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ERRATUM 
 
Equation (5.13), on page 64, and equation (III.25), on page 122, should read: 
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Abstract

Many geodetic GPS applications require orbits of better accuracy than the pre-

dicted ones broadcast by the satellites themselves. However, orbits of high quality

are available to users. Their generation is based on GPS data collected by dedicated

tracking networks. Nevertheless, these orbits are available only after an interval of

several days following data collection. For real-time positioning applications, one

currently depends on the broadcast orbits.

An alternative, real-time approach for orbit improvement is described here. This

approach is designed to yield, in real-time, the best representation of orbits based on

all available observations from a network of �ducial stations. The algorithm design

is based on a unit, called the update step, which de�nes the length of the orbital

arc over which the improvement takes place. The initial conditions computed in one

orbital arc are propagated into the following one.

The algorithm was implemented based on the UNB DIPOP software package,

which was further modi�ed to allow network adjustment including correlations be-

tween simultaneously observed baselines. The principle of the method has been tested

using data collected by a network of 8 stations in Canada and the U.S., which are

part of the IGS network. The orbital arcs generated with the method have been

compared among themselves, in a test of orbit repeatability to test the orbit internal

consistency, and also with the IGS orbits, in a test of external consistency. A subset

of the 8-station network has been processed constraining the orbits generated by the

real-time algorithm to assess their e�ect in geodetic positioning. These tests aimed

to assess the quality of the orbits generated with the proposed method.

The results show that the real-time orbits are at or below the 1 metre level 3drms.

Their use in geodetic positioning yield baselines with relative error varying from 0.05

to 0.02 ppm, over baselines of hundreds of kilometres. This represents an improvement
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of 1 order of magnitude over the broadcast orbits, the only ones presently available

for real-time applications.
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Resumo (in Portuguese)

Muitas das aplica�c~oes geod�esicas requerem �orbitas com precis~ao maior do que aquelas

transmitidas pelos sat�elites GPS. Atualmente, �orbitas de alta qualidade s~ao determi-

nadas a partir de dados coletados por redes geod�esicas dedicadas a este �m. Por�em,

estas �orbitas tornam-se dispon��veis apenas ap�os alguns dias. Aplica�c~oes em tempo

real contam somente com as efem�erides transmitidas.

Umm�etodo alternativo baseado na determina�c~ao da �orbita dos sat�elites em tempo

real �e descrito nesta Disserta�c~ao de Doutorado. Este m�etodo busca fornecer, em

tempo real, a melhor representa�c~ao da �orbita baseada nos dados coletados por uma

rede �ducial at�e aquela epoca. O algor��tmo baseia-se numa unidade, chamada \degrau

de atualiza�c~ao", que de�ne o arco orbital dentro do qual o ajustamento da �orbita se

efetua. As condi�c~oes iniciais calculadas em um segmento orbital s~ao propagadas para

o pr�oximo.

O algor��tmo foi implementado utilizando como arcabou�co o programa DIPOP,

adicionalmente modi�cado de modo a permitir ajustamento em rede, incluindo-se

correla�c~oes matem�aticas entre as bases.

O principio do m�etodo foi testado utilizando-se dados coletados por uma rede de

8 esta�c~oes, situadas no Canad�a e nos EUA, esta�c~oes estas que fazem parte da rede do

IGS. As duas modalidades de �orbitas geradas pelo m�etodo foram comparadas com elas

pr�oprias, em um teste de repetibilidade orbital visando quanti�car sua consistencia

interna, e tambem com as �orbitas do IGS, visando mensurar sua consistencia externa.

Um sub-conjunto desta rede foi processado utilizando as �orbitas determinadas pelo
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m�etodo, almejando veri�car o impacto destas �orbitas no posicionamento geod�esico.

Estes testes objetivam avaliar a qualidade das �orbitas geradas usando-se o m�etodo

proposto.

Os resultados obtidos mostram que o erro m�edio tri-dimensional das �orbitas ajus-

tadas �e igual ou menor do que 1 metro. O emprego destas �orbitas no posicionamento

geod�esico permite a determina�c~ao de bases geod�esicas com erro relativo variando en-

tre 0,05 e 0,02 ppm. As bases geod�esicas utilizadas possuem comprimento na ordem

da centena de quilômetros. Estes resultados s~ao superiores aos encontrados usando-se

as efem�erides transmitidas, atualmente as �unicas dispon��veis em tempo-real.
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Chapter 1

Introduction

The level of accuracy of the ephemerides broadcast by the GPS satellites does not

satisfy many geodetic requirements. To overcome this limitation, a network technique

known as orbit improvement has been widely used in a post-processing mode. This

implies that the availability of better orbits than the broadcast ones su�ers a delay.

A method which intends to furnish the best orbit representation possible at any

given time has been investigated and tested. This chapter presents a review of how

orbit improvement became a common approach in the GPS milieu. It also states the

problems we have faced in this research. The contributions of this dissertation are

summarized and its structure described.

1.1 Literature review

The two basic observables of the Global Positioning System (GPS), the pseudorange

and the carrier phase, are a�ected by several di�erent biases, such as orbital bias,

clock biases, ionospheric and tropospheric delays. In the context of this dissertation,

our concern is with the modelling of the orbital bias.

The orbits of the GPS satellites are of indispensable knowledge due to the fact

that to compute the position of a GPS receiver's antenna at or near the earth's
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surface we need to know the geometric range between the antenna and the satellite.

This quantity is a function of both the satellite's and the antenna's position [Langley,

1991c]. A bias in the orbit of a satellite translates into positioning errors of the same

order of magnitude in absolute positioning. In di�erential positioning the e�ect of

the orbit bias can be assessed by the use of the \rule of thumb" �rst presented by

Bauersima [1983] and later derived by Van���cek et al. [1985]:

dB

B
=
dr

�
; (1.1)

where dr represents the satellite position error, dB the resulting baseline length error,

� the range to the satellite and B the baseline length. Table 1.1 shows the relative

error in baseline dB
B

for varying values of dr assuming � with an average value of

22,500 km.

Table 1.1: Relative error in baseline as a function of orbital error

dr dB
B

1 cm 4:4 � 10�10

10 cm 4:4� 10�9

1 m 4:4� 10�8

10 m 4:4� 10�7

The rule of thumb can be regarded as a pessimistic approximation of the error

provoked by an orbital error. This seems to be con�rmed by results reported byWare

et al. [1986] in which the same baseline was processed using two di�erent sets of orbits,

with di�erences of up to 60 metres. The �nal solution showed agreement of the order

of 0.4 ppm. Moreover, Zieli�nski [1989] based on a study of the covariance matrix of the

measurements and simulation analysis presented an alternative expression intended to

asses the e�ect of orbital bias in di�erential positioning. This alternative expression

has the same form as eqn. (1.1), in which � is multiplied by a factor greater than 4

and less than 10. Beutler et al. [1995] suggest that Zieli�nski's expression seems more
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appropriate for the propagation of orbit errors into baseline components, whereas

eqn. (1.1) for the orbit errors into height.

The satellites' positions, or ephemerides, are available from the messages they

broadcast. These broadcast ephemerides are a set of predicted orbital positions, com-

puted and uploaded into a satellite's memory by the GPS Control Centre (see Chapter

3). As with every predicted orbit, the broadcast ephemerides have an inherent error

that grows with time. On top of that there is the e�ect caused by the so-called Se-

lective Availability (see Chapter 3). The bias in the broadcast ephemerides has been

assessed by several authors [e.g., Remondi & Ho�mann-Wellenhof, 1990; Rothacher,

1992]. It is believed to be around the 3{20 metre level. At this level, accuracies not

better than the 0.1 ppm should be expected when using the broadcast ephemerides.

More accurate orbits are computed by the U.S. Naval Surface Warfare Center

(NSWC), based on a global network composed of ten sites. They are known as

\precise ephemerides" and are supposed to be at the meter level or better [Swift,

1993]. These orbits, however, were originally intended for domestic consumption

within the U.S. Department of Defense (DoD). (Currently, they are available upon

request about 4{8 weeks after the observations.)

With the precision limit of the broadcast ephemerides and the initial unavail-

ability of the precise ones, the geodetic community soon realized it had to look for

alternatives. The alternative found was the use of a network technique known as

\orbit improvement", also known as \orbit computation" or \orbit correction" [Rizos

et al., 1985]. This technique allows the estimation of corrections to the initial con-

ditions and dynamical parameters at a reference time, usually the initial time of the

campaign, along with other parameters of interest, such as station coordinates.

The use of this technique would serve two purposes. The �rst one would be to

obtain better results in the network adjustment by allowing the initial conditions to

\learn" about the satellite's trajectory de�ned by the observations, as extra parame-

ters in the adjustment. The second purpose, a by-product of the �rst one, would be
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to generate an orbit better than the one used in the network adjustment by using the

adjusted (improved) initial conditions to solve the equations of motion of the satellite

(see Chapter 4).

Orbit improvement is a technique that requires a large network to adequately

work. Therefore, the �rst conclusive results of its application started appearing in

the literature after the �rst campaigns using regional networks with baselines of about

1000 km in length. The processing of the �rst of these campaigns, the 1984 Alaska

Spring Test and the 1985 High-Precision Baseline Test showed unequivocally the

power of the orbit improvement technique. Using these data sets, network accuracy of

0.1 ppm was achieved by di�erent groups [e.g., Beutler et al., 1985; Abbot et al., 1986;

Williams, 1986], which represented a great improvement in the quality of baseline

determination.

Two approaches were used for data processing, the \free-network" [Beutler et al.,

1985] and the \�ducial network" [Davidson et al., 1985]. In the free-network approach,

a combination of station and satellite coordinates are allowed to vary simultaneously

in an adjustment by a way of imposing relatively strong a priori constraints on the

orbits letting the terrestrial network adjust freely. In the �ducial network approach,

the GPS orbits and determined baselines are de�ned in the framework of a few �ducial

stations whose coordinates are accurately known from VLBI or SLR [Delikaraoglou,

1989]. A consideration regarding the length of the orbital arcs is somewhat funda-

mental. Two alternatives have been explored: the short-arc [e.g., Parrot, 1989] and

the long-arc [e.g., Chen, 1991] approaches (see Chapter 5).

With the results of those campaigns at hand, the focus started to shift towards

the generation of GPS orbits below the metre level. Orbits at this level of accuracy,

along with a more sophisticated modelling of the troposphere, would allow baseline

measurements with accuracy and precision at the order of 10 ppb or even better

[Beutler et al., 1988; Lichten, 1990].

4



At �rst, orbit improvement had to count on regional networks yielding the gen-

eration of orbits at the metre level within the region covered by the �ducial stations

[Lichten & Border, 1987; Lichten & Bertiger, 1989; Ashkenazi et al., 1990].

At this stage, the Geodetic Survey of Canada had already undertaken the devel-

opment of the Active Control System (ACS) [Delikaraoglou et al., 1986]. The ACS

would establish a zero-order �ducial network of Active Control Points (ACP) cover-

ing the Canadian territory. The major task of the ACS would be the computation

of accurate orbits. Moreover, the data colleted by the ACP would be made available

to the geomatics community allowing an easy access to the geodetic reference frame.

Other types of information would also be made available by the ACS such as di�er-

ential corrections for single receiver users, which would have to be disseminated in

real-time. A similar system, known by the acronym RBMC, has been proposed by

the Brazilian Geodetic Institution (IBGE) [Fortes, 1993].

But since covariance analyses were showing that expanding the size of the network

would increase orbit accuracy [Wu et al., 1988], e�orts started to be made towards

the establishment of global networks.

The �rst global �ducial network established was the Cooperative International

GPS Network (CIGNET) [Schenewerk et al., 1990] with stations distributed over all

continents but concentrated mostly in North America. The network had its reference

frame de�ned by the International Earth Rotation Service (IERS) Terrestrial Refer-

ence Frame (ITRF). The objective behind CIGNET was to make available continuous

GPS tracking data for crustal motion studies and for GPS orbit generation. Regional

campaigns, such as the CASA Project [Schutz et al., 1990] relied on data coming

from CIGNET and further indicated the need for a global GPS tracking network.

Another global GPS campaign was the First GPS IERS and Geodynamics experi-

ment (GIG'91) [Melbourne et al., 1993], with an overall goal to obtain a high quality

data set to be used by the IERS for earth orientation monitoring and terrestrial

reference frame control.
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The need for a permanent civilian �ducial global network led to the establishment

of the International GPS Service for Geodynamics (IGS), following Resolution No. 5

of the 20th General Assembly of the International Union of Geodesy and Geophysics

(IUGG), in Vienna, Austria, in 1991. The IGS is the result of a cooperative e�ort

among institutions of several countries, consisting of a Central Bureau, Analysis Cen-

ters, and Network Data (archiving) Centers. The IGS begun its operation in 1992

in an experimental mode by means of a test campaign. Two weeks of this campaign

became known as the Epoch'92 campaign. The IGS remained as a pilot service until

January 1, 1994, when the routine operations of IGS started. The primary objectives

of the IGS are to provide the scienti�c community with high quality GPS orbits on a

rapid basis, to provide earth orientation parameters (EOP) of high resolution (orbits

and EOP are the IGS products), as well as to expand geographically the current

ITRF, and to monitor global deformations of the earth's crust. [Mueller & Beutler,

1992; Mueller, 1993; Beutler, 1993a].

The GPS data collected by the IGS network is processed by the analysis centers.

The goal of this processing is to compute orbits and EOP, the products procured.

The accuracy of the orbits generated by these analysis centers are at the 10{20 cm

level, for most of them, according to their own assessment. The products of each

individual analysis center are then combined into the o�cial IGS product. The time

delay for an analysis center to release its orbit varies from center to center, but are

at the order of a few days. The IGS releases its o�cial orbit product 2 weeks after

the GPS data collection.

Another approach, that among several objectives would also aim towards bet-

ter orbits than the broadcast ones, is the technique of wide-area di�erential GPS

(WADGPS). The WADGPS is a network technology which has grown in interest

recently [Mueller, 1994]. It can be regarded as a further development of the conven-

tional di�erential GPS (DGPS). The underlying idea of DGPS is that errors expe-

rienced at a reference station are, for the most part, identical to those experienced
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by a user. This error would be translated into pseudorange corrections, determined

by comparing computed ranges with observed pseudoranges at the reference station,

and transmitted to users in real-time. There are two de�ciencies with DGPS: the

corrections contain errors of di�erent sources (ephemerides biases, satellite clocks,

atmospheric delays, and SA); and, there is a limit in the distance between the ref-

erence station and the user [Brown, 1989]. WADGPS tries to solve both de�ciencies

by means of a network of GPS reference stations, which increases the geographical

coverage, and by separating the lumped correction into their component parts. The

latter are then transmitted to users. The formats of these transmissions are usually

inspired by the standards established by the Special Committee # 104 of the Radio

Technical Committee for Maritime Services (RTCM) [RTCM, 1994]. Some of the

algorithms for WADGPS found in the literature are those of Brown, [1989], Kee et

al. [1991], Ashkenazi et al. [1993] and Lapucha & Hu� [1993]. These authors report

�nal horizontal positions with root means square (rms) errors at the 2 metre level.

Ephemerides corrections are comparable to GPS broadcast ephemerides without SA.

Starting in January 1995, the Scripps Orbit and Permanent Array (SOPAC)

has been making available via anonymous File Transfer Protocol (ftp) improved

ephemerides with a 24 hour delay from the IGS data collection as well as a 24-

hour predicted orbit from the improved ephemerides so that the latter is available in

real-time (IGS Electronic Message # 851).

We conclude this section by saying that there are several software suites with

orbit improvement capability. They have been developed by various universities and

institutions based on di�erent processing strategies, using di�erent observable types,

etc. The results reported in this section have been obtained with some of them.

Table 1.2 presents the software's name and organization that has developed it. The

`*' symbol indicates the ones capable of handling data from space-based systems other

than GPS. Most of these software suites have had their characteristics summarized

by a survey we carried out. This summary has been published electronically via the
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Canadian Space Geodesy Forum (CANSPACE) File Archives.

Table 1.2: Software suites with capability for orbit improvement.

Name Developed at
BAHN/GPSOBS (*) European Space Agency/Operations Center
BERNESE University of Berne, Switzerland
CGPS22 Geological Survey of Canada
DIPOP University of New Brunswick, Canada
EPOS.P.V3 German Geodetic Research Institute
GAMIT/GLOBK Massachusets Institute of Technology, USA
GAS University of Nottingham, England
GEODYN II (*) NASA/Goddard Space Flight Center, USA
GEONAP University of Hannover, Germany
GEOSAT (*) Norwegian Defence Research Establishment
GIPSY/OASIS (*) Jet Propulsion Laboratory, USA
MSOP National Aerospace Laboratory, Japan
OMNIS Naval Surface Warfare Center, USA
PAGE3 National Geodetic Survey, USA
TEXGAP/MSODP University of Texas, USA

1.2 Statement of the problem

Let us make clear at this point that orbit generation, via solution of the satellite

equations of motion, is always a process of orbit prediction. In this dissertation we

shall make a distinction between the orbit generated for the same time span encom-

passed by the GPS data collection, and the orbit generated for times beyond this

time span. The former shall be called improved orbit (or improved ephemeride); the

latter as predicted or extrapolated orbit. The technique of orbit improvement yields

improved (adjusted) initial conditions (also referred to as the initial state vector). Let

us also make clear that an orbit, or ephemerides, satisfying the satellite's equations

of motion, can only reach the users in real-time (meaning, at the exact time a GPS

observation is collected) as a result of extrapolation.
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As seen in the previous section, a delay that may vary from days to weeks is

imposed presently on those who want to have access to accurate orbits. That is

because the orbit improvement takes place in a post-processing mode, i.e., only after

all GPS data have been collected. Therefore, there is the time span of data collection

(usually 24 hours) plus the processing time itself. Only after that can the ephemerides

be generated. In this dissertation, orbit improvement in a post-processing mode has

been called the \traditional approach for orbit improvement". Another characteristic

of the traditional approach is that the initial conditions are estimated referring to

the same reference epoch independent on whether it uses a batch or a sequential

adjustment for the time covered by the data set used. But many types of applications

would gladly accept orbits of much better accuracy than the broadcast ones if readily

available. These applications include the monitoring of sudden crustal motions, such

as earthquakes or volcanoes, data validation and ambiguity resolution in rapid static

surveys and aircraft landing approaches. This has been the motivation which led us

to investigate what we have called in this dissertation the \real-time approach for

orbit improvement".

The purpose of this research as previously proposed [Santos, 1992] is to investi-

gate the possibility of a real-time high accuracy GPS orbit determination, i.e., the

possibility of obtaining at any time the best possible estimate of an orbit, based on

all observations collected up to that time. This required the development of a se-

quential updating algorithm based upon a unit, called the update step. The update

step de�nes the length of the orbital arc over which the improvement takes place. In

the real-time approach, the update step equals the observation sampling step used

by the sequential algorithm, e.g., 2 minutes. The initial conditions improved in one

orbital arc are used for orbit generation covering the orbital arc in which the im-

provement took place and the next one where they are used as a priori orbits in the

new improvement. New initial conditions are then established for the new orbital

arc. The technique is actually making use of multiple (moving) expansion points for
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the initial conditions, as opposed to the traditional approach for orbit improvement

which uses only one for several arcs. The contribution of the previous observations

are accumulated within the system.

Another characteristic to point out is that the orbital arc may be of di�erent

lengths. In this context by \length" of the orbital arc we refer to a \time interval". It

will be shown (cf. Chapter 5) that the traditional approach is a particular case of the

real-time one if the update step is very large, and if used in a post-processing mode.

It can be correctly concluded that the algorithm generates orbits of two kinds: an

improved orbit based on individual orbital arcs, and orbits predicted over the next

orbital arcs.

The whole idea behind the algorithm can be used in an orbit service, in which

GPS observations collected by a network of monitor stations are transmitted in real-

time to a Master Center whose duty is to carry out the real-time orbit improvement

and to make the real-time improved orbits available to subscribers as soon as they

are ready. We have tried to envisage how such service would operate. Among the

problems this service would have to handle is the screening of the observations and

some thought has been dedicated towards this. We try to address important questions

that arise, on whether this technique is capable of generating better quality orbits

than the broadcast ones, and on what the e�ect on geodetic positioning the real-time

orbits would have.

Real-time orbits were generated using GPS data, collected in January 1995, by

a network of 8 stations in Canada and the U.S. Four days of data were used. The

e�ect of the real-time orbits on geodetic positioning was assessed using a subset of

this network.
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1.3 Contributions of the research

The original contribution of the research is the development of a real-time algorithm

for orbit improvement, based on a sequential updating algorithm, using the update

step as a temporal unit. Two types of orbits can be generated: an orbit available

in real-time which is extrapolated from the previous orbital arc, and the improved

orbit, available with a delay (disregarding transmission time) equal to or less than

the length of the orbital arc plus the time for the numerical integration, depending on

the orbital arc de�nition. The research encompasses the development and testing of

the algorithm. The questions asked at the end of the previous section are addressed.

As by-products of our main contribution we have:

� the development of an orbital integrator incorporating as much as possible the

standards recommended by the IERS [International Earth Rotation Service,

1992];

� the description of a real-time orbit service;

� the establishment of criteria for automatic cycle slip detection in the context of

a real-time static test case;

� the implementation of a new orbit improvement per se in the DIPOP software

package; and,

� the implementation of network adjustment in DIPOP taking into account the

correlations among baselines.

1.4 Outline of the dissertation

The dissertation is divided into 7 chapters.

Chapter 2 reviews the coordinate systems needed in the orbit improvement, including

time, coordinate, and satellite-centered systems.
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Chapter 3 overviews the GPS system and its errors and biases.

Chapter 4 explains how to go about solving the equations of motion of a satellite,

describing the modelling of the forces that a�ect it, and the numerical technique

used to solve them.

Chapter 5 describes the technique of orbit improvement and its least-squares solu-

tion. Most importantly it contains the description of the real-time algorithm.

A discussion of the orbit service and screening of observations conclude this

chapter.

Chapter 6 describes the tests we have carried out in order to check the quality of the

several test orbits generated using the real-time algorithm, as well as their e�ect

on geodetic positioning. Analysis of the results of these tests are presented.

Chapter 7 concludes this dissertation with �nal comments and suggestions for future

work.

Throughout the dissertation matrices have been represented by underlined capital

letters and vectors by underlined small letters. The inner product between two vectors

is represented by `�' and the cross product by `�'. The norm of a vector v is represented

by `k v k'.
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Chapter 2

Space and time coordinate systems

2.1 Introduction

Orbit determination is, in part, a process of coordinate transformation [Escobal, 1976].

This is due to the fact that the earth-bound stations and the orbiting satellites are

usually `attached' to di�erent coordinate systems: the former to an earth-�xed co-

ordinate system, the Conventional Terrestrial System (CT-system); the latter to an

inertial coordinate system, the Conventional Inertial System (CI-system). The CT-

system is in relative motion with respect to the CI-system. The satellite's trajectory

is integrated in the CI-system whereas the orbit improvement is carried out in the

CT-system. Hence, a relation between the two coordinate systems has to be estab-

lished, based on rotation matrices. The choice of a geocentric coordinate system,

i.e., one with its origin at the earth's center of mass, is the most convenient for the

computation of earth orbiting satellites.

The GPS observations are fundamentally referred to the GPS Time scale. Rela-

tions between the GPS Time and the other time systems used in satellite geodesy

have also to be de�ned.

This chapter overviews the space and time coordinate systems used in GPS orbit

computations.
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2.2 Time systems

Satellite geodesy makes use of three di�erent systems of time, namely, Rotational

Time, Atomic Time, and Dynamical Time.

2.2.1 Rotational times

Rotational time scales are the ones based on the daily rotation of the earth. They

can be determined from observations of stars, arti�cial satellites and extragalactic

radio-sources. There are two modalities of rotational times: Sidereal Time and Solar

Time.

Sidereal Time is de�ned as being the hour angle of the vernal equinox. If the

hour angle is measured using the Greenwich astronomic meridian as reference we

have Greenwich Apparent Sidereal Time (GAST) and Greenwich Mean Sidereal Time

(GMST). Their di�erence is due to the former refering to the true (or apparent) vernal

equinox and the latter to the mean vernal equinox.

Solar Time is numerically de�ned by the hour angle of the sun. Of major impor-

tance in our context is Greenwich Mean Time or, as it is now usually called, Universal

Time (UT), which is the hour angle of the �ctitious (or mean) sun referred to the

Greenwich mean astronomic meridian (plus 12h) [Moritz & Mueller, 1988]. It is con-

venient for satellite geodesy to use UT corrected for polar motion, thus representing

the true angular rotation of the earth. This modality of UT is known as UT1 [Mueller,

1969].

UT1, GMST and GAST are related by rigorous formulae. To begin with, GMST

at 0h UT1 (GMST1) is obtained from [Aoki et al., 1982]:

GMST1 = 24110s :54841+8640184s :812866Tu+0
s:093104T 2

u�6s:2�10�6T 3
u ;(2.1)

where Tu is the number of centuries of 36525 days of universal time elapsed since 2000

January 1, 12h UT1 (Julian Date 2451545.0 UT1). Tu is computed by [Seidelmann,
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1992]:

Tu =
JD � 2451545:0

365:25
; (2.2)

being JD the Julian Date of the epoch of interest at 0h UT1.

The GMST of date is computed by [Aoki et al., 1982]:

GMST = UT1
1

r0
+GMST1; (2.3)

where the quantity r0 can be thought of as the length of one sidereal day in units of

solar days:

1

r0
= 1:002737909350795 + 5:9006 � 10�11Tu � 5:9 � 10�15T 2

u ; (2.4)

with Tu given by eqn. (2.2) referring to UT1 of date.

The relation between GAST and GMST is given by the equation of the equinox:

GAST = GMST +� cos�0; (2.5)

where � is the nutation in longitude and �0 the true obliquity of the ecliptic.

2.2.2 Atomic times

The name `atomic time' comes from the fact that it is a time system kept by atomic

clocks. The atomic time which de�nes the fundamental and continuous time scale

for the time-keeping services is International Atomic Time (TAI1). Its unit interval

is exactly one SI second at sea level. Being a uniform time scale, the TAI became

mis-synchronized with the solar day. This problem was solved with the introduction

of Coordinated Universal Time (UTC). By de�nition, the di�erence between TAI

and UTC equals an integer number of seconds. This di�erence is altered, by the

insertion of a leap second in UTC, whenever the di�erence between UT1 and UTC

1The acronym for this time scale obeys the French word order.
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is projected to become larger than 0s:9 in absolute value. The decision to introduce

a leap second in UTC to meet this condition is the responsibility of the International

Earth Rotation Service (IERS), which works closely with the Bureau International

de Poids and Mesures (BIPM).

The GPS Time (GPST) scale is realized by atomic clocks on board the GPS

satellites and those at the GPS Operational Control System (OCS) monitor stations.

It started at 0h UTC on January 6, 1980 and keeps a constant di�erence at the integer

second level of 19s with TAI. The relation between GPST, UTC and UT1, since the

start of GPS Time, is shown by Table 2.1 (compiled using the International Earth

Rotation Service annual reports).

Table 2.1: Relationship between TAI, GPST and UTC since the beginning of GPS
Time until July 1994.

Date at 0h UTC TAI-UTC GPST-UTC
Calendar Date Modi�ed Julian Date (seconds) (seconds)
6 Jan 1980 44244.0 19 0
1 Jul 1981 44786.0 20 1
1 Jul 1982 45151.0 21 2
1 Jul 1983 45516.0 22 3
1 Jul 1985 46247.0 23 4
1 Jan 1988 47161.0 24 5
1 Jan 1990 47892.0 25 6
1 Jan 1991 48257.0 26 7
1 Jul 1992 48804.0 27 8
1 Jul 1993 49169.0 28 9
1 Jul 1994 49534.0 29 10

Very important quantities related to GPST are the GPS weeks, numbered with

integer numbers. The �rst GPS week was numbered with 0. A particular epoch

is identi�ed in GPST as the number of seconds elapsed since the previous Satur-

day/Sunday midnight plus the corresponding GPS week number.
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2.2.3 Dynamical times

Dynamical time is the uniform time scale used to describe the motion of bodies

with respect to a certain reference frame obeying a particular gravitational theory.

Barycentric Dynamical Time (TDB) is a dynamical time scale measured in an inertial

reference frame with origin at the centre of mass of the solar system, the barycentre

of the solar system. For satellite orbit computations, Terrestrial Dynamical Time

(TDT) can be used. This time scale is valid for the motion of a body within the

earth's gravitational �eld and has the same rate as an atomic clock at sea level. For

this reason TAI is used as a practical implementation of TDT [King et al., 1985].

They are related by [Seidelmann, 1992]:

TDT = TAI + 32s:184: (2.6)

The relation between TDB and TDT (neglecting higher-order terms) is [Seidel-

mann, 1992]:

TDB = TDT+ 0s:001658 sin g + 0s:000014 sin 2g); (2.7)

where g is the mean anomaly of the earth in its orbit around the sun:

g = 357o:53 + 0o:98560028(JD � 2451545:0); (2.8)

and JD is the Julian Date in TDT.

The International Astronomical Union (IAU) Working Group on Reference Sys-

tems recommended the renaming of TDT as Terrestrial Time (TT) and de�ned new

scales consistent with the SI second and the General Theory of Relativity. These

scales are the Geocentric Coordinate Time (TCG) and the Barycentric Coordinate

Time (TCB). They have their spatial origins at the center of the mass of the earth and

the solar system barycentre, respectively. These time scales will be introduced into

the astronomical almanacs when new fundamental theories and ephemerides based

on these time scales are adopted by the IAU [Hughes et al., 1991; Nautical Alamanac

O�ce, 1995].
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2.3 Geocentric coordinate systems

2.3.1 De�nitions

The coordinate systems involved in the transformation between the CI-system and

CT-system are right-handed orthogonal geocentric systems. The de�nition of such

a coordinate system makes use of a fundamental plane of reference and principal

axes, in which the X-axis has a �xed orientation in the fundamental plane and the

Z-axis may be a rotation axis or not. The Y -axis is selected to make the system

right-handed. These systems are [Mueller, 1969; Van���cek & Krakiwsky, 1986; Torge,

1991] the Conventional Terrestrial System (CT-system), the Instantaneous Terrestrial

System (IT-system), the True Right Ascension System (TRA-system) and the Mean

Right Ascension System (MRA-system).

Conventional terrestrial system, is an earth-�xed system, i.e., it rotates with

the earth. Its Z-axis points towards the Conventional International Origin [Moritz &

Mueller, 1988], the X-axis is in the mean equatorial plane, and theXZ-plane contains

the mean Greenwich meridian.

Instantaneous terrestrial system, is akin to the CT-system but its Z-axis coin-

cides with the instantaneous spin axis and the XZ-plane contains the instantaneous

Greenwich meridian. Its fundamental plane is the instantaneous equatorial plane.

True right ascension system at epoch � , TRA(� ), also known as \true equator

and equinox" of date system, has its Z-axis coinciding with the earth's instantaneous

spin axis (i.e., pointing towards the instantaneous north celestial pole) while its X-

axis points towards the true vernal equinox at epoch � . Its fundamental plane is

the true celestial equator at epoch � . The TRA(� ) and IT are related by a rotation

matrix whose argument is the angle GAST. The TRA(� ) both precesses and nutates.
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Mean right ascension system is akin to the TRA(� ) with the very important

di�erence that its Z- and X- axes point toward the mean north celestial pole and the

mean vernal equinox, respectively, at a certain speci�ed epoch, and its fundamental

plane is the mean celestial equator at the same epoch. If the e�ects of nutation are

removed from the TRA(� ) we get themean right ascension system at (the same)

epoch � , MRA(� ), also known as \mean equator and equinox" of date system. If

the e�ects of precession are removed from MRA(� ) the resulting system refers to a

particular epoch of reference �o and is called mean right ascension system at

epoch �o, MRA(�o), or mean equator and equinox of date �o. The reference epoch

�o used is J2000:0, which corresponds to 2000 January 1, 12h TDB. MRA(�o) is the

CI-system.

2.3.2 Transformations

The coordinate system transformation between the CI-system and CT-system is

spelled out as:

rCT = W G N P rCI ; (2.9)

where P ;N;G and W represent rotation matrices for precession, nutation, GAST

and polar motion, respectively, and are de�ned by the International Earth Rotation

Service [1992], and r is the position vector.

Inertial system adopted

The adopted inertial coordinate system (IN-system) for the numerical integration of

the equations of motion is the true right ascension system at a reference epoch t0, the

initial epoch of the equations of motion. The IN-system keeps a constant orientation

with respect to the CI-system at J2000:0. Then, the relation between the CT-system

and the IN-system reads:

rCT = W G N P (N� P �)T rIN(t0); (2.10)
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where P � and N � are the precession and nutation matrices used in the transformation

between J2000:0 and the initial epoch of the equations of motion.

2.3.3 Orbital system

The motion of a satellite in a pure central force �eld is known as the Keplerian orbit

or two-body problem. The satellite obeys Kepler's laws, traveling along an orbital

ellipse in which the centre of mass of the earth is at one of the foci. This motion

is described by the well-known Keplerian elements. These elements de�ne the shape

and size of the elliptic path (by the semi-major axis, a; and the eccentricity, e), the

orientation of the orbital plane with respect to the inertial coordinate system adopted

(by the inclination, i; the right ascension of the ascending node, 
; and the argument

of perigee, $), and the position of the satellite on the orbital ellipse (by one of the

anomalies: the true anomaly, f ; the eccentric anomaly, E; or the mean anomaly,M).

In a central force �eld, only the anomaly varies with time. In real life, all elements are

functions of time due to the various perturbing forces [Van���cek & Krakiwsky, 1986].

The Keplerian elements are schematically depicted in Figure 2.1. In this �gure,

the velocity vector is represented by v. Figure 2.2 concentrates on i, 
, $ and f ,

shown in an equatorial projection, in which the great circles on the celestial sphere

are represented as straight lines. The anomalies require further explanation. Odd as

it may seem, the anomalies are nothing else but angles. They all refer to the line of

apsides (the imaginary line joining the perigee { point of satellite's closest approach

to earth, with the apogee { the point of farthest recession) and are reckoned from

the perigee, or from the vernal point for polar orbits. The true anomaly f is the

angle between the the line of apsides and the satellite, measured at the earth's centre

of mass. The eccentric anomaly E is the angle between the line of apsides and

the projection of the satellite on a circle of radius a coplanar and concentric with

the orbital ellipse. The mean anomaly M is the true anomaly corresponding to the

motion of an imaginary satellite of uniform angular velocity [Van���cek & Krakiwsky,
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1986].
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Figure 2.1: Keplerian orbital elements

The relation between the true and eccentric anomalies is given by:

tan f =
(1� e2)1=2 sinE

cosE � e
: (2.11)

The relation between the eccentric and the mean anomalies is described by Ke-

pler's equation [Brouwer & Clemence, 1961]:

M = E � e sinE: (2.12)

Equation (2.12) can be solved for E by iterations or by using a power series in e

[Krakiwsky & Wells, 1971].

The Keplerian orbital elements are related to the orbital coordinate system (OR-

system). This system has its X-axis coincident with the line of apsides, the Y -axis

corresponds to f = �=2, and the Z-axis completes the right-handed system [Van���cek

& Krakiwsky, 1986]. The relation between the Keplerian orbital elements and the

OR-system is presented in Appendix I.
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The OR-system is related to the TRA-system by the following matrix relations

[Wells et al., 1987]:

rTRA

_rTRA

9>=
>; = R3 (�
) R1 (�i) R3 (�$)

8><
>:
rOR

_rOR
; (2.13)

where r and _r are position and velocity vectors, respectively.

2.4 Satellite-centered coordinate system

A very convenient way of representing the orbital motion of a satellite is by using a

satellite-centered coordinate system. Such a system may be de�ned in many di�erent

ways, the most common in orbital analysis being the one with center at the satellite's

center-of-mass and with the radial axis pointing towards the earth's center-of-mass,

the along-track axis tangent to the satellite's trajectory and a third (cross-track) axis

perpendicular to those, forming the coordinate system depicted by Figure 2.3.

This system is very useful for representing the departure between two orbits of the

same satellite. For example, let's suppose that r and _r are the position and velocity
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vectors of a satellite on a computed orbit, which has to be compared with that on a

reference orbit given by the position vector p. The departure can be computed, in a

circular or near-circular orbit, as:

Xal =
_r � �
k _r k ; (2.14)

Xrd = � r � �
k r k ; (2.15)

Xcr =
h � �
k h k ; (2.16)

where:

� = p � r; (2.17)

h = r � _r; (2.18)

and Xal, Xrd and Xcr are the departures in the along-track, radial and cross-track

directions.
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Figure 2.3: Satellite-centered coordinate system
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Chapter 3

The Global Positioning System

The Global Positioning System (GPS) is a satellite-based system for positioning,

navigation, and timing purposes developed and controlled by the United States De-

partment of Defense (DoD). The system can be conveniently separated into three

components, the space segment, the control segment and the user segment.

The space segment is composed of the orbiting satellites. The satellites have

been divided according to their design into Block I (the prototypes), II and IIA.

Currently there is only one Block I satellite still in operation. The Block II and IIA

satellites have been distributed in the sky in such a way that four of them are in

each of six orbital planes, to guarantee continuous global coverage. The satellites are

in a nominally circular orbit (maximum eccentricity is about 0.01) with major semi-

axis of about 26,560 km and inclination of about 55 degrees [Langley, 1991b]. Each

satellite transmits a navigation signal composed of two carriers generated at 1575.42

MHz and 1227.60 MHz (referred to as L1 and L2 carriers, respectively), two binary

pseudorandom noise (PRN) codes modulating the carriers at chipping rates of 10.23

MHz (the P, or precision, code) and 1.023 MHz (the C/A, or coarse/acquisition, code),

and a navigation message formatted into frames of 1500 bits with a transmission rate

of 50 bps. The C/A-code is modulated onto the L1 carrier, whereas the P-code is

transmitted on both L1 and L2 [Langley, 1990].
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The control segment is composed of a �ve ground-station tracking network, geo-

graphically spread in longitude around the world, belonging to the Operational Con-

trol System (OCS). One of them also acts as the Master Control Station (MCS). The

MCS, based on the tracked data, calculates and predicts orbits and satellite clock

errors. It can also maneuver the satellites and upload, along with 4 other sites, the

ephemerides and clock correction to be broadcast by the satellites [Langley, 1991b].

The user segment is composed of all GPS receivers, and there is a great number

of di�erent makers and models in the market place (for a comprehensive list look up

\GPS Receiver Survey" in the January 1995 issue of GPS World), from the handheld

receivers for recreational purposes up to the most sophisticated geodetic ones. The

latter are the ones we are interested in here. We shall refer to them as high perfor-

mance GPS receivers due to their capacity of tracking all signal components and of

recovering the full L2 carrier phase when they are operating under Anti-Spoo�ng (see

Subsection 3.2.2).

This chapter contains a description of the GPS observation equations and of the

errors and biases which a�ect the GPS observations. The correlations a�ecting the

double di�erence observable are introduced. This is only a brief outline of GPS.

Detailed information can be found in the several textbooks available such as Wells

at al. [1987], Ackroyd & Lorimer [1990], Ho�mann-Wellenhof et al. [1992] and Leick

[1995].

3.1 GPS observation equations

The basic measurement carried out by a GPS receiver is the signal's travel time from

the GPS satellite to the receiver. This time, multiplied by the speed of light, yields

the range between the satellite and the receiver antenna. Since this range has several

errors and biases lumped into it, it is called a pseudorange [Langley, 1993]. The

pseudorange is the basic observable for navigation. The observation equation of the
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pseudorange can be written as [Wells et al., 1987]:

p = �+ c � (dt� dT ) + dtrop + dion +mp + �p; (3.1)

where p represents the pseudorange observation, � the geometric satellite-receiver

range, c the speed of light in a vacuum, dt the satellite clock o�set from GPS Time,

dT the receiver clock o�set from GPS Time, dtrop the tropospheric delay, dion the

ionospheric delay, mp the error caused by code signal multipath, and �p random

measurement errors.

For geodetic applications, a more precise observable is measured, the GPS car-

rier phase. The carrier phase measurement is obtained by di�erencing the incoming

Doppler-shifted carrier signal from the satellite, and the signal's replica generated by

the receiver. The carrier phase observation equation can be written as [Wells et al.,

1987]:

� = �+ c � (dt� dT ) + �N + dtrop � dion +m� + ��; (3.2)

where � is the carrier beat phase (in length units), � is the wavelength, N the

cycle ambiguity, m� the error caused by phase signal multipath, and �� random

measurement errors.

Equations (3.1) and (3.2) are directly comparable except for the (unknown) cycle

ambiguity term that represents the indeterminate integer number of cycles between

the satellite and the receiver when the receiver �rst locks onto the signal. At this

time, the receiver assigns an arbitrary integer number to N [Langley, 1991a]. This

number remains constant as long as no loss of phase lock occurs.

The research described by this dissertation has used as an observable the receiver-

satellite carrier phase double di�erence. This observable is formed by di�erencing

across two satellites as well as two receivers, and assumes exactly simultaneous mea-

surements. This linear combination has the advantage of eliminating the receiver and
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satellite clock o�set and the Selective Availability �-process (clock dither { see Sub-

section 3.2.2), and of reducing the e�ects caused by atmospheric and orbital biases

[Langley, 1993]. The double di�erence observation equation is written as [Wells et

al., 1987]:

r�� = r��+ � � r�N +r�dtrop �r�dion +r�m� +r���; (3.3)

wherer� represents the double di�erence operator. We should point out that similar

results are obtained whether using di�erenced or undi�erenced carrier phase data,

provided they are treated (weighted) properly.

The consequence of doubly di�erencing the carrier phases is that the observations

become mathematically correlated. Let the double di�erence observations, for one

epoch, be represented as:

r�� = R �; (3.4)

where R is a matrix with entries 0's, +1's and -1's and � is the vector of undi�erenced

observations [Santos, 1990]. Applying the law of propagation of variances we arrive

at the covariance matrix of the double di�erence observations:

Cr�� = R C� R
T ; (3.5)

where C� is the covariance matrix of the vector � which contains the undi�erenced

carrier phases at that epoch. The undi�erenced phases are assumed to be uncorre-

lated. If the mathematical correlation is totally disregarded, Cr�� equals an identity

matrix (this is correct only if the physical correlation { see next paragraph, is also

disregarded). If, in a network mode, the mathematical correlation of the double dif-

ference observations within each individual baselines is considered, the diagonal sub-

matrices, one for each baseline, will have a block diagonal structure in Cr��, and all

o�-diagonal sub-matrices will be equal to zero. If all mathematical correlations are
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taken into account, there will be some non-zero elements in the o�-diagonal subma-

trices, each representing correlations between baselines observing the same satellite.

It goes without saying that matrix Cr�� is scaled by the a priori variance factor of

the double di�erence observations. The way we have gone about taking into account

these correlations is by means of forming a matrix R which maps � into r�� at

every observation epoch, and then evaluating eqn. (3.5). An e�cient method for

computing Cr�� is described by Beutler et al. [1987].

Another type of correlation, the physical correlation, is a consequence of the com-

mon environments that envelope the observations making them spatially or tempo-

rally correlated. Physical correlation re
ects the lack of knowledge on the environ-

ments, and may diminish as the modelling of the environments improves. El-Rabbany

[1994] has investigated the e�ect of physical correlations on baseline determination.

He concluded that physical correlation is inversely proportional to both sampling

rate and baseline length. Disregarding these correlations results in over optimistic

accuracy estimates for the adjusted parameters.

3.2 Errors and biases

GPS errors and biases may be classi�ed into three categories: biases originating at

the satellite (orbital biases, clock bias and Selective Availability), signal propagation

biases (ionospheric and tropospheric delays) and biases and errors originating at the

receiver (clock bias, receiver noise, multipath and antenna phase center variation).

There are also geometrical e�ects coming from the satellite con�guration geometry

and the cycle ambiguity [Kleusberg & Langley, 1990]. The orbital bias, the one this

research is most interested in, has already been explained in chapter 1.
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3.2.1 Clock biases

Even though very accurate, the atomic clocks on board the satellites are not prefect,

and tend to drift o� the GPS time system, a�ecting the GPS measurements. The

satellite clock bias can be reduced by using the corrections broadcast in the satel-

lite navigation message or eliminated through di�erencing between receivers. As far

as receiver clock bias is concerned, it can be treated as an unknown parameter or

eliminated through di�erencing between satellites [Kleusberg & Langley, 1990].

3.2.2 Selective Availability and Anti-Spoo�ng

Selective Availability (SA) is the polite term the owners of GPS, the US military,

used to describe the deliberate reduction of the C/A-code accuracy, which is the one

used the most by non-authorized (civilian) users. The reason for its introduction is

that, contrary to the original design, the accuracy of the C/A and P codes are nearly

the same. With SA implemented, the nominal accuracy for horizontal and vertical

positions is 100 m and 150 m, respectively, at a probability level of 95% [Georgiadou

& Doucet, 1990].

Position accuracy is downgraded by SA in two ways. The �rst one, the so-called

�-process, is the dithering (manipulation) of the satellite clocks and a�ects all users.

The second one, the so-called �-process, is the addition of a slowly varying error into

the broadcast ephemeris [Georgiadou & Doucet, 1990]. Two main e�ects of SA are

the increase in noise in code and carrier phase measurement [Kremer et al., 1990] and

a bias in scale and orientation [Talbot, 1990; Tolman et al., 1990]. The e�ects of SA

can be signi�cantly reduced by the use of Di�erential GPS (DGPS) corrections.

Anti-spoo�ng (A-S) means the denial of access to the P-code, which is replaced by

a restricted Y-code [Wells et al., 1987]. The objective of A-S is to prevent saboteurs

to interfere (spoof) with the P-code by means of false signals. The consequences of A-

S are a reduction in the accuracy of relative positioning based on code measurements
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and in the e�ectiveness of rapid ambiguity resolution. A-S has been on since January

31 1994, on all Block II satellites, but has been recently on and o� (turned o� from

April 19 to May 10, 1995, and turned o� again on August 19, 1995). The status

of A-S has been currently under debate. The way to overcome A-S is to use high

performance receivers, capable of recovering the L2 carrier in the presence of A-S

by means of squaring, code-aided squaring, cross-correlation or Z tracking techniques

[Ashjaee & Lorenz, 1992]. An observed e�ect of anti-spoo�ng has been an increase in

the scatter of baselines daily repeatability, as pointed out by J. F. Zumberge in the

IGS Electronic Mail # 511.

3.2.3 Atmospheric e�ects

The atmosphere a�ects the GPS signals going through the ionosphere, and then

through the troposphere.

The ionosphere comprises the uppermost part of the atmosphere where gases are

ionized primarily by the sun's ultra-violet radiation. This phenomenon releases free

electrons, and free electrons a�ect the propagation of GPS signals. The ionosphere

causes a negative delay in the phase measurement (a phase advance) and a positive

delay in the pseudorange measurement. The ionospheric delay is proportional to

the number of free electrons along the signal's path or the total electron content

(TEC). The TEC depends on time of the day, time of the year, solar cycle, and

geographical location. The ionospheric delay, in length units, varies from 5 to 150

metres [Klobuchar, 1991].

The ionospheric delay can be dealt with in di�erent ways. Since the ionosphere is

frequency dependent, users of dual frequency receivers can eliminate the bulk of the

e�ect by combining L1 and L2 carrier phase measurements into an ionosphere-free

linear combination, known as L3 or Lc linear combination. This quasi-observable, in
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units of length, is:

�Lc =
f2L1�L1 � f2L2�L2

f2L1 � f2L2
; (3.6)

where fL1 and fL2 are the frequencies of the L1 and L2 carrier phases. This linear

combination should not be used for short baselines because it is noisier than single

frequency observations, i.e., the standard deviation �LC is larger than either �L1 or

�L2. The `short baseline' length depends on receiver noise and solar activity, being

around 10 km during high solar activity (during the peak of a solar cycle) or around 30

km during low solar activity (at the minimumof a solar cycle) [Komjathy, 1995]. Users

of single frequency receivers may use one of the many ionospheric models available, for

instance, the Klobuchar ionospheric model or the IRI90 reference ionospheric model

[Komjathy et al., 1995].

By troposphere is usually meant the non-ionised part of the atmosphere (the

correct designation should be \neutral atmosphere"). The tropospheric delay depends

on the water vapour and dry air gas composition along the signal's path varying from

around 2 metres at the zenith to 20 metres at 10 degrees elevation angle [Wells et al.,

1987]. This propagation delay is usually divided into a dry or hydrostatic and a wet

component. Both of them can be described as the product of a delay at the zenith and

a model of the elevation dependence of the propagation delay, known as a mapping

function [Mendes & Langley, 1994]. This tropospheric delay can be predicted via

theoretical models, calibrated via a water vapour radiometer (an expensive option)

or estimated, along with the other parameters in the adjustment, as an o�set or scale

applied to an a priori estimate, or as a stochastic parameter [van der Wal, 1995].

3.2.4 Antenna and receiver errors

The most intriguing of all receiver errors is multipath. Multipath error occurs when

the signal coming from a satellite arrives at the receiver's antenna following di�erent

paths as a result of re
ections, principally those occurring near the receiver's antenna.
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Code measurements are a�ected the most by multipath but the error multipath causes

in carrier phase measurement can still be much larger than the receiver noise level.

The best way to handle multipath is by avoiding it through a careful site selection,

with no re
ecting material in the antenna's vicinity [Georgiadou & Kleusberg, 1988].

Antenna phase centre variation depends on the direction of the incoming signal.

The range error coming from this variation is di�erent for L1 and L2 due to their

usually di�erent phase centres . This error is a function of antenna design and quality.

Finally, the measurement noise, which depends on the type of observable (and

also on the receiver) used. Kleusberg & Langley [1990] stated that, by that time,

measurement noise varied from a few metres, for C/A code, to a few millimeters,

for carrier phase. Recent improvements in receiver technology have lowered this

measurement noise. For example, the Ashtech Z-12 receivers have shown a C/A-code

pseudorange noise at about the 4 cm level [Wells et al., 1995].

3.2.5 Geometrical con�guration of the satellites

The geometrical distribution of the satellites in the sky a�ects the accuracy of the

GPS positions. It can be easily understood if we imagine two scenarios one in which

all available satellites are bunched together in the sky, and the other in which they

are well spaced. The accuracy resulting from the second situation will be much

better. This happens because the design matrix is a function of the satellite sky

distribution, a�ecting ultimately the solution and its covariance matrix. It has been

shown that even with the full constellation there will be areas in the sky with no

satellite coverage. The geometrical strength of the satellite con�guration is measured

by a number called the \dilution of precision" (DOP). The lower the DOP, the better

the satellite geometry at the moment of measurements [Santerre, 1989; Kleusberg

& Langley, 1990]. The geometrical strength of satellite con�guration for relative

positioning can be evaluated by means of the relative dilution of precision (RDOP)

[Goad, 1988].
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3.2.6 Ambiguity and cycle slips

The computation of the integer number corresponding to the initial cycle ambiguity

represents the drawback of using carrier phase observations. For short baselines of

up to around 30 km, depending on the behaviour of the ionosphere [Komjathy, 1995],

a technique known as on-the-
y (OTF) ambiguity resolution [Abidin, 1992] has been

developed. This technique incorporates the best of other techniques, namely the

extrawidelaning [Wubbena, 1989], the ambiguity mapping function [Remondi, 1984;

Mader, 1990] and the least squares approach [Hatch, 1990].

Ambiguity resolution becomes an even bigger problem the longer the baselines

are. The linear combination of dual frequency GPS data into the wide lane (Lw), has

shown to be very e�ective for over long baselines. This quasi-observable, in units of

length, is:

�Lw =
fL1�L1 � fL2�L2

fL1 � fL2
: (3.7)

The fact that the wide lane has a large wavelength, 86 cm, makes it well suited for the

resolution of cycle ambiguities. Ambiguity resolution in long baselines is an iterative

procedure in which a �rst solution is obtained with Lw. Subsequent solutions are

then carried out using Lc or the narrow lane (Ln) linear combination. This quasi-

observable, in units of length, is:

�Ln =
fL1�L1 + fL2�L2

fL1 + fL2
: (3.8)

The problem is more critical for baselines of hundreds of kilometres. Mervart et al.,

[1994] report that for the processing of the Epoch'92 campaign, they had to repeat the

least-squares adjustment iteratively for both Lw and Ln, using an ionospheric model.

Ionosphere is a major source of uncertainty in ambiguity resolution [Wanninger, 1993].

A problem closely related to ambiguity resolution is the occurrence of cycle slips.

A cycle slip is an integer discontinuity in the phase measurement being observed by

the GPS receiver. It causes the signal at the time of the discontinuity to shift by an
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integer number of cycles. The possible causes for cycle slips are receiver dependent

(low signal strength, dynamics of the antenna in kinematic surveying, internal signal

processing) and observation dependent (obstructions, signal noise due to multipath or

ionospheric activity and low satellite elevation) [Lichteneger & Ho�mann-Wellenhof,

1990].

Cycle slip detection and elimination, sometimes also referred to as data editing, is

typically a pre-processing task. For dual frequency receivers, it can be done by using

the di�erent characteristics of the linear combinations between L1 and L2. Cycle slips

in the undi�erenced carrier phase can be detected using the ionospheric residual, ��,

time series [Kleusberg et al., 1989]. This quasi-observable, in units of length, is:

��(t) = �L2(t)� �L1(t): (3.9)

The ionospheric residual is usually a smooth quantity a�ected by the ionosphere

only. Cycle slips would provoke sudden jumps in the function. That is what Figure

3.1 shows. The 6 prominent spikes were arti�cially introduced into the raw GPS data
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Figure 3.1: Cycle slips detected by the ionospheric residual

of satellite PRN 5, collected at station Algonquin, on January 2nd, 1994, with the
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values shown in Table 3.1. Figure 3.2 displays the rate of change in the ionospheric

Table 3.1: Number of cycles added to L1 and L2 undi�erenced carrier phases.

hour L1 L2 hour L1 L2
7:30 +1 +1 9:00 +1 -1
8:00 +2 +2 9:30 +2 -2
8:30 +3 +3 10:00 +3 -3
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Figure 3.2: Rate of change of the ionospheric residual

residual for the same case study. The ionospheric residual can be used for cycle slip

detection of undi�erenced data in static real-time applications as follows. After a

certain continuous number of observations are collected, they are �tted by a low-

degree polynomial. A prediction to the next observation is then compared with the

actual observation. If they di�er by a value larger than a prede�ned threshold then

potentially a cycle slip has just occurred and this observation is 
agged as the end of

the continuous observing interval.

For correcting the cycles slips which have occurred in dual frequency undi�erenced
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data, one has to compute the integer numbers quantifying the slips on both L1 and L2

carrier phases. These integers are then added to the collected phase measurements.

They can be computed with the aid of a look-up table [Lichteneger & Ho�mann-

Wellenhof, 1990] or using another linear combination. DIPOP [Kleusberg et al., 1989]

uses the wide lane linear combination. The estimates of the individual cycle slips are

computed from these two linear combinations, the ionospheric residual and the wide

lane combination.

If the dual frequency double di�erence is used as an observable, again linear com-

binations of L1 and L2 may be used. DIPOP uses the ionosphere-free and either

the wide lane or the ionospheric residual linear combinations [Komjathy, 1995], sub-

tracting from them a nominal range double di�erence. The detection and correction

of cycle slips is somewhat similar to the undi�erenced case. Straight line �tting is

applied over �ve points in the ionosphere-free linear combination. If the di�erence

between a predicted value based on this �t and the actual observation is larger than

a preset threshold, it indicates a cycle slip. Figures 3.4 and 3.3 show actual cases of
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Figure 3.3: Cycle slip on the ionosphere-free linear combination double di�erence
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Figure 3.4: Cycle slip on the wide lane linear combination double di�erence

time series where the occurrence of cycle slip is evident, involving a particular satel-

lite pair. The use of these linear combinations is well established and several authors

have applied them for the purpose of cycle slip editing [e.g., Blewitt, 1990].

Other approaches which may also be applied, e.g., using the phase triple di�erence,

shall not be presented here. One may refer to Lichteneger & Ho�mann-Wellenhof

[1990] for a broad review on cycle slip editing.

We conclude by saying that the emphasis in data editing has been more and more

on detection of all cycle slips. If they cannot be corrected at least they should be


agged so that a new ambiguity can be solved for. The problem is with undetected cy-

cle slips, which may eventually degrade the solution. An example of that is presented

in the penultimate chapter of this dissertation.
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Chapter 4

Modelling and solving the

equations of motion

4.1 Introduction to the problem

The orbit of a satellite is the solution of a second order di�erential equation system,

known as the equations of motion, provided some initial or boundary conditions are

satis�ed. The equations of motion represented in an inertial geocentric coordinate

system have the form:

�r =
GMr

k r k3 + �p; (4.1)

where �r is the total acceleration vector of the satellite,GM is the earth's gravitational

constant, r is the satellite geocentric position vector, and �p represents the sum of

the perturbing accelerations that act on the satellite. Equation (4.1) represents a

kinematic formulation in which the mass of the satellite is not needed to describe its

motion [Van���cek, 1973].

This system of second order di�erential equations can be integrated when condi-

tions at an initial time t0 are given. The initial conditions are a vector composed of
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an initial position [x; y; z]T and velocity [ _x; _y; _z]T of the satellite or its equivalent Kep-

lerian elements (a0; e0; i0;$0;
0, and one of the anomalies), at the initial epoch. The

solution of the equations of motion yields a set of satellite positions and velocities, at

any other time. In this dissertation, the vector composed of either [x; y; z; _x; _y; _z]T or

(a0; e0; i0;$0;
0 and one of the anomalies) is called the state vector.

The �rst term on the right-hand side of eqn. (4.1) describes the Keplerian motion

of a satellite in a central �eld (i.e., under the in
uence of the central part of the

gravitational �eld only), the orbit being a conic section. The second term represents

the sum of the e�ects caused by the non-central part of the earth's gravitational

�eld, the attraction of the moon, the sun, and other celestial bodies, the direct and

indirect e�ects of the solar radiation pressure, the atmospheric drag e�ect, ocean and

earth tides, relativistic e�ects, electromagnetic e�ects, thruster �rings, out-gassing,

etc. These perturbing accelerations cause a departure from the (elliptical) Keplerian

orbit. If these perturbations were perfectly modelled, the integrated orbit would

pinpoint the satellite position at any given time without error.

For the solution of the equations of motion an integration technique is required.

The technique can be either analytical or numerical. The precision of the solution

depends on the accuracy of the initial conditions, on how well the perturbing ac-

celerations are modelled, and, up to a certain degree, on the integration technique

chosen.

This chapter can be regarded as being composed of two parts. The �rst describes

how the right-hand side of eqn. (4.1) is modelled; the second, the way we have gone

about solving the equation. Most of the models and techniques described in this chap-

ter have been implemented in our numerical integrator program, called PREDICT.

This program is summarized in Appendix II.
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4.2 Mathematical representation of the accelera-

tion producing forces

4.2.1 Earth's gravitational �eld

The external potential Wg of the earth's gravitational �eld satis�es Laplace's di�er-

ential equation [e.g., Van���cek & Krakiwsky, 1986]:

r2Wg = 0: (4.2)

The expansion of Wg into spherical harmonics, which constitute a general solution

of eqn. (4.2), is the usual representation of Wg, and is given as [e.g., Torge, 1989]:

Wg =
GM

r

"
1 +

1X
n=2

�
ae
r

�n nX
m=0

(Cnm cosm�+ Snm sinm�)Pnm(sin�)

#
; (4.3)

where the spherical coordinates r, �, � represent, respectively, the geocentric distance

to the satellite, the geocentric latitude and the geocentric longitude, ae stands for

the major semi-axis of the adopted ellipsoid, Pnm(sin �) are the associated Legendre

functions, and Cnm, Snm are geopotential coe�cients of degree n and order m.

For the purpose of GPS satellite orbit computation, the upper limit for the �rst

summation in eqn. (4.3) is truncated to a prede�ned degree and order, usually 8,

because the e�ect on GPS orbits resulting from disregarding these coe�cients is very

small, being 0.2 m for a 5-day arc [Santos, 1994].

The coe�cients Cn0 in eqn. (4.3) are commonly replaced by �Jn. The coe�cient

J2, known as the dynamic form factor, re
ects the earth's equatorial ellipticity and is

about three orders of magnitude larger than any other geopotential coe�cient. The

other coe�cients depict the remaining irregularities of the earth's gravitational �eld.

Disregarding J2 results in a perturbation on GPS orbits of 3.5 km for a 6-hour arc

and 110 km for a 5-day arc. The joint e�ect on GPS orbits coming from the other

harmonics is equal to 100 m for a 6-hour arc and 3 km for 5-day arc [Santos, 1994].
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It can be seen that eqn. (4.3) requires the satellite position expressed in spherical

coordinates. The latter can be obtained from the satellite position vector [x; y; z]T by

the following well known expressions:

r = (x2 + y2 + z2)1=2

� = arcsin
z

r
(4.4)

� = 2 arctan
y

x+
p
x2 + y2

:

In general, the geopotential coe�cients are furnished normalized, represented by

Cnm and Snm. That is the case, for instance, of the GEMT3 geopotential model

[Lerch et al., 1992]. The relationship between the normalized and non-normalized

geopotential coe�cients is given by [McCarthy et al., 1993]:

Cnm

Snm

9>=
>; =

"
(n�m)! (2n + 1) (2 � �0m)

(n+m)!

#1=28><
>:

Cnm

Snm;
(4.5)

where the symbol �0m is the Kronecker delta:

�0m =

(
1; for m = 0

0; for m 6= 0:
(4.6)

The geopotential coe�cients are supplied in the CT-system. Hence, the satellite

position vector has to be transformed from the adopted inertial coordinate system

into the CT-system before applying eqns. (4.4).

To obtain the components of the gravitational accelerations [�x; �y; �z]T , the gradient

ofWg has to be evaluated by means of the partial derivatives of eqn. (4.3) with respect

to the Cartesian coordinates of the satellite. By applying the chain rule, we get:

�x =
@Wg

@x
=
@Wg

@r

@r

@x
+
@Wg

@�

@�

@x
+
@Wg

@�

@�

@x

�y =
@Wg

@y
=
@Wg

@r

@r

@y
+
@Wg

@�

@�

@y
+
@Wg

@�

@�

@y
(4.7)
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�z =
@Wg

@z
=
@Wg

@r

@r

@z
+
@Wg

@�

@�

@z
+
@Wg

@�

@�

@z
:

The partial derivatives of Wg with respect to r, � and � are:

@Wg

@r
= �GM

r2

(
1 +

1X
n=2

�
ae
r

�n nX
m=0

(n+ 1) [Cnm cosm�+ Snm sinm�]Pnm(sin�)

)

@Wg

@�
=
GM

r

1X
n=2

�
ae
r

�n nX
m=0

m [Snm cosm�� Cnm sinm�]Pnm(sin�) (4.8)

@Wg

@�
=
GM

r

1X
n=2

�
ae
r

�n nX
m=0

[Cnm cosm� + Snm sinm�]
@

@�
[Pnm(sin �)] ;

where the derivative of the associated Legendre function with respect to � is [Mc-

Carthy et al., 1993]:

@

@�
[Pnm(sin�)] = Pnm+1(sin�)�m tan �Pnm(sin�): (4.9)

The partial derivatives of the spherical coordinates with respect to the Cartesian

coordinates are:

@r

@ri
=
ri
r

@�

@ri
=

x

y2 + x2

 
@y

@ri
� y

x

@x

@ri

!
(4.10)

@�

@ri
=

1p
x2 + y2

 
�zri
r2

+
@z

@ri

!
;

where ri; i = 1; 2; 3, stands for x, y and z.

The accelerations obtained by eqns. (4.7) are in the CT-system. They have to be

transformed into the adopted inertial system before they can be used in the numerical

integration.
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4.2.2 Solar, lunar, and planetary gravitational perturbation

The gravitational perturbation induced by a third body, such as the sun, moon, or a

planet, regarded as a point mass, can be represented as [Rizos & Stolz, 1985]:

�p
tb
= GMtb

 
rtb � r

k rtb � r k3 �
rtb

k rtb k3
!
; (4.11)

where Mtb is the mass of the third body, and r and rtb are the geocentric position

vectors of the satellite and the third body, respectively. These two vector quantities

have to be expressed in the adopted inertial coordinate system for the perturbation

to be used in eqn. (4.1). The e�ect of the perturbing force on GPS satellites coming

from moon is, for a 6-hour arc and for a 5-day arc, respectively, 600 m and 7 km; the

e�ect coming from the sun is, for the same arcs, 150 m and 3000 km [Santos, 1994].

The perturbation coming from planets is neglegible, and has been disregarded for our

purpose.

4.2.3 Solar radiation pressure perturbation

The perturbation �p
srp

due to solar radiation pressure is the most complicated to

model. This is due to the fact that the GPS satellites have a complex shape and

that they are constructed of materials that have di�erent re
ectance, ranging from

0 (black) to 1 (white), and scattering, ranging from 0 (di�use) to 1 (specular), char-

acteristics, and thus respond di�erently to the incoming sunlight. There are thermal

variations in the area of the satellite that is illuminated by the sun during the satel-

lite's orbit around the earth. A complete solar radiation model has to take into

account the various contributions stemming from the satellite main body, the so-

lar panels, the antenna array and the rocket engine assembly [Fliegel et al., 1985;

Delikaraoglou, 1989; Fliegel & Gallini, 1989].

For the modelling of the solar radiation pressure perturbing acceleration, a satellite-

centered coordinate system is considered using the fact that the antennas of the satel-

lite are kept pointed towards the earth and the solar panel support beam is designed
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to be perpendicular to the direction spacecraft-sun. The satellite-centered coordinate

system is de�ned in such a way that its Z axis is positive along the antenna direction

towards the center of mass of the earth, the Y axis is taken along the solar panel

support beam, normal to the direction spacecraft-sun and the X axis completes this

right-handed system. The sun is contained in the XZ plane. The Y axis is kept

normal to the plane that contains spacecraft, sun and centre of mass of the earth.

The solar panels are rotated around the Y axis in order to o�er the maximum area

to the sun.

The unit vectors which make the Cartesian triad of the above de�ned coordinate

system are shown in Figure 4.1; also shown is n, a unit vector pointing from the sun

to the spacecraft. The unit vectors ez, ex and n are always contained in the plane

satellite-sun-earth.

ez

n

ey

ex

EARTH

ez

n

ey

x

EARTH

e
SUN

Figure 4.1: Satellite coordinate system

These unit vectors are described in the inertial Cartesian system as follows:

ez = � r

k r k

ey =
ez � n

k ez � n k

ex =
ey � ez

k ey � ez k
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n =
r � rs

k r � rs k
; (4.12)

where r and rs are the geocentric position vectors of the satellite and the sun, respec-

tively. The vectors ey and ex are unde�ned when the angle �, between vectors ez and

n, is equal either to 00 or 1800, i.e., when sun-satellite-earth are aligned.

The solar radiation pressure is usually divided into the direct solar radiation pres-

sure �p
dir
, and the radiation pressure in the Y direction, the so-called Y bias, �p

y
.

Hence:

�p
srp

= �p
dir

+ �p
y
: (4.13)

Direct solar radiation pressure

The direct solar radiation pressure can be modelled in a �rst approximation by [Fel-

tens, 1988]:

�p
dir

= �PsCr
a2ES

k r � rs k2
A

m
n; (4.14)

where � is the eclipse factor (equal to zero when the satellite is in the earth's shadow

and equal to one when it is in sunlight; � is positive and smaller than one during

its passage through the penumbra zone); Ps is the solar radiation pressure (which is

the ratio of the intensity of radiation and the speed of light, expressed in N=m2); Cr

is the re
ectivity factor which depends on the spacecraft re
ectivity characteristics

(unitless); A is the e�ective cross sectional area of the spacecraft a�ected by the solar

radiation; aES is the major semi-axis of the earth's orbit around the sun (approxi-

mately equal to 1 Astronomical Unit - AU1); m is the mass of the satellite; and r, rs

and n have been de�ned previously.

The model given by eqn. (4.14) describes the perturbing acceleration due to the

solar radiation pressure on a spherical satellite [Tapley, 1989], being usually referred

11AU = 1:49597870� 1011m [Nautical Almanac O�ce, 1983].
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to as either the \cannonball model" [Parrot, 1989] or the \
at plate" model [De-

likaraoglou, 1989], being the re
ectivity factor Cr an adjustable parameter.

The usually unknown constants Ps, Cr and A=m are grouped into only one pa-

rameter known as the direct solar radiation pressure parameter, p0 [Beutler et al.,

1986]. Hence, eqn. (4.14) can be rewritten as:

�p
dir

= � p0 n; (4.15)

with the additional assumption that (a2ES= k r � rs k2) is approximately equal to 1.

The mathematical model described by eqn. (4.15) has two sources of uncertainty.

The �rst one is in the parameter p0 and is due to variations in the solar pressure con-

stant Ps, to the di�erent re
ectivity properties of the various materials from which

the GPS satellites are constructed, and to the di�culty in determining the e�ective

cross sectional area A. The second source of uncertainty stems from a proper de�ni-

tion of the earth's shadow and penumbra �guring in the computation of the eclipse

factor � [Rizos & Stolz, 1985]. The parameter p0 is given an a priori value, and then

estimated in the orbit improvement process.

Radiation pressure in the Y direction

The second component of the solar radiation pressure model takes into account the

acceleration along the the direction of solar panel beam. The causes for this y-bias

are, probably, connected to (a) nonlinearity of the solar panel beams with respect to

the satellite body median plane, (b) misalignments of the solar sensors with respect to

the z axis, and (c) the heat generated in the satellite's body is radiated preferentially

from louvres on the +y side of the Block I satellites [Fleigel et al., 1992].

The e�ect of the y-direction radiation pressure can be modelled as [Landau, 1988]:

�p
y
= � py ey; (4.16)

where py is the y-bias parameter. The parameter py is given an a priori value, and is

then estimated in the orbit improvement process.
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The solar radiation model ROCK

The simplifying assumption made in the formulation of the solar radiation model seen

before, namely,

� that the e�ective cross-sectional area A of the spacecraft illuminated by the sun

is constant;

� that the re
ectivity factor Cr is the same for all materials; and,

� that there is no shadowing e�ect of the antenna and the satellite body,

obviously do not depict exactly the reality. A more re�ned solar radiation model was

developed for both the Block I (Navstar 1 to 11) and Block II (Navstar 13 to 21)

GPS satellites and was coded into computer subroutines known as ROCK 4 [Fliegel

et al., 1985] and ROCK 42 [Fliegel & Gallini, 1989]. The force model represents the

GPS satellites with 13 surfaces for Block I and 15 for Block II, each speci�ed as being

either a 
at or a cylindrical surface with pre-assigned re
ectivity and specularity.

These subroutines are long and much of them are devoted to the antennas and the

shadowing caused by them, even though this e�ect is only about 3% of the total solar

pressure force [Fliegel et al., 1992].

The input of the ROCK programs is the angle B between the sun and the +Z

axis. The outputs are the X and Z solar pressure force components (neglecting the Y

bias). As an alternative to the long ROCK4 and ROCK42 subroutines, each output

parameter can be represented as a short Fourier series, known as T10 formulas:

X = �4:55 sin(B) + 0:08 sin(2B + 0:9) � 0:06 cos(4B + 0:08) + 0:08 (4.17)

Z = �4:54 cos(B) + 0:20 sin(2B � 0:3)� 0:03 sin(4B); (4.18)

for Block I satellites, and as T20 formulas:

X = �8:96 sin(B) + 0:16 sin(3B) + 0:10 sin(5B)� 0:07 sin(7B) (4.19)

Z = �8:43 cos(B) (4.20)
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for Block II satellites. These expressions use units of 10�5N , angle B in radians and

include thermal radiation. They translate the ROCK 4 and ROCK 42 outputs with

an error never exceeding 1.5% which occurs only during the eclipse seasons [Fliegel et

al., 1992]. Formulas T20 give also an adequate approximation for Block IIA satellites

(from Navstar 22 on) which have about the same properties as Block II satellites.

The forces are then converted into accelerations after dividing them by the re-

spective satellite masses. Nominal masses for some Block I satellites are shown in

Table 4.1 [Fliegel et al., 1992]. The nominal mass for a Block II satellite is 883:2

kilograms, whereas for a Block IIA satellite is 972:9 kilograms [Fliegel, 1993]. These

masses are correct for late 1990. They will slightly change over time as the satellites

are maneuvered and expend fuel, but for most practical purposes the above values

will su�ce [Fliegel et al., 1992].

Table 4.1: Nominal mass of Block I GPS satellites.

SV number PRN number Nominal Mass (kg)
3 6 453:8
4 8 440:9
6 9 462:6
8 11 522:2
9 13 520:4
10 12 519:8
11 3 521:8

The solar radiation pressure results in an acceleration [Lichten & Border, 1987]:

�p
srp

= �

"
a2ES

k r � rs k2
(Gxaxex +Gzazez) +Gyey

#
; (4.21)

where Gx and Gz are solar pressure coe�cient scaling factors, usually very close to 1

and estimated in the orbit improvement process, Gy is the Y bias, and ax and az are

the satellite-centered accelerations obtained via the ROCK models or T10 and T20

formulae.
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The perturbations in GPS satellite motion caused by solar radiation pressure

are signi�cant. The e�ect of direct radiation is, for a 6-hour arc and a 5-day arc,

respectively, equal to 40 m and 800 m; the e�ect of y-bias, for the same arcs, is equal

to 2 m and 100 m [Santos, 1994].

The solar radiation models expressed by eqns. (4.15) and (4.16), and by eqn.

(4.21) have been implemented. Tests have shown that, in practice, the di�erence

between these two models is small, at the order of 3% of the total perturbing e�ect

of the solar radiation pressure, provided the corresponding parameters in each model

are estimated [Santos, 1994]. This result corroborates what had been pointed out by

Beutler [1993b].

We conclude this subsection saying that an expanded solar radiation pressure

model has been proposed and is presently under investigation by the Center for Orbit

Determination in Europe (CODE) [Beutler et al., 1994].

Computation of the Eclipse Factor

The knowledge of the eclipse factor � is essential for the computation of �p
srp
, specially

during the two annual episodes when the satellite travels periodically through the

earth's shadow, which are known as the eclipse seasons. Eclipse seasons are 30 to 40

days long, depending on the orbital plane. During each season, the satellite passes

periodically through the umbra-penumbra region in less than 60 minutes.

The determination of � can be carried out, e.g., as described by McCarthy et al.

[1993] or by using a more re�ned approach, such as the one described by Ash [1972],

which takes into account the non-abruptness of the satellite passage from sunlight to

shadow (even though the span of time spent in the penumbra will be very brief).

The IERS Standards [International Earth Rotation Service, 1992] recommends the

use of a model that takes into account both umbra and penumbra. The recommended

earth's radius for such model is 6402 km.
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Re
ected solar radiation e�ect

Part of the solar radiation which reaches the earth is re
ected back towards the satel-

lite and causes an additional perturbing acceleration. This perturbation is directly

proportional to the earth's albedo. The albedo is in
uenced by geographical and

meteorological features which makes it too complicated to be described by a simple

model that would realistically show the signi�cant features of the phenomenon.

The modelling of this re
ected solar radiation can be done by assuming that the

e�ective re
ecting surface is a disk with a unique re
ective property. In a more rigor-

ous approach [e.g., McCarthy et al., 1993] the earth's surface is divided into surface

elements. For each one of these cells, the albedo is modelled by a spherical harmonic

expansion followed by the computation of the individual acceleration contributions.

The latter are then summed up to approximate the actual surface integral.

The e�ect of re
ected solar radiation on the orbit of GPS satellites is relatively

small, being equal to 1.5 m for an arc of 2 days [Santos, 1994].

4.2.4 Solid earth and ocean tidal perturbation

The motion of the GPS satellites is also perturbed by the variations in the earth's

gravitational potential which occurs as a consequence of the deformation of the solid

earth and water provoked by the gravitational attraction of celestial bodies. This

deformation is known as tidal deformation. The tidal deformation expresses itself

by means of earth and ocean tides. The common approach is to take into account

only the luni-solar contribution since the one due to the planets corresponds to only

0.005% of the former [Van���cek & Krakiwsky, 1986].

The e�ect of solid earth and ocean tidal perturbation on the orbit of GPS satellites

is relatively small. The e�ect of the perturbation of the solid earth on the GPS satellite

motion is equal to 1 m for a 5-day arc; the ocean tidal perturbation, equal to 0.5 m

for a 5-day arc [Santos, 1994].
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Solid earth tidal perturbation

The perturbation due to the solid earth tides can be directly modelled as variations

in the normalized geopotential coe�cients by means of any model having frequency

dependent Love numbers, such as the Wahr model [International Earth Rotation

Service, 1992].

A simpli�ed expression for the perturbing acceleration vector due to the solid

earth tides �p
se
is computed by �rst de�ning the tidal bulge potential (at the satellite

altitude) Ws as [Melchior, 1983]:

Ws =

 
ae
k r k

!3
k2W2; (4.22)

whereW2 is the tidal potential given at the earth's surface. Taking the partial deriva-

tives of theWs with respect to the satellite geocentric position vector r [Rizos & Stolz,

1985]:

�p
se
=

3

2
k2

GMtb

k rtb k3
a5e

k r k4
"
(1� 5 cos2 Z)

r

k r k + 2 cosZ
rtb

k rtb k

#
; (4.23)

where Mtb is the mass of third body, rtb is third body geocentric position, Z is the

angle between rtb and the satellite geocentric position vector r and k2 is the second

degree Love number.

Ocean tidal perturbation

The perturbation due to the ocean tides can also be directly modelled as periodic

variations in the normalized geopotential coe�cients [International Earth Rotation

Service, 1992]. This perturbation is more di�cult to model, since it is a function of

coastline geometry, etc. A global ocean tidal model has to be used, such as that of

Schwiderski [1983].

51



4.2.5 Relativistic perturbation

The motion of the satellite as shown in eqn. (4.1) is described by Newtonian physics

and as such neglects the relativistic e�ects. The earth's gravitational �eld provokes a

relativistic perturbation �p
r
on the orbital motion of the satellites. This perturbation

can be modelled as [Zhu & Groten, 1988; International Earth Rotation Service, 1992]:

�p
r
= � GM

c2 k r k3
" 

4
GM

k r k� k _r k2
!
r + 4 (r � _r) _r

#
(4.24)

where r and _r are geocentric position and velocity vectors of the satellite, respectively,

and c represents the velocity of light. The error in the orbital motion of GPS satellites

caused by disregarding the relativistic perturbation is equal to 1.5 m for a 5-day arc

[Santos, 1994].

4.2.6 Other perturbations

Some perturbations are usually disregarded when dealing with GPS satellites. They

are brie
y described as follows.

Atmospheric drag

Any near-earth orbiting satellite undergoes a drag due to its interaction with the

particles of the atmosphere. This drag-like force depends on the atmospheric density

which is a function of the satellite height. At the height of the GPS satellites, the

atmospheric density is assumed to be zero and hence so is the perturbation due to

atmospheric drag [Milani et al., 1987].

Electromagnetic e�ect

This e�ect is of a similar nature to the atmospheric drag. It is a consequence of

the interaction between the satellite electrical charge, acquired due to collisions with

electrons and ions while passing through the ionosphere, with the geomagnetic �eld.
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At the altitude of GPS satellites the current knowledge about the plasma properties,

particularly on its density and temperature, is still limited. A complication is that

these quantities depend on geometrical parameters (latitude, solar hour and decli-

nation of the sun) and on the level of solar and geomagnetic activity [Milani et al.,

1987]. The perturbation caused by electromagnetic e�ects on GPS orbits has been

disregarded.

Satellite maneuvering

From time to time, the GPS control segment needs to carry out orbital maneuvers

in order to maintain a certain satellite con�guration. This is done by activating the

satellite thrusters. These maneuvers change the orbital motion and appear as sudden

changes in the orbit itself. If that happens, a solution would be to set up new initial

conditions after the maneuver is over.

Smaller satellite movements, related to the attitude control of the satellites, are

called \momentum dumps". The satellites are stabilized by means of reaction wheels

which operate with nominally zero momentum. Secular disturbing torques eventually

saturate the momentum storage capacity. It is then compensated (emptied) through

external torques created by an autonomous activation of the satellite thrusters. In

our approach, momentum dumps are taken care of within the estimation of the so-

lar radiation pressure parameters. They may constitute a good reason for stochastic

modelling of the solar radiation pressure [Beutler, 1993]. Changes in the yaw atti-

tude of the satellite during eclipse are also absorbed by the solar radiation pressure

parameters. We conclude by saying that a model for the changes in the yaw attitude

during eclipses has been presented by Wu et al. [1993].
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4.2.7 Force model accuracy level

We would like to conclude this section by trying to gauge the accuracy of the imple-

mented force model. Our force model is constituted of the attraction due to earth's

gravitational �eld, up to degree and order 8, luni-solar gravitational perturbation,

with moon and sun regarded as point masses, direct and y-bias solar radiation pres-

sure perturbation, solid earth tidal perturbation and relativistic perturbation. We

believe that this force model of a GPS satellite is below the metre level for arcs of up

to about 5 days because only after then the joint e�ect of the neglected perturbations

are at the metre level. Therefore, for our purpose of real-time orbit improvement, the

force model implemented is more than enough to guarantee below metre accuracy of

orbits.

4.3 Solution of the equations of motion

The equations of motion of a satellite can be solved either analytically or by numerical

integration. The analytical solution of the equations of motion is an iterative process.

It starts by taking into account only the earth's gravitational perturbation. This

�rst approximation is then used for a second-order solution, which is then used for

higher order solutions [Kovalevsky, 1989]. The analytical integration of the equations

of motion is very useful if one wants to gain insight into the behaviour of the orbit

under perturbations. It has major drawbacks, however, such as the need for com-

plex algebraic derivations and evaluations of many trigonometric functions. Besides,

the solutions obtained are always approximate (Keplerian, �rst-order, ..., nth-order

perturbation) [Beutler et al., 1984]. An additional disadvantage is the di�culty with

the inclusion of non-gravitational forces such as the solar radiation pressure because

of the earth's shadowing on the satellite which causes the acceleration discontinuities

[Kovalevsky, 1989]. For high precision orbit determination, the numerical approach

is required.
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The numerical integration of the equations of motion as formulated by eqn. (4.1)

can be directly carried out by Cowell's method. Other suitable methods for the

numerical integration of orbits found in the literature are Encke's and the variation of

parameters methods, but they require a slightly di�erent formulation of the equations

of motion [Brouwer and Clemence, 1961; Conte, 1962; Herrick, 1972].

In Cowell's method, the equations of motion are directly integrated in Cartesian

coordinates based on a state vector for an initial epoch, yielding the Cartesian coordi-

nates of the perturbed body at any subsequent epoch. Cowell's method presents the

advantage of a simple formulation for the equations of motion. On the other hand,

since it takes no advantage of the elliptical nature of the motion, a shorter step size is

required, which may result in a larger round-o� error; the overall accuracy may su�er

as a result. In general, the smaller the number of integration steps, the more attenu-

ated are the e�ects of round-o� error. In spite of this drawback, Cowell's method has

found much acceptance and has been used in several contemporary software packages.

A description of the formulation we have made use of in our implementation follows.

4.3.1 Methods for numerical integration

There are several methods for the numerical solution of di�erential equations. They

can be divided in single-step and multi-step. The former is a method in which each

step uses only values obtained in a single step, i.e., in the preceding step. The

latter, on the other hand, uses values that come from more than one preceding step.

An example of a single-step procedure is the Runge-Kutta method [Batin, 1987];

examples of multi-step methods are the predictor-correctors described below. In orbit

integration, predictor-corrector methods are usually preferred instead of single-step

methods because fewer evaluations of the right-hand side of the equations of motion

are necessary, which speeds up the whole numerical integration process.

The equations of motion of GPS satellites are second-order di�erential equations,
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with an initial value problem of the form [Kreyszig, 1988]:

�r = f(t; r); r(t0) = r0; _r(t0) = _r0; (4.25)

where �r, _r and r represent, respectively, the acceleration, velocity and position vectors,

and t the time. Equation (4.25) shows that the satellite positions are obtainable by

either direct integration of eqn. (4.1) or by doubly-integrating it, i.e., by a two step

integration in which the satellite velocities are integrated from the accelerations, and

then the positions are integrated from the velocities. Both alternatives have been

studied and implemented, and are summarized as follows.

4.3.2 Methods for �rst-order di�erential equations

A multi-step method, known as Adams-Moulton, of nth order [Velez & Maury, 1970],

is composed of a predictor:

_rp(t) = _r(t� h) + h
n�1X
i=0

�pi �r[t� (1 + i)h]; (4.26)

and a corrector, which corresponds to the actual new value:

_rc(t) = _r(t� h) + h
n�1X
i=0

�ci �r[t� ih]: (4.27)

where h is the step size given by h = ti � ti�1, i = 1; 2; 3; : : :, and

f [t; _rp(t)] = �r(t):

The value of the coe�cients �p and �c depend on the order of the predictor-

corrector. The predictor-corrector is not self starting. A common approach is to

compute the starter values �r(t� 2h); �r(t� 3h); �r(t� 4h), etc; by the Runge-Kutta

algorithm [Morsund & Duris, 1967] or by Taylor series. The Adams-Moulton method

is applied iteratively as follows:

1. The starter values of �r(t� h); �r(t� 2h); :::; �r(t� nh) are known.
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2. Compute the predicted value _r0(t), for the 0th iteration, using eqn. (4.26).

3. Evaluate f [t; _rp(t)].

4. Compute the corrected value _rk=1(t), for the �rst iteration, using eqn. (4.27).

5. Iterate on k until

j _rk(t)� _rk�1(t) j< �;

for a prescribed � .

This algorithm is complete only if it is speci�ed what to do in case of non-

convergence. The options would be to quit the iteration after a certain number

of steps or to use a self-adjusted step size.

When applied for the solution of the equations of motion for the determination of

position, the Adams-Moulton method has to be applied twice in the following order.

First, compute the predicted velocity; then, compute predicted position; evaluate

acceleration with the predicted position; compute corrected velocity; and, �nally,

compute corrected position (using the corrected velocity). The method iterates as

described before.

4.3.3 Methods for second-order di�erential equations

In the samemanner as for the solution of a �rst-order di�erential equation, a predictor-

corrector can be applied with advantage over the single-step methods. We mention

here the multi-stepmethod based on the St�ormer predictor and Cowell corrector [Velez

& Maury, 1970], also known as Gauss summation or the Gauss-Jackson method, which

has the general form:

rp(t) = 2r(t� h) � r(t� 2h) + h2
n�1X
i=0

�pi �r[t� (1 + i)h]; (4.28)

for the predictor, and:

rc(t) = 2r(t� h)� r(t� 2h) + h2
n�1X
i=0

�ci �r[t� ih]; (4.29)
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for the corrector.

The coe�cients �p and �c assume values which depend on the order of the integra-

tor. The implementation of the St�ormer-Cowell predictor-corrector method follows

the same iterative algorithm as described for the Adams-Moulton method. The ap-

plication of the St�ormer-Cowell method yields only the positions of the satellite. If

the velocity of the satellite is also of interest, the Adams-Moulton method has to be

used at the same time. The coe�cients required by Adams-Moulton and the St�ormer-

Cowell methods can be computed by following the algorithm described by Velez &

Maury [1970].

A question may be posed here on which one of these predictor-corrector methods,

the Adams-Moulton or the St�ormer-Cowell, yields the best solution of the equations

of motion of the GPS satellites. To answer this question, we tested both of them in the

same situation. We integrated the equations of motion taking into account only the

radial gravitational �eld, and then compared the result with a pure Keplerian solution,

for a 30 day period, using di�erent integration step sizes. One of the results is shown

in Figure 4.2 using the St�ormer-Cowell method with a step size of 7.5 minutes. This

Figure shows the the di�erence between the Keplerian orbit and the orbit resulting

from the numerical integration. A similar result was obtained using the Adams-

Mouton method. Besides the conclusion that both methods yield generally the same

results, another is that they are indeed very stable.

In GPS orbit determination, the integration step size is usually chosen to be

between 7 and 15 minutes. For our purpose of real-time orbit improvement, we used

a step size equal to the interval with which the GPS observations were collected (2

minutes) in most of our tests. But in some tests, we also used 15 minutes. The tests

of the real-time orbit improvement approach are described in Chapter 6.

58



-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 5 10 15 20 25 30

m
et

re
s

days

Figure 4.2: St�ormer-Cowell; X-coordinate error

4.3.4 Multi-step starting procedures

An important characteristic of the multi-step methods, such as the Adams-Moulton

and St�ormer-Cowell, is that they are not self starting. To get started they require

the previous knowledge of n values of �r(t0� ih) , for i = (1; n), where t0 is the initial

time and n is the order of the integrator. These starting values have to be obtained

by some independent method, for example, by using Taylor's algorithm or one of the

Runge-Kutta methods. One has to make sure that the starting values are as accurate

as necessary for the overall required accuracy.

The starting algorithm we have made use of is given by Velez & Maury [1970], as:

_r(t0 +Kh) = _r(t0) + h
n�1X
i=0

�Li �r [t0 + (5 � i)h] ; (4.30)

for a �rst-order di�erential equation (L = 1), and:

r(t0 +Kh) = r(t0) +Kh _r(t0) + h2
n�1X
i=0

�Li �r [t0 + (5� i)h] ; (4.31)

for a second-order di�erential equation (L = 2), where n is the order of the integration,

�L represents coe�cients, t0 the initial epoch and K = (1; k), k = n� 1.
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The same authors suggest that the given initial values _r(t0) and r(t0) be located

in the center of the required starting values, provided k is even, in order to re-

duce the number of required iterations of eqns. (4.30) and (4.31). In this case,

K = (�k=2; k=2), K 6= 0.

We conclude this section by saying that in previous research at UNB, Parrot

[1989] and Chen [1991] have relied on the St�ormer-Cowell method for the solution

of the equations of motion. In addition to the St�ormer-Cowell method we have im-

plemented the Adams-Moulton method, allowing us to compute both position and

velocity vectors of a satellite. For the tests described in Chapter 6, we made use of the

Adams-Moulton method for the numerical integration of velocity and the St�ormer-

Cowell method for the numerical integration of position. As far as the starting pro-

cedure is concerned, we have the options of using eqns. (4.30) and (4.31) depending

on the choice of the numerical integrator.
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Chapter 5

Real-time GPS orbit improvement

This chapter contains the description of our primary contribution, namely, our model

for real-time orbit improvement for the GPS satellites. Its �rst section contains an

overview of the principles of orbit improvement and the traditional approaches, the

short-arc and the long-arc, followed by a description of the least-squares solution. The

second section presents the real-timemethod for orbit improvement and the problems

inherent in it. The chapter ends with a section in which some considerations of a real-

time orbit service are given, such as the components of the service, nature of data

link and what type of message would be broadcast to users.

5.1 Principles of orbit improvement

By the term `orbit improvement' we understand the procedure by which the initial

state vector and dynamical parameters of a satellite are estimated using observations

on this satellite collected by stations whose coordinates are known, or which are to be

estimated together with the satellite initial state vector and dynamical parameters.

For the formulation of the GPS orbit improvement two sets of equations are

formed:

f(R; r; y)� ` = 0; C`; CR; Cy; (5.1)
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g(r; s; p) = 0; Cs; Cp; (5.2)

where R represents the vector of station coordinates, r the vector of satellite posi-

tions, y the vector of nuisance parameters, ` the vector of observations, s the initial

state vector and p the vector of initial dynamical parameters (only solar radiation

parameters in the case of GPS satellites). The covariance matrices are represented

by C`, CR, Cs, Cp and Cy. Equation (5.1) partly represents a pure geometric model

whereas (5.2) is an explicit solution of the equations of motion as a function of the

initial conditions. The inconsistency in eqn. (5.1) requires a reformulation of the

model with the consequent introduction of the residual vector v, which accounts for

the di�erences between the set of estimates of ` from the original set of ` [Van���cek

and Krakiwsky, 1986]. Their linearization yields the GPS observation equation:

AR�R +ArB
�

1�s +ArB
�

2�p +Ay�y + w = v; (5.3)

where A represents the �rst design matrices, � the vectors of corrections to the esti-

mated parameters and w the misclosure vector. The partial derivatives dwelling in

AR; Ar and Ay are described in Appendix III. It is important to point out for later

developments that the misclosure vector is given by:

w = f(Ro; yo; so; po): (5.4)

where the superscript `0' signify initial (approximate) values.

Some words on the computation of matricesB�

1 andB
�

2 now follow. These Jacobian

matrices contain the variational partials which are the partial derivatives of a satellite

position, in the inertial system, with respect to the initial state vector s and the vector

of initial dynamical parameters p for this satellite. These matrices are regarded as

components of a matrix B�:

B� =
�
B�

1 B�

2

�
=

"
@r

@s

@r

@p

#
: (5.5)

The partial derivatives in matrix B� are the solution of a system of second-order

di�erential equations known as variational equations. The entries @r=@s and @r=@p
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can be obtained by double integration of @�r=@s and @�r=@p, respectively. Therefore,

the matrix:

F � =

"
@�r

@s

@�r

@p

#
(5.6)

is the entity to be integrated for the solution of B�. The variational partials have the

same relationship to the variational equations as the satellite position vector does to

the equations of motion [McCarthy et al., 1993]. The equations of motion of a GPS

satellite are written in the form:

�r = f(r; �p
srp
); (5.7)

meaning that the acceleration �r, at a epoch t, is computed by a force model that needs

the satellite position r and the solar radiation pressure acceleration �p
srp
, at a epoch

t, to be evaluated. By taking the total derivatives with respect to the initial state

vector s and the initial dynamical parameters p, both related to the initial epoch t0,

we arrive at the variational equations, for the initial state vector:

@�r

@s
=
@f

@r

@r

@s
; (5.8)

and, for the dynamical parameters:

@�r

@p
=
@f

@r

@r

@p
+
@f

@p
; (5.9)

which is similar to the form presented by Chen [1991]. Equations (5.8) and (5.9) can

be grouped and represented in a matrix form as:

F = W B� +K: (5.10)

The variational equations are formed in the inertial system. The variational par-

tials contained in B� are obtained by numerical integration using the same methods

as described in Chapter 4. The integration is commonly carried out simultaneously

with the solution of the equations of motion in order to save computer time. The
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partials have then to be transformed to the CT-system, which is the one in which the

observation equation is formed.

Instead of computing all variational partials contained in B� by numerical integra-

tion, which consumes a great deal of computational time, we have adopted a hybrid

solution, in which case the Keplerian part of B� is solved analytically and the solar

radiation pressure part of F is numerically integrated. In this approach, matrix B�

is spelled out as:

B� =
�
B�

1 B�

2

�
=

"
@r

@�

@r

@p

#
; (5.11)

where � is the initial Keplerian elements vector, p the initial solar radiation parameters

vector and r the satellite position vector. The only di�erence between eqns. (5.5) and

(5.11) is that in the latter, B�

1 is now an explicit function of the Keplerian elements

vector �.

The submatrix which depends on the Keplerian elements (the �rst six columns of

B� in eqn. (5.11)) is computed analytically following Langley et al. [1984] and Parrot

[1989] (see Appendix III). The submatrix which contains the solar radiation pressure

parameters (remaining columns) is computed by numerically integrating:

@�ri
@pk

= Aij
@rj
@pk

+
@�pi
@pk

; (5.12)

where ri;j = 1; 2; 3 are the Cartesian components of r, pk is equal to either (p0; py),

for k = 1; 2, or (Gx; Gy; Gz), for k = 1; 2; 3, at t0, �pi represents the x; y; z components

of the solar radiation pressure contribution, cf. eqns. (4.13) and (4.21), and A is the

part of matrix W containing only the radial �eld contribution:

A = �GM
r3

 
I � 3 r rT

r2

!
; (5.13)

with I being a unit matrix of dimension 3 and r is the norm of r. The initial conditions

for the solution of eqns. (5.12) are:

@rj
@pk

= 0: (5.14)
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The orbit improvement is carried out by �rst predicting an orbit using an a pri-

ori initial state vector and solar radiation parameters. This predicted orbit is then

improved (adjusted) using the GPS observations. This process yields a least-squares

correction vector to the initial state vector and values for the solar radiation pressure

parameters. The improved state vector and solar radiation pressure parameter values

are then used to predict a new (improved) orbit, i.e., the up-to-date ephemerides for

the GPS satellites.

An example of the e�ect of orbit improvement can be visualized from Figures 5.1

and 5.2. Figure 5.1 shows the radial, along-track and cross-track components of the

di�erence between the predicted orbit of satellite PRN 25, as computed by program

PREDICT (see Appendix II), and a reference orbit for the same satellite obtained

from the (�nal) IGS orbits. The initial conditions used for the prediction were taken

from the reference orbit. It can be seen that after a day, a di�erence of up to 30 meters

is encountered. Figure 5.2 shows the radial, along-track and cross-track components of

the di�erence between the predicted orbit of satellite PRN 25, using initial conditions

improved with respect to the reference orbit (used as \pseudo-observations"), and

the reference orbit itself. The peak-to-peak di�erence is now below the 2 centimeter

level. Let us point out that the improvement shown was the best solution among the

several satellites used, and do not represent a typical one.

5.1.1 Least-squares solution

To obtain the least-squares solution for the process of orbit improvement let us �rst

denote:

Ax = [AR; ArB
�

1; ArB
�

2]; (5.15)

and:

�x = [�R; �s; �p]
T : (5.16)
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Figure 5.1: Di�erence between predicted orbit and reference orbit

The weighted parametric model is then given by:

Ax�x +Ay�y + w = v; C`; Cx; Cy; (5.17)

where Cx and Cy represent respectively the a priori covariance matrix for the unknown

parameters grouped in �x and unknown nuisance parameters, and C` the covariance

matrix for the observations, regarded as uncorrelated between di�erent epochs.

By minimizing the quadratic norm of v [Van���cek & Krakiwisky, 1986] we arrive at

the system of normal equations

2
666666664

C�1
` �I 0 0

�I 0 Ax Ay

0 AT
x C�1

x 0

0 AT
y 0 C�1

y

3
777777775

2
666666664

v̂

k̂

�̂x

�̂y

3
777777775
=

2
666666664

0

w

0

0

3
777777775
;

where k is the so-called Lagrange correlates vector.

First, we want to get a solution �̂x as a function of the observations only accumu-

lated during the �rst (j) epochs. For that, we apply the rules of parameter elimination
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Figure 5.2: Di�erence between improved orbit and reference orbit

by partitioning [Van���cek & Krakiwisky, 1986] and eliminate v̂, k̂ and �̂y, obtaining:

�̂
(j)

x =
h
N (j)

xx �N (j)T

yx N (j)�1

yy N (j)
yx

i
�1 h

u(j)x �N (j)T

yx N (j)�1

yy u(j)y

i
; (5.18)

which is an expression for a simultaneous (batch) solution, where:

N (j)
xx =

jX
i=1

AT
xi
C�1

`i
Axi + C�1

x ; (5.19)

N (j)
yx =

jX
i=1

AT
yi
C�1
`i
Axi; (5.20)

N (j)
yy =

jX
i=1

AT
yi
C�1
`i
Ayi + C�1

y ; (5.21)

u(j)x =
jX

i=1

AT
xi
C�1
`i
wi; (5.22)

u(j)y =
jX

i=1

AT
yi
C�1
`i
wi: (5.23)

It may be advantageous to compute the solution vector �̂ at every epoch, or after

a certain numbers of epochs, in a stepwise fashion. The solution obtained in this

way is identical to the simultaneous solution only if the e�ect of previous steps on the
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solution vector and its covariance matrix is properly transmitted to the next step. An

advantageous characteristic of the stepwise procedure is that we can get the proper

solution (output) after each observation set is added, allowing a continuous check on

the e�ect of the added observations. To obtain the increment vector ��̂x which shows

the change �̂x undergoes from epoch (j � 1) to epoch (j) we denote:

��̂x = �̂
(j)

x � �̂
(j�1)

x : (5.24)

For a solution �̂x expressed as a function of the nuisance parameters �̂y, they have

to be evaluated �rst. To do that, we go back to the system of normal equations, and

eliminate v̂, k̂ and �̂x by partitioning. This yields the nuisance parameters vector

valid for epoch j:

�̂
(j)

y = [N (j)
yy �N (j)

yxN
(j)�1

xx N (j)T

yx ]�1[u(j)y �N (j)
yxN

(j)�1

xx u(j)x ]: (5.25)

The increment vector ��̂x is then given as:

��̂x = (Nxx + C
(j�1)�1

x̂ )�1(ux �NT
yx�̂

(j)

y �Nxx�̂
(j�1)

x ); (5.26)

where:

Nxx = AT
xC

�1
` Ax; (5.27)

Nyx = AT
yC

�1
` Ax; (5.28)

ux = AT
xC

�1
` w: (5.29)

The solution vector is then:

�̂
(j)

x = �̂
(j�1)

x +��̂x: (5.30)

The a posteriori covariance matrix of the solution for epoch (j) is given by:

C
(j)
x̂ = C

(j�1)
x̂ +�C x̂; (5.31)

where:

C
(j�1)
x̂ = [N (j�1)

xx �N (j�1)T

yx N (j�1)�1

yy N (j�1)
yx ]�1; (5.32)
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and:

�Cx̂ = [Nxx �NT
yxN

�1
yy N yx]

�1: (5.33)

Accordingly, we have:

C
(j)
ŷ = C

(j�1)
ŷ + (N�1

yy +N�1
yy Nyx�Cx̂N

T
yxN

�1
yy )

�1: (5.34)

5.1.2 Traditional approach for GPS orbit improvement

In the context of this dissertation, by \baseline observing session", or simply \ses-

sion", is meant the time span over which GPS signals are received continuously and

simultaneously by receivers that occupy both ends of a baseline [Van���cek et al., 1985].

We further de�ne \observation window" as the time span which encompasses simul-

taneously observed sessions, and \orbital session" as the arc length over which the

same set of initial conditions are improved [Parrot, 1989]. Intrinsic to the concept

of orbital session comes two strategies for orbital estimation, namely, the short-arc

[Parrot, 1989] and the long-arc [Chen, 1991] approaches.

Table 5.1 summarizes the characteristics of the short and long-arc approaches.

The major distinction between them is the arc length de�nition of the orbital session.

The other characteristics re
ecting nothing else but a consequence of the arc-length

de�nition.

Table 5.1: Typical characteristics of short-arc and long-arc approaches.

short-arc long-arc
orbital session less than 6 hours greater than 6 hours
force model less complex more complex
initial state vector Keplerian elements Keplerian elements plus solar

radiation pressure parameters

The arc-length de�nition has further consequences in the case of multi-day ob-

servation of a network. Figure 5.3 depicts an example for a network observing for
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6 hours in n consecutive days. The arrows represent orbital sessions. The long ar-

row indicates one long-arc orbital session which spans all observation windows: only

one set of initial conditions per satellite plus the station coordinates of the network

(plus some nuisance parameters) are estimated. The short arrows indicate three

short-arc orbital sessions: there will be three sets of initial conditions per satellite

to be improved, plus the station coordinates (at the beginning of the �rst observa-

tion window). The long-arc approach yields a continuous orbit representation over

all observation windows, being also computationally more e�cient due to the smaller

number of orbital parameters to be estimated.
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Figure 5.3: Long-arc and short-arc strategies

In the traditional approach, the solution vector �̂x is computed by eqn. (5.18).

A priori orbital arcs are used to form the design matrix and the misclosure vector.

The normal equations are accumulated independently, whether the observations are

acquired baseline by baseline or in a network mode. The traditional approach can

also be carried out sequentially, but the estimated initial conditions are related to the

whole orbital arc, at least, one day long.

After the adjustment, the improved initial conditions can be used to generate

new orbital arcs in another iteration over the orbital session. The above described

characteristics de�ne what we call the \traditional" approach for orbit improvement

(iteration over orbital session) as opposed to the \real-time" (iteration over observa-

tions), which is described in the next section.
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5.2 Real-time orbit improvement

The major goal of the research described in this dissertation was to investigate the

possibility of real-time high-accuracy GPS orbit determination, i.e., the possibility of

obtaining at any time the best possible estimate of orbit, based on all observations

collected up to that time [Santos, 1992]. The algorithm for real-time orbit improve-

ment is detailed in the following subsections. The test of the algorithm and discussion

of the results are described in the next chapter.

5.2.1 The real-time algorithm

Let us start detailing the mechanics of the real-time orbit improvement approach by

de�ning the observation sampling step �t as the di�erence between two consecutive

observation epochs ti and ti+1. Therefore:

ti = i �t; (5.35)

where i is an integer number. Let us de�ne the orbital arc �� , over which the orbit

improvement takes place, as the di�erence between epochs �j and �j+1, the initial and

�nal epoch of the orbit improvement, respectively. Therefore:

�j = j ��; (5.36)

where j is an integer number. The observation sampling step �t and the orbital arc

�� are related by the integer update step k:

�� = k �t: (5.37)

The update step k de�nes the frequency in which the orbit improvement takes place:

if k is equal to 1, then �� is equal to �t, and we are in the realm of the real-time orbit

improvement; if k is a big value that makes �� encompasses the whole observation

window, we are in the realm of the traditional approach.
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The proposed real-time approach for GPS orbit improvement is diagrammatically

portrayed by Figure 5.4 and explained as follows. First, a command �le containing,

among other pieces of information, the a priori weights for the parameters is read.

The initial conditions at epoch �j , coinciding with the �rst observation epoch ti, where

i is equal to 0, are also read. The process then starts with an orbit prediction over

the �rst orbital arc �� = (�j; �j+1). Whenever observations for a generic epoch ti

within the arc de�ned by (�j ; �j+1) arrive from the network, they are used to form the

observation equations. The \read" in the 
owchart means the observations are free

from cycle slips. The observation equations are then accumulated into the normal

equations. The observation epoch ti is tested to see whether it corresponds to the end

of the orbital arc �� , i.e., whether it is equal to �j+1. If the update step k is equal to

1, this test is always a�rmative. Whenever the test is a�rmative, the solution vector,

composed of station coordinates and initial conditions, is computed. The covariance

matrices are updated. This guarantees that the solution is based on all observations

collected up to this time. The adjusted (improved) initial conditions are then used

to generate improved orbits for the current orbital arc �� (j) = (�j ; �j+1), as well as

predicted orbits for the next orbital arc �� (j+1) = (�j+1; �j+2). Both the improved

orbits and the predicted obits are the output of this jth iteration. The predicted

orbits are also to be used for the next iteration. The orbital arc for the next iteration

is then de�ned by taking the predicted orbits at �j+1 as its initial conditions. The

epochs �j and �j+1 are then shifted forward by �� . Provided there is no satellite

maneuvering this process can continue ad in�nitum.

The real-time approach is based on iteration over observations, i.e., at every new

observation, or group of observations, the initial conditions are estimated, which, in

turn are used to generate a new set of orbits to be used in the adjustment. This can

be better understood by going back to eqn. (5.4) and concentrating on the vector of

initial conditions s. The misclosure vector (as well as the design matrix) is a function

of the expansion points so, i.e., formed making use of the approximate position vector
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of a satellite which is the rigorous solution of the equations of motion, corresponding

to the best estimate of the initial conditions. For the �rst orbital segment (represented

by superscript) �� 1, the misclosure vector is

w1 = f (Ro; yo; so): (5.38)

For the second orbital segment we have

w2 = f (Ro; yo; ŝ1); (5.39)

where ŝ1 represents the best estimate of the value of s, meaning that the orbits used

in �� 2 are generated as a function of s1, and so on. Every new orbital arc j uses

the initial conditions estimated for the previous arc (j � 1) and all the preceeding

observations

wj = f(Ro; yo; ŝj�1): (5.40)

The de�nition of the length of the orbital arc depends on the frequency with which

one needs to have improved orbits. For example, it may be equal to 15 minutes to

agree with the National Geodetic Survey (NGS) precise orbits format orbit interval

[Remondi, 1989]. In this case, for a sampling rate of 120 seconds an orbital segment

would encompass 7 or 8 observations records.

5.2.2 The screening of observations

In Chapter 4 we wrote about the linear combinations of L1 and L2 that can be used

to detect and correct cycle slips. At the same time it was said that a cycle slip

may simply be 
agged and treated as a new ambiguity to be solved in the adjustment

process. Both alternatives are valid but we think that it is better to �x the observation

from the cycle slip in order to make the observation 
ow uninterrupted: if a cycle

slip can be �xed, then �x it. This can be done by simply continuously adding the

integer number of cycles corresponding to the cycle slip to all the new observations.

74



With the quality of today's geodetic receivers, cycle slips will not be so common. A

real-time orbit service, such as the one discussed in the next section should rely on

an automatic cycle slip correction program.

5.3 A real-time orbit service

A service of real-time orbit distribution may very well become part of an active

control system or be within a wide-area di�erential GPS system. Such a service

would be composed of a �ducial or control network occupied by high performance

GPS receivers and by a master center. These two components would be linked by

a reliable communication system that guarantees continuous 
ow of information. A

communication system would also be needed for the dissemination of the ephemerides

to multiple users, the passive component of the system.

5.3.1 Monitor stations

The unmanned monitor stations have the duty of continuously tracking the GPS

satellites and relaying the pertinent information to the master center via a communi-

cation link. The GPS receivers occupying the network would be part of the monitor

stations. The monitor stations would comprise not only the receiver but also a com-

puter, environmental sensors (if any) and output communication components (e.g.,

modem and telephone line, ethernet links, radio access, etc). As the receivers will be

operating 24 hours a day, logistical problems such as power supply have to be taken

care of.

5.3.2 Master Center

The Master Center would have the following duties: (a) to control the operation of the

monitor stations; (b) to process the GPS data and related information obtained from
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the monitor stations; and (c) to disseminate the orbit to the users via a communication

link. The processing of the GPS data and related information involves the screening

of the GPS data for cycle slips, forming the double di�erences, and carrying out the

stepwise orbit improvement. The output of the latter, the up to date best initial

state vector, is used for generating the real-time orbits, the quantities of interest to

be transmitted to the users.

5.3.3 The transmitted information

The real-time orbit improvement yields as output the improved orbit for a speci�c

orbital arc, at epoch �j , and the predicted orbit for the next orbital arc. These

orbits consist of the Cartesian coordinates of the satellites, referred to their center-of-

mass, in the Geodetic Reference System 1980 (GRS 80), realized by the set of station

coordinates of the network used to gather the observations, such as one of the ITRFs.

This is the basic information to be transmitted by the orbit service.

The orbits may be transmitted in di�erent ways. For example, within a message

consisting of the satellite state vectors in Cartesian coordinates. The constituents of

this message would be the improved orbits plus a certain number of predicted orbits, in

order to allow the user to interpolate the satellite's positions within a central interval.

In another way of transmission, the orbits would be a broadcast-type ephemerides,

consisting of the improved orbit, in Keplerian elements, plus corrections to these

Keplerian elements computed using the predicted orbit. These corrections would be

used by the user to predict the orbits according to the observation sampling rate

used, as if they were the broadcast ephemerides contained in the satellite navigation

messages. The message type 17 of the RTCM DGPS message format [RTCM Special

Committee # 104, 1994] can be used to accommodate the Keplerian message. In

order to allow a lower warming up time for the user's receiver, the Master Center

would transmit the message with an interval equal to 1 or 2 minutes. A historical

record with all transmitted orbits would also be made available from the orbit service.
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Chapter 6

Test of the algorithm and

discussion of results

This chapter describes the tests on the orbits generated by the real-time algorithm. It

starts with the de�nition of what type of tests can be made for this purpose followed by

a brief explanation of the software implementation. The real-time orbit improvement

tests used GPS data collected by a network composed of eight IGS stations located

in Canada and the U.S. The characteristics of this network are described. The GPS

processing was carried out under controlled conditions. We tested the generated orbits

to assess their accuracy and precision. To get closer to a real life situation, arti�cial

cycle slips were introduced into the real data. Also, the e�ect of using predicted Earth

Orientation Parameters (EOP) was studied.

6.1 Assessing orbit precision and accuracy

A key question we have to face is how to assess the quality of the orbits generated

using the real-time algorithm. Di�erent ways of assessing the quality of a orbit have

been used in several analyses [Lichten & Border, 1987; Lichten & Bertiger, 1989;

Rothacher, 1992; see also the IGS Electronic Reports], and can be divided into the
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categories:

1. comparison of overlapping arcs;

2. comparison with an independently-generated orbit; and,

3. analysis of their e�ect in geodetic positioning.

A good way to assess the orbit precision is by comparing overlapping arcs. Two

comparisons can be made here. The �rst, usually referred to as \orbit repeatabil-

ity", compares two overlapping orbits improved independently of each other. The

second, referred to as \extrapolation", compares an extrapolated arc, i.e., an orbit

predicted beyond its improved arc, with another improved orbit. Figure 6.1 shows

diagrammatically the idea behind orbit repeatability and extrapolation.

(a)

xxxxxxxxxxxxx

overlapping arc

improved arc

improved arc

(b)

improved arc predicted arc

improved arc

Figure 6.1: Comparing overlapping arcs: (a) orbit repeatability; (b) extrapolation

A simple way to qualitatively assess the orbit accuracy is by comparing it with an

external (independently-generated) solution. A problem here comes from the fact that

this external solution may have used slightly di�erent models and could be attached

to a di�erent reference frame due to a di�erent station coordinate set de�nition.
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The �nal test is an analysis of the e�ect of the orbits in geodetic positioning. This

is done by constraining them during the processing of baselines, and then analysing

the short term baseline component repeatability, or by comparing the baseline vec-

tors components with VLBI or SLR, provided both compared quantities are in the

same coordinate frame, otherwise a similarity transformation should be applied to

make both coordinate frames compatible for the comparison. This test is a practical

realization of the rule of thumb (see Chapter 1). We must be aware of the fact that

the �nal baseline solutions may be a�ected by errors which are independent of orbit.

Therefore, this type of test may indicate other error sources.

The results of the tests will be presented in the next sections. For the comparison

of overlapping arcs, we have used arcs which have been independently improved. For

the comparison with an external orbit solution, we have used the IGS orbit as such.

These two comparisons are performed by simply di�erencing the orbit under scrutiny

with the one used as reference. The result shall be referred to as \orbital residuals".

The orbital residuals are presented graphically for some particular satellites denoting

a typical solution, and in tables presenting the best case, the worst case, and the

average case. The orbital residuals are given as rms of the radial, along-track and

cross-track components (see Chapter 2), and as the 3-dimensional rms (3drms). The

rms (about the mean) is given by:

rms =

vuut1

n

nX
i=1

(�i � �)2; (6.1)

where � is the di�erence between the two orbits being compared (orbital residuals),

� the average value, and n the number of samples.

The 3drms is de�ned (according to IGS Electronic Mail # 37) as:

3drms =
q
X2

rms + Y 2
rms + Z2

rms; (6.2)

where Xrms, Yrms and Zrms are the rms (about the mean) of the orbital residuals

along the Cartesian axes.
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6.2 Software implementation

The implementation of the real-time algorithm has led us to a great e�ort in software

implementation. The �rst one was the development of an orbital integrator, which

we have called program PREDICT. This program turned out to be a major support

work for our research. It is brie
y described in Appendix I.

The second software implementation was in transforming DIPOP version 2.1

[Van���cek et al., 1985; Kleusberg et al., 1989] from \session oriented" (i.e., processing

one baseline at a time) into \network oriented" (i.e., capable of handling observations

that come into the adjustment from di�erent baselines at the same time). This fact

allowed us to take into account the mathematical correlation between baselines, as

described in Chapter 3. Another very important modi�cation was in the capabil-

ity of orbit improvement. This network-oriented DIPOP incorporates several other

modi�cations that have been made recently in support of other on-going research at

UNB, such as the option to choose from a variety of tropospheric delays models, the

estimation of tropospheric delay correction parameters and taking into account the

di�erent antenna heights for L1 and L2 phase centers [Mendes & Langley, 1994; van

der Wal, 1995; Komjathy, 1995]. It should be mentioned that we have also used some

subroutines from the previous research of Parrot [1989] and Chen [1991].

The third and �nal software implementation e�ort was in giving a step-wise char-

acteristic for the weighted least-squares adjustment of the network-oriented DIPOP

in order to process one orbital arc at a time, and to propagate the initial conditions for

the beginning of the new orbital arc. The trickiest point resided in guaranteeing that

all coordinate system transformations are related to the new initial time of reference.

This implementation follows the real-time 
owchart presented in Chapter 5.
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6.3 Data set description

Two types of data were needed for the tests: GPS data and orbit data. The GPS data

was used in the orbit improvement and in the test of the e�ect of the orbits in geodetic

positioning; the orbit data was used in a direct comparison with our generated orbits.

The GPS data used for the tests described in this chapter were collected by eight

stations, listed in Table 6.1, located in Canada and in the U.S. These stations are part

of the global network of the IGS. Figure 6.2 portrays their geographical distribution.

The GPS data spans a period of 4 days, GPS days 002, 003, 004 and 005 of the GPS

week 730, corresponding to January 2nd (Sunday) to 5th (Wednesday), 1994. The

data �les were obtained via anonymous ftp from the Scripps institute of Oceanography

(SIO) GARNER archives. Each �le corresponds to a particular day and station. They

contain data that have had outliers removed and are free of cycle slips. We made

sure this was the case by running the data through program PREDD, of the DIPOP

package. The conclusion: the data was really cycle slip free. The data is in RINEX

format [Gurtner, 1994].

We have formed two networks. The �rst, encompassing all eight stations, was used

for testing the real-time orbit improvement. We shall refer to this network as the \8-

station network". The baselines formed are ALGO-STJO, ALGO-PIE1, GOLD-PIE1,

PIE1-RCM5, GOLD-DRAO, FAIR-DRAO and YELL-DRAO. The second, used for

testing the baseline component repeatability, is composed of four stations centered

on GOLD, and has been called the \star-shape network". The baselines formed

are GOLD-ALGO, GOLD-PIE1 and GOLD-DRAO. The criteria for selecting the

baselines were: �rst, maximumnumber of double-di�erences; second, shortest baseline

length. Due to the regional extent of the 8-station network, the GPS satellites have

not been observed continuously by all stations throughout the period. We shall refer

to this lack of simultaneous observations for a particular satellite as a data gap or

lack of coverage.
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Figure 6.2: North-American network (based on IGS stations).

We have used the International Earth Rotation Service Terrestrial Reference

Frame of 1992 (ITRF92) attached to epoch 1994.0 for the de�nition of the station

coordinates, as given by IGS Electronic Mail # 421 and # 430. The IGS processing

centers started using this set of coordinates since GPS week 730, according to IGS

Electronic Mail # 433 and # 437. We have also followed the same de�nition of �du-

cial stations [Kouba, 1993]. Table 6.2 lists the coordinate set indicating which stations

were used as �ducial for the processing of the 8-station network. For the star-shape

network, only GOLD was used as a �ducial station. The geometric distances between

all baselines used for both networks are listed in Table 6.3. The antenna heights as

well as the information on what receivers were used during the days in question came

from the �le \localtie.tab", also obtained from the SIO GARNER archives. This

information is compiled in Table 6.4.
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Table 6.1: IGS stations used in our analysis.

IGS code Location SIO code
ALGO Algonquin ALGO
DRAO Penticton DRAO
FAIR Fairbanks FAIR
GOLD Goldstone DS10
PIE1 Pie Town PIE1
RCM5 Richmond RCM5
STJO Saint John's STJO
YELL Yellowknife YELL

Table 6.2: IGS station coordinates in the ITRF92 (epoch 1994.0) (F= �ducial sta-
tions).

Station Coordinates (metre)
X Y Z

ALGO (F) 918129.578 -4346071.246 4561977.828
DRAO -2059164.616 -3621108.398 4814432.403
FAIR (F) -2281621.346 -1453595.783 5756961.940
GOLD (F) -2353614.103 -4641385.429 3676976.476
PIE1 -1640916.725 -5014781.174 3575447.128
RCM5 961334.780 -5674074.150 2740535.131
STJO 2612631.303 -3426807.011 4686757.751
YELL (F) -1224452.415 -2689216.088 5633638.270

Table 6.3: Baseline lengths, based on ITRF92 (1994.0) input coordinates.

Baseline Distance (metre)
Algonquin-St.John's 1931826.301
Algonquin-Pie Town 2822965.422
Fairbanks-Penticton 2374017.662
Goldstone-Algonquin 3402167.628
Goldstone-Pie Town 810968.645
Goldstone-Penticton 1556107.871
Pie Town-Richmond 2811308.977
Yellowknife-Penticton 1495414.989
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Table 6.4: Receivers and antenna heights.

Station Receiver used Antenna Height (metre)
ALGO Rogue SNR-8 0.1140
DRAO Rogue SNR-8 0.1180
FAIR Rogue SNR-8 0.1160
GOLD Rogue SNR-8 0.0000
PIE1 TurboRogue SNR 8000 0.0610
RCM5 TurboRogue SNR 8000 0.0000
STJO MiniRogue SNR-8C 0.1620
YELL MiniRogue SNR-8C 0.1170

The (�nal) IGS orbits used as reference for the tests were also obtained from the

SIO GARNER archives. These IGS orbits, usually referred to as IGS product (along

with EOP), are the result of a combination of all orbits computed by the IGS Analysis

Centers. The motivation behind this orbit combination is to obtain a more reliable

orbit by combining the individual products according to their internal consistency,

which approaches the 20 cm level rms per coordinate. The combined orbit should be

as precise as the best individual orbit. Two methods of orbit combination have been

investigated by the IGS, one based on a weighted average and the other using orbit

dynamics. It has been shown that both methods agree at the 5 cm rms in position

and allow baseline repeatability at or below the 3 ppb level [Beutler et al., 1993]. The

IGS has made use of the weighted average method for the computation of its orbit

product since it became operational [Beutler, 1995].

The SP3 orbit format [Remondi, 1989] has been adopted by the IGS for orbit

dissemination. Each �le contains the satellite positions for a period of 23 hours and

45 minutes, spaced by 15 minutes. A certain discontinuity between consecutive days

at the day boundary is expected. A typical value would be of the order of 10 to 30

cm. This value could be a little bit worse for eclipsing satellites [Beutler, 1995].
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6.4 Testing the real-time orbits

The tests carried out have as a main objective the assessment of precision and ac-

curacy of the real-time orbits. In this section, `real-time' orbits means that we use

an update step k equal to 1, which makes the orbital arc for the improvement ��

equal to the observation sampling rate �t (cf. Chapter 5). The �rst step in the test-

ing process was to carry out the real-time orbit improvement based on the 8-station

network. This processing started with a batch adjustment for day 002, intended to

generate a good set of initial conditions for the real-time improvement, followed by the

real-time algorithm, as described in Chapter 5, for days 003 (49355), 004 (49356) and

005 (49357). The number between parentheses is the Modi�ed Julian Date. The step

size used for the numerical integration is 2 minutes coinciding with the observation

sampling rate.

It should be pointed out that the test was carried out under in a controlled man-

ner. The data were freed from cycle slips, and estimated EOP, extracted from IERS

Bulletin B, have been used. In a real life situation, cycle slips could pass undetected

and predicted EOP would have to be used. We will come back to this later.

The processing strategy applied is summarized below:

� Fiducial stations weighted according to the ITRF92 positions standard devia-

tions (around 5 mm); 
oating stations weighted at 10 metres.

� Satellites used: all available.

� Carrier phase measurement noise: 12 millimetres.

� Troposphere wet zenith delay model: Saastamoinen [Saastamoinen, 1973].

� Troposphere dry zenith delay model: Saastamoinen [Saastamoinen, 1973].

� Troposphere wet mapping function: Ifadis [Ifadis, 1986].
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� Troposphere dry mapping function: Ifadis [Ifadis, 1986].

� A priori standard deviation for tropospheric zenith delay correction: 20 cm.

� Elevation cut-o� angle: 15 degrees.

� Data sampling interval: 120 seconds.

� Solution type: ionosphere-free linear combination of phase double di�erence.

� Carrier phase cycle ambiguities: estimated as real-valued parameters;

� Adopted models: GEM-T3 geopotential model up to degree and order 8 with

C21 and S21 consistent with the mean pole (as de�ned by the IERS [1992]);

gravitational e�ect of sun and moon regarded as point masses; T10 and T20

solar radiation pressure formulae and y-bias radiation, with penumbral e�ect

included; solid earth tides with Love number equal to 0.29; relativistic e�ect.

A decision had to be made in terms of the a priori weights to be applied to the

station coordinates. We decided to use realistic weights for the �ducial networks

and allow them, along with the 
oating stations, to converge towards their actual

location. As the time passes by, the weight matrix elements would grow larger and

larger and the only motion of the station coordinates would be due to crustal motions.

In our case these motions would be very small because all stations are within the same

tectonic plate. Another way would be to constrain the �ducial stations with heavier

weights and apply the ITRF92 station velocities.

6.4.1 E�ect on geodetic positioning

To assess the e�ect of the real-time orbits on geodetic positioning, we simulated a user

of the orbit service occupying the star-shape network and processing the incoming

GPS data with the same interval as the real-time orbits, i.e., 2 minutes. The data used
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span 3 days. The stations to be estimated were assigned low weights so that they

could learn from the observations and converge around the correct value. Station

GOLD was assigned an a priori standard deviation of 5 mm. The results of this

processing can be seen by Figures 6.3 and 6.4.
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Figure 6.3: Deviation of latitude and longitude with respect to ITRF92

Figure 6.3 shows the deviation of latitude and longitude with respect to the

ITRF92 coordinates for every solution. The left-hand side of the �gure shows all

solutions since the �rst one, whereas on the right-hand side, the �rst 5 hours have

been withdrawn. The intention is to show that the use of the real-time orbits can

yield positions at the order of 0.05 ppm after 5 hours of processing. This result lumps
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Figure 6.4: Deviation of height with respect to ITRF92

all errors coming from mismodellings of all kinds together. It seems intriguing to no-

tice that the solutions somehow converge northward of the ITRF92 latitude. Figure

6.4 portrays the deviation of height with respect to the heights in the ITRF92. Again

the plots on right-hand side omit the �rst 5 hours. One tropospheric delay correction

was estimated every two minutes.

A similiar processing test was carried out for the baseline between ALGO and

STJO, using ALGO as reference, and estimating STJO. The result is depicted by

Figure 6.5. Again after 5 hours, the results are within 0.05 ppm of the ITRF92

coordinates in latitude and longitude.
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Figure 6.5: Deviation of baseline components with respect to ITRF92

Another test was made as follows. The real-time orbits were separated into 3

distinct �les, each corresponding to a di�erent day. Both the star-shape network

and the baseline ALGO-STJO were then processed three times, once for each day,

each being a solution independent from the others. We then computed the average

relative error in the baseline taking the baseline derived from the ITRF92 coordinates

as reference. The same processing was repeated but this time using the broadcast

ephemerides. The intention was to get a feeling of how much solutions using the

real-time and the broadcast orbits di�er from each other. Figure 6.6 illustrates this

comparison. The symbol \RT" indicates the results using the real-time orbits; the
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symbol \BR" the results using the broadcast orbits. The average relative error in

the baseline using the real-time orbits is at the 0.02 ppm level whereas using the

broadcast ephemerides, it is at the 0.1 ppm level. From the point of view of the users

of the orbit service, these are the results that really matter: the use of the real-time

orbits allow position determinatiom at the 0.02-0.05 ppm level.
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Figure 6.6: Relative error in baseline length

6.4.2 Comparison with IGS orbits

Results coming from the comparison of the real-timewith the IGS orbits are presented

in this subsection. This comparison was originally intended to give us an idea of the

external consistency of the improved orbits, being the IGS orbits used as a benchmark.

But the orbital residuals in this comparison may be biased by the di�erences between

the strategies used to generate the orbits being compared: the IGS orbits are combined

orbits of several global orbital solutions, i.e., generated based on a global network,

whereas our orbits are regional, i.e.,they come from a regional network. In the case of

regional orbits, the orbit trajectories tend to adjust themselves to the data, distorting

90



somewhat the part of the orbit with no data coverage. Our interest is with the actually

improved part of our solution. The arcs outside the data coverage region are of no

interest.

As said before, the comparison carried out is a simple subtraction between our

solution and the IGS orbit. Figure 6.7 shows the orbital residuals for satellite PNR

3. Table 6.5 shows a summary of the statistics of the comparison with the IGS orbits
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Figure 6.7: Orbital residuals with respect to IGS { PRN 3

comprising the part with GPS data coverage for each satellite. Satellite PRN 4, an

eclipsing satellite, has been the most di�cult to model. This problem has also been

pointed out by some of the IGS Analysis Centers (e.g., IGS Report # 715). It shows

the largest residuals with respect to the IGS.

In terms of peak-to-peak variation, the improved orbits show a consistency with

respect to the IGS orbits below the 2.0 metre level. The worst peak to peak variation

was of 5 metres with satellite PRN 4 and the best below one metre with satellite PRN

26. On average, the real-time orbits are at or below the 1 metre 3drms level.
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Table 6.5: Comparison with IGS (values in metres).

�� = 2 minutes radial along track cross track 3drms
best solution 0.71 0.98 0.90 0.91

average 0.78 1.22 0.98 1.15
worst solution 0.91 1.54 1.01 1.41

6.5 Other tests

Additional tests carried out are described below.

6.5.1 Relative error in baseline length

In the previous section, an update step k equal to 1 was used, and the real-time

orbits were tested. Theoretically the same results should be obtained if using an

update step greater than 1, i.e., if batches were used, because all observations are

taken into account by the weight matrices. We have generated improved orbits using

orbital arcs of 1 hour, 3 hours, 6 hours, 12 hours and 24 hours, applying the same

processing strategies described before (with the di�erence that the �ducial station

coordinates were heavier weighted). We went through the testing on the e�ect of

these orbits in geodetic positioning. Even though the results were not exactly the

same, they all remained at around the 0.05 ppm level as obtained with the real-

time orbits. The reason for the small di�erences is attributed to the tropospheric

delay estimation because a di�erent number of tropospheric delay corrections were

estimated during the various processing tests.

We shall mention in this section, just for the sake of completness, that we also

compared these orbits with the IGS orbits, encoutering similar results as those when

the real-time orbits were used. Again we point out that the direct comparison with

the IGS orbits also indicates the di�erent characteristics of the global and regional

orbits.
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6.5.2 Orbit repeatability

Another test made was on the orbit repeatability. Orbit repeatability is obtained by

means of overlapping two consecutive orbits improved independently of each other.

This comparison is intended to give us an idea of the internal consistency of the

improved orbits. Orbital arcs of 48 hours were generated and the 24 hours-arc over-

lapping was compared. Table 6.6 summarizes this comparison. The average values of

Table 6.6: Orbit repeatability (values in metres).

�� = 24 hours radial along track cross track 3drms
best solution 0.26 0.71 0.24 0.71

average 0.26 0.76 0.29 0.73
worst solution 1.54 3.68 2.13 3.28

these comparisons are shown. Figure 6.8 illustrates the fact that the orbits of most

satellites reached sub-meter level precision. Again satellite PRN 4 has been the one

with the worst repeatability.

The results coming from testing on orbit repeatability seems to corroborate our

assumption, made in Chapter 4, that the force model adopted is accurate below the

metre level. The metre level seems to be a limit for orbit determination when using

regional networks, as pointed out before by Lichten & Bertiger [1989] and Rothacher

[1992].

6.5.3 E�ect of cycle slips and predicted EOP

In an attempt to analyse the e�ect that undetected cycle slips would have in orbit

determination, we performed the following test. We �rst purposefully introduced an

arti�cial cycle slip into the actual double di�erence observations involving a particular

satellite. Acting this way we knew both when the cycle slip happened and its value,

allowing us to have a control on the test. Then we carried out an orbit improvement

93



using an orbital arc of 24 hours, using the data containing the arti�cial cycle slip, and

used the improved initial conditions of this satellite to generate a 24 hours improved

orbital arc. This arc was then compared with the IGS product, and the orbital

residuals were expressed in terms of 3drms. This 3drms was then compared with

the 3drms of the corresponding 24 hour arc which was generated using the original

data which we believe has no cycle slips. The di�erence between these two 3drms

values was expressed in percentage terms representing the increase that the cycle slip

provoked in the orbit 3drms. We repeated the same procedure for di�erent satellites.

At the end, we averaged out the set of percentage numbers representing the increase

in orbit 3drms.

The cycle slip was introduced in the double di�erence observations via program

CYCLE of the DIPOP package, created by K. Doucet in 1989. This program is

intended to free the double di�erences from cycle slips. We used the program in the

opposite way. The cycle slips were applied in the middle of the �rst data coverage

interval for a particular satellite. The e�ect of the cycle slip in the orbital solution of

the satellites that had eventually formed double di�erences with it were ignored.

We have chosen 6 combinations of cycle slips in L1 and L2. These cycle slips

provoke a great variety of discontinuities in the ionosphere-free linear combination,

ranging from 0 cm (case with no cycle slip) to 259.1 cm. Table 6.7 shows the nominal

value of the discontinuities (cm) in the ionosphere-free linear combination Lc caused

by the studied values of cycle slips in L1 (�N1) and in L2 (�N2). The complete table

can be found in H�eroux & Kleusberg [1989].

Table 6.7: Nominal discontinuities (cm) in Lc caused by cycle slips.

discontinuity �N1 �N2 discontinuity �N1 �N2

10.7 +1 +1 86.2 +1 -1
21.4 +2 +2 172.4 +2 -2
32.0 +3 +3 259.1 +3 -3
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Figure 6.9 summarizes this study of the e�ect of undetected cycle slips on orbit

determination. This �gure should be interpreted as follows: if a satellite has its

3drms equal to 1 metre, an undetected cycle slip corresponding to 86.2 cm in Lc

would increase its 3drms by 14%.

It should be pointed out that the cycle slips we introduced were kept unchanged

throughout the processing. In a real-life situation other cycle slips could have hap-

pened and somehow ameliorated (or deteriorated) the e�ect. Another thing to say is

that the cycle slips that may possibly pass undetected are the ones at or below the 2

cycle level, which corresponds to a typical noise level of the ionosphere. Cycle slips

above this level have been studied for the sake of completeness.

We have also studied the possible impact of using predicted values of earth orien-

tation parameters (EOP) as given by the IERS Bulletin A, for a 7-day period, instead

of the estimated values of EOP as given by Bulletin B. For this purpose we processed

a 24 hour orbital segment using predicted EOP. We then generated an improved orbit

covering the 24 hours segment. The orbits were compared with their counterparts

generated as a function of the estimated EOP. The results of this study show an

average increase of 0.24 metres in 3drms for the improved orbits. We conclude by

saying that, for an orbit service, the availability of accurate EOP seems essential.
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Figure 6.8: Orbit repeatability for PRN 26
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Figure 6.9: Percentage increase in orbit 3drms caused by cycle slips.
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Chapter 7

Conclusions and recommendations

7.1 Summary and conclusions

In this dissertation we have set forth a new algorithm intended to make available

high-accuracy orbits for GPS users in real-time. We have called the approach the

real-time orbit improvement. The approach is based on a unit, called the update

step, which de�nes the length of the orbital arc over which the improvement takes

place. The initial conditions improved in one orbital arc are used for generating the

orbits covering the arc over which the improvement took place, and the next one,

where they are used as a priori orbits for the new improvement. In this way, the last

improved orbit provides the initial conditions for the new orbit improvement. These

moving initial conditions is what we have called the multiple expansion point.

The two type of orbits continuously generated, the improved and predicted ones,

may have di�erent lengths depending on the length of the orbital arc used, as de�ned

by the update step k.

These orbits may be distributed by an orbit service. The major characteristics of

such a service have been described. In the context of an orbit service, we have called

the transmitted orbits as \real-time" orbits.
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The algorithm was implemented based on UNB's DIPOP software. A major mod-

i�cation was the implementation of fully rigorous network adjustment, i.e., to process

all simultaneous observations, taking into account the mathematical correlation be-

tween baselines. The orbit generation is carried out by our orbit integrator, called

program PREDICT. The models used for the software mostly follow the ones recom-

mended by the IERS.

We have tested the real-time orbits as well as the generated orbits using 5 di�erent

orbital arcs, 1 hour, 3 hours, 6 hours, 12 hours and 24 hours, in many di�erent ways,

by assessing their internal and external consistency and their e�ect in geodetic posi-

tioning. For these tests, we have used a regional network for the orbit improvement.

Based on these tests we conclude that the approach is capable of generating im-

proved orbits at or below the 1 metre level 3drms. Also, the use of these orbits can

yield baselines with relative error varying from 0.05 to 0.02 ppm, over baselines of

hundreds of kilometres. This represents an improvement of 1 order of magnitude over

the broadcast orbits, the only ones presently available for real-time applications.

The GPS data used was cycle-slip free. Therefore, a simulation of the e�ect of

undetected cycle slips on orbit determination was done. Also studied was the e�ect

of using predicted EOP instead of post-�tted ones.

7.2 Recommendations for future work

Recommendations for future work are:

� the models used in this investigation may be further re�ned. The e�ect of ocean

tidal loading on station coordinates should be implemented. As far as the satel-

lite force model is concern, it can be improved by modelling the perturbation

caused by ocean tides. In addition, the solar radiation pressure model can be

improved by incorporating a better model for the yaw attitude of the eclipsing

satellites and by accommodating momentum dumps;
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� this investigation used a numerical integrator with a �xed step size. The use

of a shorter step size during eclipse seasons seems advantageous. An option

allowing for a variable step size should be implemented;

� in this investigation we have used a regional network for the orbit improvement

and orbit generation. The processing should be repeated using a global network.

A globally consistent orbit should be obtained in this case;

� in this investigation the e�ect of network con�guration on orbit determination

was overlooked. An example of the need for such a study is to know beforehand

what would happen if one receiver in the network temporarily stops operating;

� in this investigation we have used very long baselines for testing the e�ect of

the generated orbits in geodetic positioning. The same type of test should be

made using shorter baselines;

� in this investigation we have used GPS data that are cycle slips free. In a real

world situation this might not be the case. The implementation of a totally

automatic cycle slip procedure for this real-time static application should be

carried out;

� in this investigation the ambiguities have not been �xed to integer numbers.

This is typically a time consuming and iterative procedure for very long base-

lines, carried out in post-processing mode. A real-time ambiguity resolution

algorithm for very long baselines is yet to be developed;

� in this investigation data not a�ected by A-S was used. The e�ect of A-S on

orbit determination should be studied.
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Appendix I

Transformation between Keplerian

elements and the OR-system

This appendix contains a description of the transformations between Keplerian ele-

ments and the orbital (OR) system. It is a complement to Chapter 2.

I.1 Keplerian elements to the OR-system

If the Keplerian elements of a satellite are given, its position and velocity in the

OR-system can be obtained at any time by [Wells et al., 1987]:

rOR =
a (1� e2)

(1 + e cos f)

2
666664
cos f

sin f

0

3
777775 =

2
666664

a cosE � a e

a
p
1 � e2 sinE

0

3
777775 ; (I.1)

_rOR =
n a

(1 � e cosE)

2
666664

� sinE
p
1� e2 cosE

0

3
777775 ; (I.2)

with n being the mean motion:

n =

s
GM

a3
; (I.3)
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and GM the geocentric gravitational constant.

I.2 OR-system to Keplerian elements

The inverse transformation, i.e., the transformation from Cartesian coordinates rOR

and _rOR at a time t into (osculating) Keplerian elements is given as follows [Beut-

ler, 1991]. To begin with, the angular momentum of a satellite, represented by the

constant vector h, normal to the orbital plane, is de�ned as:

h = r � _r: (I.4)

This vector can be expressed, treating h, i and 
 as: polar coordinates as

h =

2
666664

h sin i sin


�h sin i cos


h cos i

3
777775 ; (I.5)

where h =k h k. The Keplerian elements 
 and i follow directly from equation I.5:


 = arctan

 
h1
�h2

!
; (I.6)

i = arccos
h3
h
: (I.7)

where h = [h1; h2; h3]T . The major semi-axis a is computed from the \angular-

momentum integral" [Van���cek & Krakiwsky, 1986]:

1

a
=

2

r
� _r2

GM
; (I.8)

where _r =k _r k. The eccentricity e follows as:

e =

r
1� p

a
; (I.9)

where p = h2=GM . The argument of perigee is given by:

$ = arctan
q2
q1
� f; (I.10)
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where:

q = R1(i) R3(
) r; (I.11)

in which q is an auxiliary coordinate system, with axes q1 along the nodal line, q2

along the angular momentum vector and q3 completes a right-handed system. The

true anomaly is:

f = arctan
(p=r) � 1p

p
GM

r
(r � _r)

: (I.12)

where r =k r k. Finally, the time of perigee passing To can be computed, starting

from Kepler's equation realizing that:

M = (E � e sinE) = n (t� To); (I.13)

To = t� (E � e sinE)

n
; (I.14)

where:

tan
E

2
=

s
1� e

1 + e
tan

f

2
: (I.15)

In the above equations E is the eccentric anomaly and n is the mean motion.
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Appendix II

Program PREDICT

This appendix describes the numerical integrator developed. It has been called pro-

gram PREDICT. Its 
owchart is depicted by Figure II.1.

The purposes of this program are:

1. to generate ephemerides for GPS satellites; and,

2. to improve GPS satellite initial conditions vis-�a-vis a reference orbit.

The purposes of the program are accomplished as a function of the user's choice

in terms of models. The models are as described in Chapter 4. The implemented

ones are listed on item 2 below. The user can choose among:

1. source of initial conditions (given or interpolated from an orbital �le);

2. force model (geopotential model and maximum degree and order, luni-solar

contribution, 3 di�erent solar radiation pressure models, solid earth tides and

relativistic e�ects);

3. numerical integration techniques (Adams-Moulton and/or Stormer-Cowell);

4. a priori standard deviation for orbital parameters;
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5. input reference orbit in either broadcast (RINEX), NGS SP1 or PREDICT

formats; and,

6. output in either NGS SP1 or PREDICT format.

The inertial coordinate system adopted is the True Right Ascension system at the

initial epoch.

116



Read command file

Read initial conditions

N

Compute initial conditions
?

N

Integrate satellite position and velocity

and

partials w.r.t. solar radiation pressure

(upon request)

Read ephemerides file

interpolate initial conditions

Y

?
Improve integrated orbit

Read reference orbit

Compute partials w.r.t. Keplerian elements

Improve initial conditions

Last improvement iteration
?

Compute residuals

Write generated orbits

either in NGS or in

N

Y

N

Y

Y

New satellite
?

PROGRAM "PREDICT"

(An orbital integrator for GPS satellites)

(RINEX format)

PREDICT format

Figure II.1: Program PREDICT 
owchart
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Appendix III

Partial derivatives

This appendix contains the partial derivatives of the GPS carrier phase double dif-

ference observation with respect to the estimated parameters, namely, station coordi-

nates, orbital parameters, tropospheric delay parameters and carrier phase ambiguity.

For that purpose, let us �rst rewrite the equation of the GPS carrier phase double

di�erence observation, without the time argument, replacing the double di�erence

operators by the superscripts i and j and by the subscripts k and `, representing,

respectively, receivers and satellites. The equation reads:

�k`
ij = �k`ij + dk`tropij � dk`ionij + �Nk`

ij + �k`ij ; (III.1)

where �k`
ij represents the double di�erence observation in unit of length, and:

�k`ij = �kij � �`ij;

�kij = �ki � �kj ; (III.2)

�ki =k Ri � rk k;

with �ki representing the geometric distance between receiver i, at the time of signal

reception, and satellite k, at the time of signal transmission, with both station and
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satellite coordinates de�ned in the CT-system. Vectors R and r represent the geo-

centric position vectors of the receiver and of the satellite, respectively. The other

elements in the equation III.1 are as previously de�ned.

III.1 Station coordinates

The partial derivatives with respect to the station coordinates are straightforward.

They are valid for either L1 and L2 or for any of their linear combinations. They

read:

@�k`
ij

@Ri

= �eki + e`i (III.3)

@�k`
ij

@Rj

= ekj � e`j ; (III.4)

where e is the receiver-satellite unit vector.

III.2 Orbital parameters

The partial derivatives with respect to the satellite initial state vector and initial

dynamical parameters, grouped in s, are also valid for either L1 and L2 or any other

linear combination. They are given as:

@�k`
ij

@s1
=
@�k`

ij

@r1
� @r

1

@s
; (III.5)

where the superscript 1 replaces k or `. The components of vector r are represented

in the inertial system.

The �rst part of the right-hand side of equation III.5 corresponds to matrix Ar in

equation 5.3 and is given by:

@�k`
ij

@rk
= �ekj + eki (III.6)
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@�k`
ij

@r`
= e`j � e`i : (III.7)

The second part of the right-hand side of equation III.5 corresponds to matrix B�

in equation 5.3. It is partitioned into 2 parts:

B� =

"
@r

@�

@r

@p

#
; (III.8)

the �rst one with derivatives of the satellite position vector with respect to the initial

Keplerian elements � and the second one with derivatives with respect to the initial

solar radiation parameters p. The Keplerian part follows from Langley et al. [1984]

and Parrot [1989]:

@r

@a
=M0

8><
>:
1

a
rOR +

2
64 �a sinE Ea

a(1� e2)1=2 cosE Ea

3
75
9>=
>; ; (III.9)

@r

@e
=M 0

2
64 �a(1 + sinE Ee)

�a[e=(1� e2)1=2 sinE + (1 � e2)1=2 cosE Ee]

3
75 ; (III.10)

@r

@i
=M ir

OR; (III.11)

@r

@

=M
r

OR; (III.12)

@r

@$
=M$r

OR; (III.13)

@r

@�
=M0

2
64 �a sinE E�

a cosE(1 � e2)1=2E�

3
75 ; (III.14)

where:

rOR =

2
666664

a cosE � ae

a
p
1� e2 sinE

0

3
777775 ; (III.15)
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M0 =
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sin i cos$; � sin i sin$

3
777775 ; (III.19)

Ea =
dE

da
= �3

2

�
GM

a3

�1=2 1
r
(t� � ); (III.20)

Ee =
dE

de
=
a

r
sinE; (III.21)

E� =
dE

d�
= �

�
GM

a3

�1=2 a
r
; (III.22)

in which a; e; i;$;
 and � are the initial Keplerian elements, r represents the geo-

centric distance of the satellite at time t, and E the eccentric anomaly given by:

E =

s
GM

a3
(t� � ) + e sinE: (III.23)

The second part of B� is computed by numerically integrating:

@�ri
@pk

= Aij
@rj
@pk

+
@�pi
@pk

; (III.24)
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where ri;j = 1; 2; 3 correspond to the Cartesian components of r, pk the initial solar

radiation pressure parameters, �pi represents the x; y; z components of the solar radi-

ation pressure contribution and A is the matrix W containing only the radial �eld

contribution (cf. Chapter 5):

A = �GM
r3

 
I � 3 r rT

r2

!
; (III.25)

with I being a unit matrix of dimension 3 by 3 and r is the norm of r.

The term @�pi=@pk in equation III.24 depends on the choice of pk, or in other words

on the choice of the solar radiation pressure model (cf. Chapter 4). If pk = (p0; py)

at t0 then (replacing �pi by the vector �p):

�p = � p0 n+ � py ey: (III.26)

Hence:

@�p

@p0
= � n; (III.27)

@�p

@py
= � ey; (III.28)

If pk = (Gx; Gz; py) at t0, then:

�p = �
a2ES

k r � rs k2
(Gxaxex +Gzazez) + �Gyey: (III.29)

Therefore:

@�p

@Gx
= �

a2ES
k r � rs k2

axex; (III.30)

@�p

@Gx
= �

a2ES
k r � rs k2

azez; (III.31)

@�p

@py
= � ey: (III.32)
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III.3 Tropospheric zenith delay correction

The partial derivatives with respect to the tropospheric delay are obtained by �rst

writing the double di�erence tropospheric delay as a product of mapping functions

and zenith delays:

dk`tropij = dztropi[mf(e
k
i )�mf(e`i)] + dztropj [mf(e

k
j ) �mf(e`j)]; (III.33)

where dztrop represents the zenith tropospheric delay at a particular station, e the

elevation angle at a particular station to a particular satellite and mf is the mapping

function. The partial derivatives are then given as:

@�k`
ij

@dk`tropi
= mf(eki )�mf(e`i) (III.34)

@�k`
ij

@dk`tropj
= mf(ekj )�mf(e`j): (III.35)

These partial derivatives, like the previous ones, are valid for either L1 and L2 or for

any of their linear combinations.

III.4 Ambiguity

The partial derivatives with respect to the cycle ambiguities are formulated relative to

a reference satellite whose ambiguity is set to zero. The derivatives are then derived

using the between-receiver single di�erence ambiguitiesNk
ij and N

`
ij , being written as:

@�k`
ij

@Nk
ij

= ��L (III.36)

@�k`
ij

@N `
ij

= �L; (III.37)
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where the subscript L indicates that these partials depend on the wavelength of either

L1; L2 or of a linear combination. In the case of the ionosphere-free linear combination

DIPOP 2.1 has been using:

�Lc =
772

2329
�L1: (III.38)

In DIPOP 3.0 this value has been modi�ed to:

�Lc =
c

fLc
� 0:484 m; (III.39)

where fLc is the e�ective frequency of the ionosphere-free linear combination. This

change only scales the value of the estimated ambiguities without a�ecting the �nal

results. We have used the way expressed by eqn. (III.39).

III.5 Misclosure

The misclosure vector w may assume di�erent forms depending on the use of L1 or

L2 or any of their linear combinations. Each element of the misclosure vector relating

stations i; j with satellites k; ` is written as:

wk`
ij = �k`

ij L
� (P k

ij � P `
ij); (III.40)

where P k
ij and P

`
ij are the theoretical single-di�erence ranges computed as a function

of the known (at the time of computation) receiver and satellite positions, corrected

for tropospheric delay, via the tropospheric delay model, and antenna heights. The

subscript L denotes L1 or L2. If the ionosphere-free linear combination is used, the

misclosure is:

wk`
ij = (

�k`
ij L1

f2L1 � �k`
ij L2

f2L2
f2L1 � f2L2

)� (P k
ij � P `

ij): (III.41)

If the wide lane linear combination is used, the misclosure is:

wk`
ij = (

�k`
ij L1

fL1 � �k`
ij L2

fL2

fL1 � fL2
)� (P k

ij � P `
ij): (III.42)

124



If the narrow lane linear combination is used, the misclosure is:

wk`
ij = (

�k`
ij L1

fL1 + �k`
ij L2

fL2

fL1 + fL2
)� (P k

ij � P `
ij): (III.43)
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