
THE EFFECT OF PHYSICAL 
CORRELATIONS ON THE 

AMBIGUITY RESOLUTION AND 
ACCURACY ESTIMATION IN 

GPS DIFFERENTIAL 
POSITIONING

A. E-S. EL RABBANY

May 1994

TECHNICAL REPORT 
NO. 170



PREFACE 
 

In order to make our extensive series of technical reports more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



THE EFFECT OF PHYSICAL 
CORRELATIONS ON THE AMBIGUITY 

RESOLUTION AND ACCURACY 
ESTIMATION IN GPS DIFFERENTIAL 

POSITIONING 

Ahmed El-Sayed El-Rabbany 

Department of Geodesy and Geomatics Engineering 
University of New Brunswick 

P.O. Box 4400 
Fredericton, N.B. 

Canada 
E3B 5A3 

May 1994 
Latest Reprinting December 1997 

©Ahmed El-Sayed El-Rabbany, 1994 



PREFACE 

This technical report is a reproduction of a dissertation submitted in partial fulfillment of 

the requirements for the degree of Doctor of Philosophy in the Department of Geodesy and 

Geomatics Engineering, April 1994. The research was supervised by Dr. Alfred 

Kleusberg and funding was provided partially by the Natural Sciences and Engineering 

Research Council of Canada, and the University of New Brunswick. Data were provided 

by the Geological Survey of Canada, the Geodetic Survey of Canada, and the Scripps 

Institute of Oceanography. 

As with any copyrighted material, permission to reprint or quote extensively from this 

report must be received from the author. The citation to this work should appear as 

follows: 

El-Rabbany, A. E-S. (1994). The Effect of Physical Correlations on the Ambiguity 
Resolution and Accuracy Estimation in GPS Differential Positioning. Ph.D. 
dissertation, Department of Geodesy and Geomatics Engineering Technical Report 
No. 170, University of New Brunswick, Fredericton, New Brunswick, Canada, 
161 pp. 



ABSTRACT 

High accuracy GPS carrier phase differential positioning requires complete modelling of 

the GPS measurement errors. Generally, in GPS positioning, the mathematical model 

does not describe the observations perfectly. The main reason for this is the lack of 

information about the physical phenomena associated with the GPS observations. 

Therefore, a residual error component remains unmodelled. 

The analysis of many data series representing baselines of different lengths shows that, in 

GPS carrier phase double difference positioning, the residual model errors are positively 

correlated over a time period of about 20 minutes. Not accounting for this correlation, 

known as physical correlation, usually leads to an overestimation of the accuracy of both 

the observations and the resulting positions. 

A simple way of accounting for these correlated residual errors is to model them 

stochastically through the modification of the observations' covariance matrix. As the 

true covariance function is not known, the stochastic modelling of the GPS measurement 

errors must be achieved by using an empirical covariance function. It is shown that the 

exponential function is the best approximation for the covariance function of the GPS 

carrier phase errors in the least squares sense. Although this way of accounting for the 

unmodelled errors yields a fully populated covariance matrix for the GPS carrier phase 



double difference observations, its inverse takes the simple form of a block diagonal 

matrix. 

A modified least squares adjustment algorithm incorporating the newly developed, fully 

populated covariance matrix is derived. The covariance matrix of the ambiguity 

parameters is used to form a confidence region of a hyperellipsoid around the estimated 

real values which is then used for searching the likely integer values of the ambiguity 

parameters. To speed up the searching time, the covariance matrix for the ambiguities is 

decomposed using Cholesky decomposition. 

The software DIFGPS is developed to verify the validity of the technique. Real data of 

several baselines of different lengths observed under different ionospheric activities are 

used. It is shown that including the physical correlations requires more observations to 

obtain a unique solution for the ambiguity parameters than when they are neglected. 

However, for all tested baselines, neglecting the physical correlations leads to an overly 

optimistic covariance matrix for the estimated parameters. Additionally, the use of a 

scale factor to scale the optimistic covariance matrix was found to be inappropriate. 

However, without physical correlations, a more realistic covariance matrix is obtained by 

using data with large sampling interval. 
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1.1 Motivation 

Chapter 1 

INTRODUCTION 

GPS carrier phase double difference observations are used for high accuracy relative 

positioning. The double differencing reduces or eliminates many common errors and 

biases. Unfortunately, the carrier phase observables are ambiguous by an integer number 

of full cycles called an "ambiguity parameter". Although they are nuisance parameters, 

the ambiguity parameters play a very important role in obtaining high accuracy 

positioning. This comes from the integer nature of these parameters. Once the ambiguity 

parameters are correctly resolved and fixed to integer values, the estimated standard 

deviations of the unknown coordinates decrease dramatically due to the improvement in 

the geometry and the increase in the number of redundant observations. 

GPS double difference carrier phase observations are subject to two types of correlations, 

namely mathematical correlation and physical correlation. Mathematical correlation 

results from differencing the original phase observations. This type of correlation 

depends on how the double differences are formed. Physical correlation results from the 

improper modelling of partially correlated measurement errors. It can be of a temporal 

and/or a spatial nature. The mathematical correlation yields a block diagonal structure for 

the covariance matrix of the double difference observations since there is no differencing 

between epochs. Physical correlations can yield a fully populated covariance matrix. 
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Previous studies consider the covariance matrix of the observations to be either diagonal 

(i.e. no correlation is considered) or block diagonal (i.e. only the mathematical correlation 

is considered). Physical correlation has not been taken into account. For this reason, the 

accuracy obtained from the GPS is questionable (Hollmann et al., 1990). 

The goal of the present investigation can be separated into two parts. The first one is to 

model the temporal physical correlations in GPS carrier phase double difference 

observations to obtain a more realistic covariance matrix. The second goal is to find a 

reliable and efficient way for the ambiguity resolution as well as a reliable accuracy 

estimation. It should be pointed out that the word reliable, mentioned here and 

throughout the dissertation, means trustworthy. A reliable solution requires consideration 

of both the mathematical and the physical correlations among the observations. An 

efficient solution results from using the covariance matrix of the unknown parameters for 

searching the likely integer values of the ambiguity parameters in the neighbourhood of 

the estimated real values. In the past, the simultaneous occurrence of the ambiguity 

parameters was not considered. Therefore, the search window was treated as a hyperbox. 

Usually in the least squares estimation, the covariance matrix of the estimated parameters 

is used to assess the accuracy of the parameters by forming a confidence region around 

their estimates. At a certain probability level, the expected values of any of these 

parameters fall somewhere inside this region. However, in the case of ambiguity 

resolution, the covariance matrix is used to form a confidence region for searching the 

likely integer values of the ambiguity parameters. Since the covariance matrix is the 

primary tool for defining the search area for the ambiguity parameters, it is of utmost 

importance that it is computed correctly. This requires taking into account both the 

mathematical and the physical correlations among the observations, assuming that all 

other tasks of the adjustment are done correctly. 
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1.2 Previous Studies 

This section reviews the previous investigations concerning both the physical correlations 

and the ambiguity resolution. 

1.2.1 Physical Correlations 

The problem of physical correlations in GPS carrier phase differential positioning is 

usually neglected (Hofmann-Wellenhof et al., 1992). In fact, very few publications were 

found that deal with this subject at all. Vanicek et al. (1985) proposed a way of 

modelling the physical correlations, but no results are reported. Wells et al. (1987) 

emphasize the difficulty of handling the physical correlations. Abidin (1992) assumed 

that the required corrections are received from external sources such as the wide area 

differential GPS system. 

1.2.2 Ambiguity Resolution 

Procedures for ambiguity resolution have been investigated by several researchers. A 

brief discussion for the main methods used for static and kinematic positioning is given 

below. 

Brown and Hwang (1983) have presented an approach to resolve the ambiguity 

parameters using a bank of parallel Kalman filters. Each filter in the bank is based on an 

assumed value for each of the ambiguity parameters. For each tested ambiguity 

parameter, they compute an associated probability. After some time, the probability of 

the correct ambiguity parameter will approach unity while the others approach zero. 

Langley et al. (1984) presented three different strategies for resolving the ambiguity 

parameters. The first strategy consists of rounding the estimated real values of the 
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ambiguity parameters to the nearest integer. The second strategy is based on the 

estimated standard deviation a for any of the ambiguity parameters. To find a solution, a 

search within a band that equals the estimated ambiguity parameter ±3cr is performed. In 

this strategy, only one ambiguity parameter is fixed and the other parameters are 

determined to minimize the sum of the squared residuals. The last strategy checks every 

linear combination of the integer ambiguity parameters in the vicinity of the estimated 

values. As a result, the best choice of an integer set is the one that gives the smallest sum 

of the squared residuals. 

Recently, Frei and Beutler (1989; 1990) realized the usefulness of using all available 

information from the resulting covariance matrix of the unknown ambiguity parameters 

in reducing the search space. However, instead of searching within the confidence 

hyperellipsoid corresponding to the resulting covariance matrix of the ambiguities, one

dimensional search ranges for both the individual ambiguities and the differences 

between the ambiguities are used. The first search range is used to select the individual 

ambiguities which fall within the confidence interval of the estimated ambiguities at a 

certain confidence level. The second search range is used to reject those ambiguity pairs 

whose differences do not fall within the confidence interval of the corresponding 

differences of the estimated values. This criteria was found effective in reducing the 

searching time (Erickson, 1992). Each admissible integer combination for the 

ambiguities is introduced as fixed values into another least squares adjustment and a 

unique solution is selected to be the one with the smallest a posteriori variance factor and 

does not have any other compatible solutions. 

The least squares search technique is an approach presented recently by Hatch (1990). 

He separates the available satellites into two groups. The first group consists of the 

observations from four satellites and is used to obtain a set of potential solutions. The 

second group consists of observations from the remaining satellites and is used to reject 
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any potential solution which is not compatible with the second group of observations. A 

unique solution is selected to be the one with the smallest a posteriori variance factor and 

less than a prespecified threshold. 

In 1990, Mader applied the ambiguity mapping function (AMF) technique (Councelman 

and Gourevitch, 1981). The AMF is an exponential function of the difference between 

the double difference observed phase and a calculated double difference phase based on a 

trial position. The correct position is that which minimizes the phase residual (i.e. makes 

the AMF maximum). 

Euler and Landau (1992) use the ordinary least squares adjustment to obtain a 

preliminary solution for the unknown ambiguity parameters. The resulting standard 

deviations for the ambiguities are used to form a search window. The novelty of their 

technique is the use of Cholesky decomposition to modify the resulting covariance matrix 

of the ambiguity parameters. This modification proved to be very efficient in speeding 

up the search operation. However, they did not fully exploit the covariance matrix of the 

ambiguity parameters in specifying the search window. 

Another technique was presented by Wubbena (1989) and Seeber and Wubbena (1989) is 

called the extrawidelaning technique. This technique uses several linear combinations of 

the carrier phase observations of Ll and L2 as well as the P-code observations on both Ll 

and L2. From these linear combinations, one can get three different artificial signals: a 

wide-lane signal, a narrow-lane signal, and an ionospheric signal. The wide lane signal 

has a relatively long wavelength of 86.2 em. Therefore, the a priori wide-lane ambiguity 

parameters can be determined rather easily. The narrow-lane ambiguity parameters are 

then determined with the help of the ionospheric signal. Using the so-called even/odd 

relation (Abidin, 1992), the wide-lane can have its ambiguity parameters fixed. 

Following this, the narrow-lane ambiguity parameters can be fixed. This technique 
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usually combines with one or more of the previously described techniques (Abidin, 

1992). 

Combinations of some of the above techniques have been also investigated by Abidin 

(1992). He combines the least squares search technique with the ambiguity mapping 

function (AMF) technique. This results in a strategy that combines the fast processing of 

the least squares search technique with the reliable rejection criteria based on the 

ambiguity mapping function (AMF) technique. Whenever the P-code is available on both 

L 1 and L2, he takes advantage of the widelaning technique to reduce the searching size of 

the ambiguity parameters. 

1.3 Methodology 

The first step in reaching the goal of this investigation is to model the physical 

correlations in GPS carrier phase double difference observations. A simple way of 

modelling the physical correlation may be done empirically using the adjustment 

residuals obtained with only the mathematical correlation included. In this case, the 

adjustment residuals reflect the presence of the unmodelled measurements errors. A 

number of data series representing baselines of different lengths is required for this 

purpose. Once a general empirical covariance function, representing the physical 

correlation, is obtained, it can be used to modify the observation covariance matrix. This 

leads to a more realistic covariance matrix. 

In general, including both the physical and mathematical correlations yields a fully 

populated covariance matrix for the GPS carrier phase double difference observations. 

Implementing this fully populated covariance matrix into a software package usually 

slows down the numerical computations. To overcome this, an efficient algorithm for the 

inverse of a particular choice of the fully populated covariance matrix is developed. 
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A modified least squares adjustment algorithm for position parameters and the 

ambiguities is introduced incorporating the newly developed fully populated covariance 

matrix. Following this, an efficient algorithm for the ambiguity resolution is given. In 

the ambiguity resolution technique, the resulting covariance matrix of the ambiguity 

parameters forms a confidence region of a hyperellipsoid which is then used as a 

searching area. The searching time is optimized by using Cholesky roots for the 

covariance matrix of the ambiguity parameters. Data from several baselines of different 

lengths are analyzed to verify the validity of the technique. 

1.4 Outline of the Dissertation 

Chapter 2 starts with a short introduction to GPS. The main errors and biases affecting 

the GPS carrier phase measurements are discussed. The mathematical and the physical 

correlations, and the ways of handling them are also discussed. Finally, the expected 

covariance functions from different sources of the unmodelled errors are given. 

Chapter 3 describes in detail how the empirical covariance function is developed. Results 

of the empirical covariance functions for L 1, L2, and L3 (ionosphere free) data are given. 

Finally, the way of building the observations' covariance matrix using both the 

mathematical and the empirically modelled physical correlation is given. 

Chapter 4 contains description of the developed algorithm for the inverse of the fully 

populated covariance matrix. Firstly, an ideal case of tracking the same satellites 

continuously is presented. Secondly, a general case of tracking different satellites over 

time is given. This chapter ends with a discussion of the reduction of the required 

memory when using this algorithm. 

In chapter 5, a modified sequential least squares adjustment algorithm for positions and 

ambiguities is developed which incorporates the newly developed, fully populated 
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covariance matrix. The technique used for ambiguity resolution is also given. The final 

constraint solution after fixing the ambiguities is then described. Finally, the storage 

requirements are again discussed. 

Chapter 6 describes the computer software and discusses the results. In this chapter, the 

effect of neglecting/including the physical correlations on the ambiguity resolution and 

accuracy estimation is given and discussed. 

Chapter 7 summarizes the obtained results, gives conclusions and recommends future 

investigations. 

1.5 Contributions of the Research 

The contributions of this research can be summarized as follows: 

• to develop an empirical covariance model for the temporal physical correlations 

of the unmodelled errors in GPS carrier phase double difference positioning as a 

function of the baselines length; 

• to develop a general empirical covariance model for the temporal physical 

correlations of the unmodelled errors in GPS carrier phase double difference 

positioning which is valid for any baseline of length up to 100 km; 

• to develop a realistic fully populated covariance matrix for the GPS carrier phase 

double difference observations; 

• to develop an efficient algorithm for the inverse of a particular choice of the fully 

populated covariance matrix; 

8 



• to develop a modified sequential least squares adjustment algorithm incorporating 

the new developed fully populated covariance matrix for positions and 

ambiguities; 

• to develop an efficient ambiguity resolution technique based on the stochastic 

modelling of the GPS residual errors, hyperellipsoid search space and Cholesky 

decomposition of the resulting covariance matrix for the unknown ambiguities; 

• to develop a GPS processing software which takes into account the physical 

correlation, including automatic ambiguity resolution; and 

• to improve the accuracy estimation of the estimated parameters. 
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Chapter 2 

GPS MEASUREMENT ERRORS 

The Global Positioning System (GPS) currently being developed by the US Department 

of Defense is a worldwide, all weather navigation and timing system. For security 

reasons as well as serving a large number of users, GPS is a passive system, i.e., users can 

only receive the satellite signals (Langley, 1990). The full GPS constellation will consist 

of 24 operational satellites (Montgomery, 1993a). To ensure continuous worldwide 

coverage, four satellites are arranged in each of six orbital planes. The GPS satellite 

orbits are nearly circular (maximum eccentricity is about 0.01), with an inclination of 

about 55°to the equator, and a semi-major axis of about 26560 km (Langley, 1991b). The 

GPS system has achieved the initial operational capability at the end of 1993. 

Each GPS satellite transmits a signal which has a number of components: two carriers 

generated at 1575.42 MHz (L1) and 1227.60 MHz (L2), pseudorandom noise (PRN) 

codes added to the carriers as binary biphase modulations at chipping rates of 10.23 MHz 

(P-code) and 1.023 MHz (CIA-code), and a 1500 bit long navigation message added to 

the carriers as binary biphase modulations at 50 Hz. The Ll carrier is modulated with 

both the P-code and the C/ A-code, whereas the L2 carrier is modulated with the P-code 

only. The navigation message contains, along with other information, the coordinates of 

the satellites as a function of time and is modulated onto both carriers. 

The PRN codes are used for real-time navigation. A replica of the PRN code transmitted 

from the satellite is generated by the receiver. The time. offset between the arrival of the 
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transmitted code and its replica is the signal travel time. Multiplying the travel time by 

the speed of light gives the range between the satellite and the receiver antenna. This 

range, however, is contaminated, along with other biases, by the mis-synchronization 

between the satellite and receiver clocks. For this reason, this quantity is referred to as 

pseudorange (Langley, 1991c). The measured pseudorange can be expressed as follows 

(Wells et al., 1987) 

P = p + c ( dt - dT) + dion + dtrop + Ep (2.1) 

where P is the measured pseudorange, p is the geometric range between the receiver and 

the GPS satellite, c is the speed of light, dt and dT are the offsets of the satellite and the 

receiver clocks from the GPS time, dion and dtrop are the ionospheric and tropspheric 

delays, and Ep represents the multipath error and the system noise in the measured 

pseudorange. The system noise represents the contribution of the receiver and 

antenna/preamplifier components (Nolan et al., 1992). 

GPS was designed so that real-time navigation with the civilian CIA code receivers 

would be less precise than military P-code receivers. Surprisingly, the obtained accuracy 

was almost the same from both receivers (Georgiadou and Doucet, 1990). To ensure 

national security, the US Department of Defense implemented the so-called selective 

availability (SA) on the new generation GPS satellites to deny accurate real-time 

positioning to unauthorized users. With SA, nominal horizontal and vertical errors can be 

up to 100m and 150m respectively, at a 95% probability level. A remedy for that is to 

use Differential GPS (DGPS) instead of point positioning. DGPS provides better 

accuracy than the stand-alone P-code receiver due to the elimination or the reduction of 

the common errors including SA. 

In surveying applications, where more precise positioning is required, the GPS carrier 

phase measurements are generally used. Carrier phases are also subject to several kinds 
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of errors and biases such as clock errors, ephemeris errors, atmospheric errors, multipath 

and receiver noise. The phase measurement is also biased by an unknown integer, called 

ambiguity. The GPS receiver assigns an arbitrary integer number for the ambiguity when 

it first locks on (Langley, 1991a). It should be noted, however, that the initial unknown 

ambiguity remains constant over time as long as no loss of phase lock occurs. The carrier 

phase observation equation can be written as (Wells et al., 1987) 

<I> = p + c ( dt - dT) + A N - dion + dtrop + £<t> (2.2) 

where <I> is the observed carrier phase multiplied by the carrier wavelength A, N is the 

initial integer ambiguity parameter and £<1> represents the multipath error and the system 

noise in the observed carrier phase. The remaining parameters are defined as before. To 

obtain the highest possible accuracy, the effect of errors and biases must be kept as 

minimal as possible, and the unknown integer ambiguities must be determined correctly. 

2.1 GPS Errors and Biases 

In this section, the main errors and biases affecting the GPS carrier phase measurements 

are discussed. GPS error sources may be classified as errors originating at the satellite, 

errors due to signal propagation and errors originating in the receiver. Other effects such 

as satellite configuration geometry and ambiguity resolution are also discussed. 

2.1.1 Errors and Biases Originating at the Satellites 

The errors originating at the satellites include orbital errors (satellite ephemeris errors), 

clock errors, and selective availability. Satellite positions as a function of time are 

predicted from previous GPS observations at ground control stations (Kleusberg and 

Langley, 1990). However, due to the improper modelling of the forces acting on the GPS 

satellites, ephemeris errors are usually expected. Although an ephemeris error is identical 

12 



to all users, its effect on the range measurement is different and cannot be totally removed 

through differencing. This occurs because different users see the same satellite at 

different view angles. However, the range error due to the ephemeris error is highly 

correlated between users of short separations and is roughly proportional to user 

separation (Loomis et al., 1991). Nominal ephemeris error is usually of the order of 5 to 

10 m and can reach from 50 to 100 m under selective availability (K.leusberg, 1992). 

Post-mission precise orbital service is available at the 5 m accuracy level or better 

(Lachapelle, 1990). However, it cannot be used for real-time or near real-time GPS 

positioning. 

The GPS satellite clocks, although highly accurate, are not perfect. This causes 

additional errors to GPS measurements. These errors are also common to all users 

observing the same satellite and can be removed through differencing between the 

receivers. After applying the broadcast correction, satellite clock error can be of the order 

of several nanoseconds (K.leusberg, 1992). 

Selective availability introduces two additional errors. The first one, called 0-error, 

results from dithering the satellite clock and is common to all users. The second one, 

called £-error, is an additional slowly varying orbital error (Georgiadou and Doucet, 

1990). Like the range error due to ephemeris error, the range error due to £-error is 

highly correlated between users of short separations. 

2.1.2 Atmospheric Errors and Biases 

At the uppermost part of the atmosphere, ultraviolet radiation from the sun interacts with 

the gas molecules. Gas ionization results in a large number of free electrons affecting 

GPS signals (Klobuchar, 1991). This region of the atmosphere, which extends from a 

height of approximately 50 to 1000 km, is called the ionosphere. The ionosphere is a 
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despersive medium which speeds up the propagation of the carrier phase beyond the 

speed of light while it slows down the propagation of the pseudorange the same amount 

(Langley, 1993). This occurs because the carrier phase is subject to phase advance while 

the pseudorange is subject to group delay. The ionospheric delay is proportional to the 

number of free electrons along the signal path or the total electron content (TEC). TEC, 

on the other hand depends on the time of the day (highest at 2:00 pm local), time of the 

year (highest at spring equinox), the 11-year solar cycle, and geographic location. Also, 

ionospheric delay is frequency dependent, the lower the frequency the greater the delay. 

Nonetheless, the ionosphere reflects signals of frequencies below 30 MHz (Klobuchar, 

1991). Generally, ionospheric delay is of the order of 5 to 15m but can reach over 100m 

(Kleusberg, 1992). 

The ionospheric delay was found to be correlated over distance from about 200 km under 

disturbed ionospheric conditions to about 1000 km under normal conditions. On the 

other hand, it is temporally correlated over time periods of 2 to 50 minutes under 

disturbed and normal conditions respectively (Wild et al., 1990). This means that 

differencing the GPS observations between users of short separation can remove the 

major part of the ionospheric delay. 

Ionospheric delay or TEC can be best determined by combining P-code pseudoranges 

observed on L1 and L2. Dual frequency carrier phase measurements can also be 

combined to generate ionosphere free observations. However, this linear combination is 

noisier than the single frequency observation and is not recommended for short baselines 

where the errors are highly correlated over distance and cancel sufficiently through 

differencing (Langley, 1993). Single frequency users can correct up to 60% of the delay 

using ionospheric correction models (Klobuchar, 1991). It was found, however, that 

these models are suitable for mid latitude locations only (Loomis et al., 1991). 
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The troposphere is the electrically neutral atmospheric region which extends up to about 

50 km from the surface of the earth (Brunner and Welsch, 1993; Jong, 1991). It is a 

nondispersive medium for radio frequencies below 30 GHz. As a result, it delays the 

GPS carriers and codes identically. Signals from satellites at low elevation angles travel 

a longer path through the troposphere than those at higher elevation angles. Therefore the 

tropospheric delay is minimized at zenith and maximized near the horizon. According to 

Brunner and Welsh (1993), tropospheric delay results in values of about 2.4 mat zenith 

and about 9.3 m for 15° elevation angle. Tropospheric delay may be broken into two 

components, dry and wet. Dry component represents about 90% of the delay and can be 

predicted to a high degree of accuracy using empirical models (Wells et al., 1987). 

However, the wet component is not easy to predict. Wet component can be measured 

accurately as a function of elevation and azimuth angle using water vapor radiometers 

(WVR). Unfortunately, WVR are very expensive and cannot be considered as a standard 

technique for GPS positioning (Brunner and Welsch, 1993). 

Several empirical models use surface meteorological measurements to compute the wet 

component. However, the wet component is weakly correlated with surface 

meteorological data. It was found that, in most cases, a default tropospheric data gives 

better results than tropospheric models using surface meteorological data (Brunner and 

Welsch, 1993). However, both ways lead to a biased value of the tropospheric correction. 

A residual component should be added to reach the actual value of tropospheric 

correction. One way of computing this residual value is to include it as an additional 

unknown parameter in the least squares adjustment (Rothacher et al., 1990). 

Alternatively, it can be dealt with stochastically as a time-varying parameter (Tralli and 

Lichten, 1990). Unfortunately, the precision of the height determination in comparison to 

the horizontal component was found to be worse by a factor of 3 when using the first 

method and by a factor of 6 when using the second method (Brunner and Welsch, 1993). 

These factors are related to the an elevation mask angle of 15°. 
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2.1.3 Errors and Biases Originating at the Receiver 

The errors originating in the receiver include clock errors and receiver noise. The 

receiver clock error is much larger than that of the GPS satellite (Kleusberg and Langley, 

1990), but can be removed through differencing between the satellites or it can be treated 

as an additional unknown parameter. 

The receiver measurement noise results from the limitations of the receiver's electronics. 

The receiver noise and the antenna/preamplifier noise are usually combined together to 

form the system noise (Nolan et al., 1992). The system noise is uncorrelated. Typical 

reported values of the system noise for the Ashtech P-12 are about 0.4% of the signal 

wavelength for the carrier phase and about 0.8% for the pseudorange (Nolan et al., 1992). 

There are two other errors which occur at the receiver antenna, multipath and phase 

center variation of the antenna. Multipath error occurs when a signal arrives at the 

receiver antenna through different paths (Wells et al., 1987). These different paths can be 

the direct line of sight and reflected signals from obstacles in the vicinity of the receiver 

antenna. Multipath distorts the original signal through interference with the reflected 

signals with a maximum value of a quarter of a cycle in case of carrier phase (Georgiadou 

and Kleusberg, 1988). The pseudorange multipath takes the value for up to one chip 

length of the code pseudorange (Wells et al., 1987). Multipath is totally uncorrelated 

between stations, i.e., it cannot be removed by differencing the GPS observations. An 

important fact about multipath is that, under the same environment, its signature repeats 

every sidereal day because of the repeated geometry of the satellite-antenna (Evans, 

1986). This means, multipath can be detected by observing the high correlation of the 

GPS adjustment residuals over two consecutive days. 

Additional range error occurs as a result of the antenna phase center variation. The 

antenna phase center variation depends on the direction angle of the observed signal. It is 
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very difficult to model this error and care has to be take when selecting the antenna type 

(K.leusberg and Langley, 1990). It should be pointed out that phase center errors can be 

different on L1 and L2 carrier phase observations (Rothacher et al., 1990). This can 

affect the accuracy of the ionosphere free linear combination particularly when observing 

short baselines. As mentioned before, for short baselines, the errors are highly correlated 

over distance and cancel sufficiently through differencing. Therefore, using a single 

frequency might be more appropriate for short baselines. 

2.2 Geometric Effects 

In this section, the geometric effects on the GPS positioning accuracy are discussed. 

These include the effects of the satellite configuration geometry and the ambiguity 

resolution. 

2.2.1 Satellite Configuration Geometry Effect 

Satellite configuration geometry represents the geometric locations of the GPS satellites 

as seen by the receiver(s). Satellite configuration geometry plays a very important role in 

the obtained accuracy. Even under the full constellation of 24 GPS satellites, shadow 

areas where no satellites can be observed will exist. The shadow area will move from the 

horizon to the zenith as we move from the equator towards the pole (Santerre, 1989). 

This means that the satellite coverage is not uniform. On the other hand, satellite 

geometry has a direct effect on the formation of the design matrix, which in turn affects 

the resulting covariance matrix of the station coordinates. It is recommended, therefore, 

that a suitable observation time be selected. GPS satellite configuration geometry 

changes slowly with time. For this reason, it is sometimes better to take observations for 

several minutes and then revisit the same station after a few hours. 
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Satellite configuration geometry effect can be measured by a single number called the 

dilution of precision (DOP). The lower the value of DOP, the better the geometric 

strength. Unfortunately, DOP describes the geometrical configuration at only one epoch 

and not the whole observation time (Santerre, 1989). 

2.2.2 Ambiguity Resolution Effect 

As mentioned before, the carrier phase observation equation contains an unknown integer 

number, the carrier phase ambiguity. The determination of this integer number is known 

as ambiguity resolution. Usually the least squares technique is applied first to obtain a 

preliminary solution for the unknown station coordinates along with real values for the 

ambiguity parameters. Based on the preliminary solution and its covariance matrix, the 

integer ambiguity parameters may be determined. It is therefore very important to obtain 

a reliable covariance matrix. The resulting covariance matrix is a function of the design 

matrix, which contains the geometry and the covariance matrix of the observations. 

Correctly determined ambiguity parameters lead to increased precision in GPS 

positioning. This results from the improvement in the geometry once the ambiguities are 

correctly resolved and fixed at integer values. A comparison between the fixed

ambiguity solution and the float-ambiguity solution as a function of observation time 

span and the elevation mask angle was presented by Santerre et al. (1990). They found 

that, with the float solution, the size of the confidence ellipsoid for the unknown 

coordinates changes significantly as a function of the observation time span. For short 

observation time span, the size of the confidence ellipsoid is very large and it tends to 

stabilize for an observation time span of more than 3 hours. In contrast, with the fixed 

solution, the size of the confidence ellipsoid remains more or less constant. 
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2.3 Mathematical Correlations in GPS Differential Positioning 

For the purpose of removing common errors and reducing partially correlated errors, GPS 

double difference observations are widely used in surveying applications. A very 

important advantage of using the double difference observations is that the ambiguity 

parameters remain integers. However, it has the disadvantage that the double difference 

observations are mathematically correlated as a result of differencing the observed 

phases. The mathematical correlation depends on how the double differences are formed 

(Beutler et al., 1989). For example, if a, b and c are three uncorrelated "between

receiver" single differences, then forming the double differences (a-b) and (b-e) results in 

a mathematical correlation of -0.5 between the two double differences. However, if the 

double differences are formed in the sequence (a-b) and (a-c), then a mathematical 

correlation of +0.5 is obtained. 

The carrier phase double difference observations for one epoch may be written as 

(Beutler et al., 1984) 

(2.3) 

where V il represents the double difference operator, a is a differencing operator matrix 

and ct> is the vector of the observed phase values. Applying the law of covariance 

propagation to (2.3) yields the covariance matrix for the carrier phase double difference 

observations M at this particular epoch 

M =a C<l> aT (2.4) 

where C<1> is the covariance matrix of the undifferenced observations and is usually 

assumed to be an identity matrix scaled by a common variance factor (Hofmann

Wellenhof et al., 1992). Note that the matrix (2.4) above remains unchanged from epoch 

to epoch as long as the same satellites are observed and the double differences are formed 

19 



in the same sequence. If the double differences are formed in the sequence (a-b), (b-e), 

(c-d), etc., the covariance matrix (2.4) takes the form 

2 -1 0 0 0 

-1 2 -1 0 0 

M= (2.5) 

0 0 0 2 -1 

0 0 0 -1 2 

If, however, the double differences are formed in the sequence (a-b), (a-c), (a-d), etc., the 

covariance matrix (2.4) takes the form (Biacs et al., 1990) 

2 1 1 

1 2 1 
M= 

1 

1 

1 1 1 2 

(2.6) 

Note that the common variance factor is removed from (2.5) and (2.6) above. For data of 

more than one epoch, the covariance matrix of the double difference observations will be 

a block diagonal matrix. 

2.4 Physical Correlations in GPS Differential Positioning 

As discussed earlier, GPS observations are affected by several kinds of errors and biases. 

When forming the observation double differences, the satellite and the receiver clock 

errors are eliminated. The residual effect of the orbital errors, the residual ionospheric 

and tropospheric delays, the multipath error and the system noise remain. The orbital 

errors or ephemeris errors result from improperly modelling the forces acting on the GPS 

satellites. The atmospheric delays, on the other hand, represent the physical phenomena 

that affect the GPS signal propagation. Due to insufficient knowledge of these physical 

phenomena, modelling the above errors cannot, in. general, be done rigorously. 
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Therefore, a residual error component is expected to remain unmodelled. Usually, the 

effect of the remaining unmodelled errors increases as the baseline length increases. 

Because the environments associated with the GPS observations are similar to a certain 

degree, it is expected that the residual errors show a certain degree of temporal and/or 

spatial correlation which is known as physical correlation. Figure 2.1 describes both 

kinds of correlations for the undifferenced observations. 

Spatially 
Correlated 

Spatially 
Correlated 

Figure 2.1. Effect of the Physical Correlation on 
the Incoming Signals 

If the physical correlation is not accounted for, an overestimation of the accuracy of the 

estimated parameters can be expected. One way of modelling the physical correlation 

may be done through examining the adjustment residuals obtained with only the 

mathematical correlation included. In this case, the adjustment residuals exhibit the 

presence of unmodelled errors. The next step is to generate a series of autocovariance 

functions for each double difference series and also crosscovariance functions among the 

double differences. This has to be done for a sufficient number of baselines of different 

lengths to model the temporal physical correlation as a function of baseline length. 
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However, as shown later, the covariance function has to be interpreted carefully to avoid 

any distortion. The resulting estimated covariance functions represent the effect of the 

correlations among the unmodelled errors, the effect of the so-called artificial correlations 

which result from the adjustment process, the distortions due to the finiteness of the data 

series and the effect of the mathematical correlations. It is only the first type of 

correlation that we are interested in. The remaining effects must be removed. After 

removing the undesired effects, the estimated covariances are used to generate an 

empirical covariance function which can be used to form a more appropriate covariance 

matrix for the double difference observation. 

2.5 Covariance Functions of GPS Residual Errors 

Each one of the residual error components exhibits a certain degree of correlation. The 

effects of orbital errors are highly correlated. Therefore, for short baselines, a relatively 

long correlation length is expected for the double difference adjustment residuals. If the 

linear trend is removed from the adjustment residuals, the effect of unmodelled orbital 

errors may disappear. 

To test the significance of the unmodelled tropospheric and ionospheric errors on the 

estimated covariance functions, dual frequency data of two baselines were used. Their 

lengths were 12 and 29 km, respectively. They were observed twice on two consecutive 

days and were found to be free of multipath errors. First the Ll and L2 data were 

processed separately to determine the integer ambiguity parameters on L 1 and L2. Then 

the ambiguity parameters were subtracted from the data. In this case, the mathematical 

model for the carrier phase double difference is given by 

(2.5) 
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where V L1 represents the double difference operator and the remaining terms are defined 

as shown before. If the ionosphere free linear combination is processed, then the 

resulting adjustment residuals with the linear trend removed will exhibit the effect of the 

unmodelled nonlinear tropospheric delays. Figure (2.2) shows a sample of the estimated 

covariance function from the unmodelled nonlinear differential tropospheric delays. 

Appendix I shows the estimated covariance functions as a result of the unmodelled 

nonlinear differential tropospheric errors for the above mentioned baselines. It should be 

noted that the Hop field model for the empirical modelling of the troposphere was applied 

using surface meteorological data when processing these baselines. 
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Figure 2.2. Estimated Autocovariance Function of the Nonlinear 

Tropospheric Delay for a 29 km Baseline 

Figure 2.2 and Appendix I show that a correlation length of over about 20 minutes can be 

expected from the residual differential tropospheric delays. 
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Based on equation (2.7) and neglecting the measurement noise, the differential 

ionospheric delay on L1 can be derived as (Webster, 1992) 

(2.8) 

where fi and f2 are the frequencies of the L1 and L2 signals, respectively. Three 

baselines of lengths 12, 29 and 81 km were used to create the differential ionospheric 

delay data series (2.8). Figure (2.3) shows a sample of the estimated covariance function 

from the nonlinear differential ionospheric delays. Appendix II shows the estimated 

covariance functions as a result of the nonlinear differential ionospheric delays for the 

above mentioned baselines. 

Q) 
u 
r::: 
ctS ...... 
~ 
> 
0 
u 
0 ...... 
~ 

< 

1.2+----+-----._____.._.....__ ........ __. ___ ....._ ___ .....&. ____ + 

.8 

.6 

.4 

.2 

-.2 

-.4 

-.6 
-1000 0 1000 2000 3000 

Lag (seconds) 

PRN Pair 12-11 

VAR. = 311 mm2 

4000 5000 

Figure 2.3. Estimated Autocovariance Function of the Nonlinear 

Ionospheric Delay for an 81 km Baseline 

6000 

Like the tropospheric delays, the differential ionospheric delays show a high degree of 

correlation. It should be noted that the relatively small v~iance factors of the differential 
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ionospheric delays in Figure (2.3) and Appendix II come from the fact that the tested 

baselines were observed in 1986, a year of minimal ionospheric activities. 
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Chapter 3 

EMPIRICAL MODELLING OF PHYSICAL CORRELATIONS 
IN GPS DIFFERENTIAL POSITIONING 

As stated before, the effect of the temporal physical correlation can be accounted for 

through the modification of the covariance matrix of the double difference observations. 

This may be done by developing a general empirical covariance function based on the 

analysis of sufficient data series representing baselines of different lengths. The 

adjustment residuals of these baselines obtained without physical correlation included are 

used for this purpose. A total of 47 baselines observed in North and South America were 

processed using DIPOP, the UNB GPS processing software (Vanicek et al., 1985). The 

observation time spanned between 4 to 5 hours in most cases. The resulting adjustment 

residuals, obtained with only mathematical correlations included, were then used to 

estimate the covariance functions. An empirical covariance function was then determined 

through a least squares fit to the estimated covariance functions. 

3.1 Analytical Covariance Function 

This section reviews the method of estimating and assessing the covariance function. We 

will restrict the discussion to discrete random processes. 
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3.1.1 Removing the Trend 

Removing the trend from the data is necessary because otherwise a large distortion in the 

correlation function can be expected. However this has to be done only if the trends are 

physically expected or if they clearly appear in the data (Bendat and Piersol, 1986). One 

way of removing the trend is by fitting the data with a low order polynomial in the least 

squares sense. In our case a linear trend is removed from all the data. The general form 

of the trend t(ti) is given by Vanicek and Krakiwsky (1986) as 

(3.1) 

where r(ti) is the observation component (in our case, the GPS double difference 

residual) at epoch ti, r'(ti) is the residual component after removing the trend, <pT = [<!>1. 

<1>2, ............ , <l>ul are u base functions selected beforehand, and A = P-1, A2, ............ ,AuF 

are u unknown coefficients which may be determined through the least squares 

regression. Over the whole data span equation (3.1) can be written as 

'lfT([f) A= r + r', (3.2) 

where VT([f) is the Vandermonde's matrix and n is the number of sampling points. The 

least squares solution of this mathematical model is given by Vanicek and Krakiwsky 

(1986) as 

The terms in (3.3) are defined as 

< <1'1 ,<p1 > < <1'! ,<p2 > 

< <1'2·<1'1 > < <1'2·<1'2 > 
o/ p VT = 
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V P r= (3.5) 

Once the estimated coefficients for the trend are obtained, the trend t(ti) can be obtained 

from (3.1) and subtracted from the data. 

3.1.2 The Autocovariance Function 

The autocovariance function defines the degree of similarity between a random process 

and itself at different shifts or lags. Assuming that the data represents a stationary 

random process, an unbiased estimate of the autocovariance function is given by 

N.j~-1 

Cxx (t) = N: ~~ ~ x'(i) x'(i+ t), 
'1 1=0 

(3.6) 

where t = -L, ... , -1, 0, 1, ... , L, x'U), j = 0, 1, ... , N-1 is the data sequence with the mean 

removed and Lis the maximum lag to be considered (Marple, 1987). The normalized 

autocovariance function Pxx ( t) at lag t is defined as the ratio between the 

autocovariances at lag t and zero lag. As we deal with single baseline solutions, the 

normalized covariance function is used. For simplicity, in the sequel the normalized 

autocovariance function is referred to as the autocovariance function. 

The computation of the variance of the autocovariance function may be done through the 

following derivation. For a stationary random process the variance of the biased 

autocovariance function is given by Box and Jenkins ( 1970) as 
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var{p~x ('t)} ""_!_ Y{p2(i) + p(i + t) p(i- t)- 4p(i) p(t) p(i- t) + 2p2 (i) p2(t)} (3. 7) 
N i=-oo 

where p(i) is the "true" or "population" autocovariance function, and p'xx ( t) is the biased 

estimated autocovariance function. The biased estimated autocovariance function is 

related to the unbiased one by 

~· N-l'tl ~ 
Pxx(t)=-- Pxx(t). 

N 
(3.8) 

Equation (3.7) can be simplified by assuming that the true autocovariances are all 

essentially zero beyond some hypothesized lag t = q. That is 

' 1 q 2 
var{Pxx(t)}""- {1+2I,p (i)}, 

N i=I 
t> q. (3.9) 

This expression can be simplified further using the estimated, instead of the true, 

autocovariance function. To get an expression for the variance of the unbiased 

autocovariance function we use the relation 

~· N-ltl ~ 
var{Pxx(t)}=-- var{Px/t)}. 

N 
(3.10) 

Therefore the variance of the unbiased autocovariance function can be written as 

(Pankratz, 1983) 

1 1:-l 
var{Pxx('t)} , __ {1+2:LP~x(i)}. 

N-ltl i=I 
(3.11) 

3.1.3 The Crosscovariance Function 

The crosscovariance function defines the degree of similarity between two random 

processes at different shifts or lags. In a similar way to the autocovariance function, we 

can write the expressions for the crosscovariance function as 
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~ 1 N-l'tl-1 
Cxy('t) =-- L x' (i) y' (i + 't) 

N-1-rl i=O 
(3.12) 

where x'(i), i = 0, 1, ... , N-1 is the first data sequence with the mean removed, y'(i) is the 

second data sequence with the mean removed and L is the maximum lag to be 

considered. The normalized crosscovariance function Pxy('t) at lag 't, sometimes called 

the sample correlation, is defined as 

= Cxy('t) 

cxx(O) Cyy(O) 
(3.13) 

The variance of the normalized crosscovariance function may be defined as 

(3.14) 

assuming that the true normalized crosscovariance function Pxy('t) is non zero only in a 

certain range R1 :5 i :5 R2 and 'tis not included in this range. If the two processes are not 

cross-correlated then equation (3.14) applies for all lags (Box and Jenkins, 1970). 

3.1.4 Assessment of Errors in the Estimated Covariance Function 

Rigorous steps have been taken to check the validity of the observation covariance 

function estimated from the adjustment residuals. The effect of the artificial correlation 

of the residuals introduced by the adjustment process was first checked. It is known that 

this artificial correlation tends to be significant if the number of observations is small 

(Vanicek et al., 1985). Statistically independent normally distributed random noise was 

added to a simulated GPS data set to assess the effect of the adjustment process on the 

correlation of the resulting residuals. Several data series of different length and satellite 

distribution have been processed. It was found that the correlation resulting from the 

adjustment process is very pronounced for short data sets. However, it is negligible for 
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data series of lengths longer than two hours. Figures 3.1 a and 3.1 b show examples of the 

estimated autocovariance functions for two data series of 7 minutes and two hours length, 

respectively. It is clear that, because its estimated autocovariance function has significant 

values for non-zero lags, the first data series is contaminated by the artificial correlation 

while the second data series is not. 
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Figure 3.1a. Autocovariance Function 
for 7 Minutes Data Series 
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Figure 3.1 b. Autocovariance Function 
for Two Hours Data Series 

The least squares spectrum (Wells at al., 1985) was constructed for these residual data 

series. Figure 3.2a and 3.2b show the spectrum of the above two data series. The low 

frequency peak in the spectrum of the first data series indicates the existence of the 

artificial correlation. On the contrary, there are no obvious peaks in the two hour residual 

data series, indicating that the artificial correlation in this data is negligible. Other data 

series shorter than two hours were also processed and found to be contaminated by the 

artificial correlation. For this reason, it is more appropriate to use data series of two 

hours minimum. 
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The finiteness of the data series distorts the estimated covariance function. As the 

number of lags increases, the number of terms used to estimate the covariance function 

decreases and the reliability in the estimated covariance function is reduced. Figure 3.3 

shows the autocovariance function for a data series with statistically independent values. 

The data series has a one second sampling interval. It is obvious that the variation of the 

autocovariance function increases with large lags. 

1.2 +---+-__._ .......... ~.....___.___,__...___.___.____.--t 
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Figure 3.3. Effect of the Finiteness of the Data on the 
Estimated Autocovariance Function 
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To avoid this problem, several authors suggested a certain maximum length of the useful 

estimate of the covariance function. Box and Jenkins (1970) suggested a maximum lag 

of 25% of the data record, whereas Otens and Enochson (1978) mentioned that for a 

useful estimate of the covariance function the maximum lag seldom exceeds 10% of the 

data length. Another way of assessing the reliability of the covariance function is to 

compute the variances of the covariance function at different lags and then to assess the 

covariance function through the statistical testing. It is shown by Box and Jenkins ( 1970) 

and Pankratz (1983) that for moderate sample size the estimated autocovariances will be 

approximately normally distributed when the true autocovariances are essentially zero. 

Following Pankratz (1983), we test the null hypothesis Ho: p(-c) = 0. The standard 

deviations can be obtained from (3 .11) and (3 .14 ). Since we use the estimated 

covariances in obtaining the variances we have to use the tau-distribution. In practice, 

using any of tau, student t or the standard normal distribution will not affect the result if 

the sample size is not small. In our analysis, the first 25% of the data records of the 

covariance function were considered useful estimates while statistical testing was applied 

for the remaining records. 

3.2 Results for Empirical Covariance Functions 

A total of 4 7 baselines were analyzed to develop the empirical covariance function. The 

baselines were located in various areas in North and South America. The data were 

separated into three sets. The first set had a 15 seconds sampling interval; the second, 20 

seconds; and the third, 60 seconds. The results shown below are based on the analysis of 

baselines of lengths up to 100 km for L 1 data. The results for L2 and L3 (ionosphere 

free) are based on the analysis of baselines of lengths up to 60 km only. Appendix (III) 

shows a sample of the resulting estimated covariances. 
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3.2.1 Results for the Autocovariance Function 

To obtain a general empirical autocovariance function, three different empirical functions 

have been tested. The first one is an exponential cosine model given by 

f(t) = exp(-ltl I T1) cos (t T2) (3.15) 

where f is the empirical covariance function, tis the time shift (lag) in seconds, T1 and 

T2 are unknown parameters to be determined, say, from a least squares fit. The second 

one is an exponential function given by 

f(t) = exp(-ltl IT) (3.16) 

where t is the time shift (lag) in seconds and T is the unknown correlation time (the 1/e 

point). The last empirical function is a quadratic form given by 

(3.17) 

where 1..1, /..2 and A3 are the unknown parameters. 

The least squares technique was used to test which one of these functions best fits the 

estimated autocovariances. The exponential cosine function always gives the worst least 

squares fit (the largest a posteriori variance factor) and is not further discussed here. The 

exponential function always gives the best fit for the L3 (ionosphere free) data. For Ll 

and L2 data, the exponential function gives the best fit for the majority of the baselines. 

Tables 3.1, 3.2 and 3.3 show the final results for the Ll, L2 and L3 data. The baselines 

have been grouped into classes based on their lengths. The first column represents the 

baseline range. The second column represents the number of baselines used in each class. 

The resulting average variances are presented in the third column. The remainder of the 

columns represent the estimated parameters for both the exponential function and the 
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quadratic model. The final column shows which of the exponential function or the 

quadratic model fits the actual results better. 

Table 3.1 Results of the L1 data 

Baseline #B/Ls Av. Exp. Quadratic Model Best Fit Range used Variance Model 

km mm2 T AI A2 A3 

<10 1 61 256 1.000 -1.8662E-03 0.7070E-06 EXP. 

10-20 7 132 341 1.000 -2.1284E-03 1.2159E-06 EXP. 

20-30 14 142 283 1.000 -2.3224E-03 1.3376E-06 EXP. 

30-40 4 154 266 1.000 -2.2969E-03 1.2069E-06 QUAD. 

40-50 3 181 368 1.000 -1.9639E-03 0.9949E-06 EXP. 

50-60 3 316 247 1.000 -2.5995E-03 1.4852E-06 QUAD. 

60-70 1 172 242 1.000 -3.2582E-03 2.0220E-06 QUAD. 

70-80 1 3131 314 1.000 -2.5567E-03 1.3025E-06 QUAD. 

80-90 2 21406 341 1.000 -2.1358E-03 0.9703E-06 QUAD. 

90- 100 1 3197 351 1.000 -2.0753E-03 0.8881E-06 QUAD. 

Table 3.2 Results of the L2 data 

Baseline #B/Ls Av. Exp. Quadratic Model Best Fit Range used Variance Model 

km mm2 T AI A2 A3 

10-20 7 151 302 1.000 -2.2703E-03 1.3066E-06 EXP. 

20-30 14 200 273 1.000 -2.2799E-03 1.2575E-06 EXP. 

30-40 4 294 272 1.000 -2.3891E-03 1.2723E-06 QUAD. 

40-50 3 365 415 1.000 -1.8995E-03 0.9543E-06 EXP. 

50-60 3 814 264 1.000 -2.4282E-03 1.3117E-06 QUAD. 
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Table 3.3 Results of the L3 data 

Baseline #B/Ls Av. Exp. Quadratic Model Best Fit Range used Variance Model 

km mm2 T AJ A.2 A.3 

10-20 7 342 210 1.000 -2.7170E-03 1.7538E-06 EXP. 

20-30 14 362 166 1.000 -2.4339E-03 1.3299E-06 EXP. 

30-40 4 312 190 1.000 -2.6329E-03 1.6265E-06 EXP. 

40-50 3 424 77 1.000 -1.8693E-03 1.7190E-06 EXP. 

50-60 3 341 140 1.000 -2.9108E-03 1.8137E-06 EXP. 

Tables 3.1 through 3.3 show that the correlation time for the covariance functions for 

different baseline lengths indicates little variations. Therefore, a general autocovariance 

function which is valid for the range up to 100 km can be developed. Table 3.4 

summarizes the results obtained for each of the L 1, L2 and L3 data sets. 

Table 3.4 Results for General Autocovariance Function 

Baseline #B/Ls Zero Carr. Quadratic Model Best Fit Range used used crossing time, T 

km mm. sec. AJ A.2 A.3 

< 100/L1 37 20 263 1.000 -2.2391E-03 1.4020E-06 EXP. 

10-60 IL2 31 17 270 1.000 -2.3269E-03 1.3220E-06 EXP. 

10- 60/L3 31 19 169 1.000 -2.7513E-03 1.7220E-06 EXP. 

It can be seen from Table 3.4 that the GPS double difference observations are positively 

correlated over a time period of about 20 minutes. Also, it is shown that the empirical 

exponential function given by (3.16) gives the best fit for the estimated autocovariance 

function. Figures 3.4 through 3.6 show the resulting exponential function for L1, L2 and 

L3 data. It should be pointed out that a better fit for L3 data may be obtained if a smaller 

number of points is used in the least squares fit. 
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3.2.2 Results for the Crosscovariance Function 

The adjustment residuals for every baseline contain several subsets of double difference 

residuals pertaining to different pairs of satellites. The crosscovariance functions among 

the double difference residual subsets for each baseline were evaluated. They were 

divided into two groups. The first group represents the crosscovariance functions in 

which the two subsets have a common satellite, i.e., have a common single difference. It 

should be mentioned that the way the DIPOP software forms the double differences 

results in a mathematical correlation of -0.5. The second group contained data without a 

common satellite. It was found that the crosscovariance functions for the first group 

generally starts with a value of about -0.5 resulting from the mathematical correlation. 

However, they do not drop to zero after the zero lag. A certain correlation length was 

found in each one of them. The crosscovariance functions of the second group were 

found to fluctuate around the zero value with negligible magnitudes. 
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It was expected that the long correlation length in the crosscovariance functions of the 

first group were coming from the "coloured" common single difference residuals, i.e., the 

autocovariance of the common single difference. To confirm this, a simulated data set 

with added coloured noise was analyzed. An exponentially correlated coloured noise was 

generated by passing a statistically independent sample of random noise through a simple 

filter. The resulting random variable xk+l at time 'tk+l is given by 

(3.18) 

where 1/~ is the correlation time and wk is the statistically independent random noise at 

time 'tk (Gelb, 1974). 

Several independent coloured random noise data series were generated and added to the 

simulated phase measurements for individual satellites. It was found that, although the 

coloured noises were originally uncorrelated with each other, the crosscovariance 

function of any two double difference residual subsets which have a common satellite 

was found to have a certain correlation length. This indicates that it is actually the effect 

of the coloured noise in the common single difference. In other words, the 

autocovariance function is mapped into the crosscovariance function. Figures 3.7a and 

3.7b show the crosscovariance function between two double difference residual subsets 

with a common satellite. Figure 3.7a shows the case of simulated data with statistically 

independent random noise and Figure 3.7b, the case of simulated data with coloured 

noise. 
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Let us start with the simple case of tracking the same satellites over time. The carrier 

phase double difference observations for n epochs may be written as 

L\ V<l>1 a <l>1 
L\ V<l>2 a <l>z 

t= = (3.19) 

L\ Y'<l>n a <I>n 

where L\ V<l>i is the vector of carrier phase double differences at epoch i, a is a 

differencing operator matrix and <l>i is the vector of the observed phases at epoch i. 

Applying the law of covariance propagation to (3.19) yields the covariance matrix of the 

double difference observations as 

a c<l>1 <I>n aT 

ce= 
a c<I>z<I>n aT 

(3.20) 

a c<I>n aT 
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If the off-diagonal submatrices are neglected, i.e., the measurement errors are assumed to 

be uncorrelated over time, a block diagonal covariance matrix representing the effect of 

the mathematical correlation is obtained. The term c<fl. is the covariance matrix of the 
I 

undifferenced observations and is a diagonal matrix for uncorrelated phase 

measurements. The matrix c<lli<llj represents the crosscovariances between the 

undifferenced observations of the i-th and the j-th epochs. If we assume stationarity and 

equi-spaced epochs, then c<lli = c<lli+1 and c<lli<lli+1 = c<llj<llj+1. Therefore, the covariance 

matrix (3 .20) can be simplified to 

C(to) CCt1) C(t2) CCtn) 
CCt1) C(to) CCt1) C(tn-1) 

Ct= C(t2) C(t1) C(to) C(tn-2) (3.21) 

C(tn) C(tn-1) C(tn-2) C(to) 

where ti is the time shift (lag) between i epochs, C(to) is covariance submatrix of the 

single epoch observations and C(ti) is the covariance submatrix between the observations 

of two epochs separated by i. If the empirical autocovariance and crosscovariance 

functions are available, then for each C(tj), the diagonal elements are obtained from the 

autocovariance function at the i-th lag while off-diagonal elements are obtained from the 

crosscovariance function at the i-th lag. To have a closer look at the nature of the 

covariance matrix (3.20), let us consider, without loss of generality, that c<fl. equals the 
I 

identity matrix. Also we can consider, cll>iCJ>j = f1j-il cCJ>i where f1j-il is the correlation 

coefficient between the observations of the two epochs i and j. The covariance matrix of 

the observations for n epochs is then given by 

T 
a 0 0 I f1 I f n-1 I a 0 0 

0 a ... 0 f 1 I I f n-2 I 0 a 0 
Ct= 

0 0 
(3.22) 

0 0 ... a f n-1 I f n-2 I I 0 0 . .. a 

or 
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a aT f a aT I f n-1 a aT 

Ce= 
f 1 a aT a aT f n-2 a aT (3.23) 

fn_ 1aa T 
f n-2 a a 

T a aT 

The matrix (3.23) shows that the crosscovariance submatrix fi a aT is equal to the 

covariance submatrix a aT scaled by the correlation coefficient fi, which is obtained from 

the empirical autocovariance function. This means that the fully populated covariance 

matrix can be obtained without having the empirical crosscovariance function. If 

different satellites are tracked over time, then (3.22) and (3.23) take the form 

Ce= 

0 0 

0 
X 

0 0 

or 

T 
al al 

T 
fl al 112 a2 

T 
f n-1 3 1 lin an 

fl a2 121 a{ T 
f n-2 a2 l2n aJ 

Ce= 
a2 a2 

(3.25) 

f n-1 an In! a{ T 
f n-2 an ln2 a2 

T 
an an 

where the matrix Ijj is the identity matrix with dimension equal to the number of double 

differences at epoch j and the matrix Ijk' j "::f; k, consists of an identity submatrix with a 

dimension equal to the number of common double differences at epochs j and k and zero 

elements elsewhere. 
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Chapter 4 

ALGORITHM FOR THE INVERSE 
OF THE FULLY POPULATED COVARIANCE MATRIX 

Stochastic modelling of the GPS residual errors yields a fully populated covariance 

matrix for the GPS carrier phase double difference observations. Implementing this fully 

populated covariance matrix into a software package usually slows down the numerical 

computations. However, this is not the case if an exponential function can be used to 

approximate the actual covariance function of the GPS residual errors. Using the 

exponential function results in a block diagonal weight matrix for the double difference 

observations. In this chapter, the algorithm for efficient computation of the inverse of 

this fully populated covariance matrix is developed. Also the storage requirements for 

the adjustment process are discussed. 

4.1 The Covariance Matrix of Carrier Phase Double Differences 

The carrier phase double difference for a particular epoch i may be written as 

(4.1) 

where ~ V'<l>i is the vector of carrier phase double differences at epoch i, ai is a 

differencing operator matrix and <l>i is the vector of the observed phase values at epoch i. 

If different satellites are tracked over time, the operator matrix ai is different as well. In 

this case, the covariance matrix is given as (see section 3.3) 
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T a1 a1 f1 a1 112 aJ f n-1 a! lin aJ 

T T 
f n-2 a2 12n aJ 

Ce= 
fl a2 121 a! a2 a2 

(4.2) 

T 
f n-1 an In! a! 

T 
f n-2 an ln2 a2 

T 
an an 

assuming that the original phase measurements are uncorrelated. The measurement 

variance is assumed to be constant and is omitted in equation ( 4.2) and in its sequel. The 

matrix Ijk consists of an identity submatrix and zero elements as shown in chapter 3. The 

factor fi is the correlation coefficient for a time lag of i epochs. In chapter 3, it was 

shown that the exponential covariance function 

fi = exp (-I 'ti 1/ T) (4.3) 

is a good approximation of the actual covariance function of GPS carrier phase 

measurements. 'ti is the time lag of i epochs and T is the correlation time in seconds. 

Assuming a constant data rate, the correlation coefficient between any two epochs can be 

written as 

(4.4) 

With equation ( 4.4 ), the covariance matrix ( 4.2) can be written as 

T a1 a1 fl al 112 ai fn-1 I T I a! In an 
T T fn-2 I T 

Ce= 
fl a2 121 a! a2 a2 I a2 2n an 

(4.5) 

fn-1 I T I an nl al fn-2 I T I an n2 a2 
T 

an an 

which may be written in a further simplified form as 
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fn-1 M 
1 ln 

Ct= 
fn-2 M 

1 2n (4.6) 

fn-1 M fn-2 M 
1 nl 1 n2 

4.2 Inverting the Covariance Matrix 

In this section, two different cases are treated. The first one is the ideal case where the 

same satellites are observed over the whole observation time span. The second case is a 

more realistic case which allows different satellites to be observed over the observation 

time span. 

4.2.1 Ideal Case: The Same Satellites are Tracked Over Time 

To find the inverse of the covariance matrix when tracking the same satellites during the 

observation time span, let us first introduce some matrix operations. If we have a regular 

and symmetric matrix C given by 

(4.7) 

and C~~ exists, then through partitioning, the inverse of C can be written as (Mikhail, 

1976) 

(4.8) 

45 



where 

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

Using (4.9) through (4.12), the inverse of the observations' covariance matrix can be 

obtained epoch by epoch. In the first epoch, we have only one submatrix. Thus, its 

inverse can be easily obtained (see e.g. Hofmann-Wellenhof et al., 1992). In the second 

epoch, the covariance matrix takes the form 

(4.13) 

where the symmetric submatrix M represents the mathematical correlation for one epoch. 

The inverse of the matrix (4.13) can be computed using (4.6) through (4.9) as 

c -1 = [ p -f1 p] 
t -f1 p p ' 

where P = - 1- M-1• 

1- f 2 
I 

(4.14) 

(4.15) 

This means that only the submatrix P is stored. If the observations' covariance matrix is 

extended to include the n-th epoch, it takes the form 
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M f1 M fr-1 M 

Ct= 
f 1M M fr-2 M 

(4.16) 

fr-1 M fn-2 M 1 M 

Again using (4.9) through (4.12), we end up with 

p -f1 p 0 0 0 

-f1 p (1 + ft) p -f1P 0 0 

c -1 0 -f1 p (1+ ff) p 0 0 
t = (4.17) 

0 0 0 (l+fh p -f1P 

0 0 0 -fl p p 

which reveals that the weight matrix is in fact a band structure matrix with only one off-

diagonal submatrix. This simplification saves a lot of computational time and reduces 

memory requirements. 

4.2.2 Real Case: Different Satellites are Tracked Over Time 

Let us now consider the more general case where the same satellites have been observed 

over the first n epochs and different satellites have been observed at epoch n+ 1. Up to 

the n-th epoch, the inverse of the covariance matrix will be as described by ( 4.17). At 

epoch n+ 1, the covariance matrix will take the form 

M f 1M fn-1 M 
I fr M~+1.1 

f1M M fr-2 M fn-1 MT 
I n+1,2 

Ct= (4.19) 

fr-1 M fr- 2 M M T 
f1 Mn+I.n 

fr Mn+l,l fn-1 M 
I n+1,2 f1 Mn+l,n Mn+1,n+l 
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It should be noted that 

i,j=l, .... ,n. (4.20) 

Using (4.9) through (4.12), the inverse of the covariance matrix (4.19) can be obtained as 

p -f1 P 0 0 0 

-f1 P (l+f~)P 0 0 0 

c -1 e = 0 0 (1 + f~) p -f1 P 0 
(4.21) 

0 0 -f1 P Qll 
T 

Q21 

0 0 0 Q21 Q22 

where 

(4.22) 

(4.23) 

(4.24) 

Even though different satellites were tracked at epoch n+ 1, the simple band structure with 

only one off-diagonal submatrix remains unchanged. However, as shown below, this is 

not true if tracked satellites were different for more than two consecutive epochs. 

If the first group of satellites was re-tracked again at epochs n+2 and n+3, then the 

covariance matrix at epoch n+2 will take the form 
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M f1 M fr-1 M fr M~+1.1 fr+1 M 

f1 M M fr-2 M fn-1 MT 
1 n+1,2 fr M 

Ct= fr-1 M fr-2 M M f1 M~+1,n ft M 
(4.25) 

fr Mn+11 fn-1 M f1 Mn+1,n Mn+1,n+l fl Mn+1,n 
' 

I n+1,2 

fr+1 M fnM I f 2 M I f1 M~+1,n M 

Again using (4.9) through (4.12), the new weight matrix can be written as 

p -f1P 0 0 0 0 

-flp (1 + f~) p 0 0 0 0 

c -1 
0 0 (1 + f~) p -f1 p 0 0 

t = 
RT RT 0 0 -flp Rll 21 31 

(4.26) 

0 0 0 R21 R22 
T 

R32 

0 0 0 R31 R32 R33 

where 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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(4.34) 

Equation ( 4.26) shows that a second off-diagonalline with non zero submatrices appears 

in this case. This is caused by having different groups of satellites tracked during three 

subsequent measurements epochs. However, except for the lower 3 by 3 submatrices 

which correspond to the three different groups of satellites, the inverse of the covariance 

matrix remains unchanged and is in fact identical with the ideal case ( 4.17). At epoch 

n+3, the covariance matrix will take the form 

M 

fr-1 M ft 2 M 

f n-1 M 
1 n+1,2 

Ce= 
fr Mn+1,1 

fr+1 M 

fr+2 M 

fr-1 M fr M~+1 , 1 fr+1 M 

f n-2 M fn-1 MT fn M 
1 1 n+1,2 1 

f1 Mn+1,n 

f? M 

f? M 

Mn+1,n+1 

f1 M~+1 n 

ff M~+1,n M 

The new weight matrix will be given by (see Appendix IV for detailed derivation) 

p -f1P 0 0 0 0 0 

-f1P (1 + f~) p 0 0 0 0 0 

0 0 (1 + f~) p -flp 0 0 0 

c -1 e = 0 0 -f1P Rll RT 
21 

RT 
31 

0 

0 0 0 R21 R22 RT 
32 

0 

0 0 0 R31 R32 RR33 -f1P 

0 0 0 0 0 -flp p 

where 
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RR33 = R33 + f 1 P. (4.37) 

It is interesting to note that the last row and column in ( 4.36) are identical to the 

corresponding ones in the ideal case because the satellites at the last two epochs were 

identical. It is also important to know that, as a general rule, if the same satellites are 

tracked at two consecutive epochs, then the last row and column in the weight matrix are 

identical to the corresponding ones in the ideal case with the same number of satellites 

regardless of whether the previously observed satellites were the same. Whatever groups 

of satellites are to be tracked in the following epochs, the first n+3 by n+3 submatrices 

will always be identical to (4.36) except for the lower right comer submatrix. Another 

important feature is that if in the following epochs the tracked satellites are identical to 

the ones at epoch n+3, the inverse of the covariance matrix will be identical to the ideal 

case (4.17) except for the part(s) where the tracked satellites in consecutive epochs were 

different. It is concluded that if different satellites are observed every other epoch, the 

inverse of the covariance matrix will take the band structure with only one off-diagonal 

submatrix but it will not be identical to the ideal case. 

4.3 Storage Requirements 

The analysis shown above reveals some important facts in terms of the required storage 

space. When multiplying the matrix C21 and the inverse of the matrix C11 (section 4.2.1), 

the result contains some zero submatrices even if different groups of satellites were 

observed. These zero submatrices will yield zero submatrices in the weight matrix as 

well (see e.g. (IV.12)). Also, since we know that some zero submatrices will be 

produced, certain matrix multiplications can be avoided. As shown in (IV.2) multiplying 

the last row submatrix in the covariance matrix with the first n-1 columns of the previous 

epoch weight matrix can be avoided. This is because, as shown in (IV.3), the results will 
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be n-1 zero submatrices. These zero submatrices in the weight matrix allow a reduction 

in the required storage space for the covariance matrix. Since the weight matrix is 

updated every epoch, only the last row of the covariance matrix at every epoch is 

required. Because of the zero submatrices in the weight matrix, only a few submatrices 

in the last row of the covariance matrix are actually required. If, for example, the current 

epoch is the n-th epoch and the tracked satellites at epochs m-1 and m (m<n) were 

identical but they were different after that, then only the last n-m+ 1 submatrices in the 

last row of the covariance matrix are required. The first m-2 submatrices are not required 

because they are to be multiplied by zero submatrices. In reality, m-n is a small number. 

Usually, it is less than three. 

If in the current epoch and the previous one the same satellites are tracked, the lengthy 

computations for the inverse of the covariance matrix are not necessary. In this case, not 

a single submatrix in the covariance matrix is required. The changes in the updated 

weight matrix will be similar to the results obtained in ( 4.36) which can be done 

automatically. 
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Chapter 5 

MODIFIED LEAST SQUARES ADJUSTMENT FOR 
THE DETERMINATION OF POSITIONS AND AMBIGUITIES 

In this chapter, a modified least squares adjustment algorithm incorporating the new 

developed fully populated covariance matrix for the determination of the position 

parameters and the ambiguities is developed. However, the estimated ambiguities are 

generally not integers. To obtain the most likely integer ambiguity parameters, the 

resulting covariance matrix of the ambiguity parameters is used to form a confidence 

region of a hyperellipsoid centered at the estimated real ambiguity parameters. The 

hyperellipsoid is used for searching the most likely integer ambiguity parameters. The 

searching time is optimized by using Cholesky roots of the covariance matrix of the 

ambiguity parameters. Once the integer ambiguity parameters are determined, they are 

used as functional constraints in another least squares adjustment to obtain the final 

station coordinates and their covariance matrix. Finally, the storage requirements for the 

different parameters are discussed at the end of this chapter. 

5.1 Modified Sequential Least Squares Adjustment 

In this section a modified least squares parametric adjustment for positions and 

ambiguities, including stochastic modelling of the remaining unmodelled errors, is 

developed. The linearized mathematical model describing the observations is given by 

Wells (1990) and Vanicek and Krakiwsky (1986) as 
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Ad=r+ W, Ct (5.1) 

where A is the design matrix which depends on the satellite geometry, d is the vector of 

corrections to the approximate values of the unknown parameters, r is the vector of 

residuals and W is the misclosure vector. To obtain a sequential solution, the linearized 

mathematical model ( 5.1) has to be partitioned into two sets as 

A· I d=r· I+ w. I, 1- 1- 1-
(5.2) 

A· d=r· + w. I I I 
(5.3) 

where the first set represents all previous observations (i.e. up to and including the 

previous epoch) while the second set represents a new set of observations (i.e. for the 

current epoch only). The observation covariance matrix and its inverse can be partitioned 

in a similar manner as 

C [
ci-1 i-1 t= , 
C. . I I, 1-

Cfl = [Pi-1, i-I 
p .. I 

1, 1-

C. I . ] 1- , I 

c. . , 
I, I 

(5.4) 

p. I·] I- , I 

p ... 
I, I 

(5.5) 

The least squares adjustment can be based on minimizing the so-called variation function 

<I> (Wells and Krakiwsky, 1971; Vanicek and Krakiwsky, 1986) which is given by 

where r = [r~l, rT r, KI and K2 are Lagrange correlates, xO is the vector of the 

approximate values of the unknown parameters and P 0 is the a priori weight matrix for 
X 

the approximate values of the unknown parameters. Minimizing the function <I> means 

that its partial derivatives with respect to r, d, KI, and K 2 are set to zero. Combining 

the results of these partial derivatives with equation (5 .1) leads to the normal equations 

54 



p. I. I 
1- ' 1-

p. I . 
1- ' 1 

I 0 0 ri-1 0 

p .. I p .. 0 I 0 r· 0 1' 1- I, I I 

I 0 0 0 Ai-l Kl - wi-1 = 0. (5.7) 

0 I 0 0 A· Kz w. I I 

0 0 T A! p 0 Ai-l d 0 I X 

Eliminating ri-l and ri from (5.7) through matrix partitioning, we obtain 

-C. 1 . 1 1- ' 1-
-C. I . 1- , I Ai-l :KI wi-1 

-C. . I -C. . A· Kz - w. = 0. (5.8) I, 1- I, I I I 

A[l A! p 0 d 0 I X 

Eliminating K 1 from (5.8) through matrix partitioning, we obtain 

[( -C.· +C.· 1 e-ll· 1 C. 1 ·) (A· -C.· 1 e-ll· 1 A. 1)] [K2] 1,1 1,1- 1-,1- 1- ,I I 1,1- 1-,1- I-

T AT C -l C P AT C -l A -(A· - . 1 . I . I . I . ) ( o + . 1 . I . I . I) d I 1- 1-,1- 1-,1 X 1- 1-,1- 1-

[
(W. -C. · 1 e-ll· 1 w. 1)] I I, 1- 1- , 1- 1-

- =0. 
A!l e-ll . I w. I 

1- 1- '1- 1-

(5.9) 

Rewriting (5.9) in an equivalent compacted form we obtain 

[
- p:-1. 

1,1 

A:T 
I 

(5.10) 

where 

* -1 A =A·-C. ·1C A-1 i I I, 1- i-1, i-1 1-
(5.11) 

* -1 W = W· -C · 1 C W· 1 j I I, 1- i-1, i-1 1-
(5.12) 
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(5.13) 

To obtain a sequential solution for d, K2 has to be obtained first by eliminating d from 

(5.10). That is, 

K- [p-I A* N-I A*T ]-I [W* A* N-I AT C -I W ] 2 =- ··+ .. I . ·- .. I .I "I"I "I· I, I I 1- I I I 1- 1- 1- ,I- 1- (5.14) 

Back-substituting (5.14) in (5.10) to obtain a sequential solution for d results in 

- -I T -1 *T -
d=N· 1(A·IC.I·IW. 1 -A· K 2 ). 1- 1- 1-,1- 1- I (5.15) 

Using (5.14) and (5.15), the sequential solution for d, in its general form, can be written 

as 

(5.16) 

where di-I is the previous solution for the adjusted parameters and N~! is the inverse of 

the previous normal equation matrix which is developed in a sequential form in the 

following section. It should be noted that the usual batch least squares adjustment should 

be used before the first use of (5.16). The batch solution for the adjusted parameters and 

the inverse of the normal equation matrix are given by 

(5.17) 

(5.18) 

5.2 Updating the Inverse of the Normal Equation Matrix 

As shown in (5.16), it is necessary to update the inverse of the normal equation matrix 

with every update for d. For the two sets of observations (5.2) and (5.3), the normal 

equation matrix Ni can be written as 
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_ [ T T] [pi-1. i-1 pi-1. i] [Ai-l] Ni - P o + Ai-l Ai 
X 

p .. I p.. A-
I, 1- I, I I 

(5.19) 

or after multiplication 

(5.20) 

Substituting the values ofP11, P21 and P12 (see section 4.2.1), we obtain 

Rearranging (5.21) and using (5.11) and (5.13) we end up with 

*T * N- = N- 1 +A· p .. A· 
I 1- I I, I I (5.22) 

or 

-1 *T * I N. = ( N1·_ 1 +A. p. · A.)- . 
I I I, I I 

(5.23) 

Using the matrix identity (Mikhail, 1976) 

(Y±U Z V)-1 =Y-1 +Y-1 U(Z-1 ±VY-1 U)-1 VY-1, (5.24) 

provided that Y and Z are regular matrices, equation (5.23) may be written as 

(5.25) 

This representation of Nj1 is used in (5.16) to obtain an updated solution for the unknown 

parameters. It should be noted that the size of the matrix to be inverted in (5.25) is equal 

to the number of the double difference observations at the current epoch, while the size of 

the matrix to be inverted in (5.23) is equal to the number of the unknown parameters. 
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Therefore, using either of (5.23) or (5.25) depends on. the size of the matrix to be 

inverted. 

5.3 Ambiguity Resolution Technique 

Equation (5.16) is used to obtain the sequential least squares solution for the parameters 

d. The estimated ambiguities are generally not integers. Therefore, this solution does not 

exploit the integer nature of the ambiguities (see section 2.2.2). To obtain the integer set 

of the ambiguity parameters at a certain probability level, the covariance matrix of the 

ambiguities is used to form a confidence hyperellipsoid around the estimated real 

ambiguity values. It should be noted that the covariance matrix has to be scaled by the a 

posteriori variance factor given by Vanicek and Krakiwsky (1986) as 

(5.26) 

where v is the number of degrees of freedom (i.e. the total number of the observations, n, 

minus the total number of the unknown parameters, u). The scaled covariance matrix of 

the estimated parameters is given by 

and may be partitioned as 

- _ -2[Nxx 
Ca- ao N 

NX 

(5.27) 

(5.28) 

where Nxx and NNN are the normal equation submatrices corresponding to the 

estimated coordinate increments and the ambiguity parameters respectively. The index i 

has been omitted in (5.28) and unless it is necessary will be omitted in the remaining part 

of this section. 
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The hyperellipsoid is centered on the estimated values of the ambiguity parameters with 

semi-axes equal to the square root of the eigenvalues of the scaled covariance matrix of 

the ambiguity parameters. As the dimension of the ambiguity parameters increases, the 

probability associated with the hyperellipsoid decreases. Therefore, the hyperellipsoid 

has to be scaled with an expansion factor k to make the hyperellipsoid volume 

correspond to a certain desired probability level such as 99%. Since the a priori variance 

factor is not known, the Fisher distribution is used to determine the value of k (Mikhail, 

1976). In this case, the expansion factor k is given by 

k = ~U ~Fu, n-u, l-ex (5.29) 

where u is the total number of the unknown parameters, n is the total number of the 

observations, a is the significance level and ~Fu, n-u, l-ex is the value of the F-distribution 

with u and n-u degrees of freedom and 1-a probability level (Vanicek and Krakiwsky, 

1986). The confidence region is searched for the integer values of the ambiguity 

parameters to find the most likely integer ambiguities. In general, there are many 

different sets of solutions inside the hyperellipsoid. The best solution, in the least squares 

sense, is selected to be the one which gives the minimal a posteriori variance factor, 

based on integer ambiguities, and does not have any other compatible solution. To do 

this, the rounded values of the estimated real ambiguities are first selected to be the initial 

solution. All other points inside the hyperellipsoid are then tested for compatibility with 

the initial solution (i.e. the rounded values of the estimated real ambiguities). The 

following inequality is used to check whether a point (i.e. a set of integers) is located 

inside the hyperellipsoid 

(5.30) 

where Nre are the real values estimated ambiguities, Z is a possible set of integers for the 

ambiguities to be initially selected based on the estimated ambiguities and their standard 
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deviations and c~ is defined in terms of the normal equation submatrices corresponding 

to the estimated coordinate increments and the ambiguity parameters as 

C- -1 --2 {N N N-1 N } N = 0" o NN - NX XX XN · (5.31) 

It is, however, much faster to decompose the symmetric matrix C~ using Cholesky 

decomposition (Euler and Landau, 1992). The hyperellipsoid inequality is then given by 

(5.32) 

where L is the Cholesky root of C~. If (5.32) is satisfied, Z is located inside the 

hyperellipsoid. The purpose of decomposing the matrix C~ is that if the quadratic form 

on the left hand side of (5.32) for any tested point exceeds k2 during the computations, 

the point is rejected without completing the multiplications. Once a point is found inside 

the hyperellipsoid, a statistical test using the Fisher distribution is to be performed to 

check if the a posteriori variance factor for that point is compatible with that of the 

selected initial solution. For any tested solution, the corresponding set of integer 

ambiguities is considered as a functional constraint. Equation (5.26) can be used to 

compute the a posteriori variance factor with degrees of freedom given by 

v = n + nc- u (5.33) 

where nc is the number of constraints (i.e. the number of ambiguity parameters). The 

quadratic form rT C{1 r is given by Euler and Landau (1992) as 

(5.34) 

where the vector U can be obtained in a similar way to the matrix of the normal equation 

discussed above as 

T -1 *T * u. = A c~~ w = u. 1 +A- p .. w. 
I (. 1- I I, I I ' (5.35) 
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Using (5.26) and (5.33) through (5.35), the a posteriori variance factor for any least 

squares solution based on integer ambiguities can be obtained. These solutions can be 

subjected to the F-test. The null hypothesis ii2 = ii2 is to be tested against the 
Os Oa 

alternative ii2 * ii2 , where ii2 is the a posteriori variance factor for the selected 
Os Oa Os 

solution and ii2 is the a posteriori variance factor for an alternative solution. The 
Oa 

statistical test may be written using (5.26) and (5.33) through (5.35) as 

T -1 T-
(LHS)a>~Fv,v,o..I2(LHS)s+(~Fv,v,QJZ-l)(W Ct W-U d) (5.36) 

where (LHS)a is the quadratic form on the left hand side of (5.32) for the alternative 

point, (LHS)s is the quadratic form on the left hand side of (5.32) for the selected point 

and ~Fv, v, o-/Z is the value of the F-distribution corresponding to v degrees of freedom for 

both solutions and a. significance level. If the statement (5.36) is true for all the tested 

points, then a unique solution is obtained. In other words, the selected solution is the best 

solution. If during the test a point was found to give a smaller a posteriori variance factor 

than the selected solution, then this point is selected to be the best solution and the test is 

to be completed with reference to this point. If the statement (5.36) is not true for all the 

points inside the confidence area, then a unique solution cannot be obtained at the 

specified probability level and additional observations are needed. 

5.4 Solution with Ambiguities as Functional Constraints 

Once the most likely integer values of the ambiguities, N into are obtained, they are 

considered as constraint parameters and another least squares adjustment with functional 

constraints is to be performed to obtain the final estimated parameters. The mathematical 

model for functional constraints can be written as (Mikhail, 1976) 

(5.37) 

61 



where, in our case, Af is an nc by u matrix consisting of a zero submatrix with dimension 

nc by u-nc and an identity submatrix with dimension nc, nc is the number of the 

ambiguity parameters and u is the total number of the estimated parameters. The final 

modified solution for the parameters, dm, is given by Wells (1990) as 

(5.38) 

and the modified covariance matrix for the unknown parameters, Cd , is given by 
m 

(5.39) 

5.5 Storage Requirements 

The main obstacle in implementing a fully populated observations' covariance matrix in a 

least squares adjustment is the required huge numerical mathematical operations. The 

design matrix, the weight matrix and the misclosure vector have to be stored from the 

beginning until the end of the observation time span. However, with the exponential 

function, the situation is different. As shown in chapter 4, when tracking the same 

satellites during the observation time span, the weight matrix will be a band structure 

matrix with only one off-diagonal submatrix. In this case, only the lower diagonal 

elements of one submatrix is to be stored in the weight matrix. The design matrix ( 5.11) 

and the misclosure vector (5.12) will be given as 

(5.40) 

* W. =W. - f 1 W. 1 I I I- (5.41) 

where f1 is the correlation coefficient (see chapter 4). This means, only the design matrix 

and the misclosure vector for the current and the previous epochs are required. 
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In reality, different groups of satellites may be observed for sometime during the 

observation time span. In this case, the weight matrix will be a block diagonal matrix. If 

different groups of satellites were observed during the epochs from j through k, then the 

required storage for the weight matrix is given by the shaded area in Figure 5.1. 

epochj 

epoch k 

Figure 5.1. Required Storage for the Weight Matrix When Tracking 

Different Groups of Satellites Between Epochs j and k. 

The required storage for the design matrix and the misclosure vector would be the part 

from epoch j-1 up to the current epoch k only. It should be noted that if the observed 

satellites in the current epoch and the previous one were identical, the required storage 

and computations will be identical to the ideal case of tracking the same groups of 

satellites all the time. In reality, the same satellites are tracked most of the observation 

time. Resulting in, great savings in the required storage and the computation time. It 

should be noted that the term wT Cf1 W in (5.34) will be needed in computing the 

quadratic form rT Cf1 r. It may appear that the whole vector w has to be stored to 

perform the above computation. However, if the quadratic form WT Cf1 W is updated 

each epoch, the required storage for W will be the same as mentioned above. 
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Chapter 6 

SOFTWARE DEVELOPMENT 
AND DISCUSSION OF THE RESULTS 

This chapter discusses the effect of the physical correlations on the ambiguity resolution 

and the accuracy estimation. The measurements of several baselines of different lengths 

were analyzed to show this effect. The baselines were observed under different 

ionospheric activities and were located in various areas in North America. These data 

sets were first preprocessed using PREDD, the UNB preprocessor program (K.leusberg et 

al., 1989). This program detects and corrects the cycle slips in the measurements, forms 

the double differences of the carrier phases and pseudoranges and computes the satellite 

coordinates at the same epochs as the carrier phase double differences. 

After preprocessing the data sets, DIFGPS, the newly developed software was used for 

the postprocessing. For comparison, the Ashtech software, GPPS 5.0 (Ashtech, 1993), 

was used in the analyses of the measurements of two baselines. Only Ll carrier phase 

data was used for these analyses. 

6.1 Description of the Software 

DIFGPS software is based on the least squares adjustment algorithm described in the 

previous chapter. The physical correlation is modelled using the developed exponential 

covariance function. The correlation times shown in Table 3.4 are used by the program 
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as default values. However, the user can introduce any other desired values for the 

correlation times. The program also allows the user to specify a particular part of the data 

set to be analyzed. 

DIFGPS first determines the float solution for the ambiguity parameters as well as their 

covariance matrix from the least squares adjustment described in the previous chapter. 

The covariance matrix is then used to form a confidence region of a hyperellipsoid 

around the estimated real values of the ambiguity parameters. The hyperellipsoid is 

scaled with an expansion factor given by Equation 5.29 to make its volume correspond to 

a certain desired probability level of 1-a introduced by the user. The confidence region is 

then used for searching the likely integer values of the ambiguity parameters. It should 

be pointed out that as the size of the hyperellipsoid increases, the number of ambiguities 

to be tested increases. However, with the help of the powerful rejection criteria of the 

Cholesky decomposition described in Chapter 5, searching the ambiguities usually does 

not take more than two seconds on the Macintosh SE/30. To reach this speed, the first 

Cholesky root should be an upper triangle. The statistical test given by Equation 5.36 is 

used to determine the most likely integer ambiguity parameters at a certain desired 

probability level of 1-a... introduced by the user. Once the integer ambiguities are 

determined they are used as constraint parameters to obtain the final constraint solution 

for the unknown coordinates. If a non unique solution for the integer ambiguity 

parameters is obtained, a warning message appears to the user. In this case, the user can 

either lower the probability level of 1-a... or select the solution with the minimum a 

posteriori variance factor. If the first option is selected, the searching operation is 

repeated. However, if the second option is selected, the solution with the minimum a 

posteriori variance factor is used to determine the final constraint solution for the 

unknown coordinates. In this case, to avoid confusion, a warning message appears in the 

output file indicating that the solution for the ambiguity parameters is not unique. It 
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should be noted that a third option may be added to allow processing some more 

observations without terminating the program. 

The input files to this software are the meteorological data and the double difference data 

file obtained from the UNB GPS preprocessing software. The output files include the 

preliminary solution before fixing the ambiguities, the dimension and size of the 

hyperellipsoid used for searching the ambiguities, the determined integer ambiguities, the 

time of searching the ambiguities and the final constraint solution for the unknown 

coordinates and their covariance matrix. 

6.2 Discussion of the Results 

As mentioned before, several baselines were analyzed to test the effect of including or 

neglecting the physical correlations on the ambiguity resolution and the accuracy 

estimation. The lengths of these baselines were selected to represent a range of up to 100 

km. The baselines were separated into two groups. The first group consisted of three 

baselines of lengths 20, 60 and 81 km which were observed with TI 4100 receivers in 

1986. The measurements of this set of baselines had a 60 second sampling interval. The 

second group consisted of three baselines of lengths 13, 55 and 90 km which were 

observed with Ashtech, Rogue, and Trimble receivers in 1992 and 1993. The 

measurements of this set of baselines had a 20 second sampling interval for the 13 km 

baseline and 120 second interval for the other two baselines. It should be pointed out that 

only the first group of baselines were among the baselines used for developing the 

empirical covariance function discussed in Chapter 3. 

After preprocessing these data sets, the program DIFGPS was used for postprocessing. 

To compare the results, a reference truth had to be determined. The observation time 

span was long enough to ensure that the errors were averaged out when processing the 
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entire data set of each baseline. The reference truth selected resulted from processing the 

entire data set with physical correlations included. In all cases, unique solutions were 

obtained at the 99.9% probability level, except with the 81 km baseline where a unique 

solution was obtained at the 96% probability level. This decrease in probability is due to 

the relatively short observation time span for that baseline (2.6 hours). In all cases, the 

probability level used to scale the hyperellipsoid was 99.999%. 

6.2.1 Results forTI 4100 Data 

Three baselines of lengths 20, 60 and 81 km were processed. The observation time spans 

for these baselines were 4.7, 3.2 and 2.6 hours, respectively. These three baselines are 

part of the Juan de Fuca network observed in 1986 (Kleusberg and Wanninger, 1987). 

The surface meteorological data were available and used in modelling the tropospheric 

delay. With the TI 4100 receivers, the maximum number of the satellites at any epoch is 

four. Although this may require more epochs to obtain a unique solution, the processed 

data was observed under low ionospheric activities which means less epochs are required 

to find the unique solution. The results for the three baselines are summarized below. 

For each baseline, the whole data set was first processed to obtain reference values as 

described above. Unique solutions were obtained for the 20 and 60 km baselines at the 

significance level of 0.001. However, for the 81 km baseline, a unique solution was 

obtained at the 0.04 significance level. This increased significance level is mainly due to 

its relatively short observation time span (2.6 hours). Subsets of each of these data sets 

were also processed to obtain solutions at the 5%, 1% and 0.1% significance levels. 

Tables 6.1 through 6.3 show the resulting estimated real ambiguity parameters in cycles 

(Columns 2 and 3) obtained from DIFGPS with and without physical correlations 

included. It should be noted that the values shown in Columns 2 and 3 represent the 

estimated real ambiguity parameters minus the most likely integer ambiguity parameters. 
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In other words, if the estimated ambiguity parameters are close to the most likely ones, 

they appear in the tables as close to zero values. It can be seen from the tables that the set 

of integers obtained from direct rounding of the estimated real ambiguities does not 

necessarily agree with the most likely set of integers. It can also be seen that neglecting 

the physical correlations does not significantly affect the estimated real ambiguities. The 

reason could be that the errors are averaged out. Also shown in these tables are the 

corresponding integer search ranges (Columns 4 through 7). The integer search ranges 

represent possible candidates for each of the ambiguity parameters. In other words, they 

represent all integer sets inside the hyperbox which encloses the hyperellipsoid. The 

search ranges are generally larger when the physical correlations are included. This is 

due to the larger standard deviations obtained when the physical correlations are included 

as discussed below. As mentioned before, the length of data (LD) shown in these tables 

represents the required data length in minutes to obtain a unique integer set of 

ambiguities at the 5% significance level. 

Table 6.1 Estimated Real Ambiguities and the Search Ranges for a 20 km Baseline 

Real Ambiguities (eye) Search Range 

<:\, = 0.05 math. corr. math & ph math. corr. (a =l.E-5) math & ph (a =l.E-5) 

LD*=42 LD*=52 mm. max. min. max. 

#I 0.33 0.43 -5 6 -5 6 

#2 0.32 0.54 -7 8 -8 9 

#3 -0.10 -0.05 -3 2 -3 3 

* LD is the length of data in minutes. 
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Table 6.2 Estimated Real Ambiguities and the Search Ranges for a 60 km Baseline 

Real Ambiguities (eye) Search Range 

a,= 0.05 math. corr. math&ph math. corr. (a =l.E-5) math & ph (a =l.E-5) 

LD*=52 LD*=90 min. max. min. max. 

#1 0.16 -0.04 -2 3 -4 3 

#2 -0.47 -0.17 -4 3 -4 3 

#3 -0.70 -0.09 -4 3 -3 3 

* LD is the length of data in minutes. 

Table 6.3 Estimated Real Ambiguities and the Search Ranges for an 81 km Baseline 

Real Ambiguities (eye) Search Range 

a,= 0.05 math. corr. math & ph math. corr. (a =l.E-5) math & ph (a =1.E-5) 

LD*=80 LD*=158 

#1 0.11 -0.10 

#2 -0.14 -0.24 

#3 -0.25 -0.21 

#4 -0.09 -0.21 

#5 NA** -0.31 

#6 NA** 0.16 

* LD is the length of data in minutes. 

**Not available at this time. 

min. 

-2 

-2 

-7 

-4 

NA** 

NA** 

max. min. max. 

2 -5 5 

1 -3 2 

7 -14 13 

4 -9 9 

NA** -8 8 

NA** -3 3 

Tables 6.4 through 6.6 show the final constraint solution after fixing the ambiguities for 

the three baselines. In these tables, the first column indicates whether the physical 

correlation is included or not. The second column shows the required data length to 

obtain a unique solution at a certain probability level. The third column shows the 

significance level used for each processing. The fourth column represents the final 

constraint solution, based on the fixed ambiguities, less the reference truth for the 

coordinates of the remote station. The fifth column represents the resulting standard 
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deviations scaled by the square root of the a posteriori variance factor for the remote 

station coordinates. 

Table 6.4 Effect of Physical correlations on a 20 km Baseline 

Software Length Signif. Coordinate Standard 
Used of Data Level Differences (em) Devs. (mm) 

minutes a, ~ I).Y tlZ crX crY crZ 

DIFGPS 42 0.05 -0.8 -0.3 -0.6 6 4 3 math. corr. 

DIFGPS 48 0.01 -0.7 -0.4 -0.6 5 3 3 math. corr. 

DIFGPS 50 0.001 -0.8 -0.4 -0.6 5 3 3 math. corr. 

DIFGPS 280 0.001 -0.1 -0.2 0.3 2 2 2 math. corr. 

DIFGPS 52 0.05 -0.9 -0.5 -0.6 9 5 5 math & ph 

DIFGPS 56 0.01 -1.1 -0.5 -0.6 9 6 6 math & ph 
DIFGPS 60 0.001 -1.2 -0.5 -0.6 9 6 6 math & ph 

DIFGPS 280 0.001 0.0 0.0 0.0 2 2 3 math & ph 

For the 20 km baseline, the ambiguity parameters were identified correctly rather than as 

most likely after only 11 epochs (11 minutes), if the physical correlations were included. 

However, without physical correlations, the ambiguity parameters were identified 

correctly after 12 epochs. In both cases, the ratio between the smallest a posteriori 

variance factor and the second smallest a posteriori variance factor was just above one. 

Without physical correlations included, the ambiguity parameters were uniquely obtained 

after 42, 48 and 50 minutes at 0.05, 0.01 and 0.001 significance levels, respectively. 

However, with physical correlations included, they were obtained after 52, 56 and 60 

minutes at 0.05, 0.01 and 0.001 significance levels. For the 60 km baseline, without 

physical correlations, data lengths of 52, 55 and 77 minutes were needed to obtain a 
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unique solution at the same significance levels mentioned above. However, with physical 

correlations included, they were 90, 96 and 104 minutes. For the 81 km baseline, with 

physical correlations neglected, the lengths of data required to obtain a unique solution at 

the above mentioned significance levels were 80, 83 and 88 minutes. If physical 

correlations were included, the only unique solution obtained was at 0.04 significance 

level. To obtain this solution, it was necessary to process the whole data set. It is 

obvious that, for all of the three baselines, including the physical correlations requires 

more data to obtain a unique solution. 

Table 6.5 Effect of Physical correlations on a 60 km Baseline 

Software Length Signif. Coordinate Standard 
Used of Data Level Differences (em) Devs. (mm) 

minutes 0., L1X t!Y !:1Z crX crY crZ 

DIFGPS 52 0.05 -3.7 -1.4 3.3 6 4 5 math. corr. 
DIFGPS 55 0.01 -3.6 -1.3 3.1 6 4 5 math. corr. 
DIFGPS 

77 0.001 -3.7 -1.0 2.9 6 4 5 math. corr. 

DIFGPS 193 0.001 -0.4 -0.1 0.3 3 2 3 math. corr. 
DIFGPS 90 0.05 -4.6 -1.7 4.2 12 8 10 math & ph 
DIFGPS 96 0.01 -4.3 -1.6 4.2 11 8 9 math & ph 
DIFGPS 104 0.001 -4.8 -1.6 4.0 9 6 7 math & ph 
DIFGPS 193 0.001 0.0 0.0 0.0 5 4 4 math & ph 

As shown in Tables 6.4 through 6.6, including the physical correlations has no 

significance influence on the resulting coordinates. Again, the reason could be that the 

errors are averaged out. However, neglecting the physical correlations can significantly 

affect the resulting covariance matrix of the estimated parameters. 
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Table 6.6 Effect of Physical correlations on an 81 km Baseline 

Software Length Signif. Coordinate Standard 
Used of Data Level Differences (em) Devs. (mm) 

minutes a, d)( !J..Y !J..Z oX crY crZ 

DIFGPS 80 0.05 -0.2 1.3 0.8 4 4 5 math. corr. 

DIFGPS 83 0.01 -0.1 1.3 0.8 3 4 5 math. corr. 

DIFGPS 88 0.001 0.0 1.3 0.7 3 3 5 math. corr. 
DIFGPS 158 0.001 -0.5 -0.6 -0.8 3 3 4 math. corr. 

DIFGPS 158 0.04 0.0 0.0 0.0 5 6 8 math & ph 
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Figure 6.1. Effect of Physical Correlations on the Accuracy Estimation 

for a 20 km Baseline 

Examining the resulting standard deviations of the coordinates of the remote station, 

Tables 6.4 through 6.6 show that in all cases neglecting the physical correlations leads to 

smaller standard deviations compared to the ones obtained with physical correlations 
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included. In other words, neglecting the physical correlations leads to an overly 

optimistic covariance matrix. Figures 6.1 and 6.2 show the resulting standard deviations, 

obtained with and without physical correlations included as a function of the observation 

time span for the 20 km and the 60 km baselines. 
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Figure 6.2. Effect of Physical Correlations on the Accuracy Estimation 

for a 60 km Baseline 

6.2.2 Results for Other Data Sets 

Three other data sets for baselines of lengths 13, 55 and 90 km were also processed. The 

13 km baseline was observed in 1992 with Ashtech receivers. The 55 km baseline was 

observed in 1993 with a Trimble receiver at one end and a Rogue receiver at the other. 

The 90 km baseline was observed in 1993 with the Trimble receivers. The observation 

time spans for these three baselines were approximately 1.1, 2.5 and 3.5 hours. The 
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surface meteorological data were not available and default values of 1010 MB for 

pressure, 20° C for temperature, and 50% for relative humidity were used. 

The results for these baselines are given in Tables 6.7 through 6.12. The contents of 

these tables can be described the same way as the case of TI 4100 data. As before, for 

each of the three baselines, the whole data set was first processed to obtain the reference 

values. Unique solutions were obtained at the 0.1% significance level. Also subsets of 

these data sets were processed to determine the required data length to obtain a unique 

solution at the 5%, 1% and 0.1% significance levels. Tables 6.7 through 6.9 summarize 

the results for the estimated real ambiguity parameters and the corresponding search 

ranges. These tables are based on a 5% significance level. 

Table 6.7 Estimated Real Ambiguities and the Search Ranges for a 13 km Baseline 

Real Ambiguities (eye) Search Range 

Q.. = 0.05 math. corr. math & ph math. corr. (a =l.E-5) math & ph (a =l.E-5) 

LD*=19 LD*=47 min. max. min. max. 

#1 -0.52 -0.38 -4 3 -9 8 

#2 -1.27 -0.65 -8 5 -15 14 

#3 -0.78 -0.48 -5 4 -10 9 

* LD is the length of data in minutes. 

As with the case of TI 4100 data, no significant influence of neglecting or including the 

physical correlations on the estimated real ambiguity parameters. Note that the relatively 

big difference between the estimated real ambiguity parameters obtained with and 

without physical correlations included in Table 6.7 is due to the relatively short data 

length when physical correlations were neglected. It is again obvious that the set of 

integers obtained from rounding the estimated real ambiguity parameters to the nearest 

integers does not agree with the most likely set of integers. 
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Table 6.8 Estimated Real Ambiguities and the Search Ranges for a 55 km Baseline 

Real Ambiguities (eye) 

a,= 0.05 math. corr. math & ph 

LD*=44 LD*=76 

#1 -0.52 -0.70 

#2 -0.02 o.o 
#3 -0.01 -0.15 

#4 -0.22 -0.46 

#5 NA** -0.72 

* LD is the length of data in minutes. 

** Not available at this time. · 

Search Range 

math. corr. (a = l.E-5) math & ph (a =l.E-5) 

min. max. min. max. 

-25 24 -27 26 

-4 4 -4 4 

-5 5 -5 5 

-18 18 -19 18 

NA** ** -23 22 NA 

Table 6.9 Estimated Real Ambiguities and the Search Ranges for a 90 km Baseline 

Real Ambiguities (eye) Search Range 

0, = 0.05 math. corr. math & ph math. corr. (a =l.E-5) math & ph (a =1.E-5) 

LD*=l80 LD*=l80 min. max. min. max. 

#1 -0.62 -0.67 -3 1 -3 2 

#2 -0.64 -0.68 -2 1 -2 1 

#3 -0.55 -0.55 -1 0 -1 0 

#4 -0.30 -0.25 -2 2 -2 2 

#5 -0.30 -0.37 -2 2 -3 2 

#6 -0.59 -0.54 -2 1 -2 1 

* LD is the length of data in minutes. 

The final constraint solutions for this group of baselines are shown in Tables 6.10 through 

6.12. For the 13 km baseline, without physical co~elations, the data length required to 

get the unique solution at the 5%, 1% and 0.1% significance levels were 19, 24 and 25 

minutes respectively. However, with the physical correlations included, the required data 
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lengths were 47, 60 and 62 minutes, respectively. For the 55 km baseline, with physical 

correlations neglected, subsets of data with lengths 44, 50 and 54 minutes were required 

to obtain the unique solution at the 5%, 1% and 0.1% significance levels, respectively. 

With physical correlations included, the required data lengths were 76, 82 and 84 

minutes, respectively. The analysis of the last baseline in this group, the 90 km baseline, 

shows that the required length to obtain a unique solution at the 5% significance level 

was 180 minutes, whether the physical correlations were included or not. This could be 

due to the large sampling interval for this baseline. Details about the effects of the 

sampling interval on the ambiguity resolution and the accuracy estimation are given in 

the next section. 

Table 6.10 Effect of Physical correlations on a 13 km Baseline 

Software Length Signif. Coordinate Standard 
Used of Data Level Differences (em) Devs. (mm) 

minutes 0, ~ ilY !:J.Z oX crY crZ 

DIFGPS 19 0.05 -0.8 -1.3 0.8 2 4 3 math. corr. 

DIFGPS 24 0.01 -0.2 -0.2 0.1 2 4 3 math. corr. 
DIFGPS 25 0.001 -0.2 -0.2 0.2 1 4 3 math. corr. 
DIFGPS 66 0.001 -0.2 0.0 0.3 1 2 2 math. corr. 
DIFGPS 47 0.05 -0.3 -0.5 0.5 5 15 12 math & ph 
DIFGPS 60 0.01 -0.1 0.3 0.2 4 12 10 math & ph 
DIFGPS 62 0.001 0.0 0.3 0.0 4 12 10 math & ph 
DIFGPS 66 0.001 0.0 0.0 0.0 4 12 10 math & ph 

As shown in Tables 6.10 through 6.12, the effect of including or neglecting the physical 

correlations on the resulting coordinates does not seem to be significant. However, 
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neglecting the physical correlations leads to smaller standard deviations than the ones 

obtained with physical correlations included. 

Table 6.11 Effect of Physical correlations on a 55 km Baseline 

Software Length Signif. Coordinate Standard 
Used of Data Level Differences (em) Devs. (mm) 

minutes ~ ~ t1Y tlZ crX crY crZ 

DIFGPS 44 0.05 -2.1 -3.3 1.4 4 5 8 math. corr. 
DIFGPS 50 0.01 -2.2 -3.3 2.0 3 5 7 math. corr. 
DIFGPS 54 0.001 -2.2 -3.2 2.0 3 5 6 math. corr. 
DIFGPS 148 0.001 0.1 0.0 0.0 2 4 3 math. corr. 
DIFGPS 76 0.05 -2.0 -2.8 2.5 5 9 7 math & ph 
DIFGPS 82 0.01 -1.8 -2.7 2.4 5 9 7 math & ph 
DIFGPS 84 0.001 -1.8 -2.7 2.3 4 8 6 math & ph 
DIFGPS 148 0.001 0.0 0.0 0.0 4 6 5 math & ph 

As shown in Table 6.1 0, the ratio between the standard deviations obtained without and 

with physical correlations included can reach up to 6. With the 55 km and the 90 km 

baselines (Tables 6.11 and 6.12), the ratio is not as large as the 13 km baseline. This is 

again due to the relatively large sampling interval of these two baselines. Figures 6.3 and 

6.4 show the resulting standard deviations obtained with and without physical 

correlations included for the 13 and the 55 km baselines. 
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Table 6.12 Effect of Physical Correlations on a 90 km Baseline 

Software 
Used 

DIFGPS 
math. carr. 

DIFGPS 
math. carr. 

DIFGPS 
math. carr. 

DIFGPS 
math. carr. 

DIFGPS 
math & ph 
DIFGPS 

math & ph 
DIFGPS 

math & ph 

DIFGPS 
math & ph 
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Figure 6.3. Effect of Physical Correlations on the Accuracy Estimation 
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for a 55 km Baseline 

6.3 Effect of Sampling Interval 

It has been shown in Chapter 3 that the carrier phase double difference observations are 

positively correlated over a time period of about 20 minutes. However, this correlation 

decreases exponentially to a high degree of approximation. It is expected that as the 

sampling interval increases the degree of correlation between the observations of 

different epochs decreases without physical correlations. In other words, a more realistic 

covariance matrix for the estimated parameters is expected as the sampling interval 

increases. To confirm this, the 13 km baseline presented in Section 6.2.2 was processed 

again using different sampling intervals. The sampling intervals used in the analyses 

were the original 20 seconds, 1 minute, 2 minutes, 5 minutes and 10 minutes, 

respectively. The observation time span was one hour for all the cases. To be able to 
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compare the results, the analyses were performed with and without physical correlations 

included. 

Figure 6.5 shows the resulting standard deviations for the three components of the remote 

station coordinates as a function of the sampling interval. As expected, as the sampling 

interval increases, the standard deviations obtained without physical correlation 

approaches the ones obtained with physical correlations included. However, with 

physical correlations included, the values of the standard deviations do not change 

significantly as the sampling interval changes. Furthermore, with 10 minutes sampling 

interval, the difference between the values of the standard deviations obtained with and 

without physical correlations included is only 1 mm in each component. If this difference 

is considered negligible for some applications, the 10 minutes sampling interval is 

considered optimal. Nevertheless, the optimum sampling interval varies from one 

baseline to another. 
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The same data sets described above were used to test the effect of sampling interval on 

the ambiguity resolution. Figure 6.6 shows the ratio between the second smallest a 

posteriori variance factor and the smallest a posteriori variance factor for the two cases of 

neglecting or including the physical correlations. Also shown are the values of the F-

distribution ~F 12 given in the expression (5.36). The significance level used is 0.05. v, v, Q.. 
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Figure 6.6. Effect of Sampling Interval on the Ratio Between the Second Smallest 

a posteriori Variance Factor and the Smallest a posteriori Variance 

Factor for a 13 km Baseline 

For small sampling intervals, if the physical correlations are neglected, the ratio between 

the second smallest a posteriori variance factor and the smallest a posteriori variance 

factor becomes much larger than the value of ~Fv, v,a..12. This means the null hypothesis 

described in Section 5.3 can pass the test easily. However, as the sampling interval 

increases the degrees of freedom decrease and the value of ~F 12 increases. On the 
V, V, a.. 

contrary, with physical correlations included, the ratio is just above the value of ~F 12 V, V,Q.. 

for small sampling intervals. As the sampling interval ·increases, the ratio between the 
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second smallest a posteriori variance factor and the smallest a posteriori variance factor 

changes with a rate higher than that of ~F 12• This is true for a sampling interval of 
V, V, Q.. 

up to 5 minutes. 

It should be noted that as the significance level decreases the value of ~F 12 increases. v, v,a.. 

For a sampling interval of 10 minutes the degrees of freedom for the above data set 

become 12. Therefore, for a significance level of 0.001, the value of ~F 12 becomes v, v, Q.. 

8.09. This means a unique solution cannot be obtained from either cases of neglecting or 

including the physical correlations. This is, however, not true for smaller sampling 

intervals. An exception to this is the data set with 20 seconds sampling interval and the 

physical correlations included. 

6.4 Effect of Correlation Time 

For all the analyses presented so far in this chapter, the physical correlation was modelled 

using the general exponential covariance function with correlation time of 263 seconds 

(Table 3.4). However, as shown in Section 3.2.1, different correlation times are obtained 

for different baseline lengths. If the actual correlation time is larger than the correlation 

time of the general covariance function, then using the latter leads to smaller standard 

deviations than the true ones. On the other hand, if the correlation time of the general 

covariance function is larger, using it leads to larger smaller standard deviations than the 

true ones. The same 13 km baseline presented above was reprocessed to test the effect of 

varying the correlation time on the resulting standard deviations. Based on Table 3.1, the 

proper correlation time for baselines in the range from 10 to 20 km is 341 seconds. 

Figure 6.7 shows the standard deviations of the estimated parameters as a function of the 

sampling interval for the correlation times of 263 seconds and 341 seconds, respectively. 

It can be seen that if the proper correlation time is used, an increase of about 20% in each 

component of the resulting standard deviations is obtained. The difference, however, 
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decreases with a large sampling interval because the observations are less correlated and 

the effect of including the physical correlations decreases as explained in the previous 

section. 
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Figure 6.7. Effect of Varying the Correlation Time on the Accuracy 

Estimation for a 13 km Baseline 

As shown in Tables 3.1 through 3.3, there is no particular trend for the correlation times 

as a function of the baseline length. If the 20% increase discussed above can be 

considered insignificant, then using the general covariance function is more appropriate. 

6.5 Effect of Scaling the Covariance Matrix 

As shown in Section 6.2 above, neglecting the physical correlations yields an overly 

optimistic covariance matrix for the estimated parameters. To account for the neglected 

physical correlations, some of the available GPS software packages scale the optimistic 

covariance matrix. However, the scale factor is not guaranteed to work properly 
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(Craymer et al., 1990). If the scale factor is too small, optimistic results are expected. If 

it is too large, it leads to pessimistic results. 

Two baselines of lengths 13 and 55 km were processed with both DIFGPS with physical 

correlations included and the Ashtech software GPPS 5.0 (Ashtech, 1993). Figures 6.8 

and 6.9 show the standard deviations for the components of the remote station 

coordinates obtained with both softwares. It can be seen that for all components, the 

standard deviations obtained with the GPPS software are larger by a factor of two or 

more than those obtained with DIFGPS. This shows the importance of modelling the 

physical correlations. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary and Conclusions 

This research was conducted for two purposes. The first purpose was to model 

empirically the temporal physical correlations in order to develop a more realistic 

covariance matrix for the GPS carrier phase double difference observations so that a 

trustworthy accuracy estimation for the estimated parameters could be obtained. The 

second objective of this study was to develop an efficient ambiguity resolution technique 

and to study the effect of the physical correlations on the· ambiguity resolution and the 

accuracy estimation. 

7.1.1 Modelling the Physical Correlations 

Developing the empirical covariance function which accounts for the temporal physical 

correlations was based on the analysis of the double difference adjustment residuals 

obtained without physical correlations included. The adjustment residuals were used to 

generate a series of autocovariance functions for each double difference series and also 

crosscovariance functions among the double differences. This was done using a total of 

47 baselines of lengths up to 100 km. The least squares technique was then used to 

develop an empirical covariance function which best fits the estimated covariances. For 

Ll and L2 data, the exponential function was found to give the best least squares fit (the 
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least a posteriori variance factor) for the majority of the baselines. However, for L3 

(ionosphere free) data, the exponential function gave the best least squares fit for all the 

baselines. 

The analysis indicated that the estimated parameters of the tested empirical functions 

show small variations. On the other hand, no particular trend was seen for these 

parameters. For this reason, a general autocovariance function which is valid for the 

range up to 100 km was developed. It was found that the empirical exponential function 

always gives the best fit for either Ll, L2 or L3. The correlation times (the 1/e point) for 

the general autocovariance function are 263, 270 and 169 seconds for Ll, L2 and L3, 

respectively. It was also found that the GPS double difference observations are positively 

correlated over a time period of about 20 minutes. Neglecting this correlation in the least 

squares adjustment of carrier phase double difference yields an overly optimistic 

covariance matrix for the estimated parameters. 

It was shown that only the autocovariance function needs to be developed. The 

crosscovariance function can, in fact, be derived from the autocovariance function. This 

was confirmed mathematically and with simulated GPS data. As a result, the complete 

covariance matrix can be formed using a simple empirical exponential model. 

The empirical exponential covariance function was used to modify the covariance matrix 

of the carrier phase double difference observations. It was shown that, although the 

inclusion of physical correlations leads to a fully populated covariance matrix, using the 

empirical exponential covariance function yields a block diagonal weight matrix. As a 

result, great savings in both the required computer memory and the computation time can 

be obtained. 
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7.1.2 The Effect of the Physical Correlations 

A modified sequential least squares adjustment algorithm incorporating the fully 

populated covariance matrix of the carrier phase double differences was developed. 

Based on the least squares adjustment, the estimated real ambiguity parameters and their 

covariance matrix can be obtained. To obtain the most likely integer values for the 

ambiguities, at a certain probability level, the covariance matrix for the ambiguities was 

used to form a confidence region of a hyperellipsoid around their estimated values. This 

confidence region was used to search for the likely integer values of the ambiguity 

parameters. The use of Cholesky decomposition to break the covariance matrix of the 

ambiguities was found useful in speeding up the search time. Another least squares 

adjustment, which introduces the most likely ambiguity parameters as functional 

constraints, was performed to obtain the final solution. 

Data of several baselines of different lengths observed under different ionospheric 

activities were analyzed to verify the validity of the developed technique. It was found 

that neglecting the physical correlations does not affect the estimated real ambiguity 

parameters significantly. However, at the same probability level, the size of the 

confidence hyperellipsoid is smaller without the physical correlations. If the physical 

correlations were included, a longer data length is required for the ambiguity parameters 

to be resolved at a high probability level. As the sampling interval increases, resolving 

the ambiguity parameters requires more or less the same data length whether the physical 

correlations were included or not. This situation was faced with the 90 km baseline 

where the same data length (180 minutes) was required to resolve the ambiguities at the 

95% probability level in the cases of neglecting or including the physical correlations. 

In all cases, neglecting the physical correlations leads to smaller standard deviations than 

those obtained with physical correlations included. In other words, neglecting the 

physical correlations yields an overly optimistic covariance matrix for the estimated 
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parameters. For this reason, some of the available GPS software packages scale the 

resulting optimistic covariance matrix to compensate for neglecting the physical 

correlation. Two baselines of lengths 13 and 55 km were processed using DIFGPS with 

physical correlations included and the Ashtech software GPPS 5.0. It was shown that the 

ratio between the resulting standard deviations obtained from GPPS exceeds the 

corresponding ones obtained from DIFGPS by a factor of two or more. For this reason it 

is very important to include the physical correlations in any software package and not to 

rely on using a scale factor. 

As the temporal physical correlations may be described by an exponential function, it was 

expected that, without physical correlations included, using a large sampling interval can 

lead to a more realistic covariance matrix. A 13 km baseline was processed using 

sampling intervals varying from 20 seconds up to 10 minutes. It was found that if the 

physical correlations included, small variations occur. However, without physical 

correlations, the standard deviations were much smaller than the ones obtained with 

physical correlations included. As the sampling interval increases the standard deviations 

obtained without physical correlations tend to be more realistic. For this particular 

baseline, if a 10 minute sampling interval was used, the difference between each 

component of the standard deviations obtained with and without physical correlations 

included is 1 mm. 

The effect of varying the correlation time on the obtained covariance matrix was also 

tested. A 13 km baseline was processed using two different correlation times. The first 

correlation time was 263 seconds and corresponds to the general covariance function 

(Table 3.4) while the second one was 341 seconds and corresponds to the covariance 

function for the class of baselines in the range from 10 to 20 km. An increase of about 

20% in the standard deviations was obtained when using a correlation time of 341 

seconds. However, as there is no particular trend shown for the correlation times as a 
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function of the baseline length, it is more appropriate to use a general covariance function 

which is valid for any baseline length in the range up to 100 km. 

7.2 Recommended Future Work 

Further research is needed in the following areas: 

• In this investigation, all the analyses were performed using a zero cut-off angle. 

Testing the effect of other cut-off angles on the resulting empirical covariance 

model is recommended. 

• It was shown that sampling interval is expected to affect the results of the 

ambiguity resolution and the accuracy estimation if the physical correlations are 

neglected. For this reason, tests of the best sampling interval using a sufficient 

number of baselines so that neglecting the physical correlation may be considered 

negligible is recommended. 

• Further study needs to be done on the effect of varying the correlation time on the 

accuracy estimation using a sufficient number of baselines. 

• In this investigation, the resulting adjustment residuals used to model the temporal 

physical correlations were based on modelling the tropospheric delay using the 

Hopfield model. No ionospheric modelling was done. Modelling the ionospheric 

delay using an empirical model and testing whether the developed empirical 

covariance model will be affected is recommended. 

• In this investigation the unmodelled tropospheric and ionospheric delays were 

accounted for stochastically through empirical covariance function. The 

development of an empirical covariance function to account for the multipath 

effect using short baselines of several meters apart is recommended. 
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To find the inverse of the matrix (4.35), let us rewrite it again as 

M f 1 M fr-1 M fr M~+1,1 ft1M fr+2 M 

f1 M M fr-2 M fn-1 MT 
1 n+1,2 frM ft1M 

fr-1 M fr-2 M M f1 M~+1,n ffM fr M 
Ct= 

fr Mn+1,1 fn-1 M fi Mn+I,n Mn+I,n+I fi Mn+I,n 
2 (IV.l) 

I n+I,2 fi Mn+1,n 

ftiM fr M ffM f1 M~+1,n M fi M 

ft2 M fn+1 M 
1 f 3 M I 

2MT fi n+I,n f1 M M 

Comparing (IV.l) with (4.7), we can denote the upper left comer of (IV.l) by C 1I, the 

lower left comer by C2I, and the lower right comer by C22· The inverse of the upper left 

comer is given by (4.26). The inverse of (IV.l) may be written in a similar way to (4.8) 

using (4.9) through (4.12). First the lower right part can be obtained as 

fr-1 M fr M~+l,1 fr+l M 
-1 

fr+2 M M f 1 M 

fiM M fn-2 M 1 fn-1 MT I n+1,2 f" M 1 fr+1 M 

X ri 
fn-I M fr-2 M M f1 M~+1,n f 2 M fiM 1 1 

ff Mn+1,1 fn-1 M f1 Mn+1,n Mn+1,n+I fi Mn+1,n 
2 

1 n+1,2 f1 Mn+I n , 

ff+I M ffM ffM f1 M~+1,n M f 1 M 
(IV.2) 

Performing the multiplication of the first two matrices, we get 

(IV.3) 
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where, 

G1 = [ft2M fr+1M ··· ffM ffM~+l,n f1M] [o ··· -f1P R{1 T T ]T 
R21 R31 ' 

(IV.4) 

a 2 =[fr+2M fr+1M ... ffM f?M~+l.n f 1 M] [o ... o R21 RI2 RI2r. 
(IV.5) 

G3 =[fr+2M fr+1M ... ffM ffMJ+l,n f!M][o ··· 0 R31 R32 Rj3r 
(IV.6) 

The elements G 1, G2 and G3 can be computed as follows 

a,= -fi M P + ff M(Q11 + E{ R33 E,) + fr MJ+,,n<Q21 + EI R33 E1) 

-f1 MR33 E1 

=-ff MP+ff M(P+ff M·'MJ+l,n Q22 Mn+l,n M'1)+ff M[ff (1-ff} (MP 

-MJ+l,n Q2 Mn+l,n M-l)T] R33 E,- ff MJ+1,nQ22 Mn+1,n M-1 

+ff(l- ff}MJ+1,nQ22 Mn+1,n R33 E1- f1 M R33 E1 

= ff(l- ff)M P + fr MJ+1,nQ22 Mn+1,n M-1 + ff(M- ff MJ+1,nQ22 Mn+1,n M-1 

2 T 3 2MT M -(1- f1 )Mn+1,nQ2 Mn+1,n)R33 E1 + f1 (1- f1) n+l,nQ22 n+l,n R33 E1 

-f1 M R33 E1 

= ff(l- ff)M P + ff(l- ff}MJ+1,nQ22 Mn+1,n M-1 

+ff(l- ff}2MJ+1,nQ22 Mn+l,n R33 E1- fl (1- f{) M R33 E1 

2 2 T -1 
=fl[fl(l-fl)(MP-Mn+l,nQ22Mn+l,nM )] 

+fl[ff(l-ff}2MJ+1,nQ22 Mn+1,n -(1-f{) M] R33 E1 

Substituting E 1 and E2 in (4.32), it is not difficult to proof that the term between brackets 

1 R-1 . equa s 33 , 1.e. 

(IV.7) 
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or, 

= fiM(-flM"1M!+l,nQzz) + ff M!+l,nQ22- f1 M R33 Ez 

+fiM[ff(l- ff)(M P- M!+l,nQzzMn+l,nM-1)]TR33E2 

+ff M!+l.nQzz + f[ M!+l,n[fl (1- ff) M!+l,n Qzz]TR33 Ez 

= -fi M R33 + fiCI- ff}CM!+l,nQz Mn+l,n)R33 

-fiCI- ff)M!+l,nQ2 Mn+l,n R33 + f1 M R33 

As before, the term between brackets is equal to the inverse of R33. i.e. 

Substituting for G1, Gz, and G3 in (IV.3), we obtain 

Pzz = _1_ M-1 = P, 
1- f 2 

1 

(IV.8) 

(IV.9) 

(IV.lO) 

which is identical with the original case as if no changes has happened to the observed 

satellites. Similarly, the lower left part of the inverse of the covariance matrix, P21 , can 

be obtained as 

(IV.ll) 
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or, 

P21 = [0 · · · 0 0 0 P) (IV.12) 

Using (4.9), the upper left part of the inverse of the covariance matrix, P 11 , can be 

obtained as 

p -f1P 0 0 0 0 

-f1P (1 + f~) p 0 0 0 0 

0 0 (1 + f~) p -f1P 0 0 
p11 = 

0 0 -f1P Ru RT RT 
21 31 

(IV.13) 

0 0 0 R21 Rzz 
T 

R32 

0 0 0 R31 R32 RR33 

where, 

RR33 = R33 + f 1 P (IV.14) 
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