matrix, C0.

Then, in the k-th iteration, the time update gives an optimal linear minimumvari-

ance prediction of the state vector, Ŝ�k , based on l1; : : : ; lk�1, and its error covariance

matrix C�

k [Minkler and Minkler, 1993]:

time update:

Ŝ�k = �k�1Sk�1 (2.9)

C�

k = �k�1Ck�1�
T
k�1 +Gk�1Qk�1G

T
k�1: (2.10)
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And the measurement update provides an optimal linear minimum variance estimate

of the state vector, Ŝk, based on l1; : : : ; lk, and its error covariance matrixCk [Minkler

and Minkler, 1993]:

measurement update:

Ŝk = Ŝ�k +Kk(lk �HkŜ
�

k ) (2.11)

Ck = (I�KkHk)C
�

k (2.12)

Kk = C�

kH
T
k (HkC

�

kH
T
k +Rk)

�1; (2.13)

where I is an n � n identity matrix. So that under the three assumptions, and ac-

cording to the given system model described by eqns:(2:4) (2:5), eqns(2:9) � (2:13)

together with the initial conditions provide a sequential and recursive algorithm for

the determination of an optimal linear minimum variance estimate for the system

state, Sk, based on the measurements l1; : : : ; lk. This sequential and recursive al-

gorithm is called the discrete-time Kalman �ltering algorithm. The derivations of

eqns:(2:9) to (2:13) can be found in many books, e.g., Gelb [1974], Teunissen and

Salzmann [1988], and Minkler [1993].

There are two more useful alternative forms and many useful extensions of the

standard discrete-time Kalman �lter. The two alternative forms are the inverse co-

variance form (or information matrix form) and the square root �ltering technique

[Minkler, 1993]. The former is particularly well suited to problems where the mea-

surement dimension is large or where there exists no a priori knowledge of the initial

system state. The latter can be used to provide improved numerical stability.

As to the extensions, they have been made in many directions. An adaptive

Kalman �lter extends the standard Kalman �lter to deal with problems where some

of the state-space system model parameters are unknown [Salzmann, 1988; Minkler,

1993]. A generalized Kalman �lter deals with the problems where systemmodels have

known additive and deterministic input signals and the problems where the \process"

and measurement noise random processes have non-zero means [Minkler, 1993].
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A general Kalman �lter extends the generalized Kalman �lter for the cases where

the \process" and measurement noise are correlated at the same time-point and pro-

vides the most general form of the discrete-time Kalman �lter [Minkler, 1993]. The

standard discrete-time Kalman �lter has also been extended for system models with

colored \process" and measurement noise [Gelb, 1974; Gao et al, 1992; Minkler, 1993].

Furthermore, the standard discrete-time Kalman �lter has been extended for nonlin-

ear systems [Gelb, 1974; Salzmann, 1988; Minkler, 1993]. If the nonlinear system

is linearized about a nominal trajectory, we get a linearized Kalman �lter. If the

nonlinear system is linearized about Kalman �lter's estimated trajectory, we get the

extended Kalman �lter.

2.3 navigation systems and Kalman �ltering tech-

nique

According to Brown and Hwang [1992], navigation problems seem to form a natural

setting for Kalman �ltering for the following reasons:

1. The dynamics are usually linear or may be linearized with reasonable accuracy.

2. There is often a redundancy of measurement information from a variety of

navigational sources.

3. The navigation problem is basically an on-line problem. Measurements must

be processed essentially in real time, and thus e�cient processing is a necessity.

4. There is frequently a need to squeeze the best possible performance out of the

system, and thus the data processing must be optimal or at least nearly so.

Generally, in practical applications, the state vector of a navigation system in-

volves either the whole state variables or error state variables. The whole state

variables actually represent the values of position, velocity, attitude, etc. The error

state variables represent the errors in the whole state variables, e.g., position error,
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velocity error, etc. The Kalman �lter with whole state vector or with error state

vector has its own advantages and disadvantages [Minkler, 1993].

There are plenty of examples of using Kalman �lter algorithm in navigation sys-

tems. For an example in an inertial navigation system see Wong [1982], for precise

navigation using DGPS see Schwarz et al. [1989], Hwang and Brown [1990], Cannon

[1990], Gao et al. [1992], Lu and Lachapelle [1992] and Liu et al. [1992], for blunder

detection see Dodd [1992].

To get a reliable, consistent and accurate navigation, integrating two or more of

the available navigation services has been the trend in navigation. Applying Kalman

�ltering algorithm to an integrated navigation system, a single comprehensive state

vector must be speci�ed which contains all possible navigation system parameters,

together with the transition model interconnecting them, and an appropriate set of

associated weights and correlations. One advantage of the Kalman �lter over other

approaches is that it can be partitioned, and various observation updates from dif-

ferent subsystems applied at di�erent epochs, i.e., the Kalman �lter can be asyn-

chronous. A number of integrated navigation systems have been developed, for ex-

amples, see Grant [1976], Falkenberg and Smith [1981], Wells and Grant [1981], Wong

and Schwarz [1983] and Schwarz and Cannon [1988].

2.4 limitation of Kalman �ltering in marine navi-

gation

With a Kalman �lter, the state vector is modeled as a random process. Choosing

an appropriate random process model is always an important consideration. Unfor-

tunately, in many real environments, it is almost impossible to know the random

process correctly and an application of Kalman �lter in these environments may be

risky.
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As we have seen the Kalman theory requires that both system and measurement

noises are white with zero means. A successful application of the Kalman �lter

is strongly dependent on whether the system dynamics is perfectly modeled in the

mean sense. In practice, disturbances such as wind and current may have random

variations superimposed on changing mean values (trend). This suggests that it is

very di�cult, if not impossible, to model the system dynamics of a navigation system

perfectly because the environment always changes, including the various maneuvers

of the vehicle. As far as measurement noise is concerned the system will require

knowledge of the random errors, which are assumed Gaussian.

Wells and Grant [1981] pointed out that Kalman �lter becomes di�cult if not

impossible to construct when

(a) unpredictable errors from environmental sources are present (for example, the

e�ect of wind and current on dead-reckoning and the e�ect of both changing overland

phaselag and shifts from groundwave to skywave propagation on Loran-C;

(b) the suite of navigation systems to be integrated varies from cruise to cruise,

or even during a single cruise;

(c) the rate at which error estimates must be updated varies among the error

parameters (for example cesium clock drift estimates can be safely updated a few

times per day; estimates of ocean current biases on dead-reckoning should be updated

a few times an hour).

It would seem that although the Kalman �ltering algorithm is used extensively

in aerospace navigation, where sudden environmental changes do not occur, it is not

easily adaptable to the marine navigation where sudden environmental changes occur

from time to time.
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Chapter 3

basic idea behind the new �lter

When a vehicle is traveling, it is assumed that instantaneous position �xes and the

corresponding error statistics can be obtained. As we have mentioned in Chapter 1,

the cluster of the observed position �xes contains information on the vehicle motion.

We desire to extract this information and use it. We consider the statistical con�dence

regions of position �xes as an expression of a \force �eld" that tends to \attract" the

undetermined trajectory to pass through these regions. Based on the position �xes

and error statistics, we construct an imaginary potential �eld where a free particle

will be forced to move. The aim is that the movement of the particle should describe

the true trajectory of the vehicle as well as possible. In this chapter, �rst a position

potential function is selected then a real-time position potential �eld is produced and

�nally the equation of the motion of the free particle is established and resolved.

3.1 position potential �eld

A proper \position potential function" U should produce such a \position potential

�eld" that its intensity re
ects the reliability of the position �x, and the produced

force on a particle should monotonically decrease with the closeness of the particle to

the position �x. We select the position potential function to have a positive parameter
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G which plays a similar role to the gravitation constant (a scale factor); the magnitude

of G should be a subject to choice. The �eld should also re
ect anisotropic accuracy

of the position �xes: the lower the uncertainty in a certain direction is, the stronger

the attraction for the particle in that direction will be. Furthermore, to let the free

particle get away from the past position �x, we assume the e�ect (potential) of the

attracting past position �x to dissipate exponentially with time.

Various accuracy measures have been used to characterize uncertainty in naviga-

tion. Most often used accuracy measures are based upon the assumptions of normal

distribution of random errors. Reasons for its popularity range from its simplicity to

it being the building block for the central limit theorem. It seems reasonable that

random errors may be equally positive as negative and that these errors should be-

come less frequent as their size increases. It should be noted, however, that other

types of distributions describing the stochastic behavior of errors originating from

navigation measurements have been used. For example, Kuebler and Sommers [1982]

indicated that the accuracy of position �xes obtained from most existing navigational

systems (Omega, NAVSTAR, LORAN-C, Decca) is better described by the Weibull

probability distribution.

In this dissertation, we assume that the error vector of the observed position is a

Gaussian random vector. We will con�ne ourselves in two dimension navigation from

now on, however, the expansion of the �lter in three dimension problem is possible.

The probability density function for a two dimensional Gaussian random vector is

�r0 =
1

K
exp[�1

2
(r� r0)TC�1(r� r0)]; (3.1)

where

K = 2�(det(C))1=2:

In the above, r0 is the observed position and C is its covariance matrix. The loci of

constant density function values are described by equations of the form

(r� r0)TC�1(r� r0) = h; (3.2)
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where h is a constant. This is an ellipse (also called an error ellipse) and h determines

the size of the ellipse. This error ellipse completely describes the accuracy of the

position �x. We select eqn:(3:2) as the basis of the position potential function U :

Ui(t) = G(r� r0i )
TC�1

i (r� r0i )e
��(t�ti); t � ti; (3.3)

where

r =

0
B@ x

y

1
CA ; r0i =

0
B@ x0i

y0i

1
CA (3.4)

are the position vectors of the free particle and the i-th position �x respectively,Ci is

the covariance matrix of the i-th position �x, re
ecting the uncertainty of the position

�x the G, as we have mentioned, is the positive parameter which acts as a scale factor,

� is a positive dissipating parameter (both G and � are to be determined), t represents

time and ti is the time when the i-th position �x r0i was taken. Here the term e��(t�ti)

acts as a decaying factor with respect to the age of the position �x.

The real-time position potential �eld U at t produced by n position �xes is simply

the superposition of the n individual position potential �elds:

U(t) =
nX
i=1

Ui(t)

= Ge��t
nX
i=1

(r� r0i )
TC�1

i (r� r0i )e
�ti; t � tn: (3.5)

Now, a Newtonian potential is a potential which is associated with an inverse square

law of force, and therefore varies with distance in the same manner as a gravitational

potential [McGraw -Hill, 1978]. So the potential �eld de�ned by eqn:(3:5) is clearly

non-Newtonian. Here, we would like to note that in order to make the SLPND keep

pace with the progress of the vehicle as soon as a new position �x appears, the real-

time position potential �eld is updated to include the e�ect of the new �x.
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3.2 equation of the motion of the particle

The partial derivative of the real-time position potential function (eqn:(3:5)) with

respect to r gives the acceleration of the particle, i.e.,

�r(t) = �@U(t)

@r

= �e��tG(Ar �B); t � tn; (3.6)

where

A = 2
nX
i=1

e�tiC�1
i ; (3.7)

B = 2
nX
i=1

e�tiC�1
i r0i ; (3.8)

which are not functions of time. This is the equation of the motion of the particle in

the real-time position potential �eld after the appearance of n position �xes, i.e., in

time t � tn.

To avoid possible numerical trouble in computation, i.e., under
ow with e��t and

over
ow with e�tn, when tn becomes very large, we move the origin of time t to tn.

Now the equation of the motion of the particle can be written as follows:

�r(t) = �e��tG(Ar �B); t � 0; (3.9)

A = 2
nX
i=1

e�(ti�tn)C�1
i ; (3.10)

B = 2
nX
i=1

e�(ti�tn)C�1
i r0i : (3.11)

Equations (3:9); (3:10) and (3:11) are valid only from the time instant when the

n�th position �x appears to the instant when the (n+1)�st position �x is produced.
When the new ((n + 1) � st) position �x is produced, they will be reformulated

and the state of the particle at instant (n + 1) � st will be the initial condition for

the new equation of the motion governing the particle from tn+1 to tn+2. Because

every position �x appears suddenly, the acceleration of the particle is not continuous,
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however, due to the initial condition, the velocity and the trajectory of the particle

are smooth.

Before we begin to solve eqn:(3:9), let us discuss the parameter � further. If �

is small, the particle will be subject to a resultant force to attract it to the group

of past position �xes; in an extreme situation where � = 0, i.e., with no decaying

(e��t = 1), the particle will tend to oscillate. If � is larger, position potential �eld

will be decaying very fast; when � is very large, all the past position �xes will have no

in
uence on the particle, only the most recent position will give the particle a \kick"

at the instance when it appears. Then a question may arise: can � be allowed to go

to in�nity? The answer is no, because this would correspond to a particle with zero

inertial mass and produce an unrealistic motion.

3.3 solutions for the equation of the motion

In some special cases, the coordinates of position �xes in the x and y directions

are uncorrelated, or can be regarded as uncorrelated; in most cases, however, they

are correlated. For the �rst kind of cases, covariance matrices of the position �xes

are diagonal. In this section, a solution for eqn:(3:9) is derived �rst for the case

of a diagonal covariance matrix. Although A in eqn:(3:10) and B in eqn:(3:11) are

function of all �xes for ti = t1; t2; : : : ; tn, the numerical results from all the simulations

or applications we did have revealed that we have to use a large value of � to get good

results (We shall show the numerical validation of this in Chapter 5.), then all the

e�ect of the past �xes for ti = t1; t2; : : : ; tn�1 can be neglected and only the position �x

for tn remains in A and B. The signi�cance of this is that the solution for the second

kind of cases, where the covariance matrices are fully populated, can be achieved by

�rst making a coordinate transformation resulting in a diagonal covariance matrix

and then using the solution for the �rst kind of cases.
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3.3.1 a solution for the cases of diagonal covariance matrices

When the covariance matrices of the position �xes are diagonal, and their inverses

are denoted by

C�1
i =

0
B@ pxi 0

0 pyi

1
CA ; (3.12)

eqn:(3:9) can be split into two uncoupled ordinary di�erential equations:

�x(t) = �G(Axx�Bx)e
��t; t � 0 (3.13)

and

�y(t) = �G(Ayy �By)e
��t; t � 0; (3.14)

where

Ax = 2
nX
i=1

e�(ti�tn)pxi ;

Bx = 2
nX
i=1

e�(ti�tn)pxix
0
i ;

Ay = 2
nX
i=1

e�(ti�tn)pyi ;

By = 2
nX
i=1

e�(ti�tn)pyiy
0
i :

We �rst derive the solution for eqn:(3:13), then we get the solution for eqn:(3:14)

simply by substituting y for x.

As the �rst step, let's �nd the solution for the homogeneous form of eqn:(3:13),

i.e.,

�x+GAxe
��tx = 0: (3.15)

Let x(t) = u(s) and s = 2
�
e�

�t

2

p
GAx, then,

_x =
ds

dt
u0 = �e��t

2

q
GAxu

0

�x = (
ds

dt
)2u00 +

d2s

dt2
u0 = e��tGAxu

00 +
�

2
e�

�t

2

q
GAxu

0;
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where u0 and u00 represent du=ds and d2u=ds2 respectively, and eqn:(3:15) becomes

s2u00 + su0 + s2u = 0: (3.16)

This is one of the special forms of Bessel equation of order 0 [Rektorys, 1969]. Its

solution is a cylindrical function (all kinds of Bessel functions and their linear com-

binations). The general solution reads:

u = c1J0(s) + c2N0(s); (3.17)

where J0 and N0 are Bessel functions of order 0 and of the �rst and second (Neumann)

kinds respectively, c1 and c2 are constants that depend on the initial conditions. By

substituting back for u and s, we get the solution of eqn:(3:15) as

x(t) = c1J0(
2

�
e�

�t

2

q
GAx) + c2N0(

2

�
e�

�t

2

q
GAx): (3.18)

The second step is to �nd a particular solution for eqn:(3:13). For �x = 0, we

easily �nd a particular solution: x = Bx=Ax. The general solution for the linear

ordinary di�erential equation can be obtained by adding the general solution of its

homogeneous form to one of its particular solution. Thus adding eqn:(3:18) to the

above particular solution we get the general solution for eqn:(3:13):

x(t) = Bx=Ax + c1J0(
2

�
e�

�t

2

q
GAx) + c2N0(

2

�
e�

�t

2

q
GAx): (3.19)

By substituting y for x, we obtain the solution for eqn:(3:14) with little extra

e�ort:

y(t) = By=Ay + c01J0(
2

�
e�

�t

2

q
GAy) + c02N0(

2

�
e�

�t

2

q
GAy); (3.20)

where c01 and c02, like c1 and c2, are undetermined constants.

Taking the time derivative of eqns:(3:19) and (3:20) respectively and noting that

dJ0(z)

dz
= �J1(z)

dN0(z)

dz
= �N1(z);
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where, J1 and N1 are respectively the �rst and second (Neumann) kind of Bessel

functions of order 1, we get the following solutions for velocities:

_x(t) =
q
GAxe

�
�t

2 (c1J1(
2

�
e�

�t

2

q
GAx) + c2N1(

2

�
e�

�t

2

q
GAx)) (3.21)

_y(t) =
q
GAye

�
�t

2 (c01J1(
2

�
e�

�t

2

q
GAy) + c02N1(

2

�
e�

�t

2

q
GAy)): (3.22)

Equations (3:19), (3:20), (3:21) and (3:22) are the basic formulae in our research.

With known parameters G and � and known initial conditions, i.e., (xn; yn)T and

( _xn; _yn)T , the four constants c1, c2, c01 and c02 can be determined by solving a system

of equations (3:19) to (3:22). Noting that

J1(z)N0(z)� J0(z)N1(z) =
2

�z
;

we have

c1 = ��

�
[(xn �Bx=Ax)

q
GAxN1(

2

�

q
GAx)� _xnN0(

2

�

q
GAx)] (3.23)

c2 =
�

�
[(xn �Bx=Ax)

q
GAxJ1(

2

�

q
GAx)� _xnJ0(

2

�

q
GAx)] (3.24)

c01 = ��

�
[(yn �By=Ay)

q
GAyN1(

2

�

q
GAy)� _ynN0(

2

�

q
GAy)] (3.25)

c02 =
�

�
[(yn �By=Ay)

q
GAyJ1(

2

�

q
GAy)� _ynJ0(

2

�

q
GAy)]: (3.26)

All these four constants are valid only within the interval [tn; tn+1]. Then, the position

and velocity at the next time instant tn+1 can be determined by eqns:(3:19) to (3:22)

with t = tn+1 � tn.

Now let us discuss the physical units of the quantities involved in the above formu-

lae. First, � should have a unit of s�1. According to eqn:(3:3), U must be in m2s�2

(unit for a potential function, see Van���cek and Krakiwsky [1986]) and G should also

be in m2s�2. Then, A is in m�2, B in m�1; and the argument of Bessel functions

are unitless. According to eqns:(3:19) to (3:22), constants c1, c2, c01 and c02 (here, the

word \constants" should be understood as quantities remained unchanged from tn to

tn+1) are in m.
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In the following discussion, we only target at the x component of the derived

solutions and for simplicity, select a large � to neglect all the e�ect of the past �xes

for ti = t1; t2; : : : ; tn�1 in A and B. Then, eqns:(3:19), (3:21), (3:23) and (3:24)

become:

8 0 � t � tn+1 � tn :

x(t) = x0n + c1J0(T ) + c2N0(T ) (3.27)

_x(t) =
q
2Gpxne

�
�t

2 (c1J1(T ) + c2N1(T )) (3.28)

c1 = ��

�
[�xn

q
2GpxnN1(T0)� _xnN0(T0)] (3.29)

c2 =
�

�
[�xn

q
2GpxnJ1(T0)� _xnJ0(T0)]; (3.30)

where

T (t) =
2

�
e�

�t

2

q
2Gpxn = e�

�t

2 T0 (3.31)

T0 =
2

�

q
2Gpxn (3.32)

and �xn = xn � x0n is the di�erence between the (initial) position of the particle

and the corresponding observed position at tn in the x direction. Note that t = 0

corresponds to the time instant tn (We have moved the origin of time to tn.). By

substituting for c1 and c2 from eqns:(3:29) and (3:30) in eqns:(3:27) and (3:28), we

get,

8 0 � t � tn+1 � tn :

x(t) = x0n +W1(�;G; pxn ; t)�xn +W2(�;G; pxn ; t) _xn (3.33)

_x(t) = _xn +W 0

1(�;G; pxn ; t)�xn +W 0

2(�;G; pxn ; t) _xn; (3.34)

where

W1(�;G; pxn ; t) =
T0�

2
[J1(T0)N0(T )�N1(T0)J0(T )] (3.35)

W2(�;G; pxn ; t) =
�

�
[N0(T0)J0(T )� J0(T0)N0(T )] (3.36)

W 0

1(�;G; pxn ; t) =
��

4
TT0[J1(T0)N1(T )�N1(T0)J1(T )] (3.37)

W 0

2(�;G; pxn ; t) =
T�

2
[N0(T0)J1(T )� J0(T0)N1(T )]� 1: (3.38)
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We may regard W1;W2;W
0
1 and W 0

2 as special weighting functions. They are the

function of parameters � and G, the uncertainty of the observed position at tn and t

(time interval from tn). When t = 0, we have T = T0, W1 = 1 and W2 = W 0

1 =W 0

2 =

0, then x = xn and _x = _xn. When t > 0, �xn and _xn are multipied by the weighting

functions W1 and W2 to give an increment to x0n, and multiplied by W 0

1 and W 0

2 to

give an increment to _xn.

3.3.2 a solution for the cases of fully populated covariance

matrices

When the covariance matrices are fully populated, it is very di�cult, if not impossible,

to �nd an analytical solution for eqn:(3:9). In this case we would be forced to use

Taylor series for a numerical solution, see Appendix I. An early version of the

SLPND used this approach but it was too slow to be a practical navigation �lter.

Fortunately, from the simulation we did, we found that the SLPND �lter always

selects the value of parameter � so large as to make the past �xes to have little

in
uence on the particle (for more details see Chapter 5). This sounds physically

reasonable since with a small �, the particle would always be attracted by the past

position �xes, and its motion will always tend to decelerate. This means we can take

only the terms relative to the most recent �x in the coe�cient matrices A and B into

account, because for larger values �(tn � ti), the values e�(ti�tn) will be negligiblely

small, for instance, for � = 10 and tn � ti = 2 seconds, it equals to 2:0612 � 10�09.

Then eqns:(3:10) and (3:11) simplify to:

A = 2
nX
i=1

e�(ti�tn)C�1
i = 2e�(tn�tn)C�1

n = 2C�1
n ; (3.39)

B = 2
nX
i=1

e�(ti�tn)C�1
i r0i = 2e�(tn�tn)C�1

n r0n = 2C�1
n r0n: (3.40)
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The signi�cance of this simpli�cation is that an analytical solution for eqn:(3:9) with

fully populated covariance matrices can be always obtained by coordinate transfor-

mation. We can �rst shift the origin of the coordinate system to r0n and then rotate

the coordinate system to diagonalize Cn. After this, we can use the formulae de-

rived in the previous section. The procedure for the diagonalization can be found in

Appendix II.

3.4 motion model

Having derived the solutions for the equation of the motion of the particle (3:9), we

can say that Sn+1, the state of the particle at tn+1, is a function of its state at tn (as

the initial condition) and the parameters G and �. Let us write

Sn+1 = fn(�;Sn); (3.41)

where

Si =

0
B@ ri

_ri

1
CA ; � =

0
B@ G

�

1
CA ; (3.42)

with the understanding that fn is a function re
ecting the previously observed posi-

tion �xes and the initial conditions at t1. This is the motion model of the particle.

Provided that the parameters G, � and the initial state (conditions) of the particle

are known, the state of the particle can be transformed to the next time instant of

interest.

To close this chapter, we would like to make the following two points:

1. The above motion model is updated any time a new position �x appears. In

order for the model to be 
exible with respect to a changing navigation environment,

at least one of the two parameters should not be given a priori. We should let the

�lter determine its most convenient value. In this way the motion model will be able

to learn from the real progress of the vehicle.
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2. On the other hand, because the motion model is constructed so that it is based

only on the observed position �xes and their covariance matrices, the information

obtained from the model has a certain lag behind the real progress of the vehicle.

The magnitude of the lag depends on how severe the forced maneuvering is: the

sharper the maneuvering, the larger the lag. Now let us consider two situations:

(i) Vehicle velocity at the time of the �x is not known. Then, due to the lag, the

particle may initially displays a tendency towards overshooting. As soon as a new po-

sition �x is produced, as we have described earlier in this chapter, the particle will be

attracted by the new position �x with a force with magnitude directly proportional to

the distance between the new position �x and the particle and inversely proportional

to the uncertainty of the new position �x.

(ii) Vehicle velocity at the time of the �x is known and communicated to the

�lter. If velocity observation is available, the lag will be greatly reduced. In fact,

when the vehicle is maneuvering under own force, making a sharp turn for example,

the �lter should be informed of the change, even when the change is known only with

a large uncertainty. We will discuss this situation which amounts to the navigator's

intervention later.

31



Chapter 4

computational aspects and

functions of the new �lter

The derived motion model (eqn:(3:41)) can not be used by itself. With the parameters

G and � being unknown and the initial state of the motion assumed not explicitly

available, there are in�nitely many trajectories that satisfy eqn:(3:41). It is not

known which trajectory represent the best the real one. The SLPND thus requires

further information to enable it to narrow down the choices and to produce the best

trajectory. We let the SLPND use the past observations and select the trajectory

which best �ts these observations in the least squares sense, i.e., to \learn" from past

experience. In this chapter we form a basic framework for the SLPND to learn: a

�xed memory least squares �lter. The word �lter is intended to convey the idea of

the signal (true motion) being allowed to pass, with the noise (the observation errors)

being suppressed.

A navigation �lter usually has at least two components: one is an estimator

and the other is a predictor. An estimator accepts information (observations) in

the presence of error and estimates the values of certain parameters. Based on the

output of the estimator a predictor puts out predictions of the state vector valid for

the time at which the next observation vector becomes available. In addition to the
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estimator and predictor, we may also be interested in the smoothed state vector of

the trajectory. Smoothing of a time series always implies using not only the past

information but also the future information. In this chapter the use of the SLPND

as a partial smoother is discussed. The word \partial" means only limited number of

the observations are used to do the smoothing (the same data are used to estimate

the parameter). In many applications of the navigation �lter, blunder detections may

be important, we will show that the SLPND can also serve as a blunder detector.

We will also describe the technique used to get the least squares solutions of the

observation model. We use nonlinear least squares method to get the estimated pa-

rameter vector �̂ and then the estimated and the partially smoothed positions of

the particle. Because of the di�culty in the estimation of the associated covariance

matrices when using a nonlinear method, after accurate values of the parameter vec-

tor � have been obtained by the nonlinear least squares method, we linearize the

observation model with respect to the parameter vector � and observation vector l

and use the linear least squares method to get the covariance matrices.

4.1 observation model

Assume that the positions and velocities of the vehicle are measured in the presence

of additive errors at some discrete times ti. Observations are read into a computer

where they are stored in, what is called \a push-down table". This is a memory

storage area in which the most recent observation is entered at the top, while all of

the preceding observations are moved down to make room for the newest observation.

In this way observations in the table are stored in the proper time sequence. The

push-down table is usually of �xed length k, so each observation eventually reaches

the bottom of the table. Upon the arrival of new data, the bottom-most entry is then

simply discarded or forgotten.
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Let the observation and error vectors at time ti be,

li =

0
B@ lri

l _ri

1
CA ; vi =

0
B@ vri

v _ri

1
CA ; i = n� k + 1; n � k + 2; : : : ; n; (4.1)

where subsripts ri and _ri are used for position and velocity respectively. We assume

that n�th position �x is the present �x and there exists the best � for the trajectory

between the (n� k)� th and n� th �xes. We denote the estimate of the best value

as �̂k
n. The subscript n indicates the present �x and the superscript k indicates the

number of the most recent position used in the estimation. Using eqn:(3:41) we can

write:

li + vi = Si

= fi(�;Si�1)

= fi(�; li�1 + vi�1); i = n� k + 1; n � k + 2; : : : ; n: (4.2)

We now assemble the above equations and obtain:

0
BBBBBBBBBBBB@

ln

ln�1
...

ln�k+2

ln�k+1

1
CCCCCCCCCCCCA
+

0
BBBBBBBBBBBB@

vn

vn�1
...

vn�k+2

vn�k+1

1
CCCCCCCCCCCCA
=

0
BBBBBBBBBBBB@

fn(�; ln�1 + vn�1)

fn�1(�; ln�2 + vn�2)
...

fn�k+2(�; ln�k+1 + vn�k+1)

fn�k+1(�;Sn�k)

1
CCCCCCCCCCCCA
; (4.3)

where ln�i is the vector of observations at time tn�i and vn�i is the vector of errors

in ln�i. We denote the total observation vector as l and its error vector as v:

l =

0
BBBBBBBBBBBB@

ln

ln�1
...

ln�k+2

ln�k+1

1
CCCCCCCCCCCCA
; v =

0
BBBBBBBBBBBB@

vn

vn�1
...

vn�k+2

vn�k+1

1
CCCCCCCCCCCCA
: (4.4)
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The total observation vector l will form the input to our �lter. We assume that the

random variables forming v have all expected mean equal to 0, and we denote the

covariance matrix of v by C.

Then eqn.(4:3) can be written more neatly as

l + v = f(�; l+ v); (4.5)

where

f =

0
BBBBBBBBBBBB@

fn

fn�1
...

fn�k+2

fn�k+1

1
CCCCCCCCCCCCA
: (4.6)

Equation (4:5) shows that the entire set of observations, made over the time span

[tn�k+1; tn] can be related to the parameter vector � and the initial state Sn�k of the

motion at tn�k. The most important task of this chapter is to estimate the best value

of � within [tn�k; tn], i.e., �̂k
n by using eqn:(4:5). It is obvious that �̂k

n is function of

the observations from tn�k to tn and the initial condition of the motion at tn�k, i.e.,

�̂k
n = 	(l; ln�k ;Sn�k): (4.7)

Equation (4:5) is called the total observation equation and is used over and over again

at any time a new position �x is produced.

Let us discuss the �ltering options now. By solving eqn:(4:5) we can achieve �̂k
n.

Based on �̂k
n and eqn:(4:3) we can obtain a trajectory of the particle between tn�k

and tn. The position of the particle at tn, i.e., l̂n is regarded as the estimated present

state of the vehicle and the position of the particle at ti; n�k < i < n can be regarded

as the partially smoothed positions of the vehicle. We suppose that �̂k
n will also be

valid within [tn; tn+1], then based on the estimated state l̂n and the motion model

fn+1, which is newly derived on the arrival of the n � th position �x, a prediction of
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the state of the vehicle can be made. Based on the prediction, once the new ((n+1)st)

position �x comes, a blunder detection can be made, for more detail see Section 4:3:3.

4.2 determination of unknown parameters

It is time for the parameter estimation. First we should select k. It is hard to deter-

mine a generally applicable k, but usually, if the vehicle is always under maneuvering

it may be more proper to use a smaller k. In our study once k is selected it will not

change during the commission. As we have mentioned, eqn:(4:5) is used over and

over again at any time a new position �x is produced, so is the following procedure

for the estimation of the unknown parameter vector.

4.2.1 criterion for parameter determination

Equation (4:5) is underdetermined and has an in�nite number of solutions for � and

v [Van���cek and Krakiwsky, 1986]. A criterion is needed so that the selection is best in

some clearly de�ned sense. As usual, we use the least squares criterion. This means

for � = (G �)T

min

a1 � G � b1

a2 � � � b2

�(�)) �̂k
n; (4.8)

where �(�) = vTC�1v is called the objective function, and a1; a2; b1; b2 are all pos-

itive; they de�ne the bounds of the parameter vector. Note that we may regard

the initial state of the motion Sn�k as pseudo-observations; then we will enlarge the

vector v and matrix C to include the corresponding pseudo-observations. The out-

standing properties of this criterion are that the solution is comparatively easy from

the mathematical point of view and lends itself to an easy statistical interpretation.

For further detail, the reader is referred to Van���cek and Krakiwsky [1986].
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The problem de�ned by (4:8) can be solved by either iterative linear least squares

method or nonlinear least squares method. For the �rst method, one can �nd it in

Van���cek and Krakiwsky [1986], the second in Pierre [1969], Bard [1974], Reklaitis, et

al., [1983], Torn and Zilinskas [1989] and Teunissen [1990]. Both kinds of methods

are iterative in nature. The linear method gives an explicit 	 in eqn:(4:7), while the

nonlinear method can not.

4.2.2 linear least squares method

If a good initial guess of the parameter vector � is available, the linear least squares

method will be the most e�cient method for both the parameter and covariance

matrix estimations. In this case eqn:(4:5) is linearized with respect to the initial

guess �(0) and becomes

D� +Hv +w = 0; (4.9)

where � is the correction vector to �(0) (small for a good initial estimate �(0)), the

misclosure vector w equals to l � f(�(0); l) and the design matrices D and H given

by

D = �

0
BBBBBBBB@

@fn
@�

@fn�1
@�
...

@fn�k
@�

1
CCCCCCCCA
�=�(0)

H = I+

0
BBBBBBBB@

@fn
@l

@fn�1
@l
...

@fn�k
@l

1
CCCCCCCCA
�=�(0)

; (4.10)

where I is an identity matrix. From eqn:(4:2), we have

@fi
@�

=
@fi(�;Si�1)

@�
+
@fi(�;Si�1)

@Si�1

@Si�1

@�
: (4.11)

All the partial derivatives needed by the above formula have been derived and can be

found in Appendix III.
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According to Van���cek and Krakiwsky [1986], the least squares solution of eqn:(4:9)

is as follows,

�̂k
n = �(0) + �̂

= �(0) �N�1DTMw; (4.12)

C
�̂

= N�1 (4.13)

N = DTMD (4.14)

M = (HCHT )�1: (4.15)

The other equations of interest are:

l̂ = l �CHTM(D�̂ +w) (4.16)

C
l̂

= C�CHTM(I�DN�1DTM)HC (4.17)

C
�̂k

n l̂
= �N�1DTMHC; (4.18)

where �̂k
n is the least-squares estimate for � in [tn�k; tn], C�̂k

n

is an approximation

of the covariance matrix of �̂k
n, l̂ is the least-squares estimate of the states of the

motion, C
l̂
is the least-squares estimate of the covariance matrix of l̂ and C

�̂k
n l̂
is the

estimated cross covariance matrix between �̂k
n and l̂. The �̂

k
n with C�̂k

n
, Ŝn = l̂n with

C
l̂n

and C
�̂k

n l̂n
are used to predict the next state of the motion and its covariance

matrix.

If the scale (variance factor) of the covariance matrix of the observations, �20 is

not known, i.e., if only the relative size of the elements of C is known, we need to

estimate this variance factor and then multiply eqns:(4:13); (4:17) and (4:18) by the

estimated variance factor �̂20 to get Ĉ�̂k
n
, Ĉ

l̂
and Ĉ

�̂k
n l̂
, for more details, see Van���cek

and Krakiwsky [1986].

We once tried to use iterative linear least squares method to solve eqn:(4:5).

Unfortunately at a certain iteration, parameter G might become negative, and this

made computer stop processing because of numerical error with
p
G. The author
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made no e�ort to get rid of this trouble, instead, used nonlinear optimization method

to continue the research.

4.2.3 a brief review of unconstrained nonlinear optimization

methods

Let us now talk about unconstrained nonlinear optimization methods. The word

\unconstrained" means that we do not pay attention to the inequality in eqn.(4:8).

We start with a given initial guess �1, and proceed to generate a sequence of points

�2;�3; : : : which we hope converge to the point �̂k
n at which �(�̂k

n) is the minimum.

�i is the i-th iterate obtained by (i� 1)st iteration (computation). The vector

�i = �i+1 ��i (4.19)

is called the i-th step. We wish that each step brings us closer to the minimum. We

consider the i-th step to have \improved" the situation (by bringing us closer to the

minimum), if

�i+1 < �i; (4.20)

where

�j = �(�j) (j = 1; 2; : : :):

We call the i-th step acceptable if eqn:(4:20) holds. An iterative method is acceptable

if all the steps it produces are acceptable.

Most nonlinear methods adhere to the following scheme:

1. Determine a vector di in the direction of the proposed i-th step.

2. Determine a scalar �i such that the step

�i = �idi (4.21)
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is acceptable. That is, we take

�i+1 = �i + �idi (4.22)

and require that �i be chosen so that eqn:(4:20) holds.

3. Test whether the termination criterion is met. If not, increase i by one and

return to step 1. If yes, accept �i+1 as the value of �̂k
n.

The manner in which di and �i are determined at each iteration speci�es a par-

ticular method. Usually �i is selected so as to minimize �(�) in the di direction. So

the nonlinear methods adhered to the above scheme have two features: iterative and

descent.

The iterative techniques fall roughly into two classes: direct search methods and

gradient methods. Direct search methods are those which do not require the explicit

evaluation of any partial derivatives of the objective function �(�). Instead they

rely solely on values of the objective function, plus the information obtained from the

earlier iterations. Gradient methods on the other hand, are those which select the

direction vector di using values of partial derivatives of the objective function with

respect to the parameters, as well as values of the objective function itself, together

with the information obtained from the earlier iterations. The required derivatives,

which for some methods are of order higher than the �rst, can be obtained either

analytically or numerically using some �nite di�erence scheme.

We will use an iterative descent gradient method for our solutions. Their iterative

formula has a general form [Teunissen, 1990]

�i+1 = �i � �iQ(�i)r��(�i); (4.23)

where Q(�i) is a positive-de�nite matrix and

r� =
@

@�
:

The convergence of the descent methods is guaranteed if

8i : k I� �iQ(�i)r2

��(�i) k< 1 (4.24)
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where

r2
� =

@2

@2�

and if the initial guess is \su�ciently close" to the solution �̂ [Teunissen, 1990].

Di�erent choices for �i and Q(�i) correspond to di�erent descent algorithms.

Cauchy's method is also called the method of steepest descent. The major advantage

of this method is its surefootedness [Reklaitis, et al., 1983]. The method typically

produces good reduction in the objective function from points far from the minimum,

using only the �rst-order partial derivatives of the objective function with respect

to the parameters. But it becomes less e�cient as minimum is approached, so the

convergence rate of this method is very slow.

Newton's method has a quadratic rate of convergence [Teunissen, 1990]. But

Newton's step will often be large when the initial guess is far from the minimum, and

there is the real possibility of divergence [Reklaitis, et al., 1983]. So Newton's method

can be unreliable for nonquadratic functions. Its other major disadvantage is that it

requires the calculation of the second order derivatives of the objective function with

respect to the parameters.

Marquardt's method is designed to overcome the �rst disadvantage of Newton's

method. The major advantages of this method are its simplicity, the excellent con-

vergence rate near the minimum and the absence of a line search used to determine

�i. It has proven very reliable in practice [Bard, 1974].

Gauss-Newton method takes the advantage of the \sum of squares" structure of

the objective function and can be interpreted as a `regularized' version of the Newton

method [Teunissen, 1990]. Within this method the linear least squares approach (cf.

Section 4:2:2) is repeatly used.

Conjugate Gradient methods tend to exhibit the positive characteristics of the

Cauchy and Newton methods, requiring only �rst-order derivatives. That is, the

methods are reliable far away from the minimum and accelerate as the sequence of
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iterates approaches the minimum [Reklaitis, et al., 1983].

Variable metric methods are designed to more directly mimic the positive char-

acteristics of Newton's method requiring only �rst-order derivatives. The speci�c

scheme proposed by Davidon for computing the second derivatives of the objective

function has been modi�ed slightly by Fletcher and Powell, and has been widely

used in this kind of methods, gaining a reputation of being the most e�cient general

unconstrained optimization method available [Bard, 1974]. The major disadvantage

associated with methods in this class is the need to store a metric matrix [Reklaitis,

et al., 1983].

4.2.4 optimization constrained by inequality

For constrained nonlinear problems, there is a family of methods which are essentially

adaptations of the unconstrained methods mentioned above [Bard, 1974; Reklaitis,

et al., 1983]. With this family of methods, an inequality constraint can be realized

in many ways, and we have, for example, the penalty function method, projection

method and the method of transformation of variables. In our research, we use the

method of transformation of variables. For the inequality constraint in eqn:(4:8), we

set

� =

0
B@ G

�

1
CA =

0
B@ (b1 � a1) sin

2�1 + a1

(b2 � a2) sin
2�2 + a2

1
CA (4.25)

and minimize �(�) with respect to � = (�1 �2)T ; with � varying from �1 to 1,

� remains within the prescribed bounds.

4.2.5 global optimization

Sometimes the objective function (eqn:(4:8)) has more than one minimumwithin the

speci�ed bounds. Figure 4.1 shows an example we got in one of the simulations, in

the Figure \pvv" represents the value of the objective function. Then the derived
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Figure 4.1: Value of objective function versus G

minimummay depend on the location of the initial guess of the parameter vector. If

we are not certain the minimum we get is the global minimum, we need to try more

than one initial guess. In our research a widely used \uniform covering" method

[Torn and Zilinskas, 1989] is used for the distribution of the initial guesses: initial

guesses of the parameters are uniformly distributed within a rectangular grid bounded

by the inequality in eqn:(4:8). This is time-consuming. Fortunately, according to

our experience, it is necessary to use multiple guesses only at the beginning of the

processing. Usually, from the previous processing, we can get the feel of the bounds

within which only one local minimumexists and it happens to be the global minimum

of eqn:(4:8).

Also, we can use �̂k
n as the initial guess for the next estimation of the parameter

unless forced maneuvering occurs. To explain this further, we plot the estimated

parameter G with error (�1 �) versus time t in two of our simulations in Figs:(4:2)

and (4:3). The �rst one is for a vehicle moving in a straight line with constant

velocity and the second one for a vehicle always under maneuvering. Both position

and velocity observations were used in these two simulations, the velocity of the

vehicle in both x and y directions (Vx and Vy) are also plotted for the latter.

Considering the error in the estimation of G, we can see that for the �rst case where

no maneuvering happens, the estimated G may be regarded as unchanged; while for

the second case where maneuvering occurs from time to time, the estimated G is
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Figure 4.3: Estimated G, and true velocity of the vehicle
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somewhat relative to the velocity changes of the vehicle.

4.2.6 evaluation of objective function

As long as the initial state Sn�k of the particle (vehicle) at tn�k is known and the

values of parameter� are given, a trajectory of the particle between the time instants

tn�k and tn can be obtained by using the model (eqn:(3:41)). (We have noted in

Chapter 3 that the model must be updated as soon as a new position �x is produced.

That means we need to update the motion model k+1 times during the period [tn�k,

tn]. The state of the motion at time instant ti; n� k � i � n is treated as the initial

state for the motion proceeding to time instant ti+1.) The evaluation of the objective

function in eqn:(4:8) can be done by means of eqn:(4:3):

�(�) = vTC�1v = (f � l)TC�1(f � l); (4.26)

where each fi is a function of the initial state Sn�k of the particle at tn�k and the

observations between the time instants tn�k and ti�1.

4.2.7 evaluation of gradients

The gradient of the objective function in the arti�cial coordinate system �1;�2 can

be expressed as

@�

@�
= 2vTC�1 @v

@�

@�

@�
: (4.27)

According to eqn:(4:25),

@�

@�
=

0
B@ (b1 � a1) sin(2�1) 0

0 (b2 � a2) sin(2�2)

1
CA : (4.28)

Note that for n � k < i � n, according to eqn:(4:2), vi = Si � li = fi(�;Si�1) � li,

we have

@vi
@�

=
@Si

@�
=

@fi
@�

; (4.29)
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@v

@�
=

@f

@�
= �D; (4.30)

where D is nothing else but one of the design matrices in eqn:(4:9). Then eqn:(4:27)

can be written as:

@�

@�
= �2vTC�1D

@�

@�
: (4.31)

4.2.8 determination of unknown parameters

We use either the variable metric method jointly using BFS and DFP formulae (for

more details see Reklaitis, et al., [1983]) or the conjugate direction method using

FRP formula (for more details see Reklaitis, et al., [1983]) with variable transforma-

tion method to implement the optimization and get the best estimate of the set of

parameters in the least squares sense. Both methods are most often used nowadays.

It has been said that both have the same convergence rate and the former is more sta-

ble but needs more memory during the processing. In our problem, it seems that the

numerical results from these two methods do not demonstrate any large di�erences.

This in the other hand, indicates the good health of the �lter.

4.3 navigation solutions

4.3.1 least squares �lter, predictor and smoother

We have described the �ltering options in the end of the Section 4:1. Now, because

�̂k
n is obtained by using the least squares approach, by convention we call it the

least squares estimate of the parameter vector, accordingly, Ŝn = l̂n the least squares

estimate of the present state of the motion, Sn+1 = fn+1(�̂k
n; Ŝn) the least squares

predition of the motion, and l̂i (n� k < i < n) the least squares partially smoothed

state of the motion. By the navigation convention, the procedures to produce them

are respectively called the least squares �lter, predictor and smoother.
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4.3.2 approximation of covariance matrices

Most of the nonlinear optimization methods usually are reliable and e�cient in the

determination of the unknown parameters, but they can not o�er an e�ective estima-

tion of corresponding covariance matrices. It is possible that some methods can be

further modi�ed to produce also error statistics, but this is beyond our scope here.

Our way to obtain the corresponding covariance matrices is, after the accurate esti-

mates of the parameters are obtained, to linearize the observation model eqn:(4:5) by

Taylor series in the neighborhoods of l(0) = l and�(0) = �̂k
n as shown in Section 4:2:2.

Then eqns:(4:13); (4:17) and (4:18) are used to obtain covariance matrices C
�̂k

n

;C
l̂

and C
�̂k

n l̂
.

To obtain the covariance matrix of the predicted state, �rst we linearize the pre-

diction model Sn+1 with respect to � and Sn and get:

�Sn+1 = R���+RSn�Sn; (4.32)

where

R� =
@fn+1(�;Sn)

@�

�����������
� = �̂k

n

l = l̂

; RSn =
@fn+1(�;Sn)

@Sn

�����������
� = �̂k

n

l = l̂

: (4.33)

Then using the propagation rule for covariance matrices [Van���cek and Krakiwsky,

1986] with the above linearized model, we can obtain the approximation of the co-

variance matrix of the predicted state:

CSn+1 = R�C�̂k
n

RT
�
+RSnCl̂n

RT
Sn

+R�C�̂k
n l̂n
RT

Sn
+RSnCl̂n�̂

k
n

RT
�
: (4.34)

4.3.3 blunder detection

As soon as a new position observation r with its covariance matrix Cr becomes

available, the computer �gures out whether the newcomer is compatible with the
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corresponding prediction r̂. If the newcomer is not compatible with the prediction, it

may be discarded. However, the �nal decision is up to the navigator.

According to Van���cek and Krakiwsky [1986], if the covariance matrices of obser-

vations are known, an error ellipse with con�dence level 1� � is de�ned by

�r̂TC�1
�r̂
�r̂ = ��22;1��; (4.35)

where �r̂ = r�r̂,C�r̂ = Cr+Cr̂ is its covariance matrix, � is a prescribed signi�cance

level and should not be confused with the decaying factor we use throughout this

dissertation, ��22;1�� is the value of the abscissa �xed through the selected value of

� to make the probability of a �2 statistic (with 2 degrees of freedom) within the

interval (��22 ;1��;1) to be equal to �. If only cofactor matrices (relative size of the

covariance matrices) of the observations are known, an error ellipse with con�dence

level 1 � � is de�ned by

�r̂TC�1
�r̂
�r̂

(��̂20=�
2
0)=�

= �r̂TĈ�1
�r̂
�r̂ = 2�F (2;�);1��; (4.36)

where, �20 is the variance factor and �̂
2
0 is its estimate (for more details see Van���cek and

Krakiwsky [1986]), � is the number of degrees of freedom used to calculate �̂20, Ĉ�r̂

is the estimated covariance matrix of �r̂, �F (2;�);1�� is the value of the abscissa which

is �xed through the selected value of � to make the probability of a Fisher statistic

with the degrees of freedom equal to 2 and � within the interval (�F (2;�);1��;1) equal

to �.

Any tested value r that falls within the error ellipse centred on r̂ must then be

considered compatible with r̂ on the level of 1� �.
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Chapter 5

simulations

The main objective of the simulations was to test the performance of the new �lter

numerically. We will describe the tests in the following order: e�ect of k and �,

e�ect of initial velocity, e�ect of sampling rate, e�ect of observational errors (random

and systematic), �nally the ability to accept navigator's intervention. Four simulated

tracks, straight, circular, sinusoidal and two straight line with a 90 degree turn in the

middle were formed by generating \true" position �xes and adding white Gaussian

noise or high frequency sinusoidal systematical noise. The path (estimated, predicted

and smoothed) of the vehicle was then computed, by using the SLPND �lter formu-

lated in previous chapters. Then the computed positions were compared to the \true"

position �xes. We used RMS error (root of mean square error) and maximum esti-

mated position error to measure the \goodness" of the computed track. The RMS

error is de�ned as

RMS =

s
eTe

u
; (5.1)

where e is the error vector of the estimated positions (i.e., di�erence vector between

the estimated and the true positions), and u is the number of components in the error

vector. The estimated position error is de�ned as the norm of the di�erence vector

between the estimated and the true positions. The maximumestimated position error
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is the maximum among all the estimated position errors.

Equation(3:9) to (3:11) involved all the past position �xes. In fact, because of

the presence of the decaying factor term e��t the real-time position potential �eld

(eqn:(3:5)) can be simply constructed by accounting only for the most recent position

�x if the value of � is su�ciently large enough. In this chapter, we will show that this

simpli�cation is justi�ed by demonstrating that the SLPND requires � to be large to

get good results and with this value of � the in
uence of all the past position �xes

can be neglected.

The SLPND can estimate both parameters G and �. In the early simulations we

used to let the �lter do so and obtained good results, but we were not satis�ed with

the SLPND's processing speed. In order to improve the processing speed, which is

very important to a navigation �lter, we now always �x � and let �lter to determine

G. In the following, all the results are obtained in this manner.

5.1 simulated tracks

straight track: In this case, the vehicle is moving straight with a constant velocity.

The straight track is de�ned by

y(t) = 0:0 m; x(t) = 2t m (5.2)

where t is time in seconds.

circular track: We also consider the vehicle under a slow and constant maneuver-

ing. It is moving circularly with a uniform angular velocity. The circular track is

de�ned by

x = r cos(
�t

2000
) (5.3)

y = r sin(
�t

2000
) (5.4)

where r = 1000 m is the radius of the circle.

50



sinusoidal track: In the third case, we suppose that the vehicle is under noncon-

stant maneuvering. Its track is a sinusoidal which is de�ned by

x = 1400 sin(
�t

1760
+

�

90
) (5.5)

y = 250 sin(
�t

280
+

�

4:5
) +

3t

8
+ 250: (5.6)

This track is shown in Fig. 5.1.
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Figure 5.1: sinusoidal simulation track

We assume that only positions of the vehicle are observed with a sampling interval

of 2 seconds. Two independent Gaussian noise series (one for the x-component the

other for the y-component) are generated (by using function Randn in Matlab), and

added to the true track to get the simulated positions. The error set (two series) has

zero means and standard deviations �x = �y = 1 m and has a maximum simulated

position error of 3.7 m. The initial position (t = 0) is supposed to have been obtained

by an observation, i.e., it has the same accuracy as the other observed position �xes.

Initial velocity vT
0 = (x0; y0) of the motion is obtained in an unspeci�ed way (even

by a guess), as

_x0 = 1:9 m=s; _y0 = 0:1 m=s: (5.7)

The initial velocity is assumed known with errors given by its covariance matrix,

Cv0 =

0
B@ 0:01 0:0

0:0 0:01

1
CA m2=s2: (5.8)
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Unless speci�ed, we will use these assumptions throughout this chapter.

5.2 e�ect of k and �

We let � and k be �xed in each simulation. The search area for the unknown param-

eters G is, according to our experience, de�ned by 0 � G � 0:1 for the �rst track,

0 � G � 1 for the second and third tracks. Many simulations are done with di�erent

values of k and �. Each simulation produces a value of RMS and a value of the

maximum estimated position error. The relations of RMS and maximum estimated

position error (max-e) on � (denoted as `aph' in the �gure) and some values of k

are depicted in Fig. 5.2 for the �rst track (straight), in Fig. 5.3 for the second track

(circular) and in Fig. 5.4 for the third track (sinusoidal).

Recall that the standard deviation of the errors in the simulated observations is

1.0 m and the maximumsimulated position error is 3.7m. In Figs. 5.2 and 5.3, within

a certain interval of � the RMS and the maximum estimated position error are lower

than the standard deviation of the error and the maximum simulated position error

respectively. But to the sinusoidal track, only with k = 5, we can get a slightly

better result than the observed positions (see Fig. 5.4). It is because the vehicle

is nonconstantly maneuvering and the SLPND is not informed of the kinematical

changes of the vehicle (only the position data are input to the SLPND), the SLPND

failed to give better results.

Let us discuss the e�ect of k now. For the straight track, it seems that with larger

k the SLPND gives better results. For the circular track, after k = 10 the larger

k improves the result little. As to the sinusoidal track, among the three values of k

(k = 2; 5; 10) only k = 5 leads to slightly better results than the `observed' positions;

after k = 5 the larger k degrades the SLPND's output. So the best value of k depends

on wheter the vehicle is under maneuvering and how severe the maneuvering is: the

shaper the maneuvering the smaller the best k is.
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Figure 5.2: RMS and maximum estimated position error, �rst track
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Figure 5.3: RMS and maximum estimated position error, second track
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Figure 5.4: Errors of the computed positions, third track
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From all the above �gures, we can see that if � is too small the results are poor.

We need to use a large value of �, say � = 10, to get good results. Then for the

sampling interval �t = 2:0 seconds, at the instant when the present position �x is

produced, the position potential function of the preceding position �x will be mul-

tiplied by e�10�2 = 2:06 � 10�9, but that of the present �x by e�5�0 = 1:0 (see

eqn:(3:5)). So the in
uence of all the past position �xes can be neglected without

much of an e�ect on the solutions, i.e., only the most recent position �x is really

needed in eqns:(3:10) and (3:11). The consequence of this is that we can handle the

case of non-diagonal covariance matrices by the coordinate transformation (described

in appendix II) and then use the solution derived in Chapter 3. We have repeated

the above simulations with the simpli�ed coe�cient matrices in the equation of the

motion (i.e., including only the most recent position �x in eqns:(3:10) and (3:11)).

To distinguish these simulations from those with complete coe�cient matrices, we

call them the \simulations with simpli�cation". The di�erences caused by the sim-

pli�cation (complete minus simpli�ed) are presented in Figs. 5.5 to 5.7 for the three

simulated tracks. In these �gures \D-RMS" represents the di�erence in RMS and \D-

max-e" represents the di�erence in the maximum estimated position error (max-e),

positive values among the them indicates that the simpli�cation led to better result

and vice versa. From Figs. 5.5 to 5.7, we can see that the simpli�cation causes little
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Figure 5.5: Di�erences caused by simpli�cation, �rst track, k = 15

di�erence when � is large enough, say about 25.

To conclude this section we would like to point out that:
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Figure 5.6: Di�erences caused by simpli�cation, second track, k = 10
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Figure 5.7: Di�erences caused by simpli�cation, third track, k = 5

(1) the selection of k would a�ect the results, the best value of k depends on

whether the vehicle is under maneuvering and how heavy the maneuvering is: the

sharper the maneuvering the smaller the best k is.

(2) A small value of � can lead to large errors in results while it is safe to use a

large value of �, say � = 25. The large value of � enable us the simpli�cation on the

solution of the motion of the particle. We have done many simulations with other

di�erent tracks about the simpli�cation, the results of these simulations veri�ed the

simpli�cation with one accord. In the rest of this dissertation, all the demonstrated

the SLPND's results are obtained by the simpli�ed equations.

5.3 e�ect of initial velocity

To test the SLPND with di�erent initial velocities, now we use another set of initial

velocity as follows:

_x0 = 1:0 m=s; _y0 = �0:5 m=s (5.9)
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with a covariance matrix

Cv0 =

0
B@ 1:0 0:0

0:0 1:0

1
CA m2=s2: (5.10)

The changes in RMS and maximum estimated position error caused by the change

of initial velocity are shown in Fig. 5.8 for the �rst track. We have done many
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Figure 5.8: Di�erence caused by di�erent initial velocities

simulations with other initial velocities on other di�erent tracks. All these simulations

have revealed that di�erent initial velocities cause little di�erence in the results if �

is large and if the covariance matrix of the initial velocity has well described the

uncertainty in the initial velocity.

5.4 e�ect of sampling rate

In order to test the SLPND with data of di�erent sampling rate, we assume that the

position is observed every 10 seconds (�t = 10 seconds) instead of 2 seconds as before

and the error set of the simulated data remains unchanged. It is no doubt that for

a vehicle under maneuvering, with a larger sampling interval, we can not get better

results. So in this section we only use the straight track. With k = 15, the RMS

and maximum estimated position error versus � are shown in Fig. 5.9. Comparing

Fig. 5.9 with the plotting of k = 15 in Fig. 5.2, we can see that the results with a

larger sampling interval is, as we have expected, not so good as that with a smaller

sampling interval but is still much better than the original data.
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Figure 5.9: RMS and maximum estimated position error, �t = 10 s

5.5 e�ect of observational errors

5.5.1 random error

Two other error sets which share the same Gaussian population as the previous one

but are di�erent realizations are also used. Figure 5.10 depicts the RMS and max-

imum estimated position errors versus � (for k = 15) for the three sets of data of

the �rst track. The three results give the same tendency. We have done similar
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Figure 5.10: RMS and maximum estimated position error

simulations with the second track and have observed the same phenomenon.

Now let us test another error set which is from another Gaussian population:

it has also zero means but standard deviations �x = �y = 2 m and �xy = 0; the

maximum position error of the simulated �xes is 7.8 m (almost being two times as

long as the distance between two adjacent �xes). We set k = 15. The RMS and

maximumestimated position error versus � are depicted in Fig. 5.11 for the �rst track

and Fig. 5.12 for the second. Even with so large uncertainty in the observations,
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Figure 5.11: RMS and maximum estimated position error, straight track
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Figure 5.12: RMS and maximum estimated position error, circular track

the SLPND can still o�er good results. Like the previous cases of �x = �y = 1 m,

we need use large � to get good results. But to the second track, in this present case

after k = 10, an increase of k by 5 (i.e., k = 15) improves the result a lot. This may

be because the random error in the case is larger than the error caused by having not

informed the SLPND the constant maneuvering.

From the simulations in this section, we can see that SLPND can suppress the

random noise in observations.

5.5.2 systematical error

Let us suppose now that observed positions are contaminated by a systematic errors

in both x and y directions speci�ed by the following equation:

e = 2 sin(
�t

3
); (5.11)

where e denotes the position error in metres, and t is time in seconds. The errors of

so generated positions are depicted in Fig. 5.13. Although the matter using a �lter
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based on error statistics to this problem might be not proper to some reader, we still

use the SLPND to this problem. Even further, we also use RMS for judgment. With

k = 15, the RMS and maximum estimated position error versus � are depicted in

Fig. 5.14 for the �rst track and in Fig. 5.15 for the second. As indicated by these
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Figure 5.14: RMS and maximum estimated position error, �rst track
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Figure 5.15: RMS and maximum estimated position error, second track

two �gures, good results can be obtained with a large �, and the SLPND can also

suppress systematical error in observations, with the maximum estimated position

error about 0.43 m in the �rst track and about 0.71 m in the second track compared
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with the maximum simulated position error of 1.732 m.

5.6 two straight lines at a right angle

In applications such as acceleration burst at geophysic exploration at sea or tractor

operations in agriculture, tracks of vehicles are often straight lines at right angles.

In fact, when the vehicles makes a sharp turn, the navigator (man or computer)

knows about the change. Then why not let the navigator intervene with the �lter

operation? The SLPND is designed to make the navigator's interventions possible.

In this section, we investigate the SLPND's ability to accommodate interventions.

The simulated track is formed by two straight lines with a right angle turn at the

time instant of t = 298s. Without navigator's intervention (without informing the

�lter of the change) at the turning point, right after the turning point, the errors of

the estimated positions reachs their worst (6.1 m), and the �lter spend more than

50 seconds to come back to normal. It is easier to understand this if we recall the

way we built the motion model (eqn:(3:41)). The model is totally dependent on the

observed position �xes and their error statistics. Certainly, if the vehicle suddenly

changes its speed (magnitude and/or direction), the kinematic information from the

motion model has one position �x lag to the true kinematics of the vehicle, then the

particle would overshoot.

The SLPND can accept the navigator's intervention by getting the velocity value

at the turning point or the velocity value with its covariance matrix, or simply a

covariance matrix assigned to the SLPND's computed velocity at the turning point.

This can easier be understood by summoning eqn:(3:41) here:

Si+1 = fi(�;Si):

Suppose that the position �x i is the turning point. The above formula clearly demon-

strates that Si (the state of the motion at the turning point i) is the initial condition
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for the motion evolving to time instant ti+1. If we update the velocity component in

Si, we can implement the intervention. The update can be done either by replacing

the SLPND's computed velocity at the turning point (obtained by evolvement from

ti�1 to ti) with the velocity observation and its covariance matrix or simply by assign-

ing a covariance matrix to the SLPND's computed velocity. To the latter, this means

telling the �lter a new uncertainty information of its computed velocity at the turning

point. Here, the computed velocity is then regarded as the velocity `observation', the

larger the uncertainty is, the less the computed velocity e�ects the evolvement from

ti to ti+1.

We give the SLPND the additional velocity observation and its covariance matrix

at the turning point. We assume the velocity observation at the turning point to be

vt=298 =

0
B@ _x

_y

1
CA =

0
B@ 0:1

1:9

1
CA m=s Cvt=298 =

0
B@ 0:01 0:0

0:0 0:01

1
CA m2=s2: (5.12)

The true forward velocity at the turning point was _x = 0:0 m=s and _y = 2:0 m=s.

We set k = 15 and � = 25:5. The errors of the computed (estimated, predicted and

partially smoothed) positions are pictured in Fig. 5.16. Here, the errors (i.e., e in the

�gure) of the computed position are the the norm of the di�erence vectors between

the true positions and the computed positions, and the smoothed position is about

the middle position �x among those used for parameter estimation.

Now we try to intervene the SLPND by assigning the following covariance matrix

Cvt=298 to its computed velocity at the turning point:

Cvt=298 =

0
B@ 9:0 0:0

0:0 9:0

1
CA m2=s2: (5.13)

The errors of the computed positions are depicted in Fig. 5.17.

It seems that with the navigator's intervention the SLPND can provide much

better results after the turning point: the maximum estimated position error is 1.1

m in Fig. 5.16 and 1.5 m in Fig. 5.17 compared with 6.1 m in the case without

intervention.
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Figure 5.16: Errors of the computed positions
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Figure 5.17: Errors of the computed positions
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5.7 SLPND's features, (I)

From the above simulations, we get some feelings about the SLPND as follows.

1. Even without velocity information, the SLPND can learn, to a certain extent,

about the kinematic of the vehicle when the vehicle is under a slow and constant (eg

circular track) maneuvering. But when the vehicle is under a heavy maneuvering (eg

sinusoidal track), what it learned may be not enough to improve position accuracy.

In this kind of situation it is not enough to supply only position information to the

SLPND. We expect that the SLPND would give better results if it is fed with both

position and velocity observations.

2. The selection of k would e�ect the results and there is no general k for various

tracks. The best value of k depends on whether the vehicle is under maneuvering and

how heavy the maneuvering is: the sharper the maneuvering the smaller the best k

is.

3. A small value of � can lead to large errors while it is safe to use a large value

of �, say � = 25. The large value of � leads to that only the most recent position

�x needs to stay in eqns:(3:10) and (3:11) and enables us the simpli�cation on the

solution of the motion of the particle.

4. Di�erent initial velocities will cause little di�erence in the results if � is large

and if the covariance matrix of the initial velocity has well described the uncertainty

in the initial velocity.

5. The SLPND can suppress random errors and high frequency systematic errors.

6. An intervention from the navigator can be easily implemented. When the

vehicle is under sharp maneuvering, giving the SLPND an extra information about

the kinematic change, even a guess at the vehicle's velocity or simply uncertainty

information on its computed velocity is very helpful.
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Chapter 6

applications to real tracks

This chapter is devoted for the test of the SLPND with real track, using both posi-

tion and velocity information. The SLPND is used on two tracks of MARY O (the

research boat of the University of New Brunswick) observed by the Ocean Mapping

Group of the Department of Geodesy and Geomatics Engineering of UNB. The ob-

served positions of these two tracks contains biases. This prevents us from testing

the SLPND's covariance matrix estimation. To overcome this, we generate simulated

data based on the true tracks of MARY O (obtained from the post-processing and

regarded as the true tracks). First, we apply the SLPND on the simulated data.

Then, the real position data with the simulated velocity data (no real velocity data

available) are used. The SLPND is tested as an estimator, predictor, smoother and

blunder detector.

6.1 track description

The �rst track was observed on September 12, 1993 in Saint John harbor and the

second March 26, 1994 in the Bay of Fundy. Both had a sampling rate of 10 seconds.

When MARY O was working, its positions were determined by Di�erential Global

Positioning System (DGPS) with PNAV, the Precise Di�erential GPS Navigation
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and Surveying software (Ashtech, 1993). C/A-code pseudo-range and carrier phase

were observed. The real-time positions of MARY O were computed by PNAV, using

carrier phase smoothed C/A-code pseudo-range. The available accuracies and the

corresponding requirements for PNAV have been listed in Table 1.4. It has been

claimed to have a processing accuracy of 1-3 metres for the real-time output, using

the mode of smoothed C/A-code pseudo-range with PDOP < 4:0. More accurate

results can be obtained by PNAV's post processing procedure. It has been said that

the post processing accuracy of the PNAV is on the level of 0.05-0.3 metres, with

mode of pseudo-ranges plus carrier phase and 
oat integer ambiguities and by forward

and backward processing method (Ashtech, 1993). According to the post processing

results, kindly o�ered by the Ocean Mapping Group, the internal accuracy of positions

after the post processing is on the level of 0.05 m. We assume that there is no bias

in the position output of the post processing and regard them as the true positions.

Figure 6.1 depicts the two tracks of MARY O; it is obvious that the boat was always

under maneuvering during the two campaigns.
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Figure 6.1: Two Tracks of MARY O

68



6.2 results with simulated data

6.2.1 data description

To get simulated position data of the two tracks, we add Gaussian noise to PNAV's

post processed positions. Two Gaussian noise series (one for the x-component the

other for the y-component) for the positions have mean 0 and standard deviation 1 m,

and are not correlated with each other. We di�erence PNAV's post processed positions

and then add Gaussian noise to get simulated velocity data. The two Gaussian noise

series added to the velocities have mean 0 and standard deviation 0:05 m=s and are

also not correlated with each other.

When velocity data are available, the dead-reckoning technique may be used to

navigate the vehicle as long as the initial position of the vehicle is known. The model

for this technique can be expressed as follows.

rn = rn�1 + _rn�1�t; (6.1)

where, rn represents the position of the vehicle at tn, _rn is the velocity vector at tn,

and �t is the time increment from tn�1 to tn.

The simulated position errors for the both tracks are depicted in Fig. 6.2 and

Fig. 6.4. The maximum simulated position error is 3.9 m for the �rst track and 4.1

m for the second. The position errors of the dead-reckoning technique are depicted

in Fig. 6.3 with a maximum position errors of 7.7 m for the �rst track and Fig. 6.5

with a maximum position errors of 14.8 m for the second.

6.2.2 positioning results

A search area for unknown parameters G is de�ned by 0 � G � 1:0. The RMS and

maximum estimated position error versus � and k are depicted in Fig. 6.6 for the

�rst track and Fig. 6.7 for the second. When � is large enough, the RMS for both

tracks are lower than 1 m, and the maximum estimated position errors are lower than
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Figure 6.5: Position errors using dead-reckoning, Track 2
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Figure 6.6: RMS and maximum estimated position error, Track 1
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Figure 6.7: RMS and maximum estimated position error, Track 2
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the maximum simulated position errors (3.9 m for the �rst track and 4.1 m for the

second). It seems that the larger k might not give better results. This supports our

conclusion on the k issue in the end of the last chapter. With � = 25:5 and k = 10, the

errors of the computed positions (the estimated, predicted and smoothed positions)

are shown in Fig. 6.8 for the �rst track and Fig. 6.9 for the second. The errors of

the smoothed positions depicted is about the middle �x (the sixth one) among the

10 involved position �xes used to estimate the parameter G. Among the smoothed,

estimated and predicted positions, as they should be, the smoothed positions have

the highest accuracy, and then the estimated positions.
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Figure 6.8: Errors of the computed positions, Track 1
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Figure 6.9: Errors of the computed positions, Track 2
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6.2.3 test of the covariance matrix estimation

We make error ellipses [Van���cek and Krakiwsky, 1986] at di�erent con�dence levels

for each computed position based on the corresponding covariance matrix. Then we

test the compatibility between the computed position and the corresponding true

position and enumerate the compatible pairs. Table 6.1 shows the percentages of the

compatible pairs. For the �rst track, the number of tested position �xes is 132, and

for the second, the number is 850. The reasonable percentages mark the validity of

the estimation of the covariance matrices.

Table 6.1: Percentage of compatibility by �2-test, k = 10

Track Sample Type Con�dence level (%)
99.9 99.0 98.0 95.0 90.0 80.0 70.0 50.0

Est. 100.0 97.0 94.7 91.7 83.3 74.2 65.9 44.7
1 132 Pre. 98.5 98.5 96.2 94.7 84.8 77.3 71.2 51.5

Smo. 100.0 99.2 98.5 95.5 90.2 82.6 75.0 59.1
Est. 99.2 97.4 95.3 89.5 82.5 69.6 57.8 40.0

2 850 Pre. 99.6 98.5 96.5 92.7 88.1 77.2 66.7 44.4
Smo. 99.8 98.4 97.2 94.4 88.4 80.2 69.9 49.9

Table 6.2: Percentage of compatibility by Fisher-test, k = 10

Track Sample Type Con�dence level (%)
99.9 99.0 97.5 95.0 90.0

Est. 100.0 100.0 99.2 97.7 93.9
1 132 Pre. 99.2 99.2 99.2 96.9 92.3

Smo. 100.0 100.0 100.0 97.7 95.4
Est. 100.0 99.3 98.2 96.2 90.6

2 850 Pre. 100.0 99.6 98.6 96.5 92.7
Smo. 100.0 100.0 98.6 97.6 94.8
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6.2.4 blunder detection

Two blunders are added to the �rst set of data. The �rst one is added to at t = 400

seconds with a magnitude of 10 metres in x direction, and second one at t = 800

seconds with the same magnitude as the �rst one but in y direction. The errors of the

simulated positions are depicted in Fig. 6.10. We set a con�dence level 1�� = 0:999,
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Figure 6.10: Errors of simulated positions

then the corresponding threshold value is ��2(2);1�� = 13:816. With � = 25:5 and k =

10 the errors of estimated positions without detection and with detection are shown

in Fig. 6.11 and Fig. 6.12 respectively. With the blunder detection function used,
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Figure 6.11: Errors of estimated positions, without detection

the two blunders have been successfully detected and eliminated, and the SLPND

gives good results, see Fig. 6.12 (cf. Fig. 6.10). We can also see from Fig. 6.11 that

even without blunder detection, the e�ect of the blunders is suppressed.
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Figure 6.12: Errors of estimated positions, with detection

6.3 results with real position and simulated veloc-

ity data

6.3.1 data description

Now we take PNAV's real-time position outputs as the position observations for

further processing with the SLPND. Due to the lack of real velocity observations, we

use simulated velocity data obtained by the same way as we did in the last section.

The errors in the velocity data have a standard deviation of 0.01 m/s in both x and

y components and no cross correlation between these two components. The observed

position errors are depicted in Fig. 6.13 with a maximum observed position error of

2.2 m for the �rst track, and Fig. 6.14 with a maximum observed position error of 3.2

m for the second. The position errors by dead reckoning are depicted in Fig. 6.15
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Figure 6.13: Errors of the observed positions, Track 1

for the �rst track and Fig. 6.16 for the second. The maximum position error is 2.3 m
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Figure 6.14: Errors of the observed positions, Track 2

in Fig. 6.15 and 4.4 m in Fig. 6.16.
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Figure 6.15: Position errors by dead reckoning, Track 1
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Figure 6.16: Position errors by dead reckoning, Track 2

6.3.2 positioning results

With k = 10, the RMS and maximum estimated position error versus � are depicted

in Fig. 6.17 for the �rst track and Fig. 6.18 for the second. For � = 50 and k = 10,

the errors of the computed positions are depicted in Fig. 6.19 for the �rst track and

Fig. 6.20 for the second. The maximum position error is reduced from 2.2 m to 1.6
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Figure 6.17: RMS and maximum estimated position error, Track 1
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Figure 6.18: RMS and maximum estimated position error, Track 2

m for the �rst track and from 3.2 m to 2.4 m for the second. In fact, � might be any

value larger than 2 for a result as good as the above.

6.3.3 test of the covariance matrix estimation

The compatibility test between the computed positions and the positions obtained by

PNAV's post processing is made by Fisher-test [Van���cek and Krakiwsky, 1986]. The

results of the test are shown in Table 6.3.

It has been indicated by this table that a large number of computed positions are

not compatible with the PNAV's post processing results. What is the reason? The

requirements for eqn:(4:36) are that (r� r̂)TC�1
�r̂
(r� r̂) is a �2 statistic with 2 degrees

of freedom, (��̂20=�
2
0) is also a �2 statistic but with � degrees of freedom and these

two statistics are independent. According to Van���cek and Krakiwsky [1986], these

two statistics may not be �2 distributed for a number of reasons:

(a) the non-normal density of the (r� r̂),
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Figure 6.19: Errors of computed positions, Track 1

Table 6.3: Percentage of compatibility by Fisher-test

Track Sample Type Con�dence level (%)
99.9 99.0 97.5 95.0 90.0

Est. 19.8 6.0 0.0 0.0 0.0
1 132 Pre. 35.9 14.5 5.0 2.0 0.0

Smo. 5.0 0.0 0.0 0.0 0.0
Est. 38.9 28.4 22.6 17.4 12.5

2 850 Pre. 59.5 45.8 35.5 28.2 22.9
Smo. 24.3 14.5 12.2 10.0 8.0
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Figure 6.20: Errors of computed positions, Track 2
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(b) the incorrect methematical model,

(c) the presence of systematic errors in the observations, and

(d) the incorrect a priori covariance matrix of the observations.

The successes on the error estimations and the blunder detections with the simu-

lated data in the last section eliminated the possibility of reason (b). So there must

be something wrong with either the observed data or the PNAV's post processing re-

sults. We plot the di�erences between the observed position data and those obtained

from PNAV's post processing in both x and y directions in Fig. 6.21 for the �rst track

and in Fig. 6.22 for the second one. Indeed, if PNAV's post processing has given
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Figure 6.21: Di�erence between real-time and post processing results, Track 1

very accurate positions, both sets of the observed data were contaminated by the

systematic errors. In the �rst track, the observed positions in x direction have about

one metre bias. In the second track, the observed positions have bias in x direction

beginning at about t = 3300 and in y direction beginning at about t = 1500 seconds.
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Figure 6.22: Di�erence between real-time and post processing results, Track 2

The systematic errors are the main reason for the unrealistic error estimations.

6.3.4 blunder detection

The SLPND's blunder detection is based on the covariance matrices of the predicted

positions and the �2-test if the variance factor �20 for observation is known, or the

Fisher-test if only its estimated value is known. If the obtained covariance matrices

are not realistic, in fact in real navigation we may not know of this, what will happen

with blunder detection? Two blunders are added to the �rst set of data (Track 1) in

the same way as we did in the Section 6:2:4, and the errors of the simulated position

are depicted in Fig. 6.23. And the errors of estimated positions without detection

are shown in Fig. 6.24. With the con�dence level 1 � � = 0:999, the corresponding

threshold value �F (2;19);1�� = 10:16, not only are the two blunders detected but also

many normal observations are regarded as blunders. We then continually increase
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Figure 6.23: Errors of simulated positions

the threshold value �F (2;19);1�� until only the two blunders are detected. The �nal

threshold value is �F (2;19);1�� = 22:5. The errors of the estimated positions with

detection are depicted in Fig. 6.25. We have set � = 50 and k = 10.
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Figure 6.24: Errors of the estimated positions, without detection
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Figure 6.25: Errors of the estimated positions, with detection

The failure of the blunder detection at the con�dence level 1�� = 0:999 indicates

that the values of the diagonal elements of the estimated covariance matrices are too

small. The detections of the blunders are independent on PNAV's post processing

results, so we suspect the failures of the Fisher-tests and blunder detections have been
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more relevant to the observed data, i.e., PNAV's real-time solutions.

6.4 SLPND's features, (II)

1. When a vehicle is always under maneuvering, supplying not only position obser-

vations but also velocity observations to the SLPND can leads to good results.

2. The SLPND can act as an integrator to combine position and velocity obser-

vations, and then can supply navigation better than that using either positions alone

or velocities alone (dead-reckoning). It is supposed to be able to integrate range or

azimuth observations too: then the range observation will be regarded as a special

error ellipse that has its minor axis of a limited length in the range direction and its

major axis of an in�nite length; and the azimuth observation as an ellipse that has

its major axis of an in�nite length aligned with the azimuth and its minor axis of a

limited length orthogonal to the azimuth.

3. The SLPND requires the uncertainty of the position �xes only to be known in

a relative size (cofactor matrix instead of covariance matrix).

4. The SLPND can also act as a blunder detector.
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Chapter 7

comparisons between the SLPND

and the existing navigation �lters

In this chapter, we �rst compare the SLPND with the Kalman �ltering technique and

the polynomial �lter conceptually. Then we compare the numerical results obtained

respectively by the SLPND and the Kalman �lter.

7.1 a conceptual comparison

In Chapter 2 we brie
y described two of the existing navigation �lters: the often used

Kalman �lter and the polynomial �lter. Both these �lters try to bene�t from the

kinematic information about the motion of the vehicle coded in the \process" models

(eqns:(2:1) and (2:4)), and from the observation information written in a observation

models (eqns:(2:2) and (2:5)). Similarly, the SLPND relies on eqns:(3:41) and (4:5).

Table 7.1 lists the basic models used in these three �lters.

The \process" model of the Kalman �lter is a random model in which both the

state vector and the \process" noise are regarded as independent random variables,

separately modeled by two or more (corresponding to position, velocity and acceler-

ation, etc.) di�erent random processes. On the other hand, the \process" model of
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Table 7.1: A Comparison of the Models

Name Model Formula Type
Standard Process Sn+1 = �nSn +Gnwn random, linear
Kalman Observation ln+1 = Hn+1Sn+1 + vn+1 random, linear
Polyn. Process sn+1 =

Pm
i=0 �i�i(tn+1) deterministic, linear

Observation l+ v = ��; random, linear
SLPND Process Sn+1 = fn(�;Sn) deterministic, nonlinear

Observation l + v = f(�; l + v) random, nonlinear

the polynomial �lter is deterministic. The SLPND's motion model is deterministic

too, with the understanding that it is based on uncertainties of the observed position

�xes.

The standard Kalman �lter allows no unknown parameter in its \process" model.

The user has to give the �lter all the parameters in advance, according to his/her

experience. An adaptive Kalman �lter may allow one or more unknown parameters

and let the �lter determine them from the observation series. The polynomial �lter

requires unknown parameters \�" in its \process" model. These parameters are, of

course, determined from the observation series. The user has to determine only the

order of the polynomial in advance. Selections of the parameters in the Kalman

�lter, or the degree of the polynomial in the polynomial �lter are very important to

navigation.

The SLPND's motion model has two parametersG and �. Both can be determined

from the observation series, however, in order to increase the SLPND's processing

speed, we usually �x � and let the �lter determine G. Parameter G needs to be

updated as soon as a new position �x is available. When the vehicle is maneuvering

sharply, all three models may give incorrect kinematic information. But, the SLPND

can easily accept the user's intervention in this case.

The observation model of the Kalman �lter only involves the last observation, and

the covariance matrix of the observations is required. The polynomial �lter uses a
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series of historical observations to determine the unknown parameters, only a cofactor

matrix (unscaled covariance matrix) of the observations is required.

Like the polynomial �lter, the SLPND uses a sub-series of past observations to

estimate the unknown parameters G and/or �, and the user has to choose the size of

this sub-series. The SPLPND can also accept an unscaled covariance matrix of the

observations. It is understandable that both the polynomial �lter and the SLPND

have a somewhat heavier computing requirements than the Kalman �lter has. To

meet the real-time requirements of navigation, the user may be forced to allow fewer

unknown parameters and shorter observation sub-series than he/she would prefer to

use.

Both \process" and observation models of the Kalman �lter and of the polyno-

mial �lter are linear. Both the SLPND's motion model and observation model are

nonlinear.

Both the polynomial �lter and the SLPND can o�er partially smoothed positions

with a lag of a few steps behind the present estimation. The Kalman �lter needs an

independent run to compute smoothed position �xes after the sailing.

7.2 a comparison of numerical results from the

SLPND and the Kalman �lter

Let us apply the Kalman �lter to the two sets of simulated navigation data about

the two real tracks as those used in Chapter 6. The process model is (Gutman and
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Velger, 1990):
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where �t is the sampling rate and w is a zero-mean white noise sequence with co-

variance matrices
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0
BBBBBBBB@

lx

ly

l _x

l _y

1
CCCCCCCCA

n

=

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

x

y

_x

_y

�x

�y

1
CCCCCCCCCCCCCCCA

+

0
BBBBBBBB@

vx

vy

v _x

v _y

1
CCCCCCCCA

n

; (7.3)

where v = (vx vy v _x v _y)Tn is the observation error vector (zero-mean white noise

vector) with a known covariance matrix Cn. We assumed no correlation between w

and v.

We apply this Kalman �lter on the above mentioned two sets of data, keeping the

covariance matrices of the observations �xed and changing only the value of q, run

by run from 1:0�15 to 4:0 in order to �nd its most suitable value. The RMS and the

maximum position error as function of q are listed in Table 7.2 for q from 1:0�9 to

1:0. The most suitable value for q for Track 1 is 10�7, for Track 2 is 10�8. The best
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Table 7.2: RMS and maximum position error in metre

Track q
10�9 10�8 10�7 10�6 10�5 10�4 10�3 10�2 10�1 1:0

1 RMS 2.14 2.07 2.07 2.09 2.11 2.15 2.24 2.27 2.28 2.28
max-e 8.07 7.93 7.78 7.96 8.13 8.60 8.66 8.58 8.56 8.56

2 RMS 3.67 3.52 3.52 3.55 3.57 3.60 3.63 3.65 3.65 3.65
max-e 20.6 17.9 18.5 19.2 19.4 19.6 19.7 19.7 19.7 19.7

results achieved are depicted in Fig. 7.1 for the �rst track and Fig. 7.2 for the second.
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Figure 7.1: Errors of the estimated positions by Kalman �lter, track 1
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Figure 7.2: Errors of the estimated positions by Kalman �lter, track 2

From Figs. 7.1 and 7.2, we can see that the Kalman �lter failed to improve the

position accuracy, while with the same data the SLPND was able to give much better

results, the maximumestimated position error being about 2 m for Track 1 and about

2.3 m for Track 2. The error peaks experienced by the Kalman �lter occur when Mary

O was making sharp turns. It is not surprising because at those points the constant
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acceleration model eqn:(7:1) does not �t the real \process" any more, yet the �lter

still tries to �t the observations to this incorrect model. It is user's responsibility to

give the �lter the correct values of q; the technique should not be blamed for user's

failure to do so. When the vehicle is under maneuvering, q may have to be changed.

From Fig. 7.2, for example, we can see that when Mary O sailed straight, the Kalman

�lter was successful in reducing the e�ect of large errors caused by the turns.

Because the SLPND's motion model gets updated from �x to �x it could o�er

better results. This makes the SLPND run slower. Using the same data and the

same computer (Sunstation with SunOS release 4.1.3.), the Kalman �lter needed

only 0.02 seconds of processing time for each estimated position (about Track 2),

while the SLPND needed 0.11 seconds, for k = 5, and 0.23 seconds for k = 10.
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Chapter 8

summary, conclusions and

recommendations

This �nal chapter summarizes the research and recommends some points for further

investigations.

8.1 summary of the research

The basic idea behind the SLPND is two-fold: (1) A sequence of observed position

�xes contains true kinematic information about the vehicle, (2) A motion model based

on the error statistics of the position �xes is able to convert this information into a

successful navigation �lter. The general strategy used in designing the SLPND was

as follows.

First a position potential function was selected (eqn:(3:3)) and a real-time position

potential �eld of the sequence of observed position �xes was formulated (eqn:(3:5)).

Second, a free particle was put into the real-time potential �eld, and its equation

of motion was constructed (eqn:(3:9)). This equation was solved and eqns:(3:19)

to (3:22) for the state vector resulted. Then, in turn, served as the basis for the

derivation of the motion model (eqn:(3:41)).
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Third, nonlinear least squares method had been formulated for the unknown pa-

rameter � estimation by �tting the motion model to a sequence of observations

(eqn:(4:5)). Based on the estimated parameter vector, the estimated positions at

present, in the future and the partially smoothed positions in the past can be com-

puted.

To get the covariance matrices of the computed positions, eqn:(4:5) was linearized

around the estimated parameter vector and the linear-least squares method was used.

A blunder detector, based on the �2-test or Fisher-test was built within the prediction

mode.

Having developed the SLPND apparatus, we made some simulations which lead to

an adoption of a simpli�cation of the coe�cient matrices A and B in eqn:(3:9). The

SLPND was then tested as an estimator, predictor, smoother, and blunder detector

on two real ship tracks (Chapter 6). The SLPND was further reformulated to accept

navigator's intervention. This feature was tested in Chapter 5.

Conceptual comparisons between the SLPND and two of the existing navigation

�lters, the polynomial �lter and the Kalman �lter as well as comparisons of numerical

results from the SLPND and the Kalman �lter were made in Chapter 7.

8.2 conclusions of the research

Based on the research we have done, the following conclusions can be drawn.

1. The SLPND's motion model based on the error statistics of the position �xes is

able to convert the true kinematic information contained in the sequence of observed

positions into a successful navigation �lter. Updating the motion model position �x

by position �x and leaving parameter(s) un�xed enable the motion model keep pace

with the kinematic change of the vehicle to a large extent. But, compared with the

Kalman �lter, these cause the SLPND's heavier computational burden.

2. The simpli�cation of the coe�cient matrices A and B in eqn:(3:9), i.e., only
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the most recent position �x needs to stay in eqns:(3:10) and (3:11), is valid.

3. Even without velocity information, the SLPND can learn, to a certain extent,

about the kinematic of the vehicle when the vehicle is slowly and constantly maneu-

vering (eg circular track). But when the vehicle is heavily maneuvering (eg sinusoidal

track), what it learned may be not enough to improve position accuracy. Then, to get

a good navigation the SLPND needs not only position but also velocity observations.

4. The selection of k would e�ect the SLPND's output and there is no general

k for various tracks. The best value of k depends on whether the vehicle is under

maneuvering and how heavy the maneuvering is: the sharper the maneuvering the

smaller the best k is.

5. A small value of � can lead to large errors in the SLPND's output while it is

safe to use a large value of �, say � = 25.

6. Di�erent initial velocities will cause little di�erence in the results if � is large

and if the covariance matrix of the initial velocity has well described the uncertainty

in the initial velocity.

7. The interventions from navigators can be easily realized. When the vehicle is

under a large maneuvering, giving the SLPND extra information about the kinematic

change, even a guess of the vehicle's velocity or simply uncertainty information on its

computed velocity at the change point, is very helpful.

8. The SLPND can act as an integrator to combine position and velocity observa-

tions, and then can supply navigation better than those using either positions alone

or velocities alone (dead-reckoning). It is supposed to be able to integrate range or

azimuth observations too, then the range or azimuth will be regarded as a special

error ellipse (ellipsoid).

9. The SLPND can suppress random errors and high frequency systematic errors

in observations and can act as an estimator, predictor, smoother and blunder detector.

The partially smoothed positions can be obtained with little extra e�ort.

10. The SLPND requires the uncertainties of the position �xes to be known only
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relatively (cofactor matrix), and the covariance matrices of the computed positions

can still be achieved.

11. To save processing time, we need to give the SLPND a well de�ned searching

area for the parameters. This requires some experience.

12. Compared with the Kalman �lter, the SLPND has a slower processing speed.

After all, the basic idea behind this research works. We have reached the purpose

of the research.

8.3 recommendations

To create a completely new and useful navigation �lter is a very complex job. The

SLPND is still at its primitive stage, everything in it may not be perfect and many

further investigations are needed. The following subjects are recommended for the

further investigations.

1. To get more feeling about this new �lter, more simulations and applications

(using both real observed position and velocity data) are needed.

2. The software should be improved to improve the processing speed and use less

memory space.

3. To get the best position potential function (force model), other position po-

tential functions should be tested and evaluated, for example, the potential function

which produce force proportional to square of the distance from the source.

4. The e�ort to develop nonlinear optimization methods which can o�er error esti-

mation should be made. Gaussian method in the family of the nonlinear optimization

methods is strongly relative to the linear least squares method. It is possible to be

adapted to include the error estimation.

5. To extend this �lter to three dimensional navigation problems is also recom-

mended.
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Appendix I

solutions for the motion of the

particle by taylor series

I.1 motion of the particle

We have no intention to explain in detail the background theory of this subject here,

and also do not claim the completeness of this study. An interested reader can �nd

them in Barton, Willers and Zahar [1971], Barton [1980] and Corliss and Chang

[1982].

Taylor series in the neighborhood of t0 = 0, i.e., Maclaurin series, has been de�ned

as,

r(t) = r0 +
1X
n=1

r
(n)
0

n!
tn (I.1)

Taking the time derivative of eqn:(3:9) we get:

_r(t) = _r0 +
1X
n=1

r
(n+1)
0

n!
tn: (I.2)

Before we generate a Taylor series for a function, we have to determine how many

terms are suitable for the function and the procedure we will use. Using a Taylor

series for a solution of an ordinary di�erential equation makes us face a possible
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singularity problem. A singularity is the point where the Taylor series will behave

dramatically. If a generated Taylor series had singularities around the solution points,

the Taylor series would fail to give a correct results. In other words, the series would

diverge. One principle of selecting the number of terms is that the length of the Taylor

series should be enough for the study of the convergence property of the series. The

convergence property of a short Taylor series cannot be determined by any means.

There is insu�cient information in the few terms of a short Taylor series for a reliable

analysis of the truncation error. Hence, the short series methods such as Runge-Kutta

are forced into taking small incremental steps. The many small steps give rise to the

propagation of machine round-o� errors. Thus, for a di�cult problem such as those

associated with exponential terms, the short-series methods are bound to produce

results with accuracy much poorer than the machine would allow. While small steps

give rise to round-o� errors, large steps give rise to truncation errors. When the order

of the Taylor series is high, say about 30, it is possible to �nd the exact positions of

those catastrophic singularities in the solution function [Chang, 1986]. In our research

we take the order of the Taylor series equal to 30.

To establish a Taylor series for a function, the derivatives of the function with

respect to associated variables, time variable in our case, are required up to desired

orders. There is no common formula to produce the derivatives for various functions.

The basic means to calculate all required derivatives is Leibnitz's rule. Leibnitz's rule

can be written as: if u(t) = f(t)g(t), u0(t) = f 0(t)g(t) + f(t)g0(t) [Rektorys, 1969].

If we would simply use this rule, the computing burden would be very heavy.

Fortunately, we have found a special recurrent formula for the calculation. By taking

successive derivatives of eqn:(3:9), we get a sequence of formulas as follows:

r(3) = ��r(2) � e��tAr(1)

r(4) = ��r(3) � e��tA(r(2) � �r(1))

r(5) = ��r(4) � e��tA(r(3) � 2�r(2) + �2r(1))
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r(6) = ��r(5) � e��tA(r(4) � 3�r(3) + 3�2r(2) � �3r(1))

r(7) = ��r(6) � e��tA(r(5) � 4�r(4) + 6�2r(3) � 4�3r(2) + �4r(1))

r(8) = ��r(7) � e��tA(r(6) � 5�r(5) + 10�2r(4) � 10�3r(3) + 5�4r(2) � �5r(1))

� � � � � � ;

where, r(i) represents the i-th derivative of r with respect to t. The list of the coe�-

cients in the second and following terms on the right hand side in the above formulas

form a well known Pascal triangle [Rektorys, 1969], i.e.,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

� � � � � �

The coe�cients in the second terms are equal to the combination Ck�1
n�3, where n

is the order of the derivative and k is the position of the coe�cient in the bracket.

So, the n-th order (n > 2) derivative of r with respect to time t can be expressed as

r(n) = ��r(n�1) � e��tA
n�2X
i=1

(�1)i�1C i�1
n�3�

i�1r(n�i�1): (I.3)

By using (I:3), we can get the desired derivatives up to any order.

Our next task is to estimate the series radius of convergence, the location and

order of the primary singularity.

It has been said that series for solutions to ordinary di�erential equations follow a

few very de�nite patterns which are characterized by the locations of primary singu-

larities, and series which are real-valued on the real axis can have poles, logarithmic
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branch points, and essential singularities only on the real axis or in conjugate pairs,

further, the e�ects of all secondary singularities disappear if su�ciently long series

are used (Corliss, Chang, 1982). Based on the above arguments, Corliss and Chang

have recommended the following ways to estimate the series radius of convergence

and the order of the singularity.

(1) If the series have a single primary singularity, use

h

Rc
=

h

a
= k

V (k + 1)

V (k)
� (k � 1)

V (k)

V (k � 1)
(I.4)

order = s = k
V (k + 1)

V (k)
(
Rc

h
)� k + 1 k = n � 1; (I.5)

where, Rc = a is the radius of convergence, V (i) is reduced derivatives de�ned as

V (i) = r(i�1)(t0)hi�1=(i� 1)!, h = t� t0 is the stepsize of the Taylor series. In order

to detect when the series has singularities which are not of this form, two estimates

for h=Rc using di�erent terms of the series are need. If the two estimates do not

agree, then the series does not have one real primary singularity, so the presence of a

conjugate pair of primary singularities is investigated.

(2) If it has only a conjugate pair of primary singularities, use

kV (k + 1) = (k � 1)V (k)x1 + V (k)x2 � (k � 2)V (k � 1)x3

�2V (k � 1)x4 (I.6)

where, x1 = (h=a) cos �, x2 = s(h=a) cos �, x3 = (h=a)2, and x4 = s(h=a)2, k =

n� 1; : : : ; n� 4 and n is the length of the series being analyzed. Then a measure of

the relative accuracy of the solution is obtained from the residual of another copy of

eqn:(I:6) with k = n � 5. If the residual is small, then the series radius of conver-

gence, as well as the order and location of the conjugate pair of singularities ae�i�,

is computed from x1; x2; x3; andx4. If the residual is large, if x3 < 0, or if computed

j cos �j > 1, then this means that the series has secondary singularities. Then,
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(3) Use the top-line heuristic. This procedure gives a conservative estimate for Rc

from the slope of a linear upper envelope (a straight line �tting the points from

above) of a graph of lnjV (k)j versus k. the slope approaches lnjRcj as k !1. It has

been said that the upper envelope of the graph of lnjV (k)j versus k has the following

properties.

(1) If the order of the primary singularity is 1, then the slope is lnjh=Rcj.
(2) If the order is not 1, then the slope converges to lnjh=Rcj as k !1 at a rate

roughly proportional to 1=k.

(3) If the order is not 1, then the upper envelope is not linear. For orders larger

than 1, the graphs open downward. The concavity approaches zero very rapidly as

k !1. For orders less than 1, the graphs are concave up, the slope underestimates

lnjh=Rcj, and Rc is overestimated. In case of this, the series is di�erentiated termwise

to reduce the second derivative of the graph, and a new top-line is �t. This process

is repeated until the graph is linear, opens downward, or until seven termwise di�er-

entiations have been done. If the series for y000 still opens upward, the estimate for Rc

is reduced by 10 percent [Corliss and Chang, 1982].

Having completed the estimation of the convergence radius of the series, the ma-

chine (computer) computes the largest integration stepsize which may be taken sub-

ject to error control constraints. The truncation error is estimated from the magnitude

of the �rst neglected term in the Taylor series. By adjusting the integration stepsize,

the truncation error can be kept below a speci�ed limit.

Because of the stepsize control in order to avoid the singularities and to realize

the error control, the solution at the desired point (time instant) may not be got in

one step. Then the immediately preceding solution is used as new initial condition

and the above described procedure will be repeated until the solution at the desired

solution point is obtained.
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I.2 Evaluation of gradients

By derivating eqn:(I:1) and eqn:(I:2) with respect to � respectively, we get

@r(t)

@�
=

@r0
@�

+
1X
n=1

@r
(n)
0

@�

tn

n!
(I.7)

@ _r(t)

@�
=

@ _r0
@�

+
1X
n=1

@r
(n+1)
0

@�

tn

n!
: (I.8)

@r0=@� and @ _r0=@� in above formula can be obtained from the last evolution.

Derivating the equation of motion of the particle, i.e., eqn:(3:9) with respect to G

and � respectively and setting t = 0, we can get

@r
(2)
0

@G
= �(Ar0 �B)=G �A

@r0
@G

(I.9)

@r
(2)
0

@�
= �(@A

@�
r0 +A

@r0
@�

� @B

@�
) (I.10)

where

@A

@�
= G

nX
i=1

e�(ti�tn)(ti � tn)C
�1
i

@B

@�
= G

nX
i=1

e�(ti�tn)(ti � tn)C
�1
i r0i :

To get higher order of partial derivatives (i � 3), we derivate eqn:(I:3), with t = 0,

with respect to G and � respectively and get

@r
(i)
0

@G
= ��@r

(i�1)
0

@G
�A

i�2X
k=1

(�1)k�1Ck�1
i�3 �

k�1 @r
(i�k�1)
0

@G

�A
G

i�2X
k=1

(�1)k�1Ck�1
i�3 �

k�1r
(i�k�1)
0 (I.11)

@r
(i)
0

@�
= �r(i�1)0 � �

@r
(i�1)
0

@�
� @A

@�

i�2X
k=1

(�1)k�1Ck�1
i�3 �

k�1r
(i�k�1)
0

�A
i�2X
k=1

(�1)k�1Ck�1
i�3 �

k�2((k � 1)r
(i�k�1)
0 + �

@r
(i�k�1)
0

@�
: (I.12)
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Appendix II

orthogonal coordinate

transformation

U

X’

V

Y’

O’

X

O

Y

Figure II.1: Orthogonal coordinate transformation

We assume that an error ellipse in coordinate system XOY is de�ned as follows,

(r� r0)TC�1(r� r0) = h; (II.1)
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where h is a constant,

r =

0
B@ x

y

1
CA ; r0 =

0
B@ x0

y0

1
CA ;

and the covariance matrix C is given as:

Ci =

0
B@ �2x �xy

�xy �2y

1
CA :

First, we shift the origin of the coordinate system XOY to r0 by transformation:

r0 = r� r0. In the new coordinate system X 0O0Y 0, the equation of the error ellipse is:

r0
T
C�1r0 = h: (II.2)

Now we rotate X 0O0Y 0 by an angle � and get a new coordinate system UO0V . The

corresponding coordinate transformation is then de�ned by

0
B@ u

v

1
CA =

0
B@ cos � � sin �

sin � cos�

1
CA
0
B@ x0

y0

1
CA (II.3)

If the rotation angle � is given as:

� =
1

2
tan�1(

2�xy
�2x � �2y

) � �

4
� � � �

4
; (II.4)

the equation of the error ellipse becomes [Mertikas, 1985]

u2

�1
+
v2

�2
= h; (II.5)

where

�1 =
1

2
[�2x + �2y +

q
(�2x � �2y)

2 + 4�xy2] (II.6)

�2 =
1

2
[�2x + �2y �

q
(�2x � �2y)

2 + 4�xy2]: (II.7)
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Appendix III

derivatives of fi with respect to

parameter vector �

Let us take the derivatives of eqns:(3:19), (3:20), (3:21) and (3:22) with respect to

G and �. Because the constants c1, c2, c01 and c02 are determined from the initial

state of the motion at last time instant by eqns:(3:23)� (3:26), c1, c2, c01 and c02 are

functions of the parameters G and �, with an exception that the time instant of the

last position �x is tn�k�1, when the initial state of the motion is inherited from the

last �tting process . Noting that

dJ0(z)

dz
= �J1(z); dN0(z)

dz
= �N1(z)

dJ1(z)

dz
= J0(z)� J1(z)

z
;

dN1(z)

dz
= N0(z)� N1(z)

z

we get the components of @S
@�

as follows.

@x

@G
=

@c1
@G

J0(sx) � (c1J1(sx) + c2N1(sx))
@sx
@G

+
@c2
@G

N0(sx) (III.1)

@y

@G
=

@c01
@G

J0(sy)� (c01J1(sy) + c02N1(sy))
@sy
@G

+
@c02
@G

N0(sy) (III.2)

@x

@�
=

@(Bx=Ax)

@�
+
@c1
@�

J0(sx)� (c1J1(sx) + c2N1(sx))
@sx
@�

+
@c2
@�

N0(sx) (III.3)
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@y

@�
=

@(By=Ay)

@�
+
@c01
@�

J0(sy)� (c01J1(sy) + c02N1(sy))
@sy
@�

+
@c02
@�

N0(sy) (III.4)

@ _x

@G
=

_x

2G
+
�sx
2
f@c1
@G

J1(sx) + [c1(J0(sx)� J1(sx)

sx
)

+c2(N0(sx)� N1(sx)

sx
)]
@sx
@G

+
@c2
@G

N1(sx)g (III.5)

@ _y

@G
=

_y

2G
+
�sy
2
f@c

0
1

@G
J1(sy) + [c01(J0(sy)�

J1(sy)

sy
)

+c02(N0(sy)� N1(sy)

sy
)]
@sy
@G

+
@c02
@G

N1(sy)g (III.6)

@ _x

@�
=

1

2
(
Txt
Ax

� t) _x+
�sx
2
f@c1
@�

+ [c1(J0(sx)� J1(sx)

sx
)

+c2(N0(sx)� N1(sx)

sx
)]
@sx
@�

+
@c2
@�

N1(sx)g (III.7)

@ _y

@�
=

1

2
(
Tyt
Ay

� t) _y +
�sy
2
f@c

0

1

@�
+ [c01(J0(sy)�

J1(sy)

sy
)

+c02(N0(sy)� N1(sy)

sy
)]
@sy
@�

+
@c02
@�

N1(sy)g (III.8)

where

sx =
2

�
e�

�t

2

q
GAx

sy =
2

�
e�

�t

2

q
GAy

@sx
@G

=
sx
2G

@sy
@G

=
sy
2G

@sx
@�

= �sx( 1
�
+

t

2
� Txt
2Ax

)

@sy
@�

= �sy( 1
�
+

t

2
� Tyt

2Ay
)

@(Bx=Ax)

@�
=

TbxtAx �BxTxt
A2

x

@(By=Ay)

@�
=

TbytAy �ByTyt
A2

y

Txt =
nX
i=1

e�(ti�tn)(ti � tn)pxi
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Tyt =
nX
i=1

e�(ti�tn)(ti � tn)pyi

Tbxt =
nX
i=1

e�(ti�tn)(ti � tn)pxix
0
i

Tbyt =
nX
i=1

e�(ti�tn)(ti � tn)pyiy
0
i :

The derivatives of c1, c2, c01 and c02 with respect to G and � can be obtained by taking

derivatives of eqns:(3:23)� (3:26).

@c1
@G

= � �

�
f _x0N1(sx0)mx�

�1 + ix[
mx

2
N1(sx0)

+(N0(sx0)� 1

sx0
N1(sx0))

Tx
�
]g (III.9)

@c2
@G

=
�

�
f _x0J1(sx0)mx�

�1 + ix[
mx

2
J1(sx0)

+(J0(sx0)� 1

sx0
J1(sx0))

Tx
�
]g (III.10)

@c01
@G

= � �

�
f _y0N1(sy0)my�

�1 + iy[
my

2
N1(sy0)

+(N0(sy0)� 1

sy0
N1(sy0))

Ty
�
]g (III.11)

@c02
@G

=
�

�
f _y0J1(sy0)my�

�1 + iy[
my

2
J1(sy0)

+(J0(sy0)� 1

sy0
J1(sy0))

Ty
�
]g (III.12)

@c1
@�

= � c1
�
� �

�
f�@(Bx=Ax)

@�

q
GAxN1(sx0) + ix

[
Txt
2mx

N1(sx0) +
q
GAx(N0(sx0)�

1

sx0
N1(sx0))

@sx0
@�

] + _x0N1(sx0)
@sx0
@�

g (III.13)

@c2
@�

=
c2
�
+
�

�
f�@(Bx=Ax)

@�

q
GAxJ1(sx0) + ix

[
Txt
2mx

J1(sx0) +
q
GAx(J0(sx0)�

1

sx0
J1(sx0))

@sx0
@�

] + _x0J1(sx0)
@sx0
@�

g (III.14)
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@c01
@�

= � c01
�
� �

�
f�@(By=Ay)

@�

q
GAyN1(sy0) + iy

[
Tyt
2my

N1(sy0) +
q
GAy(N0(sy0)�

1

sy0
N1(sy0))

@sy0
@�

] + _y0N1(sy0)
@sy0
@�

g (III.15)

@c02
@�

=
c02
�
+
�

�
f�@(By=Ay)

@�

q
GAyJ1(sy0) + iy

[
Tyt
2my

J1(sy0) +
q
GAy(J0(sy0)�

1

sy0
J1(sy0))

@sy0
@�

] + _y0J1(sy0)
@sy0
@�

g (III.16)

where

mx =

s
Ax

G

my =

s
Ay

G

ix = x0 �Bx=Ax

iy = y0 �By=Ay

sx0 =
2

�

q
GAx

sy0 =
2

�

q
GAy

@sx0
@�

=
1

�
(
Txt
mx

� sx0)

@sy0
@�

=
1

�
(
Tyt
my

� sy0):
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