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ABSTRACT 

With the advent of artificial satellites, it is possible to determine relative positions of points 

to an accuracy of a few parts per million (ppm). The coordinate differences can, in tum, be 

transformed into differences in latitude, in longitude and in height on a ellipsoid, provided 

that their positions relative to the geocentric cartesian coordinate system are known. For 

some applications, such as mappings and vertical crustal movements, orthometric heights 

or height differences are needed. In order to convert these ellipsoidal heights to orthometric 

heights, geoidal heights are.required. 

A software has been developed to determine geoidal height differences utilizing 

terrestrial gravity anomalies. The approach used here is the ring integration which consists 

of compartments formed by the intersection of rings and lines radiating out from the point 

of interest. In this approach, the integration is regarded as the summation of all the 

predicted gravity anomalies at the midpoints of the compartments. The difference of 

summation of all the predicted gravity anomalies between endpoints of the line is then 

multiplied by a constant (0.0003 m/mGal) to obtain the geoidal height difference for the 

inner zone contribution. The remote zone conttibution is obtained using the high order 

geopotential model- RAPP180. The contributions from these two zones are then summed 

up to obtain a full geoidal height difference. 

The results generated from this software are compared to the results obtained from 

other independent methods, such as GPS/Levelling method and the UNB Dec.'86. A 

mean-relative-accuracy (MRA) of 1.7 ppm was obtained between the ring integration 

method and the GPS/Levelling method using a cap size of radius, 'l'o = 0.6" radius. The 

comparisons showed that an improvement of the geoidal height difference was possible 

when the inner zone contribution was added to the remote zone contribution - improve from 

MRA of 4.0 ppm to MRA of 1. 7 ppm. The mean-relative-accuracy between the ring 

integration method and the UNB Dec.'86 approach is 0.92 ppm using a cap radius of 0.4". 
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CHAPTER ONE 

INTRODUCTION 

The determination of heights has been dated back to its origin in ancient Egypt when the 

Great Pyramid of Khufu ( 480 feet high) at Giza was built in 2700 BC [Encyclopaedia 

Britannica, vol.17, pp 828, 1978]. In the 2nd century BC, the Greeks introduced an 

instrument called "the astrolabe" for measuring the altitudes of stars, or their angle of 

elevation above the horizon. Surveyors of ancient times in the 15th century BC determined 

level lines by primitive instruments, which consisted of a tube turned upward at both ends 

and filled with water, used for establishing the grades of canals. In other words, heights or 

height differences were being determined with reference to equilibrium water levels. 

With the advance of science, mankind has realized that heights determined from the 

form of an equilibrium liquid swface (which we now call the 'geoid') is dependent on the 

earth's gravity field, and hence the concept of height roused instinctively in the ancient days 

could be exactly defmed in a physico-mathematical form as the vertical distance between the 

equipotential surfaces of the earth's gravity field [Biro, 1983]. 

The determination of height has always had a major impact on the economy of 

human society. With human's ability to determine height, the shape of the earth is no more 

a mere imaginary concept, such as the belief man once held that the earth was a flat disc 

floating on an infinite ocean. Height determination is important because it forms the 
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foundation of many scientific theories, and it is a factor in the management of economic 

life, and in the scheme and performance of all sorts of technical designs. 

With the launching of artificial satellites in space, the determination of the geoid has 

been one of the prime goals of geodesy. For example, the Global Positioning System 

(GPS) provides coordinate differences in a geocentric cartesian coordinate system. These 

coordinate differences can , in turn, be converted to differences in latitude, in longitude and 

in height on an ellipsoid, provided that their positions relative to the geocentric cartesian 

coordinate system are known. However, these ellipsoidal heights are not those heights 

(known as orthometric heights) which are obtained from spirit levelling. 

Height has been defined in many ways depending on the reference surface that is; 

chosen. For example, normal height uses a quasigeoid as the reference surface, while 

orthometric and dynamic heights use the geoid [Vanicek and Krakiwsky, 1982]. 

However, it is not the intention here to give anything more than a brief review of heights. 

Nassar [ 1977] and Carrera ( 1984] discussed many different types of height systems and 

their reference surfaces, and interested readers can refer to them. 

For mapping and other purposes, orthometric heights are used exclusively in 

practice rather than geometrical ellipsoidal heights [Schwarz et al., 1987]. Since heights 

obtained from artificial satellites are ellipsoidal heights (h), it is required to transform these 

heights into orthometric heights (H) using the well known relationship: 

H = h- N 1.1 

where N is the separation between the geoid and the ellipsoid, known as the geoidal height. 

Likewise for points, whose heights obtained from spirit levelling, require geoidal heights to 

transfer to ellipsoidal heights for the reduction of distances on the ellipsoid. When 
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orthometric heights, rather than the ellipsoidal heights, are used for the reduction of 

distance, approximately one part per million of relative error could be introduced for every 

6.4 metres of height [Vanicek and Krakiwsky, 1982]. Therefore, determining geoidal 

height with respect to some reference surface is necessary for the accurate reduction of 

ellipsoidal height to orthometric height or reduction of surface distance to reference surface. 

Other than the above reductions, geoidal heights have been used in many other 

applications, such as in studies related to sea surface topography, vertical crustal 

movements, postglacial deformations, etc. Scientists have often turned their attention to 

explore paths which could extend our knowledge of geoidal heights in surveyed areas to 

that in unsurveyed areas based on the fundamental assumption that the geoid in the 

unsurveyed areas bears specific predictable relationships to that in the surveyed areas. 

The arrival at such a solution has been achieved utilizing various data such as (1) 

deflection of the vertical, (2) surface gravimetry data, (3) satellite-derived information 

related to the gravitational field of the earth, (4) or the combination of using data (1), (2) 

and (3). Data (2) are used to determine the short wavelength of the geoidal height using the 

classical Stokes's formula and data (3) is obtained by employing different techniques of 

satellite tracking which represent the long wavelength components of the geoidal height. 

Tools, such as Global Positioning Systems(GPS), transits and geodetic measurement 

instruments, can be used to obtain geoidal height, either directly or indirectly. The GPS 

satellite positioning and the Doppler satellite positioning determine the ellipsoidal height. 

Together with orthometric height known from spirit levelling, the geoidal height can be 

derived as mentioned above. 

The method of mixing the lower degree components of geopotential from satellite 

technique with the terrestrial gravity data has led to a new breed of geoid determination 
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called the "combination solution". This method has been tested very extensively 

throughout the United States and Canada and has shown a substantial improvement in the 

accuracy of the geoidal height where gravimetric data were available in sufficient coverage 

along with satellite data [Engelis, et al.(1984, 1985), Schwarz, et al.(1987), Mainville 

(1987), Vanicek and Kleusberg (1987), Rapp and Kadir (1988)]. The fundamental idea of 

this theoretical relation is to construct a means to unite the gravity anomalies derived from 

surface gravity measurements with the geopotential coefficients derived from observations 

of the satellite orbit. 

Geoidal height computation had been carried out by various researchers, such as 

Schwarz and Sideris'[1985], Kearsley [1985, 1986a, 1986b] and Vanicek and Kleusberg

[1986]. The results of the various authors differ with respect to the gravity data available' 

and the methods employed for handling the non-uniform distribution of the data. Vanicek 

and Kleusberg produced geoidal heights by combining GEM9 solutions with terrestrial 

gravity anomaly derived results, while Schwarz and Sideris computed geoidal heights 

using a combination of a 36 by 36 geopotential model (GEM 1 Ob ), terrestrial gravity 

anomalies and terrain effects. The traditional "Ring" method had been used by Kearsley to 

. obtain geoidal heights. He combined the results obtained from terrestrial gravity anomalies 

with the results obtained from the 180 by 180 geopotential model (RAPP180). In other 

words, the geoidal height is obtained by two parts: (a) the inner zone contribution which is 

derived from terrestrial gravity anomalies, and (b) the remote zone contribution which is 

derived from geopotential.coefficients. 

This thesis has two main objectives, namely: to develop a software package for 

computing geoidal height difference using terrestrial gravity anomalies; and to compare its 

results (after adding to the remote zone contribution) with the results which are derived 

from other independent methods. The algorithm used to develop the software is very 
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similar to that of the investigation conducted by Kearsley [1985, 1986a, 1986b] where 

geoidal height computation for the inner zone contribution is carried out by ring integration. 

Theoretically, gravity anomaly data are supposed to be known at every point on the earth's 

surface. However, these are still missing over large parts of the oceans and lands. This 

method, at which geoidal height is computed in two parts, can overcome the problem in 

getting all the data. One such approach for computing the inner zone contribution is simply 

to divide the surface of the earth into rings and each ring into compartments. The other 

approach is the division of the earth's surface in terms of "fixed blocks" which are formed 

by grid lines of geographical coordinates. Since, in practice, not all the compartments 

would have gravity anomalies, predicted values in ·the centers of all compartments are 

therefore being sought to facilitate the process. These predicted values in each of the 

compartments are then summed up to give geoidal height difference for the inner. zone 

contribution. 

In Chapter Two, some terminology which is used in this thesis will be defined and 

each of the terms will be defmed in a separate section. 

Chapter Three describes Vanicek et al.'s [1986] method using the classical Stokes 

approach to compute geoidal heights. The derivation of formulas for the Stokes(UNB) 

approach will be shown in the first four sections. The purpose of this is to employ their 

results (called the "UNB Dec.'86" solution) for comparison with the ring integration 

solutions in the later chapter. This UNB Dec.'86 solution is computed using the 

University of New Brunswick's program, named "GIN" [Chang et al., 1986]. Effects on 

geoidal heights, such as the "squashing" of masses onto the geoid, the changes of mass 

distribution which is called the "indirect effect", and the air masses on the surface of the 

earth, are reviewed in last three sections. 
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Chapter Four describes the types of data and the numerical integration techniques 

which are used in the computation for the UNB Dec.'86 geoid. The numerical integration 

has been carried out In three different zones: namely, the innermost zone, the inner zone 

and the outer zone. Each of these zones will be discussed in a separate section. 

Chapter Five is devoted to the development of the ring approach. This chapter is 

divided into four sections. The first section shows the theory and the techniques applied 

for geoidal height computation. An algorithm for generating the rings is then designed in 

the second section and this section is further subdivided into three subsections for the 

inner, middle and outer sub-zones contributions. The third section presents the method of 

arithmetic mean used for prediction of mean gravity anomalies. 

Chapter Six focuses on the results of the computations and compares the derived 

geoidal height differences obtained from the Ring Integration approach with the results 

obtained from other independent methods. This chapter is composed of three sections: the 

first section discusses the Manitoba GPS Network from which its results .are used as the 

control data; in the second section, intercomparisons between the results obtained from the 

UNB approach, the ring integration approach and the GPS approach will be shown; and 

finally, the error analysis is discussed briefly in the last section. 

Chapter Seven summarizes the contribution of the development of the computer 

software. The conclusion is based on the results of this investigation. Furthermore, 

recommendations are discussed for improvements of the softwares and its results. 

Finally, the list of references is found toward the end of this thesis. 
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CHAPTER TWO 

DEFINITIONS 

Before we proceed any further, let us define some of the terminology in this chapter. 

Although one might find that the terms are interrelated, they will be discussed separately 

wherever possible. 

2 .1 Gravity Potential of the Earth 

The earth we live on is a rotating body with its axis of rotation passing through the center 

of mass. Because of the presence of the earth's mass and the motion of its rotation, a body 

at rest with respect to the earth's surface would feel two forces acting on it. One of the 

forces is known as the gravitational force Fg. which is caused by the earth's mass, and the 

other force, called the centrifugal force F c' is caused by the earth's rotation. The sum of 

these two forces is known as the gravity force Fs [Vanicek and Krakiwsky, 1982]. 

F = Fg + F. s c 2.1.1 

In practice, it is customary to deal with accelerations, rather than with forces. Since the 

gravity force is a product of acceleration a and mass mas we know from Newton's s 

Second Law: 
F s = ma 5 , 2.1.2 
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we can then treat m as the scale of the gravity force and put more emphasis on the gravity 

acceleration. This gravity acceleration a , as can be seen from equation (2.1.1 ), can also s 

be expressed as the sum of the gravitational acceleration ag and centrifugal acceleration ac : 

2.1.3 

When a mass m, which has a gravity force F s acting upon it, is moved through a distance 

h, the change in kinetic energy which takes place in a straight line in the direction of the 

force is known as work done. The negative amount of the work done to overcome this 

force is known as the gravity potential Wt' The gravity potential in here can be expressed 

as the sum of the gravitational potential Wg and centrifugal potential We: 

W=Wg+W. t c 2.1.4 

2. 2 The Gravity Potential of an Ellipsoid 

Mathematically, the earth is approximated by a biaxial geocentric ellipsoid with the axis of 

rotation coinciding with the earth's principal polar axis of inertia [Vanicek and Krakiwsky, 

1982]. This ellipsoid is chosen in such a way that the deviation of its II normal field II from 

the actual gravity field is close to zero. The gravity potential of the ellipsoid is known as 

normal potential U and its gradient VU is known as the normal gravity "f. 

y = vu. 2.2.1 

The normal gravity at any point P(cp,A.) on the reference ellipsoid can be determined through 

the International Gravity Formula 1980: 

'Yo = 978.0327(1 + 0.0053024 sin2 cp - 0.0000058 sin2 cp) gal 2.2.2 

with the maximum error of 1J!Gal [Moritz, 1980]. 
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2. 3 Disturbing Potential 

For every point P which lies on and outside the surface of the earth, there exists two 

potentials:the normal gravity potential U and the actual gravity potential W. The deviation 

of the normal gravity potential U from the actual gravity potential W is called the disturbing 

potential or anomalous potential and is denoted as T: 

T = W-U. 2.3.1 

2. 4 Refer·ence Ellipsoid 

A reference ellipsoid is an equipotential surface of the field which generates the normal 

gravity as in equation (2.2.2). It is also a mathematical representation of the size and the 

shape of the earth. Its center is assumed to coincide with the center of mass of the earth 

and its mass is assumed to be equal to the mass of the earth. Its axis of rotation and its 

angular velocity are identiCal to those of the earth, too. Commonly, the ellipsoid is defined 

by its major-semi axis and its flattening. 

For the last 100 years, geodesists have been estimating the best fitting ellipsoids to 

the geoid. The question then is: which reference ellipsoid should we adopt to obtain the 

best representation of the earth? Heiskanen and Moritz [1985] claim that it is the one 

whose sum of the squares of the deviations of the geoid from the ellipsoid is the minimum. 

With today's modern technologies, the determination of the flattening of the earth 

can be obtained very accurately from the perturbation of artificial satellite orbits [V anicek 

and Krakiwsky, 1982]. Highly precise measurements of the earth's semi-major axis can 

be acquired from distances measured by instruments based on electromagnetic waves. 
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Since instruments and techniques are improving every day, the fitting of the ellipsoid on the 

geoid is improving, too. Today, the adopted reference ellipsoid is the Geodetic Reference 

System 1980 (GRS 80) with its ellipsoidal parameters defmed as follows [Moritz, 1980]: 

semi-major axis, a = 6,378,137 metres, 

reciprocal flattening, 1 If = 298.257 222 101, 

geocentric gravitational constant, GM = 3 986 055 X 108 m3s-2, 

angular velocity, w = 7 292 115 X 10-11 rad s-1. 

2.5 Geoid 

We had spoken of the gravity potential in the previous section. If this potential is constant 

on a surface, we called this surface an "equipotential surface". There are, of course, 

countless numbers of equipotential surfaces when one selects different values for the 

potentials. Out of all these countless number of equipotential surfaces, the one which 

coincides, more or less, with the surface of the oceans is called the "geoid". This defmition 

was given by J.K.F Gauss as being the mathematical figure of the earth [Vanicek and 

Krakiwsky, 1982]. 

The geoid represents a horizontal surface at sea level. It continues beneath the 

continents so as to encircle the earth. The height of the terrain above this geoid is called the 

orthometric height or the dynamic height. The distance between the ellipsoid and the geoid 

is called the geoid undulation or simply "geoidal height". One of the reasons that the 

ellipsoid is often referred to is because its gravity field is analytically defined, i.e., it is easy 

to handle mathematically. The deviation of the actual gravity field on the geoid from the 
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normal gravity field on the ellipsoid, as it has been mentioned in the last section, plays an 

imponant role in geodesy, e.g. height determination, orbit's penurbation, etc. Merry 

[1975] in his Ph.D: thesis had mentioned some of the influences of gravity fields on the 

instruments in the field of surveying. It is clear by now that the geoid is physically 

meaningful as opposed to the ellipsoid which is a mathematical representation. It is indeed, 

the use of the geoid that simplifies geodetic problems and makes them accessible to 

geometrical intuition [Heiskanen and Moritz, 1985]. 

2. 6 Gravity Anomaly 

In the previous sections, the geoid and the ellipsoid were defined. Now let us consider 

gravity observed on the surface of the earth. When observed gravity is reduced onto the 

geoid at point P 0 , it is called the reduced actual gravity. This point is projected down 

along the ellipsoid normal onto the ellipsoid surface at point Q whose normal gravity is 

obtained using equation (2.2.2). The difference between the reduced actual gravity and the 

normal gravity is known as the gravity anomaly. 

A double projection has been performed from one surface (the geoid) to another 

(the ellipsoid). First of all, the observed gravity at point P on the surface of the earth is 

projected onto the geoid along the plumb line obtaining a point P 0 ; and secondly, the 

gravity at this projected point P 0 is then projected funher onto the reference ellipsoid 

surface by means of the straight ellipsoidal normal getting a point Q. This double 

projection is known as "Pizzetti's projection" [Heiskanen and Moritz, 1985]. The reason 

that this double projection is adopted is because there is an exact correspondence between 

the gravity at point P (on the surface of the earth) and the gravity at an ellipsoidal point Q 

(on the ellipsoid). 



1 2 

Gravity anomalies are the basic material of gravimetry. According to Picket al. 

(1973], gravity anomalies were introduced by geophysicists for the study of the internal 

structure of the earth, particularly the earth's crust. The advantage of working with gravity 

anomalies, rather that gravity, is that the gravity anomaly values are small and comfortable 

to handle and thus easy for computations. Although the internal structure of the earth is not 

important to geodesists, they do take the advantage of the small values of the gravity 

anomalies for their works and such gravity anomalies have been used very widely in the 

classical terrestrial geodesy [V anicek, 1971]. 

Since gravity anomalies depend on the reference ellipsoid that is used, many 

different values for the gravity anomalies can be obtained for a point. Therefore, one has to 

choose the appropriate reference ellipsoid for his work. 
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CHAPTER THREE 

THE UNB APPROACH 

The basic mathematical formula for computing a geoidal height N with respect to a 

reference ellipsoid using gravity anomalies was derived by an English physicist named 

George Stokes in 1849. Since the gravity anomaly !:lg at one point does not relate directly 

·to the geoidal height at the·samepoint, an integration must be·performed using all the

gravity anomalies over the whole surface of the earth. Unfortunately, gravity has not been 

observed all around the earth, especially at the ocean. Stokes's formula, hence, had hardly 

any practical value at the time of its derivations. It was necessary, then, to develop other 

techniques which could combine all available information in a world geodetic system. 

Such available information includes the astrogeodetic deflections of vertical, astronomic 

and geodetic measurements and gravity measurement~. Today, with the launching of 

earth's artificial satellites, information derived from the satellites can be used to compute 

geoidal heights. 

Since the problem with using the classical Stokes's formula is that all gravity 

anomalies over the earth must be known, it is necessary to modify this formula in such a 

way that the integration is carried out only over a spherical cap of a limited radius (e.g., lifo 

= 6.0) as were done by Vanicek et al.[l986]. However, when this integration is 

restricted within a spherical cap, the N obtained this way is not the full geoidal height but 

rather a partial contribution to N. In order to recover the other portion of N, long 

wavelength contribution has to be added to it to obtain a full geoidal height. In other 
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words, the combination of surface gravity with satellite derived information to compute a 

full geoidal height. The GEM9 geopotential coefficients were used to compute the long 

wavelength of "UNB Dec.'86" Geoid. The first, second and third sections will review the 

derivation of the Stokes formula, the spheroidal kernel and the modified spheroidal kernel, 

respectively. The succeeding three sections describe the topographic effect, the indirect 

effect and the annospheric effect on the geoidal height. 

3.1 The Stokes Formula 

As mentioned in' the previous chapter, the disturbing potential T(Q) was defined as the

difference between the actual gravity potential W(Q) and the normal gravity potential U(Q) 

at point Q (See Figure 3.1) : 

T(Q) = W(Q) - U(Q), 3.1.1 

where point Q is given by geocentric radius r, geocentric latitude l/J, and geocentric 

longitude ll. The normal gravity potential U(Q) at point Q can be developed in a Taylor's 

series with respect to point Q0 on surface S3: 

3.1.2 

where 71 and v are the normals to surfaces S1 and S3, respectively and N (geoidal height) 

is the distance between Q and Q . Substituting for U(Q) in equation (3.1.1) from equation 
0 

(3.1.2), we get 

= (dU(Qo)) T(Q) W(Q) - U(Q0 ) - N dv cos(7J, v) - . . . . 3.1.3 



Geocentric 
reference 
ellipso~m~--~~--~-----

Qo 

Figure 3.1: The Disturbing Potential [W(Q) - U(Q)]. 

Since [Torge, 1980] 

then 
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3.1.4 

T(Q) = W(Q) - U(Q0 ) + N J(Q0 ) cos(T], v) - . . . . 3.1.5 

The angle (17, v) is very small (less than 1 minute); therefore solving equation (3.1.5) for N, 

we arrive at: 

N - 3.1.6 

When solving the geodetic boundary-value problem, one of the assumptions made is that 
' the potential on the reference ellipsoid U(Qj is equal to the potential on the geoid W(Q) 

[Torge, 1980, p.171]. Then the second term of the right hand side of equation (3.1.6) will 

become zero. What remains now in equation (3.1.6) is: 
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N - 3.1.7 

which is known as the "Bruns's formula". 

Since the disturbing potential cannot be measured, the earth's gravity is the main 

source to be used for computing the geoidal height N. In order to be able to use this, we 

must differentiate equation (3.1.1) with respect to the direction of the external normalT]: 

= 
dW(Q) 

d1J 
(}U(Q) 

d1J 
3.1.8 

Since the derivative of the actual gravity potential with respect to the normal 1] is the 

negative earth's gravity, and the derivative of the normal gravity potential with respect to 

the normal vis the negative normal gravity: 

-

= - g(Q), 

_ (}U(Q) = 
av - J(Q) . 

Then, equation (3.1.8) can be rewritten as follows: 

= -g(Q) + '}(Q), 

3.1.9 

3.1.1 0 

3.1.11 

where both g and r are evaluated on surfaces W = W(Q) and U = U(Q), respectively. By 

expanding J(Q) into a Taylor's series with respect to point Q , we arrive at: 
0 

3.1.12 
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After neglecting the higher order term of equation (3.1.12) and substituting it into equation 

(3.1.11), we arrive at the following form: 

3.1.13 

Since 

!1g(Q) = g(Q) - J<Qo) 3.1.14 

is the gravity anomaly as defined previously, !1g can be replaced in equation (3.1.13) to 

yield: 

(J[(Q) 
= - !1g(Q) + idK~o)) cos(T],V). 

t11] 
3.1.15 

Therefore 

!1g(Q) = 
(!f(Q) 

+ idK~o)) cos(1J,V). 
Jrt 

3.1.16 

It should be noted that the direction of the radius vector r is almost the same as that of the 

normal to the ellipsoid: i.e. 

a . a . a 
Jrt=av=Jr· 

Since cos( 1J, v) = 1 for small7J and v, the second term in equation (3.1.16) can be replaced 

by 

-~ T. 
r 3.1.17 



Equation(3.1.16), therefore, can be rewritten as follows: 

tig(Q) = ilr(Q) 
~ ~ T(Q). 

It is called the fundamental gravimetric equation of geodesy. 
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3.1.18 

The disturbing potential can be expanded into a series of spherical harmonics, with 

the omission of the zero and the first degree harmonics: 

T(Q) = 3.1.19 

where R is the geocentric radius of the earth and Tn is the Laplace's surface harmonics of 

degree n. The reason for omitting the zero and the first degree harmonics is that we assume 

the mass of the geoid equals to the mass of the equipotential ellipsoid and the center of the 

ellipsoid coincides with the center of mass of the earth, respective! y. 

Taking the derivative of T(Q) with respect tor, we get: 

ilr(Q) 
~ 

] "" {R}n+l = -- L - (n+J) Tn(Q). 
r n=2 r 

3.1.20 

By substituting equations (3.1.19) and (3.1.20) into equation (3.1.18), we arrive at: 

tig(Q) 1 "" {R}n+l - L - (n-1) Tn(Q). 
r n=2 r 

3.1.21 

Since we are dealing with the geoid, i.e., the geocentric radius is equal or replaced by the 

mean radius of the earth R, then equation (3.1.21) becomes: 

tig(Q) = ~ ~ (n-1) Tn(Q). 
n=2 

3.1.22 
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The gravity anomaly L1g(Q) can also be represented by an harmonic expansion 

[Torge,l980, p.157]: 

t1g(QJ = l t1g,lQ). 
n=2 

A comparison between equations (3.1.22) and (3.1.23) indicates that 

n-1 
'Vn: t1gn(Q) = ---r- Tn(Q). 

Solving for Tn(Q),we have 

Then from equation(3.1.19) and setting r = R, 

T(Q) = 2. Tn(Q) 
n=2 

= R i t1gn(Q) 
n=2 n-1 . 

3.1.23 

3.1.24 

3.1.25 

3.1.26 

The gravity anomalies t1gn(Q) can be computed by integrating t1g over the whole earth's 

surface [Torge, 1980] : 

= 2n+I II ~ f1g P n( COS 'llf) ds , 3.1.27 

where 111 = cos-1 (sin 1/> sin 1/>.. + cos 1/> cos 1/> .. cos( A .. -A) ) is the spherical distance 

between the point of interest Q( 1/>,A) and the point Q*( 1/>* ,A*) representing the surface 

element ds, and Pn(cos 'llf) is the Legendre's polynomial of degree n. Replacing t1gn(Q) 

in equation (3.1.26) by equation (3.1.27), we obtain: 

R "" II 2n+l 
T(Q) = 4tr: n~2 n-1 t1g Pn(cos ljl) ds. 3.1.28 
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Exchanging the order of the summation and the integration yields: 

R Jf "" 2n+1 
T(Q) = 4JC n~2 n-1 Pn(COS ljl) 11g ds, 3.1.29 

or equivalently 

T(Q) 
R = 4 1C If S(ljl) 11g ds, 3.1.30 

where 

S(ljl) = I. 2n+l Pn(cos ljl) 
n=2 n-1 

3.1.31 

is called "Stokes's function". The geoidal height N, can be determined by applying the 

Bruns's formula: 

N(Q) = T(Q) = _!i_ If S(ljl) 11g ds. 
r 4nr 

3.1.32 

Equation (3.1.32) is known as "Stokes's formula". 

3. 2 The Spheroidal Kernel 

Today, in most practical cases, the integration in equation(3.1.32) is carried out in two 

parts: the "low degree" surface~ and the "high degree" surface /XI. 

3.2.1 

where 

e 
Ne(Q)- R If 2, 2n+1 Pn(Cos ljl) 11g(Q*) ds, 

4JCY n=2 n-1 
3.2.2 
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Sf!I(Q) = _B._ IJ £ 2n+l Pn(COS ljl) ~(Q*) ds. 
4Jry n=e+t n-l 

3.2.3 

The detennination of the low degree gravity field constituents from satellite observations is 

given in terms of an expansion of the gravitational potential in spherical harmonics as 

follows [Vanicek et al., 1986]: 

where GM is the product of the gravitational constant and the mass of the earth; a is the 

mean earth equatorial radius; ~m and r:m are the normalized spherical harmonic 

functions, J nm and Knm are the potential coefficients. The potential field model which is 

chosen for comparison is the GEM9 and is complete through degree E = 20. This V is 

then transformed into T using equation (3.1.1) where W T is the sum of the gravitational 

potential and the centrifugal potential 'Z': 

T = Wr - U = (V + Z) - U. 3.2.5 

With T known and by applying the Bruns's formula, the geoidal height N can be calculated 

as follows: 
e 20 n , 

N = Nzo(t/>,1) = R L L ({m r:m + ~m rnm)l, 3.2.6 
n=2 m=O 

with R being some mean earth radius and J:U, = lnm for n ~ 2,4,6 and m ~0. 1:un for n = 

2,4,6 and m = 0 is given in Vanicek et al. [1986]. The accuracy of Nzo depends on the 

variances and covariances of the potential coefficients J:W, and Knm. Using the law of 

error propagation, it is discovered that the geoidal height error induced by GEM9 potential 

coefficient errors can be up to about 1.75 metres. A well-known computer program 

(subroutine POT), prepared by Tscherning et al.[1983] can be used to generate Ne. 
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The evaluation of high order surface from terrestrial gravity data is the main issue of 

this section. This technique was developed by Vanicek et al. [1986] to overcome the 

incomplete area of integration effect by limiting it to a spherical cap around the point of 

interest This high order surface's kernel: 

= ; 2n+l P ( ) 
nj+1 n-1 n COS V'. ' 3.2.7 

which is called "the spheroidal kernel", converges to zero more rapidly than the ordinary 

Stokes's function, S(lji)[Vanicek and Kleusberg, 1987] for an increasing spherical distance 

60 
s,N) 

40 

Figure 3.2:.Comparison Between S('lf), S2ofVI) and S~ (lj/)[after Vanicek and Kleusberg 

(1986,p.130)]. 
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Figure 3.2 shows the functions S('lf), S2of'lf) and s; ('If), where s; ('If) is the modified 

stokes function which will be described in the next section. It therefore can be concluded 

that the truncation errors of the spheroidal integration at a certain spherical distance are 

smaller than those of the ellipsoidal integration. The spheroidal kernel S2of'l') not only has 

a smaller truncation error but also has eliminated the effect of the spherical approximation 

used in the Stokes's formula. The long wavelength's effect would be lessened when this 

method is used and this leads the spheroidal kernel to attenuate the disadvantage of 

inhomogeneous coverage of data around the earth. The integration, thus, does not have to 

be performed globally, but rather within a small spherical cap. 

3. 3 The IVlodified Spheroidal Stokes's Function 

By limiting the size of the integration area, the accuracy obtained through the 

spheroidal kernel is degraded. This problem leads to a modification of the spheroidal 

kernel using the Molodenskij's truncation coefficients. In other words, the spheroidal 

Stokes's function has to be modified in such a way that its accuracy is not lost. This 

"modified spheroidal kernel" s; ('If) is obtained through the following expression: 

3.3.1 

where 

* s e ('If) 
e 
~ 2i+l = £.- - 2- li Pi( cos 'If) 3.3.2 
i=() 

and li are the coefficients to be determined. The modification of the spheroidal kernel leads 

to the requirement that the low degree constituents must be subtracted from the terrestrial 
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gravity anomalies before the integration in equation(3.2.3) is preformed. By expressing 

the gravity anomalies in terms of spherical harmonics: 
00 

.1gftljf,a) = L .1gj{ljl,a) , 
i=f-+.1 

equation(3.2.3) can be rewritten as follows: 

Sti(Q) = 

3.3.3 

3.3.4 

By minimizing the truncation error of the high order surface and applying the 

Schwartz inequality, we come up with a condition: 

rr 
I s'; (ljl) P;( cos ljl) sinljl dljl = 0; 

lji=Vfo 

i = o,I, ... ,e. 3.3.5 

Making use of equations(3.3.1 ), (3.3.2) and (3.3.5), the following relationship is 

obtained: 

= 

Letting 

and 

rr 
I Slfljl) Pi( cos ljl) sinljldljl = 

ljl=llfo 

rr 
I P;(cos ljl) Pk.(cos ljl) sinljldljl = ei/c(ljlo), 

lji=Vfo 

3.3.6 

3.3.7 

3.3.8 



we have, 

Since 

e. 
2k+l = S(lfl) - k~l N Pk(cos 1ft), 

it can be substituted into equation(3.3.7) to obtain 

1r 

I [ S(lfl) 

Vf=V'o 

or equivalently 

e. 
2k+l . d 

k~2 k-l Pk(cos 1ft)} Pi( cos ljl) Slnljf 'If = 

25 

3.3.9 

3.3.10 

e. 
Q. (1f!o) = 
' 

tr 

I [S(lfl) Pi( cos 1ft) sinljldlfl 1 -
Vf=V'o 

tr e. . 
I L 2kk+1

1 Pk(cos 'If) Pi( cos 'If) sinljldlfl. 
lc=2 -

Vf=V'o 

Thus, from equation(3.3.9): 

tr e. 2k+l I [ S(lfl) Pi( cos 1ft) sin1jld1fl 1 - L N eik!1f/o). 
k=2 

3.3.12 

3.3.13 

The first term on the right-hand side is known as the "Molodenskij's truncation coefficient" 

[Vanicek and Krakiwsky, 1982]. Paul [1973] has written an efficient algorithm to compute 

the truncation coefficients. With the truncation coefficients computed, the Q~(ljl j can then 

be calculated from equation(3.3.13). The coefficient tt- which determined by substituting 

equations (3.3.13) into (3.3.9), can be used in equations (3.3.2) and (3.3.1) to obtain the 

modified spheroidal kernel. 
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3. 4 The Topographic Effect 

When solving for the geodetic boundary value problem, it is assumed that no masses 

should lie outside the geoid. So in other words, the masses outside the geoid have to be 

removed somehow by condensing them onto the geoid. However, the removal of the 

masses changes the gravity potential at the surface of the earth. That is, the observed 

gravity at a point on the surface of the earth is changed. This influence is known as the 

topographical attraction effect 8gt and has to be corrected for before the Stokes formula is 

applied. 

To show how these influences take place, let us take for example a value g of the 

surface gravity at point QA which is reduced to the geoid value gG at the point QG (See 

Figure 3.3) using the free-air gravity gradient ()g I ()H and the orthometric height H 

(expressed in metres): 

8gp = _3.K_H 
()H 

_ _ arH _ 
()H 

0.3086 H (mGal) , 3.4.1 

where the actual gradient is unknown and is replaced by the normal vertical gradient 

()yt()H. 

}.SN; 

Figure 3.3: The Relationship Between the Geoid, the Cogeoid and the Ellipsoid. 
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Once the gravity is reduced onto the geoid, it is now necessary to remove all the 

masses above the geoid. In order to do this, let us approximate locally the geoid by a 

tangential plane. Assuming that the density a of the topographical masses is constant, 

assign £to be the horizontal distance between the point QA where the correction is to be 

made for the topographic effect and the point Q8 where the mass is squashed. This is 

illustrated in Figure 3.4. The heights for point QA and Q8 are indicated by HA and H8, 

respectively. 

Figure 3.4: The Topographic Effect on the Computation Point [from Vanicek and 
Kleusberg ( 1987, p.88)]. 

Suppose that somewhere below Q8 , with height equal to H A + z is located a mass 

elementdm.: 

dm = p e da dE dz , 3.4.2 

where e is the distance, a is the azimuth and z is the height, reckoned at the geoid below 

QA. The gravity potential effect at Q by this mass would be: 

dw = Gdml L, 3.4.3 



28 

where L is the distance from Q to the point mass. When this mass element is removed by 

compressing it down onto the geoid, it causes the gravity potential at point Q to change to 

dw' = Gdm I L' . 3.4.4 

The observer at point Q will then feel a gravity change equal to the negative vertical gradient 

of the difference between dw and dw' : 

Sgt = -i G(dw'- dw)fh=O. 3.4.5 

By integrating over all the mass elements, the total change in gravitational attraction will be 

obtained. The approximation of equation{3:4.5) is simply stated below without proof: 

3.4.6 

where a is the azimuth. Interested reader may refer to Vanicek et al. [1986]. 

Since the data obtained can never be in a continuous form, equation(3.4.6) is then 

replaced by a discretized form: 

3.4.7 

where the bar denotes the mean value and ej is the distance between the jlh cell and the 

point of interest. The notation"a" is the size of the cell(5') in radian and the notation "H( 

is the topographical height The summation is extended over all the 5' by 5' cells. 
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3. 5 The Indirect Effect 

When we condense the topographic masses mathematically onto the geoid surface, the 

actual mass distribution is then changed, and hence the geoid changes. Thus, the surface 

we compute using the Stokes's formula is not the geoid, but a different surface called "the 

cogeoid". The vertical displacement between the geoid and the cogeoid is known as the 

"indirect effect", lN1D of the geoidal height (See Figure 3.3). 

Various authors have mentioned ways to compute the indirect effect for the geoid 

undulations [Vanicek et al (1986), Wichiencharoen (1982), Heiskanen and Moritz (1985), 

etc]. One of the methods used in Vanicek et al. [1986] is illustrated in Figure 3.5. 

Geoid 
..... --~-----------------------------------0' 

A 
Figure 3.5: The Indirect Effect on the Computation Point [from Vanicek et al.(1986]. 

Using the same procedure as in the topographic effect, the gravitational potential at . 
QA (the projection of QA) on the geoid, which is affected by a small mass element below 

Q8 , will be: 

w* = 1 

2n oo Hs 

Gu I I I L"1 e de da dz . 
a=O e;,o y=O 

3.5.1 



The same mass condensed onto the geoid has a potential of 

w"' = 2 

2n oo 

Ga I I HB de da . 
a=o e=0 
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3.5.2 

The change in the gravitational potential dWID is then the difference between w; and w; 
By taking the difference, one can derive: 

dW w"' - w"' ID = 1 2 3.5.3 

2 Ga 2n 00 fln - H~ 
= - 1CGaHA - 6 I ot ---=tl,-- dE da . 

a=O r..=o 
3.5.4 

Using Bruns's formula, the indirect effect can be determined: 

8Nw 
2 ~ Ga n 00 

- I I ----::;--- dE da 
6y a=O ~ t2 

3.5.5 

and this correction has to be added to the geoid undulation (evaluated by the Stokes 

integral), algebraically. 

In practice, discrete data are used Therefore, equation(3.5.5) is rewritten as 

- (1CGa) H2 _ GaR2 ~ ;-;2 2 e1 2 
8Nw = A L. Hi - HA.) I i cos t/J; a;, 3.5.6 

r 6r ; 

where fi;, HA, e;, are as in equation (3.4.7). 
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3. 6 The Atmospheric Effect 

One of the assumptions in solving for the geodetic boundary value problem is that 

no masses should lie outside the geoid. However, there exist air masses above the earth's 

surface. The attraction of these air masses on the geoid undulation is known as "the 

atmospheric effect" and it has to be taken into account in the correction to the free-air 

gravity anomalies in a similar way as that of the topographic masses. 

Ecker and Mittermayer [1969] have investigated this effect and the lAG [1971] has 

published tables for 8ga as a function of topographical height. It is found that for heights 

from 0 km to 4 km; the· atmospheric effect varies from :r0.87 mGal to +0.57 mGal,

respectively. From Figure 3.6, it should be noted that the effect of the atmosphere 

decreases as the height of the point increases . 

. 90 

.85 

c 
0 - .80 
(.) 
o(l) 
I.... -I.... «i .75 0 
u <.:I 

(.) 
E .._, .L 
b.O .70 

o(l) c.o ..t::. 
c. 
q) 

.65 0 

E -< 
.60 

.55 

.50 
.50 1.5 2 2.5 3 3.5 4 4.5 5 

Height ( l<m) 

Figure 3.6: The Atmospheric Effect Vs. Height [after lAG (1971)]. 
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In this chapter, only the data structure for the UNB approach is described. Other 

schemes are used by other people. In order to compare the UNB approach with the ring 

approach, it is necessary to describe the structure of the input data for both techniques. In 

the UNB approach as employed by Vanicek et al.[1986], three different types of data are 

used for the computation, namely: the point gravity anomalies, the 5 by 5 minute mean 

gravity anomalies, and the 1 by 1 degree mean gravity anomalies. Each of these types of 

data will be discusse4 separately below. 

4.1.1 Point Gravity Anomaly 

Two files of point gravity data are provided by the Division of Gravity, 

Geothermics and Geodynamics of the former Earth Physics Branch of Energy, Mines and 

Resources Canada [Vanicek and Kleusberg, 1987]. These two files were merged together 

to form 628,019 records which cover the area (land and sea) from 40" N to 80" Nand from 

218" E to 320" E [Vanicek et al.(1986)]. Each of these records consists of¢, A., flge, 
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a 11ge , H, aw The 11l is the difference between the free-air anomaly and the "Goddard's 

Earth Model 9" (GEM9) low order harmonic gravity anomaly. The observed value g is 

referred to the International Gravity Standardization Net 1971 (IGSN71) and r is referred 

to the Geodetic Reference System 1980 (GRS80). 

The structure of the data as employed by Vanicek et al.[1986] for the GIN program 

is shown in Figure 4.1. Twenty sequential access ftles of data have been created with each 

of the files covering a 10 degree (latitude) by 20 degree (longitude) area, except the 

rightmost files (east of A-=298.), which are 10 by 22 degrees. Ten minutes of each block is 

overlaid to the right and upper adjacent blocks (the shaded stripe). The data within each 

block is arranged in increasing-latitude in the northward direction and in increasing-

longitude in the eastward direction with points of equal latitude. 

ll8 10' lSI lO' 118 10' ' 198 10' 
Ill 0 

70 10' 
l 0 

60 10' 
6 0 

so 10' 
( 0 

40 

l I 23 lS 17 19 llO 

Figure 4.1: Structure of Point Gravity Anomaly Files [from Vanicek et al.(1986, p.40)]. 
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4.1.2 The 5' by 5' Mean Gravity Anomaly 

One direct access file has been created for the 5' by 5' mean gravity anomaly. This 

file has been subdivided into 200, go by go blocks as shown in Table 4.1. This file covers 

an area between 40°N and 56"N and between 214" E and 31g· E and consists of 9216 

records. In order to maintain a rough equi-areality, the size of the cells from 56" N to 76" 

N is elongated to 5' by 10' (consists of 46Qg records). Four degrees of each block is 

overlapped with the right and upper adjacent blocks. In each block, the records are 

arranged in the same way as in the point gravity anomaly. 

LONGITIJDE INTERV AI. LATITUDE INTERVAL 

214-222 40-48 
218-226 44-52 
222-230 48-56 
226-234 52-60 
230-238 56-64 
234-242 60-68 
238-246 64-72 
242-250 68-76 
246-254 
250-258 
254-262 
258-266 
262-270 
266-274 
270-278 
274- 282 
278-286 
282-290 
286-294 
290-298 
294-302 
298-306 
302-310 
306-314 
310-318 

Table 4.1: Structure of the 5' by 5' Mean Gravity Anomaly Files [from Vanicek et al. 
( 1986, p.42)]. 
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The 5' by 5' mean gravity anomalies are derived from the point gravity anomalies file using 

the plain arithmetic means. 3,000 additional means have been predicted by V anicek et 

al.[1986] for the empty cells. Each cell contains tlge (the mean free-air anomaly reduced to 

GEM9), a t.ge , and H. 

4.1.3 The 1 by 1 Degree Mean Gravity Anomaly 

The 1 by 1 Degree mean gravity anomaly data used in computing the "UNB 

Dec.'86" is "The January 1983 1 by 1 Degree Mean Free-Air Anomaly Data" 

which was provided by the Department of Geodetic Science and Surveying of Ohio State 

University (OSU). The area coverage for the data is: 30"N ~ tP ~ 80" N, 190" E ~A.::;; 

340" E. This data set consists of 7701 records, of which 185 hold no information, other 

than the heights. Using the plain arithmetic mean again, 24 of the 185 1" by 1" mean 

gravity anomalies have been predicted from existing point gravity anomalies [Vanicek et 

al., 1986]. Its standard deviation is taken as one half of the absolute value of the predicted 

mean gravity anomaly minus the GEM9 values and its height remains the same as the 

original height for the predicted cells. The rest of the 185 records are set with their tlge 

equal to zero and a t.ge equal to 50 mgal [Vanicek and Kleusberg, 1987]. 

4. 2. Numerical Integration 

The integration for the Stokes integral was performed analytically over the 

immediate neighborhood of the computation point. Because of the fact that the data 

collected are in a discrete form, which is suitable for digital computers, the integration was 

carried out in three different zones: namely, the innermost zone, the inner zone and the 
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outer zone. The innermost zone contribution is evaluated using point gravity anomalies 

and the inner zone contribution is determined employing the 5' by 5' mean gravity 

anomalies. The outer zone contribution is computed using the 1° by 1° mean gravity 

anomalies. 

4.2.1 The Innermost Zone 

The size of the innermost zone is 10' by 10' with its boundaries coinciding with the 

grid lines of the 5' by 5' gravity anomaly file. The computation point lies inside this zone, 

but not necessarily in the exact center. The innermost integration is given as follows-

[Vanicek et al., 1986]: 

R ,..,m -e 
NINM = - II ;)e L1g de, 

4Wf AJNM 

4.2.1.1 

where A INM is the area size of the innermost zone and de is an element of a spatial angle. 

By expressing equation( 4;2.1.1) in ellipsoidal coordinates cp,A. and transforming it onto a 

(x,y) mapping plane[See Vanicek et al.(1986) for details], this reads 

4.2.1.2 

In the innermost zone, the least-square estimates of the anomaly surface coefficients &i, 

i=0,1,2, ... ,5 are determined by fitting all the point gravity anomalies L1ge in the 10' by 10' 

square to a second-order algebraic surface. If there are not enough L1ge within this square, 

the number of coefficients is reduced to four. If L1ge are still not enough, the number of 

coefficients wil be reduced funher to three and the 5' by 5' mean gravity anomalies will be 

used instead of the point gravity anomalies [Vanicek and Kleusberg, 1987]. 



where 

The modified spheroidal Stokes function is approximated by: 

se ('If, lifo) = ~ - 3 Ln(i) + C{'lfo), 

e . = _ 4 _ L. 2z+l 
i=2 i-1 

e . 
L 2z;l tif'lfo). 
i=O 
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4.2.1.3 

4.2.1.4 

These two series are then substituted into equation (4.2.1.2). Neglecting the products of 

non-dominating terms, we get 

8 
NJNM = L N;, 

i=l 

where N. is the i'h term of the geoidal height contribution to the innermost zone. 
l 

4. 2. 2 The Inner Zone 

4.2.1.5 

The inner zone is the area enclosed by a rectangle of dimensions 2• by 2·, minus the 

innermost zone. The two parallels and the two meridians which bound this zone coincide 

with the boundaries of the 1• by 1• gravity anomaly file. Mean gravity anomalies of 5' by 

5' (or 5' by 10') are used in this zone. The integration for the inner zone is written as 

follows [Vanicek et al., 1986]: 

4.2.2.1 

where A IN is the area size of the inner zone. In practice, equation( 4.2.2.1) is expressed as: 

R L ..tn -e 2 
NIN = - I. ;)e (Vfi) L1g. cos~P; (5') 

4rcy i=l l 

4.2.2.2 



38 

and L is the total number of 5' by 5' cells. ~~is the mean gravity anomaly of the 5' by 5' 
1 

block and cos q,. (5'y2 is the area of the ;th individual cell in radians. In order to save 
I 

computation time, the modified spheroidal Stokes function for the inner zone contribution 

is approximated by a linear form: 

4.2.2.3 

where the coefficients (/30 ,{31, /32, {33) are solved by numerical computation. The 
:=::: 

approximation is obtained in such a way that S fits the modified Stokes function as well as 

possible. Tests have been confirmed that the use of this approximation gave an error of 

less than 1 centimetre [V anicek and Kleusberg, 1987] in the geoid. 

4.2.3 The Outer Zone 

Since it is not practical to consider the rest of the earth, the integration is limited 

within a selected spherical cap of radius( 'I' o>· !fie outer zone then lies between the outer 

limit of the spherical cap('l'0 = 6 ")and the outer limit of the inner zone. The 1° by 1" mean 

gravity anomalies were used in this zone. The geoidal undulation for the outer zone is 

determined simply by replacing the kernel sf( 'I') in equation (4.2.2.2) with its value at the 

center point of the 1" by 1° cell: 

R M ""' -e o2 - L. .) e ('I'J L1g. cosq>i (1 ) , 
4try i=l ' 

4.2.3.1 

where M is the total number of 1° by 1° cells, and cosq>i ( 1 }2 is the area of the cell. 

Similar to the evaluation of the inner zone, the approximated modified Stokes_ kernel 

(equation 4.2.2.3) is used for the computation of the outer zone. 



39 

Figure 4.2: The Innermost. the Inner and the Outer Zones [after Vanicek et al (1986, 
p.21)]. 
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CHAPTER FIVE 

RING INTEGRATION METHOD 

FOR 

GEOIDAL HEIGHT DIFFERENCE 

5.1 Ring Integration Technique for Geoid 
Computation 

The classical method of computing geoidal height is the well known ring integration. It is 

one of the earliest techniques developed before the coming of electronic computers. The 

computation is carried out by laying transparent ring templates over gravity maps and the 

mean values of the gravity anomalies in each of the compartments are estimated. The mean 

gravity anomalies are then transformed into geoidal height by some means. This method 

was abandoned for quite some time (due to heavy manual calculations involv.ement) till the 

emergence of GPS when new computational techniques required to compare precise 

geoidal height difference accuracies with GPS-derived ellipsoidal height difference 

accuracies [Engelis et al.(1985), Gilliland (1986) and Schwarz et al.(1987)]. This ring 

integration method has been used by Kearsley [1985, 1986a, 1986b, 1988b] for 

computing the inner zone contribution to geoidal height. His investigation using this 

approach has shown that a precision of± 5 em over 100 km could be achieved. Because of 

the possibility of achieving high accuracy, "Kearsley's method" was adapted to develop a 

software that could compute geoidal height differences by supplying the geographical 

coordinates. 
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The approach used in this method consists of a paragon of circular rings centered on the 

p6int of the interest Q, with lines radiating out from Q to intercept the arcs of the rings to 

form the compartments as shown in Figure 5.1. Each of these rings will be discussed in 

the later sections. 

Figure 5.1: The Ring Approach 

r.::-:::1 
t;:;:;:;:) 

Outer Sub-2oJW 
C om.part:JU:n.t 

H:id.dlr Su\-2oD.C 
C om.partzu:n.t 

I:D:ur Su\-2oD.C 
Com.pal'tzu:n.t 

Similar to the UNB approach, the geoidal height"N" for the ring approach is 

computed using terrestrial gravity data in a spherical cap( e.g., '1/fo = 1.0 ') surrounding the 

computation point for the inner zone contribution and from a set of potential coefficients for 

the remote zone contribution: 

N = NR + ON1, 5.1.1 
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where 

liN[ 
R 2n V'o 

= 4 I I .dg(ljl,a) S(lfl) sinlfl dlflda 
1t1 a=O yt=O 

5.1.2 

and 

R 2n n 
I I .dg(lfl,a) S(lfl) sinlfl dlfl da. 

4Tr1 a=OVfo 

5.1.3 

The first term on the right hand side of equation ( 5 .1.1) is the remote( or distant) zom 

contribution and the second term on the right hand side of equation (5.1.1) is the inner zont 

contribution. The best way to estimate the remote zone would be to use the result: 

determined from the perturbations in the orbits of artificial earth satellites. In this research 

the remote zone contribution is computed using high-order geopotential model such as tht 

Rappl80 model computed by Rapp(1981). According to Engelis et al.[l984], the remote 

zone can be expressed as: 

where R is the mean radius of the earth; 

r is the mean value of the gravity; 
.dg is the free-air anomaly; 
Qn. is the Mo1odenskij truncation function; 

5.1.4 

lfl0 is the spherical cap radius in which the anomalies are given; 
nmcu is the maximum degree of the potential coefficients being used; 

.dg n( t/J,A) is the fth degree harmonic of the gravity anomalies at latitude( t/J) 

and longitude( A.) and it is computed from given potential coefficients 
( a11171, bnmJ as follows: 

n 
.dgn{t/J,A) = L [a11171 cos mA. + b11171 sin mA.]P 11171(costfJ), 5.1.5 

m=O 

where m is the order of the Legendre's function P 11171( cost/J) . 
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An alternative way to detennine N in equation 5.1.1 is to use the geopotential model 

as a reference solution to which gravity anomalies are reduced [Torge(1980), Vanicek and 

Krakiwsky(1982), Schwarz et al.(1987) and Kearsley(1988)]: 

where 

and 

with 

Lig'(l{l,a) 

N = SNt.g + NGM• 

8Nt1g = 
R 2n lifo 

I I t1g'(Vf,a) S(Vf) sinVfdVfda 
4TCY a=O yt=O 

5.1.6 

5.1.7 

GM nmax n 
= - L L fanm cos mA. + bnm sin mA.]P nm(costfJ), 5.1.8 

yR n=2 m=O 

GM nmax n = Lig(l{l,a) - - 2 I, I, (n-1) fanm cos mA. + bnm sin mA.]P nm(costfJ). 
R n=2 m=O 

5.1.9 

Lig' is the reduced gravity anomaly generated by the same model as used in equation 

(5.1.8) and Lig is the terrestrial gravity anomaly; G is the gravitational constant and M is the 

mass of the earth. The rest of the notation has been defined previously. The second term 

on the right hand side-of equation(5 .1.9) can be computed by transforming the gravity 

disturbance (og) to gravity anomaly (Ag) in the subroutine POT written by Tscheming (see 

Appendix 1.9). 

The Stokes kernel in equation (5.1.2), however, is fairly difficult to interpolate 

especially when 1{1 approaches zero. Because of the non-linearity of Stokes function as 

discussed in Kearsley's paper [1986a], the use of F(Vf) 's function is proposed, (see Figure 

5.2) where: 

F(l{l) = S(l{l)sinl{l = 2cosf-sin~6sini-1 + cos1{1{5+3E""(sin~ + sin2 ~)}]. 
5.1.10 
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Figure 5.2: The F(lfl) 's Function. 

Replacing S(1f!)sin 1f1 by F(lfl) in equation (5.1.7), we get: 

R 2rc 'l'o 
lJN tlg = 4 I I L1g'(1f!,a) F(1f1) d1f1 da 

1C'Y a=O yt=O 

which is the foundation for the ring integration technique. 
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5.1.11 

5. 2 An Algorithm For Generating the Rings 

The inner zone contribution 

R 2rc Ylo 
lJN tlg = - I I t1g'(1f!,a) F(1f1) dlfl da 

41C'Y a=O yt=0 

5.2.1 

is computed by replacing the geoid with a sphere. Let's introduce a normal to the spherical 

surface at the point of interest (see Figure 5.3). 
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Figure 5.3: Division of Rings and Compartments 
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This spherical surface is then divided into e rings by introducing e -1 planes which are 

perpendicular to the normal. Each of these rings is then subdivided into equal 

compartments by planes passing through the normal at a chosen azimuth a.. Each of these 

compartments is formed in such a way that each contributes an equal amount per mGal to 

the liN L1g. 

Let us now denote Nc as the contribution to liN tJg from one of the compartments: 

5.2.2 

where ~ is the mean value of the reduced gravity anomaly in the compartment L11pi and 

L1aj are the radius and azimuth boundary limits bounding the compartment, respectively 

(see Figure 5.3). In other words, L1tf/i = tf/i+l- tf/i and L1aj = aj+J- aj are the sizes of the 

compartment. The rest of the parameters are the same as defined previously. 
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If L1a1 is set to a constant (for easy practical evaluation), then equation (5.2.2) can 

be written as follows: 

5.2.3 

with 

R 
~ = - L!a·. 

4ny 1 
5.2.4 

Since 'J:iJ is the mean value of the reduced gravity anomalies in a compartment, it can be 

taken out of the integral: 

ljlj+J 

Nc = ~ Tg'iJ f F(lj!) dljf. 5.2.5 
ljlj 

Kearsley [1985] solved the integral of equation (5.2.5) as follows: 

l/J(ljf) = r F(lj!) dljf = 1 + 4sinf - COSljf- A-B-C, 5.2.6 
0 

where 

A = 6 sin3(f), 

B = ~ sin2(f), 
c = ~ sin2ljf&[sin(f) + sin2(j)]. 

By expanding each of the above terms of equation (5.2.6) into its series and collecting the 

terms of equal powers together, we arrive at: 

5.2.7 
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According to Kearsley [1985], the terms in ytl or smaller were insignificant for yt< 2 ·, 

and could be ignored. 

Hence, equation(5.2.5) becomes: 

Nc 
__. 'l'i+l 

= ~ L1g;j [ I F(yr) dyr -
VIi 
I F(yr) dyr 1 5.2.8 

'lf=O yt=O 

5.2.9 

In order to generate the rings, a recursive technique is developed [Kearsley, 1985] using 

the following relationship: 

5.2.10 

* - --where Nc is Nc divided by L1g;j expressed in terms of metres per mGal of L1g;j. Since 

the inner zone is divided into three different sub-zones (see next section), the size of L1yr is 

different from one sub-zone to another and therefore it is required to solve for ('lfi+J) by 

substituting equation (5.2.7) into equation (5.2.10): 

~: From equation (5.2.10) 

= N* 
c ' 

5.2.11 

or equivalently 

5.2.12 

where L1<f>; = 41{Vf;+J) - 4J(yr;) is the thickness of the compartment in a sub-zone and it is 

constant within a sub-zone but changes from one sub-rone to another (see Appendix I.6). 
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Step 2: dividing both sides by ~: 

N* 
[4>(ljli+J)- 4>(ljli)] = ; I 5.2.13 

~: replacing 'l'i+l by 'l'k and substituting equation (5.2.7) into equation (5.2.13): 

5.2.14 

Step 4: collecting ith and fclh terms together: 

5.2.15 

~: dividing both sides of equation (5.2.15) by 2 and rearranging the terms: 



49 

This can be regarded as a recursive formula for solving V'1c and an approximate value '1''1c 

for 'I'Jc is needed. The way to choose the value V1c is by substituting the leading term of 

equation (5.2. 7) into equation (5.2.13): 

2('1fk - 'If;) - 5.2.17 

Then 

with 'I'; = 0.0 . 5.2.18 

N; is selected in such a way that the radial increments (VI;+ I - VI;) match the spacing of the 

point gravity anomalies. For example, if a set of point gravity anomalies whose average 

spacing is 10 km, and if 10" is chosen for L\a, then N: needs to. be 0.0003 m/mGal in 

order to generate rings whose radial increments match the average spacing of the point 

gravity anomalies(see Appendix 1.10). The advantage of this approach is that it has a 

flexibility in matching the compartment size to the distribution of gravity data. Equation 

(5.2.16) is the basic recursive equation for generating the radii of the rings, which for a 

selected Lla, will produce compartments which will contribute Nc for each mGal of .1g. It 

generates the radii of the rings in an increment of small steps (about 10 kilometres) thus 

-allowing the full use of data in the estimation of Llg. Kearsley [1985] had tested the -accuracy in estimating L1g and concluded that the 2nd, 3rd., and 4th. terms of this equation 

cannot be neglected. He found out that by neglecting three terms, i.e., if only the 

approximation in equation (5.2.18) is applied to generate the rings, the cumulative effect at 

'I' = 1" through the rings is about 6.3 km (more than the actual radius which is computed 

by equation (5.2.16)). Table 5.1 shows that the thickness of each of the successive rings 

computed by the above recursive formula is very stable for a sub-zone (see Appendice 1.6 

and 1.7 also). 



Table 5.1: The Stability of Thickness ~<D12 of Successive Rings 
Computed to give a 0.0002 m/mGal contribution to N 
for 1 mGal per compartment with a 10° apex angle. 

'¥t '¥2 cp1 ¢2 a¢12 
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(D. UirtC) (D. icgru) (D. icgrcc) (D. icgt"'c) (D. icgt"'c) 

0.000 0.063 0.000 0.12? 0.12? 

0.063 0.126 0.12? 0.254 0.12? 

0.126 0.188 . 0.254 0.381 0.12'7 

0.188 0.249 0.381 0.50? 0.12? 

0.249 0.311 0.507 0.634 0.12'7 

0.311 0.3?2 0.634 0.761 0.12? 

In this thesis, the inner zone computed by the method of ring integration is 

divided into three different sub-zones, namely: (1) the inner sub-zone, (2) the middle sub

zone, (3) and the outer sub-zone (see Figure 5.1). The sum of these three sub-zones will 

be the total contribution of the inner zone to geoidal height. Each of these will be discussed 

below. 

5.2.1 The Inner Sub-Zone 

The inner sub-zone is the first ring away from the point of interest (see Figure 5.4). 

Point of interest 

Figure 5.4: The Inner Sub-Zone. 
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This sub-zone is divided into six compartments and each of these compartments is bounded 

by L1a1M = 60", and yt1 = o· and yt2, where yt2 = 0.016" (see Appendix !.7) can be 

obtained by the recursive technique as mentioned in the previous section with : 

5.2.1.1 

and 

R = 6371 km is the radius of the spherical model of the earth; 

r = 979.9 Gal is the mean value of the normal gravity over the earth. 

The geoidal height contributed by this sub-zone is determined by: 

5.2.1.2 

where his the index for the compartments; ~his the mean value of the free air gravity 

anomaly for the hrh compartment; L1<P12 = 4>2 - 4>1 = 0.032" and L1ty21 = 0.016 • = 

57.6" (see Appendice 1.6 and !.7). Substituting ~JM L14>12 and into equation(5.2.1.2), 

we arrive at: 

6 -
= (0.0003) I Agh 5.2.1.3 

h=l 

-with L1g h is in mGal and N IM is in metre. The mean gravity anomaly at the hrh 

compartment is determined in the following steps: 

Step 1: first of all, the coordinates of the point which lies in the center of the compartment 

is determined by obtaining the azimuth( a,J and the spherical distance(ty,J : 

am = (a]+ a2)12, 

'I'm = ('lfJ + '1'2)/2 , 

5.2.1.4 

5.2.1.5 

where ( aba2, '1'1> yt2) are the boundary limits of the compartment (see Figure 5.5). 
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Figure 5.5: Determination of Coordinates for the Center of the Compartment 

Step 2: compute the differences in latitude( t1t/>) and in longitude( t1Jl) between the point of 

interest( t/>J>A1) and the center of the compartment ( t/>m,Jl,J: 

t1f/> = VIm cos( a,J , 

t1Jl = VIm sin(amJ , 

Step 3: obtain the coordinates for the center of the compartment: 

Am = t1Jl + ill , 

t/>m = t1t/> + tPJ . 

5.2.1.6 

5.2.1.7 

5.2.1.8 

5.2.1.9 

Step 4: once the coordinates of the center point of the compartment are defined, the 

boundary limits of the cell are delineated for the prediction of Li;. Note that the size of the 

compartment is different from the size of the cell. The size of the compartment is bounded 

by the selected t1a and t1V1(depending on which sub-zone is to be computed) as shown in 

Figure 5.6. The prediction point lies in the center of the cell which coincides with the 

center of the compartment.. However, the size of the cell is a square area (shaded region) 

which is chosen to be 10' by 10'. If there is no point gravity anomalies inside this cell, th.e 

dimension of the cell will increase to 15' by 15', or 20' by 20', or 30' by 30', or 60' by 

60' until at least one set of observation is present inside the cell. If there is still no point 
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gravity anomaly inside the 60' by 60' cell, the computation will skip that cell and move on 

to the next compartment 

Cen1er 
of 

Cell 

Cen1er 
= of 

Compartment 
( ·-p~\:m.) 

Point 
of • ..,. 

In1Bre~lt 

( +1, A1 ) 

Figure 5.6: Cell (Shaded Area) used for obtaining L1g. 

The boundary limits of the cell are defined by the latitudes of the north-east and south-east 

comers of the cell and the longitudes of the north-west and north-east comers of the cell 

(see Figure 5.7). 
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Figure 5.7: The Boundary Limits of the Cell. 
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They are computed as follows: 

lPNE = tPm + At/Jc I 2 , 5.2.1.10 

tPsE = tPm - At/Jcl 2, 5.2.1.11 

ANE = Am + AACI 2, 5.2.1.12 

ANW = Am - AA.cl 2, 5.2.1.13 

where At/Jc = AAc = 10', 20', 30', or 60' as mentioned in the above. 

Once the boundary limits are known, the point gravity anomalies within the cell are 

extracted and arithmetic mean technique is utilized to obtain the mean gravity anomaly at the 

center of the cell. The spherical distances(di, i=l ,2, ... ,n, where n is the total number of 

point gravity anomalies within the cell) between the point gravity anomalies within the cell 

and the center of the cell are determined(see Figure 5.7). They are used to obtain the 

weight coefficients which utilize in determining the mean gravity anomaly. More about 

this will be discussed in th~ next section. 

5.2.2 The Middle Sub-Zone 

This middle sub-zone is similar to the inner sub-zone but consists of a total of twelve 

compartments (see Figure 5.8). It lies next to the the inner sub-zone with the point of 

interest as its center. Its inner boundary is at 'f/2 (as determined from the inner sub-zone) 

and its outer boundary is at V'J = 0.047. (which will be computed from equation (5.2.15) ). 

AaM is set to 30•, then 

5.2.2.1 
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where R and r are defmed as in the previous subsection. 

The contribution to geoid height from this sub-zone is evaluated as follows: 

5.2.2.2 

,......, 
where Ligp is the mean value of the free air gravity anomaly for the p1h compartment and 

.1([>23 = ([>3 - ([>2 = 0.063" ( .11j132 = 0.03 I"= 1' 51.6"). Substituting ~M and .1([>23 

into equation(5.2.2.2), we arrive at: 

5.2.2.3 

-with .1gp in mGal and N M in metre. The mean gravity anomaly is determined the same 

way as for the inner sub-zone. 

Figure 5.8: The Middle Sub-Zone. 
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5.2.3 The Outer Sub-Zone 

Any rings, apart from the inner and middle sub-zones, which encircle the point of 

computation are known as outer sub-zone (see Figure 5.9). All these rings compose the 

outer sub-zone. Each of these rings is subdivided into 36 compartments. The boundary 

limit of the compartment is bounded by L1a0 = 10", yt3 and yt4 for the ftrst outer ring 

zone. The second outer ring zone is then bounded by yt4 and yt5 , and so on. Note that the 

azimuth boundaries remain the same for the rest of the rings. L1a0 is set to 1 o·, and 

R I 
~ = - L1txo = 6 ~/M · 

4ny 
5.2.3.1 

The total geoid height contributions from all these ring are then computed by summing all 

the geoid height contributions from each of the compartments: 
n 36 ,.._ 

No = ~o 2. 2. L1gr,s L14>s 
s=l r=J 

5.2.3.2 

where n is total number of the rings up to yt0 (the limit of the spherical cap size). For 

example, when n equal to 13, lj/0 will be approximately equal to 1.2" (see Appendix 1.7). 

:1ir .s is the mean value of the free air gravity anomaly for the compartment r,s ; s is the 

index for the ring. Note that L14>3 is inside the summation. This is because L14>3 is 

varying with yt and can vary to about 8 seconds by the time it reaches 1.2" (see Appendix 

1.6). However, when these 8 seconds are converted to radian (less than 0.00005 radian 

difference for 0.14 • ::;; V'o ::;; 1.2"), the effect on N (less than 1.5%) becomes insignificant. 

Hence L14>3 can be assumed to be constant for the outer sub-zone and be taken out of the 

summation. Equation (5.2.3.2) then can be written as follows: 
n 36 ,...,. 

No = ~ L14> 2, 2, L1gr,s , 
s=l r=l 

5.2.3.3 

where L14> is approximately equal to 0.00335 radian (0.192"). The rest of the notations is 

deftned previously. 
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Figure 5:9: The Outer Sub-Zone. 

Hence, the sum of the computations from the above three sub-zones will be the 

contribution of the inner zone to the geoidal height: 

8N L1g = NIM + NM + No. 

The above equation (5.2.3.3) can be rewritten as follows: 
r_ 

8N t:.g = ~ .14> I. L1gj 
i=l 

or equivalently 
r_ 

8N t:.g = (0.0003) I. .1gi , 
i=l 

5.2.3.4 

5.2.3.5 

5.2.3.6 

-where the index T is the total number of compartments within the spherical cap V'o. L1gi is 

the reduced mean gravity anomaly expressed in mGal and 8N t:.g is in metre. 
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5. 2. 4 Computation of Geoidal Height Difference 

In this subsection, the change inN over line AB, i.e. &V, will be discussed. From 

equation (5.2.3.5), it can be expressed for both points A and B : 

T ,..-
lJNA = ~ .14> L .1gr • 

i'=l 
5.2.4.1a 

5.2.4.lb 

Therefore, the geoidal height difference .18N AB can be computed by taking the difference 

between equations (5.2A.la) and (5.2.4.lb): 

.1CiNAB = fiNs - (iNA 

T' ] I. Sii·. 
i'=l 

5.2.4.2 

Note that the geoidal height difference is basically computed by taking the difference of the 

sum of gravity anomalies from all the compartments at each of the endpoints of the line and 

multiplying it by the constants. The advantages of this approach are its flexibility in 

selecting constants for matching the compartment size to the density of the data, and its 

ease and speed, especially with modem computers. 

The remote zone contribution toN is computed using equation(5.1.8): 

GM nmax n 
NcM =- L L fanmcosmA.+bnmsinmA.JPnm(cosf/J), 5.1.8 

yR n=2 m=O 

where Rappl80 geopotential model is used. NcM is computed at the end points of the 

baseline and difference is taken to obtain the &V GM • The full geoidal height difference is 

then determined by adding .1/JN .1g to &V GM . 
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5. 3 Determination of Mean Gravity Anomaly 

Detennining the shape of the geoid with high accuracy using Stokes formula is not 

an easy task. One of the problems is that the surface integral in the Stokes equation has to 

be changed to a finite sum for numerical computation as discussed in the last section. The 

geoidal height is computed by dividing the spherical cap into a finite number of small 

surfaces ai and in each of these the mean value of the gravity anomaly and of the integral 

5.3.1 

is determined. Geoidal height contribution for the inner zone is then computed by the 

following expression: 

T,..._ 
N 1 = K I, L1gi, 5.3.2 

i=l 

K is not difficult to enumerate since it is constant. What remains to be determined is the 
.- -

value of Lig i . If all the gravity anomalies around the world were known, the Stokes 

integration could be evaluated very easily. Unfortunately, there are some areas in which no 

gravity survey has been done. Hence, the gravity anomalies we have are not continuous 

but rather discrete. The solution to this problem is by interpolating from the existing 

gravity anomalies to predict mean gravity anomalies for the unsurveyed areas using 

statistical methods [Odin, 1966]. 

In computing N by means of the Stokes formula, free-air anomalies are most 

commonly used. The accuracy of 4i', i.e., the compartment mean of the free-air anomaly, 

plays a large part in computing higher accuracy N. In the old days before the computer era, -Lig was determined by means of Bouguer anomaly and height maps. With 



60 

this method, a huge amount of gravity data was necessary to compute 'Ag with sufficient 

accuracy, especially in rough areas. Today this problem - lack of dense gravity data - still 

exist. There are many ways, such as arithmetic mean [Gilliland, 1989], least squares 

surface fitting[Vanicek et al., 1986] and least squares collocation[Engelis et al., 1984], 
-..;' 

which can be used to determine L1g. In this thesis, arithmetic mean is used for the 

prediction of Lig . 

5. 3.1 Arithmetic Mean 

Arithmetic mean has been used very frequently in :1g' determination by various 

researchers because of its simplicity [Kassim (1980), Kearsley et al.(1985), Mainville and 

Veronneau (1989), and Gilliland (1989)]. Two approaches in using arithmetic mean for 

predicting Tg are considered in here. The first approach is to compute the arithmetic mean 

value of L1g from the reduced free-air anomalies and the second approach is to compute the 

arithmetic mean of the ~ouguer anomalies and then using the topographic heights to 

transform to free-air anomaly. 

5.3.1.1 Method 1: Arithmetic Mean From Free-Air Anomalies 

. The approach in here is to compute the arithmetic mean value of Llg from the 

reduced free-air gravity anomalies. The mean value of the reduced free-air anomaly Lig'F is 

computed by taking the average value of the free-air anomalies L1gi within and/or 

surrounding a compartment: 

-LlgF = n 5.3.1.1.1 

2. w j 
i=l 
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where n is the total number of point free-air anomalies in a selected cell, e.g. 10' by 10'; 

W; is the weight coefficient and is obtained as the reciprocal of the distance d; between the 

-points of L1gi and the prediction point of L1g, raised to some power r: 

W; = 1 

d.' 
I 

5.3.1.1.2 

In this thesis, the power r is set to 3.5 as suggested by Sjoberg [Kearsley, 1985] and the 

gravity anomalies used are the free-air gravity anomalies reduced to Rapp180 geopotential 

model reference swface. 

5.3.1.2 Method 2: Arithmetic Mean From Bouguer Anomalies 

In the above mathematical model, free anomalies were used to predict ~

However, the problem in using free-air anomalies is that they vary so rapidly from one 

location to another location and that it is impossible to obtain satisfactory average value of 

them to be-used in equation(5.3.2). Hence, it is sensible to use different type of anomalies 

that varies less and so could be averaged to obtain a better representative value of~. The 

anomalies to substitute for free-air anomalies in equation(5.3.1.1.1) are the modified 

Bouguer anomalies. These modified Bouguer anomalies are smoother and they offer much 

better possibilities for averaging .::\g [Vanicek and Krakiwsky, 1982]: 

,-.J - -/1gp = L1gB + 0.1119 H, 

where H is the mean value of height in the selected cell: 

n 
l:H 

H _ i=l 
n 

5.3.1.2.1 

5.3.1.2.2 
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CHAPTER SIX 

RESULTS OF THE TESTS 

One of the intentions of this thesis is to design a software which could compute the short 

wavelength contribution to geoidal height difference using terrestrial gravity data and the 

geodetic coordinates of two points. The contributions from the medium to. long 

wavelengths will be obtained from the subroutine POT written by Tscheming. The first 

section of this chapter will describe the results obtained from GPS observations, which 

then will be used as the control data for the comparisons with the results obtained from the 

ring integration method and the UNB Dec.'86. The second section compares the results 

from ring integration method with other independent studies and the third section discusses 

briefly the error analysis. 

6.1 The Manitoba GPS Network 

The points used as control data for the comparisons were from observations taken 

from stations during the summer of 1983 in Central Manitoba, using the GPS Macrometer 

V-1000 receivers under contract for the Geodetic Survey of Canada [Wells (1986), 

Mainville ( 1987)]. There were 22 stations observed and 11 of them were connected to the 

Canadian primary vertical geodetic control network having orthometric heights determined 

from differential levelling. Figure 6.1 shows the distribution of these 11 GPS stations. 

With these 11 stations, a set of 52 baselines was produced. However, after testing, one of 
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these stations was found to be less reliable and was omitted to reduce this set to 42 

baselines. Their lengths were ranging from 21 to 134 kilometres. GPS provides the 

geocentric Cartesian coordinate differences. These coordinate differences were then 

convened to ellipsoidal height difference(Mt), latitude difference and longitude difference. 

The onhometric height difference(Ml) was observed by differential levelling and they are 

related to ellipsoidal height difference through the following expression: 

6.1.1 

where &V GPSILEV is the geoidal height difference derived from GPS and differential 

levelling. The precision for L1hcps was estimated to be ±1.1 ppm and the precision for 

L1HLEv was estimated to be ±3.0 ppm [Mainville, 1987]. The combined precisions from 

the two sources would, then, give the precision to ±3.2 ppm for t1N GPStLEV· The 

estimation for the precision of L1HLEV from Mainvile[1987] seem to be somewhat large. 

50.8 

... ... ... 
50+-------~------~-------+----~..,~~-------+ 

261 26 .5 262 262.5 263 263.5 

Figure 6.1: Distribution ofGPS Stations. 
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Table 6.1 summaries the results obtained from this GPS Campaign. From Figure 6.2, it is 

shown that the accuracy of these height differences [Mainville, 1987] deteriorate as the 

distance between two stations lengthened . 
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Figure 6.2: Deterioration of Accuracy with respect to Distance. 

The error in &V GPStLEV is mainly contributed from the error in .dH LEV. Sources of error 

which affect or may affect the accuracy of heights obtained from GPS have been discussed 

in Robinson[1990, page 89]. 

Table 6.1: Results from Manitoba GPS Campaign. 

From To Distance Azi DHEI.L SDHEI.L DHORT SDHORT DNGPS SDNGPS 
Station Station (m~s) (De g) (meg:es} (metres) (metres} (metres} (metres} (metres} 
59414 59419 42835.632 264 -13.478 .054 -13.818 .157 .340 .166 
59414 59422 63264.550 270 2.292 .053 1.507 .191 .785 .198 
59414 774031 115879.659 296 4.599 .083 3.682 .258 .917 .271 
59414 774032 60099.078 325 -15.323 .056 -14.979 .186 -.344 .194 
59414 82R311 104268.137 341 -24.642 .070 -23.202 .245 -1.440 .255 
59414 82R370 98077.694 288 14.751 .083 13.700 .238 1.051 .252 
59414 82R382 129579.232 307 14.532 .094 14.466 .273 .066 .289 
59419 59422 21152.676 282 15.770 .036 15.325 .110 .445 .116 
59419 60404B 116714.955 272 45.673 .116 42.896 .259 2.777 .284 
59419 774009 125347.849 325 36.799 .074 37.592 .269 -.793 .279 
59419 774031 83040.513 312 18.077 .063 17.500 .219 .577 .228 
59419 774032 54653.119 8 -1.845 .047 -1.161 .177 -.684 .184 
59419 82R311 103622.863 4 -11.164 .066 -9.384 .244 -1.780 .253 
59419 82R370 61474.039 304 28.229 .063 27.518 .188 .711 .198 



59419 82R382 102898.395 324 
59422 60404B 95918.573 270 
59422 774009 111035.239 333 
59422 774031 65658.204 321 
59422 774032 57432.930 30 
59422 82R311 103092.652 16 
59422 82R370 42634.058 314 
59422 82R382 88307.111 333 

60404B 774009 108790.916 23 
60404B 774031 75083.356 46 
60404B 774032 134078.448 67 
60404B 82R370 72030.842 64 
60404B 82R382 96176.696 34 
774009 774031 48559.933 168 
774009 774032 93057.963 121 
774009 82R311 79041.027 89 
774009 82R370 71850.244 163 
774009 82R382 22730.233 153 
774031 774032 69616.469 90 
774031 82R3ll 84411.431 55 
774031 82R370 23857.125 153 
774031 82R382 27288.879 1 
774032 82R311 49242.025 0 
774032 82R370 62223.488 251 
774032 82R382 74682.196 293 
82R311 82R370 90849.976 220 
82R311 82R382 71899.842 253 
82R370 82R382 49644.149 348 

DHELL = Ellipsoidal Height Difference; 
DHORT = Orthometric Height Difference; 

28.010 .076 
29.903 .113 
21.029 .068 

2.307 .056 
-17.615 .042 
-26.934 .061 
12.459 .055 
12.240 .071 
-8.874 .106 

-27.596 .105 
-47.518 .114 
-17.444 .132 
-17.663 .139 
-18.722 .055 
-38.644 .070 
-47.963 .076 

-8.570 .070 
-8.789 .055 

-19.922 .058 
-29.241 .068 
10.152 .051 
9.933 050 

-9.319 .056 
30.074 .060 
29.855 .072 
39.393 .072 
39.174 .080 

-.219 .069 

DNGPS = GPS/Levelling derived Geoidal Height Difference; 
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28.284 .243 -.274 .255 
27.571 .235 2.332 .261 
22.267 .253 -1.238 .262 

2.175 .194 .132 .202 
-16.486 .182 -1.129 .187 
-24.709 .244 -2.225 .251 
12.193 .157 .266 .166 
12.959 .226 -.719 .236 
-5.304 .250 -3.570 .272 

-25.396 .208 -2.200 .233 
-44.057 .278 -3.461 .300 
-15.378 .204 -2.066 .243 
-14.612 .235 -3.051 .273 
-20.092 .167 1.370 .176 
-38.753 .232 .109 .242 
-46.976 .213 -.987 .227 
-10.074 .203 1.504 .215 

-9.308 .114 .519 .127 
-18.661 .200 -1.261 .208 
-26.884 .221 -2.357 .231 
10.018 .117 .134 .128 
10.784 .125 -.851 .135 
-8.223 .168 -1.096 .177 
28.679 .189 1.395 .199 
29.445 .207 .410 .220 
36.902 .229 2.491 .240 
37.668 .204 1.506 .219 

.766 .169 -.985 .183 

SDHELL =Standard Deviation of DHELL. 
SDHORT =Standard Deviation of DHORT. 
SDNGPS =Standard Deviation of DNGPS. 

The standard deviations of the ellipsoidal height differences were obtained by judging 

various adjustment results of the GPS data and the standard deviations of the orthometric 

height differences were estimated from the tolerances ±4, 8 or 24mm...JK, where K is the 

distance in kilometre [Mainville, 1987]. The standard deviations of the geoidal height 

differences were then obtained by taking the square root of the sum of the variance of & 

and the variance of .MI. 

6. 2 Comparison of Results 

The area used in our tests is the area where the Manitoba GPS Network lies (50" < 

<1> < 51", 261" < A. < 263.5"). Because the area has a smooth terrain, it is assumed that the 
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topographic correction is the same at both end points of the baseline. So that they cancel 

out in difference. This correction, moreover, is significant in mountainous region. In the 

succeeding section, comparisons between the results derived from the ring integration 

approach against those results from other independent methods are carried out . Other 

independent results used in the comparison are (1) the UNB Dec.'86 results which were 

computed by Vanicek et al.(1986) and (2) the results from the combination of GPS and 

spirit levelling. Comparison between (1) and (2) was also carried out. We shall also see 

how well &V can be recovered using the Rapp 180 geopotential model alone. 

6.2.1 Recovering t1N GM from Geopotential Model 

&V GM from geopotential model is computed using a series of spherical harmonic 

coefficients which were determined from various data such as satellite orbit perturbations, 

satellite altimeter data, and terrestrial gravity data. In this investigation, the geopotential 

model used for the test is the Rapp180 model which is complete to degree and order 180. 

We should first take a look at how well can t1N be recovered by using the geopotential 

model (Rapp 180) alone. 

Figure 6.3 shows how &V, computed using geopotential model of various nmax, 

fits the t1N derived from GPS/Levelling. It is shown, as one would expect that they agree 

better as nmax increases, so that at nmax = 180 the mean-relative-accuracy is 4.0 ppm while 

at nmax = 10 the mean-relative-accuracy is 8.6 ppm. Kearsley[1988] claimed that there is a 

sharp improvement at nmax = 90 to about 4 ppm. This has, however, not been the case in 

this study. There is a little change in the mean-relative-accuracy between nmax = 140 and 

nmax = 180 but starts to deteriorate slowly to 6.3 ppm at nmax = 100, drops down to 4.1 

ppm at nmax = 70, and deteriorate slowly again to 8.6 ppm at nmax = 10 .. 
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Figure 6.3 : The Recovery of t1N from Rapp 180 Geopotential Model taken to various 
nmax· 

6.2.2 Comparison of .1N between UNB Dec.'86 Solution and 
G PS/Levelling Solution 

Using the technique described in chapters three and four, Vanicek et al. (1986) 

had produced a detailed geoid for Canada. These geoidal heights were computed on a 10' 

by 10' geographical grid. A program, called CndGeoid was then designed to interpolate 

N or t1N at any points in Canada. t1N is simply computed by taking the difference of N 

between two points. The results are tabulated in Table 6.2. They are then compared to the 

results derived from GPS/Levelling. The mean-relative-accuracy obtained between these 

two methods is 2.26 ppm and the root-mean-square error is 0.19 metres. In here, we can 

see that the precision for t1HLEV as quoted by Mainville[1987] does not seem to fit the 

pattern. Let US compute the precision of t1N UNB : 

dfJNBIGPS = ofJNB + ifcPSILEV 
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= cfuNB + if&! + ifL111. 

Solving for ifuNB we obtain: 

duNB = cfuNBIGPS - iflih - dL111, 

Putting the numbers in, we have 

ifuNB = 2.~pm - 1.1;pm - 3.o;pm 

= -4.92 ppm2 , 

which is a negative value. This does not make sense. The test shows that the precision for 

&/LEV quoted by Mainville[1987] seem to be somewhat too large. 
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Table 6.2: Results of t1NcPStLEV and t1NuNB Dec.'86. 

t1NcPSILEV t1N UNB Dec.'86 Distance Difference Difference 
(me.tr.e.s.l (me.tre.s_ l (me.tres_) (me.tre.s_ l (rw.ml 

.34 .58 42835.632 -.24 5.6 
.785 .83 63264.55 -.045 0.7 
.917 .85 115879.659 .067 0.6 

-.344 -.49 60099.078 .146 2.4 
-1.44 -1.66 104268.137 .22 2.1 
1.051 1.08 98077.694 -.029 0.3 

.066 0 129579.232 .066 0.5 

.445 .25 21152.676 .195 9.2 
2.777 2.7 116714.955 .077 0.7 
-.793 -1.12 125347.849 .327 2.6 
.577 .27 83040.513 .307 3.7 

-.684 -1.07 54653.119 .386 7.0 
-1.78 -2.24 103622.863 .46 4.4 
.711 .5 61474.039 .211 3.4 

-.274 -.58 102898.395 .306 3.0 
2.332 2.45 95918.573 -.118 1.2 

-1.238 -1.37 111035.239 .132 1.2 
.132 .02 65658.204 .112 1.7 

-1.129 -1.32 57432.93 .191 3.3 
-2.225 -2.49 103092.652 .265 2.6 

.266 .25 42634.058 .016 0.4 
-.719 -.83 88307.111 .111 1.3 
-3.57 -3.85 108790.916 .28 2.6 

-2.2 -2.42 75083.356 .22 2.9 
-3.461 -3.76 134078.448 .299 2.2 
-2.066 -2.2 ~ 72030.842 .134 1.9 
-3.051 -3.28 96176.696 .229 2.4 

1.37 1.4 48559.933 -.03 0.6 
.109 .06 93057.963 .049 0.5 

-.987 -1.12 79041.027 .133 1.7 
1.504 1.63 71850.244 -.126 1.8 

.519 .54 22730.233 -.021 0.9 
-1.261 -1.34 69616.469 .079 1.1 
-2.357 -2.52 84411.431 .163 1.9 

.134 .23 23857.125 -.096 4.0 
-.851 -.85 27288.879 -.001 0.0 

-1.096 -1.18 49242.025 .084 1.7 
1.395 1.57 62223.488 -.175 2.8 

.41 .49 74682.196 -.08 1.1 
2.491 2.75 90849.976 -.259 2.9 
1.506 1.66 71899.842 -.154 2.1 
-.985 -1.08 49644.149 .095 1.9 
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Comparison of t1N between Ring Integration Solution 
and GPS/Levelling Solution 

The use of the ring integration approach is to find the short wavelength features in 

L1N from local gravity while the geopotential model will provide the medium to long 

wavelength contribution. The approach to compute the contribution to &V from the medium 

to long wavelength component is depending on . how one handles the inner zone 

contribution, i.e., whether one should use the "reduced" gravity anomalies or the 

"unreduced" gravity anomalies. Tests have been carried out to answer this question. 

6.2.3.1 Comparison between t1N using the "Reduced" and the 
"Unreduced" gravity anomalies. 

Approach 1: 

As was mentioned in section 5.1, there are two alternative ways to obtain Nor 

&V. If the "unreduced free-air anomalies" are to be used to compute the short wavelength 

contribution to &V, the error in &V caused by neglecting the gravity anomalies beyond the 

spherical cap of radius Vfo should be considered. From equation (5.1.1), the t1N can be 

expressed as follows: 

6.2.3.1.1 

where t18N 1 is computed using the Ring integration; N R is computed using the 

Molodenskij truncation coefficients and &VR is simply calculated by taking the difference 

between the N R at the end points of the baseline. In order to test for optimum cap size, 

Kearsley's routine [1988] was adopted. t18N1 was computed for different spherical cap of 

radius , ranging from 0.1· to 1.2· in an increment of about 0.1·. These t15N1 were then 

added to L1N R (summed to nmax = 180) to obtain the full L1N. 42 full geoidal height 
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differences were computed and were compared with &V derived from GPS/Levelling. The 

results are plotted in Figure 6.4 (solid black circles) which shows that the optimum cap size 

to be combined with Rapp 180 geopotential model is at V'o = 0.6". The mean-relative 

accuracy is 1.8 ppm and its root-mean-square error is 0.15 metres. 
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Figure 6.4: Comparisons Between &V Using reduced L1g and unreduced L1g in Manitoba 
(nmax = 180). · 

Approach 2: 

If one wishes to use equation (5.1.6), then the L1g ,., which is obtained from 

spherical harmonic expansion, should be subtracted from the terrestrial free-air gravity 

anomalies. The remaining "reduced" free-air gravity anomalies are to be used in 

equation(5.1.7) to calculate the additional contribution of the ring compartments to get &V. 

These contributions are then added to the L1N GM computed by the spherical harmonic 

expansion. The reason for reducing the terrestrial gravity anomalies is to avoid the double 

counting of the spherical harmonic estimates of the contribution from the ring integration 

method. L1NGM was computed using the POT.RED program (this program is the same as 

the subroutine POT documented in Arsenault [1982] -- see Appendix 1.4), while the 

RININT.RED program (see Appendix 1.2) was used to compute the inner zone 
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contribution. The results from this method were then compared to the t1N derived from 

GPS/Levelling as plotted in Figure 6.4 (open circles). It is surprising to see that the 

optimum cap size for this approach is also at 'l'o = 0.6", with a mean-relative-accuracy of 

1.7 ppm and a root-mean-square of 0.14 metres (see Appendix 1.8). The fact is that the 

Rapp180 geopotential model is based upon mean values of Lig for 1" by 1" rectangular 

blocks whose 1" by 1" block area is much smaller than that of a circle of radius 1". In other 

words, the area of the 1" by 1" block is approximately equal to the area of the circle whose 

radius is 0.6". 

From the curves of Figure 6.4, one can see that the solutions from the above two 

approaches are close to each other. However, if one uses the "unreduced" gravity 

anomalies, rather than the "reduced" gravity anomalies, in equation(5.1.7), the value of &V 

deteriorates as is shown on the same Figure 6.4 (the diamond symbols). This is due to the 

double contribution of gravity signal to &V being both in the terrestrial gravity and in the 

geopotential model. The use of reduced gravity anomalies is, therefore, not necessary, 

provided that the Molodenskij truncation coefficients Q(IJI0 ) are applied correctly. In other 

words, if one integrates the spherical cap up to a radius of 0.6", one should use 'l'o = 0.6" 

in Q(IJI0 ). Therefore, it is not whether the reduced or unreduced gravity anomalies are to be 

used but rather whether the theory is applied correctly or incorrectly. 

What's really appealing from these results is the remarkable (1.7 ppm) 

improvement in &V when only a small spherical cap radius (IJI0 = 0.6·) is incorporated. 

The mean-relative-accuracy (with respect to GPS/Levelling solution) from the above two 

approaches continue to improve until IJI0 = 0.5", more or less stabilizes, then deteriorates to 

'l'o = 1.2·; (which is the limit caused by the inavailability of gravity data at the time of the 

testing). 
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Analysis was also conducted to see how well &V from the ring approach can be 

recovered by fitting it to the GPS solution. In here, the inner zone contribution is computed 

with various spherical cap sizes (using the reduced gravity anomalies) and combined with 

the results computed using Rapp 180 geopotential model of various nmo.x. In Figure 6.5, it 

is shown that the higher the nmax , the better the solution that can be obtained. From the 

same figure, it showed also that the best solution can be obtained using spherical cap radius 

of 0.6°. Hence, from this figure, one can conclude that the best approach to get an 

optimum solution is by combining a spherical cap size of0.6° with Rapp180 geopotential 

model of nmo.x summed up to 180. 
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Figure 6.5: Comparison of &V Using Combination of Various nmo.x in the Reference 
Model with Various Spherical Cap Radii. (GPS vs. RING). 
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Comparison of A.N Between Ring Integration Solution 
and UNB Dec. '86 Solution 

It is also interesting to see how well the ring integration solution fits the UNB 

Dec.'86 solution. The analysis was carried out the same way as in the above section. 
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Figure 6.6: Comparison of &V Using Combination of Various nmax as the 
Reference Model with Various Spherical Cap Radii. 
(RING vs. UNB Dec.'86). 

From Figure 6.6, the curves also indicate that the higher the nmax , the better the agreement 

to the UNB Dec.'86 solution. As was expected, the solution that used nmax = 180 has the 

best agreement. However, the best agreement to the UNB Dec. '86 solution occured at two 

minima; one at 'l'o = 0.4 • and the other at 'lfo = 0.9". They both have· mean-relative

accuracies of 0.92 ppm and root-mean-squares errors of 0.07 metres. Figure 6.7 shows 

that for nmax up to 100, the ring integration solution (using the reduced gravity anomalies) 

agrees better to the GPS/Levelling solution than it is to the UNB Dec.'86 solution. Then 

for nmax about 100 and up, the ring integration solution agrees better with the UNB 

Dec.'86 solution than with the GPS/Levelling solution. 
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Figure 6. 7: The Recovery of t1N with Various nmax. 

(Ring is computed with 1{10 = 0.6 degree) 

6.2.5 Analysis of 11N with respect to Baseline Lengths. 

Further analysis was carried out to see if there was any correlation between ~ 

and the baseline lengths. Misclosures were computed as the absolute values of differences 

between two different solutions. For each of the 42 baselines, the misclosures were plotted 

against its corresponding baseline lengths (see Figure 6.8). These three plots show no 

trend between the misclosures and the baseline lengths. In other words, t1N is independent 

of the baseline length. Misclosures were also plotted against the azimuths (see Figure 6. 9) 

and these plots also show that t1N is independent of the azimuth. 
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6. 3 Error Analysis 

In this section, the errors in geoidal height difference will be presented. The 

structure of our analysis here is very similar to that of the investigation conducted by 

Kearsley[1986a, 1986b]. There are basically three types of errors: the random errors, the 

systematic errors and the errors from the remote zone contribution. Each of these will be 

discussed separately. 

6.3.1 Random Errors 

The existence of random error in geoidal height(aN) is mostly due to the errors in 

-the mean gravity anomalies(llgi ) from every compartment. That is to say, each ith 

compartment contributes an error: 

6.3.1.1 

toN, where 8~ is the error in Tgi. Assuming that the correlation between successive -llgi is zero, then the error inN can be obtained by applying the law of error propagation to 

the above equation(6.3.1.1): 

6.3.1.2 

where a~i is the variance of the mean gravity anomaly for ith compartment and can be 

obtained from the following expression: 

n 6.3.1.3 



79 

and n is the total number of gravity anomalies within the cell. From equation(5.2.4.2), the 

above procedure can be applied to obtain the error in AN AB· However, some of the -- __, compartments which were used to predict L1g at point A will be used to predict L1g at point 

B. These "common"~ will not affect t1N and somehow, we need to eliminate them and 

to sort out only those Lig that are used to evaluate N at point A and not at point B. 

The approach to these so called "eliminated Zi" and "sorted .1i" is to apply the 

"area method". This method estimates the areas of the inner zone which are not common to 

the computations at either points (see Figure 6.1 0). 

Ac - J.ru. com.m.oa to both. circles 

he a. of circle with. n.dius R 

Figure 6.10: The shaded regions show the areas which are not common to 
the Inner Zones of Points A and B where t1N is being 
computed [after Kearsley (1986b, p. 159)]. 

If Ac is the area common to the inner zones of both points A and Band if AT is the total 

area of the inner zone, then the proportion Q of the unshared area (i.e., the area which is 

not common to both circles) is [Kearsley, 1986a]: 

Q _ 1 _ Ac _ 1 [13 - sinf3J 
- AT - - 180" ' 6.5.1.4 

where {3 = 2 cos·1 (lc) and c is the spherical cap radius. 

Hence Q is a function of the length of the line or distances between points A and B. 

These proportions Q have been calculated for several lengths and are tabulated in Table 6.3. 
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Table 6.3: The relationships between the proportion Q, the distances and the 
spherical cap radius c [after Kearsley (1986b, p. 162)]. 

c (km.) 34 45 56 67 78 89 100 111 
'l'o 0.3° 0.4° 0.5° 0.6° 0.'7° 0.8° 0.9° 1.00 

s (km.) Q 
10 0.19 0.14 0.11 0.10 0.08 O.o7 0.06 0.06 
20 0.38 0.28 0.23 0.19 0.16 0.14 0.13 0.11 
30 0.55 0.42 0.34 0.28 0.24 0.21 0.19 0.17 
40 0.71 0.55 0.45 0.38 0.32 0.28 0.25 0.23 
so 0.86 0.68 0.55 0.47 0.40 0.35 0.31 0.28 
60 0.79 0.65 0.55 0.48 0.42 0.38 0.34 
70 0.89 0.74 0.64 0.55 0.49 0.44 0.39 
80 0.96 0.83 0.71 0.62 O.SS 0.50 0.45 
90 0.90 0.79 0.69 0.62 0.55 0.50 
100 0.96 0.86 0.76 0.68 0.61 0.55 
110 1.00 0.91 0.82 0.73 0.66 0.60 

When the spherical cap radius increases, Q decreases. Although the proportion of 

the circle area is smaller when a larger spherical cap radius is applied, the contribution of 
,_, 

the error in L1g to the error in &V AB will be larger. This is because there are more mean 

gravity anomalies located in the area of the inner zone whose spherical cap radius is large, 

than in the area of the inner zone whose spherical cap radius is small. We can also observe . 

that as s increases, Q increases. This indicates that the further the two points are apart, the 

fewer L1g they share, and hence the larger the error contributed to L1NAB. 

From the above analysis, the error in L1N AB from ag that are used only at point A 

can be computed by rewriting equation (6.3.1.2) as follows: 

2 * 2 2 
fftW = (Nc) [2n' a~ (1- p.)], 6.3.1.4 

where 2n' is the total number of compartments that are used in the two unshared regions 

and p. is the correlation coefficient between mean gravity anomalies. n' can be estimated 

using the area-proportion Q from Table 6.3. 
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For example, given Vfo = 0.6", s = 10 km, we have: 

n' = Q x the total number of compartments within a spherical cap 

= 0.1 X 234 = 23.4 :: 24. 

The estimated n' are tabulated in Table 6.4 for various baselines. 

Table 6.4: Number of Compartments (n') used to calculate NA which are not used to 
compute Ns·· 

c (km.) 34 45 56 67 78 89 100 111 
"Vo 0.3° 0.4° 0.5° 0.6° 0.70 0.8° 0.9° 1.00 

s (km.) n' 
10 24 23 22 24 22 22 23 25 
20 48 46 46 45 44 43 50 46 
30 70 69 68 66 65 65 71 71 
40 90 90 90 89 87 86 95 96 
50 109 111 109 110 108 108 118 116 
60 128 129 129 130 129 144 141 
70 145 147 150 149 150 167 162 
80 156 165 167 168 169 189 187 -90 179 185 187 190 208 207 

100 191 202 206 209 231 228 
110 198 213 222 224 250 249 

Assuming that the variance in 'Lii; is 9 mGal2, the errors in &>/, i.e., a LIN' can be estimated 

using Table 6.4 and equation(6.3.1.4) and they are tabulated in Table 6.5. 
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Table 6.5: Error in &V over various s due to Random Error in Lig. 

0'.6lf (ia. em.) 

Jl. = 0 Jl. = 1 in 20% of uncoupled ~ 

s(Km) 'l'o = 0.5o 'l'o = 0.6o :lifo= l.Oo 'l'o = 0.5o 'l'o = 0.6o 'l'o = 1.0 
0 

10 0.6 0.6 0.6 0.5 0.5 0.5 
20 0.9 0.7 0.9 0.7 0.7 0.7 
30 1.1 1.0 1.1 0.8 0.8 0.8 
40 1.2 1.2 1.3 0.9 0.9 1.0 
50 1.3 1.3 1.4 1.0 1.0 1.1 
60 1.4 1.4 1.5 1.1 1.1 1.2 
70 1.5 1.6 1.6 1.2 1.2 1.3 
80 1.6 1.6 1.7 1.3 1.3 1.3 
90 1.7 1.7 1.8 1.3 1.3 1.4 

100 1.8 1.8 1.9 -1.4 1.4 1.5 
110 1.8 1.9 2.0 1.4 1.4 1.6 

6.3.2 Systematic Errors 

The error in &V will be caused by the systematic error in~. too. Since gravity 

anomalies are calculated based on the choice of datums of networks (e.g. gravity network, 

vertical network and horizontal network) used in the free-air reduction procedure, they can 

be influenced by the systematic errors caused by the inconsistency of the local datums with 

respect to the global datums. The effects on &V by some of these systematic error sources 

were analyzed in details by Heck [1990]. In here, a brief discussion on them will be 

revisited. 
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6. 3. 2.1 Error caused by Gravity Datum Inconsistency 

Absolute or relative gravity measurements are made on the surface of the earth. 

Corrections, such as drift, atmospheric attraction, earth and ocean tides, etc., are then 

applied to reduce these measured gravity values to nominal gravity values. In practise, 

absolute and relative gravity are combined together, through the establishment of global 

network known as the International Gravity Standardization Net 1971 (IGSN 71). This is 

the reference datum that is used to tie local gravity surveys to a global homogeneous 

network. However, regional biases of about 0.2 mGal [Heck, 1990] have been detected in 

the absolute gravity values. These regional biases will affected other absolute values of 

. regional gravity surveys ,that.were tied to -some JGSN. 71. stations which,· in turn, will 

introduce systematic errors(< 0.2 mGal) in gravity anomalies. 

6.3.2.2 Error Caused By Vertical Datum Inconsistency 

Differential levelling determines height differences between pairs of points. 

These observed height differences are then converted into ortfiometric, dynarriic or normal 

height differences through the application of appropriate corrections [Vanicek and 

Krakiwsky, 1982]. Orthometric height is then detennined by connecting height differences 

with the reference bench marks which define the vertical datum. If all the heights are 

connected to ·one common datum, then a consistency of heights will be obtained. 

However, in Canada. more than one datum have been used [Robinson, 1990]. Vertical 

datum has been established by tide gauge observations in coastal regions. It was assumed 

that at one time the mean sea-level theoretically coincided with the geoid .(which is the 

reference surface for heights) but later realized that the two surfaces are separated by the sea 

surface topography amounting up to 1-2 m on the oceans [Heck, 1990]. The use of 
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inconsistent vertical datum can cause a bias of ±0.5 mGal [Heck, 1990] in the terrestrial 

gravity anomalies. Thus, the effect of this bias would propagate as systematic errors in 

tJN. 

6.3.2.3 Error Caused By Horizontal Datum Inconsistency 

The horizontal coordinates of a gravity station are defined in term of ellipsoidal 

(geodetic) latitude and longitude. These coordinates are normally referred to a local 

horizontal datum which was defined using astronomical observations at one or several 

.fundamental points .in the-heginning.of.this .. century .. Since .then, .more observations have 

been obtained using modem instruments. However, datum such as the North American 

Datum 27 (NAD27) is no longer valid today due to a shift of coordinates. Because of the 

shift of coordinates, the geodetic datum has to be redefmed and coordinates from old datum 

have to be transformed to the new datum (NAD83). In order to perform this 

transformation, the parameter differences ( L1X0 , !JY0 , & 0 , !Ja, tJf) between the two 

datums are required [Vanicek and Krakiwsky, 1982]: 

where 

[ 
-sint/JcosAI(M+h) 

J .J = -sinAJ[(N+h)cos¢1 

cost/JcosA. 

-simpsinAJ(M+h) 

cos AI [(N + h)cos¢} 
cosq>sinA. 

[ 
Ncost/JcosAia 

B = Ncosq>sinA/a 
N(J -f)2sint/Jfa 

Msin2t/Jcost/JcosAJ( If) ] 
Msin2t/Jcosq>sinAJ( 1-f) , 

(Msin2¢-2N)sin¢( 1-f) 

6.3.2.3.1 

cos¢/(M+h) ] 
0 ' 

sin¢ 

6.3.2.3.2 

6.3.2.3.3 
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M and N are the radii of curvature; f is the flattening; a is the major-semi axis of the 

ellipsoid and (X 0 , L1Y0 , L1Z0 ) are the datum translation components. From 

equation(6.3.2.3.1), we can obtain dt; (the shift of the ellipsoidal latitude t;). This dt; will 

induce the change in the normal gravity dyusing the approximate formula [Heck,1990]: 

dy = Ya f* sin 2t; dt;, 6.3.2.3.4 

where Ya f* = 5.172 x 10·2 m1i. The change in the normal gravity will, in tum, 

affect the gravity anomaly through the following equation: 

6.3.2.3.5 

where gs is the observed gravity on the surface of the earth; Yo is the normal gravity 

computed using equation(2.2.2); and HP is the orthometric height at point p. However, the 

maximum value for dt; , for transforming NAD27 to NAD83(GRS80), is about 1" 

[Vanicek, 1991]. Assuming tP = 4SO, dy will be 26 x 10"6 mGal which has a very small 

effect on .1N. 

Using the law of the propagation of systematic errors, one can estimate the size of 

the systematic error in .1g and see how much .1N can be influenced from the following 

equation: 

6.3.2.3.6 

If there is a bias of 1.0 mGal in the gravity set which was used to compute only NA, the 

errors in .1N for a 110 km baseline computed using lflo = 0.6" can be as large as 6.4 em. 

The error in .1N is computed for various distances and is tabulated in Table 6.6. The 

systematic error increases as the baseline length increases. If one has to achieve e &I below 
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5 em over 110 km, then £~ (using spherical cap radius of Vfo = 0.6") would need to be 

less than 0.8 mGal. 

·. .. . .-./ 

Table 6.6: Error in &V due to Systematic Error in ..1g. Assuming E~ of 1.0 
mGal presents between gravity data used exclusively for 'NA and 
that used exclusively for N 8 .. 

t4 N (m em.) 

:S(Km) 'Vo = O.So 'Vo = 0.6o 'Vo = l.Oo 

10 0.? 0.? 0.8 
20 1.4 1.4 1.4 
30 2.0 2.0 2.1 
40 2.? 2.? 2.9 
50 3.3 3.3 3.5 
60 3.9 3.9 4.2 
?0 4.4 4.5 4.9 
80 5.0 5.0 5.6 
90 5.4 5.6 6.2 

100 5.? 6.1 6.8 
110 5.9 6.4 ?.5 

6.3.3 Errors from the Remote Zone Contribution 

As was mentioned in the previous section, Rapp 180 geopotential model with 

degree and order to 180 had been used to compute the remote zone contribution to &V. 

Two error sources, such as (1) the errors due to the geopotential coefficient errors, and (2) 

errors due to the truncation of the infinite series to nmax have been discussed by Engelis et 

al. [1985]. They show that the total contribution from these two error sources can be about 

3 em for baseline of only 20 km, i.e., 1.5 ppm. The comparison of the results 

(combination of ..1N from Rapp180 geopotential model with ..1N from ring integration) with 

&V derived from GPS/Levelling (1.7 ppm) agreed. 
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AND 

Two sets of programs, namely (RININT.RED with POT.RED) and (RININT.UNRED 

with POT.UNRED), which have been developed to determine geoidal height difference by 

simply inserting the latitude and longitude of two points. Program RININT.RED 

computed the short wavelength contribution to AN using the "reduced" free-air gravity 

anomalies. The contribution to AN f~om medium to long wavelength was computed using 

the program POT.RED. The results from these two programs were then added together to 

obtain a full geoidal height difference. Program RININT. UNRED also computed the short 

wavelength contribution to AN but using the "unreduced" free-air gravity anomalies. The 

corresponding program to compute the medium to long wavelength contribution to AN was 

program POT.UNRED. A full geoidal height difference was then obtained by adding the 

results from these two contributions. 

The Ring Integration approach consists of rings centering upon the point of 

computation and lines radiating out from the point of computation. The intersections of 

these rings and lines formed compartments which are used to evaluate the inner zone 

contribution of the geoidal height difference. The area between concentric circles of radius 

up to 1.2" is divided into three sub-zones. The inner sub-zone and the middle sub-zone 

consists of six and twelve compartments respectively, while the outer sub-zone consists of 

36 compartments in each of the 13 rings. The inner and the outer radii of each ring are 
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selected so that the mean gravity anomaly for a sector of a ring, formed by a pair of radial 

lines subtending an angle, will contribute 0.0003 m/mGal to N. These methods has been 

outlined in chapter five. The remote zone contribution (using programs POT.RED or 

· POT.UNRED) were computed from the high order geopotential model (RAPP180) to 

degree and order of 180. 

The computation methods and the type of data used in the UNB approach have been 

shown in chapters three and four. Its results had been compared with the Ring Integration 

method in chapter six. The dissimilarities between the Ring Integration approach and the 

Stokes approach were summarized as followed: 

a) In this investigation, the software which was used to obtain the short wavelength 

contribution computes the geoidal height difference directly. In the UNB approach, 

the program, named "GIN" [Chang et al.,1986], used to obtain the short 

wavelength contribution, computes only the geoidal height. Geoidal heights at each 

end of the line were then differenced to obtain the geoidal height difference. 

b) The UNB approach uses the Stokes function while the Ring Integration approach 

used the F-function. 

c) In the UNB approach, pre-computed mean gravity anomalies which were stored in 

a grid form were used to compute N, while in the Ring Integration approach, mean 

gravity anomalies interpolated at the time of the computation using weighted 

arithmetic mean technique, were employed to determine /JN. 

d) GEM9 geopotential model of degree and order to 20 were used in the UNB 

approach as the reference surface where terrestrial gravity anomalies were reduced, 
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while RAPP180 geopotential model of degree and order to 180 were used in the 

Ring Integration approach for the reference surface. 

e) In the UNB approach, the integration had to be carried out to a cap size of 6.0" 

radius to obtain an accurate N while in the Ring Integration approach, an integration 

over a cap size of 0.6" radius was good enough to obtain a reasonable &t/. 

f) In the UNB approach, corrections such as the terrain effects, the indirect effects and 

the atmospheric effects have been included in the evaluation of N. In the Ring 

Integration approach, none of these have been incorporated. 

g) The database for the UNB approach consists of point gravity anomalies, pre

computed 5 by 5 minute mean L1g and 1 by 1 degree mean L1g, while the database 

for the Ring Integration approach includes only the point gravity anomalies. 

The results from the Ring Integration approach have been tested by comparing 

against those values which were derived from a combination of GPS and spirit levelling, 

and against those values (UNB Dec.'86) which were derived from the UNB method. 

From the comparisons, a root-mean-square difference of 0.14 metre was obtained between 

the GPS/Levelling method and the Ring Integration method using a cap size of 0.6" radius. 

However, the root-mean-square difference between the UNB method and the 

GPS/Levelling method had a value of 0.19 metre. Despite the fact that the root-mean

square difference (with respect to GPS/Levelling) for the Ring Integration shows a better 

value than the UNB method, it does not indicate which of the two methods is better. This 

is because there are errors that are present in &t/ from GPS/Levelling. In the comparisons, 

we assumed that the error in GPS/levelling derived geoidal height difference, the error in 

RAPP180 derived geoidal height difference and the error in GEM9 derived geoidal height 

difference were negligible. In fact, the error in GPS/Levelling derived geoidal height 
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difference was estimated to be about 3.2 ppm [Mainville, 1987] and the errors contributed 

from RAPP180 and GEM9 geopotential models were proved to be 1 metre [Lachapelle and 

Rapp, 1982] and 1.75 metres [Vanicek and Kleusberg, 1987], respectively. 

Nevertheless, the results of the comparisons certainly encourage one that the Ring 

Integration approach is capable of producing LlN whose precision iu least matches those 

produced by the UNB method and those produced by the GPS/Levelling method. An 

agreement of 1.7 ppm in mean-relative-accuracy with respect to GPS/Levelling solutions 

was achieved considering a small 0.6· integration of gravity anomalies was incorporated in 

the evaluation of LlN. Using a spherical cap radius of 0.4 ·, a 0. 92 ppm in mean-relative

accuracy with respect to UNB solutions was achieved. 

From the comparisons of the results, it is observed that the cap size radius{1jf0 ) and 

the nmax value which is used for computing the remote zone, play significant roles in 

geoidal height determination. The results computed from the Ring Integration approach 

agrees better to the results obtained from GPS/Levelling as nm.ax increases. By trial and 

error, the optimum solution can be obtained by using the combination a spherical cap radius 

of V'o = 0.6· with nm.ax = 180. The results also show that LlN derived from RAPP180 

geopotential coefficients could be improved by taking the effect of detailed terrestrial 

gravity in a cap size radius of 0.6• into account. When LlN is computed only from the 

RAPP180 geopotential model alone, the agreement with GPS/Levelling is 4.0 ppm at best. 

Since the method of Ring Integration is simply the summation of mean gravity 

anomalies {Lii) and scaling it by 0.0003 rn/mGal, the technique for predicting mean .1g for 

the compartments also played an important role in the determination of geoidal height 

difference. The choice of the method for predicting mean L1g, however, depends on the 

spacing of the point gravity anomalies in the data file that is available. Although, in this 
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thesis the method used to evaluate mean .dg was the arithmetic weighted mean, there were 

several prediction methods, such as least-squares collocation and polynomial surface 

fittings [Kassim,1980], that could be used to obtain the mean gravity anomalies for the 

compartments. It is thus recommended that further research should be conducted to 

investigate these methods for producing mean .1g. 

Other than the prediction method used, the errors in the free-air anomalies need 

special attention and are by far the largest component affecting NV. The effect on NV from 

these errors (i.e., random errors and systematic errors) have been estimated in chapter six. 

It was shown that a random error of 3 mGal in .ag could contribute an error of about ±6 

mm in LlN for distances of 10 km to about ±20 mm in .d.N for distances of 110 km. 

Analysis has also shown that a systematic error of 1.0 mGal in Lr; could give an error of 

about ±10 mm for distances of 10 km to about ±80 mm for distances of 110 km. The 

errors in L1N resulting from systematic errors in 1fi seem to be large. It is suggested that 

further investigation be conducted to study the effect of the errors in Llg on L1N using the 

Ring Integration approach. 

The advantage of the Ring Integration method is its flexibility in matching the 

compartment size to the density of the data. The thickness of the rings was generated in 

small steps, thus allowing the full use of the available data in the averaging of Llg. The 

method is simple to understand and is easy to program. Nevertheless, the disadvantage is 

that the mean gravity anomalies obtained for the compartments at one point were different 

and therefore could not be reused at the other points in the evaluation of N, whereas in the 

UNB approach, the mean gravity anomalies are stored in grid form and hence they could be 

reused for computation at other points. The other disadvantage is that the Ring Integration 

approach takes longer time to produce LlN, while in the UNB approach, N is available on a 

grid and it is easily interpolated so that NV can be obtained in almost no time whatever. 
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APPENDIX 1.1 

Description of Programs 

There were several programs that have been developed by the author for the purpose of 

studying the geoidal height difference computed using the ring integration approach. 

However, only four of them will be discussed in this section. Two of these four 

programs, namely (1) RININT.RED and (2) RININT.UNRED, are used for computing 

the short wavelength contribution to geoidal height difference while the other two 

programs, namely (3) POT.RED and (4) POT.UNRED, are used for computing the 

medium to long wavelength contribution to geoidal height difference. The geoidal height 

difference which was computed from the program RININT.RED has to be added to the 

geoidal height difference computed from program POT.RED, in order to obtain a full 

geoidal height difference. Likewise, the result obtained from program RININT.UNRED 

has to be added to the result obtained from program POT.UNRED. So that these two sets 

of the programs are used- in pairs. These four programs have been written in standard 

FORTRAN. The first two programs run on both Macintosh(MAC) Plus computer and 

IBM mainframe while the latters run only on the mainframe. Originally, both 

RININT.RED and RININT. UNRED programs were designed to run on MAC Plus. Due 

to the limitation of the MAC plus memory, the programs were transferred to the IBM 

mainframe. It was discovered later that not only the small size of the MAC plus memory is 

the limiting factor but also its speed. It was very much faster for the programs to be run on 

the IBM mainframe than on MAC plus computer. For the MAC plus, the program took 

about 3 hours to compute seven ~N while for the ffiM mainframe, the program took less 

than a minute. The author, thus, decided to conduct the testing on the IBM mainframe. 
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1.1 The RININT.RED Program 

The RININT.RED program computes geoidal height difference for the inner zone 

contribution using the reduced free-air gravity anomalies. This program and the data set, 

which contains the reduced free-air anomalies, and its associated coordinates (latitude, 

longitude and elevation), are stored on a floppy diskette and on the UNB ffiM Mainframe. 

The program is self-documented and is available from the author. 

The algorithms used in this program are based on the techniques presented in the 

previous chapter. This program consists of the main program and 9 subroutines. Two of 

these subroutines are called by the main program and the rest are called via other 

subroutines. Each of these subroutines was verified separately, and the final (main) 

program was tested by merging all the subroutines together. The main program calls the 

subroutine READP to read the data set from a data file and stores them in memory. It, 

then, reads the two geodetic end points of a baseline from another file. Subroutine THICK 

is then called to compute the thickness of the ring. That is, it is called to delineate the inner 

sub-zone, the middle sub-zone and the outer sub-zone. To computed the sum of N from all 

the compartments for a sub-zone, subroutine CRING is called. This subroutine calls five 

other subroutines: CAP, GRAMID, SURBND, EXTR and AMEAN. It is called at least 

three times to compute N for the three sub-zones. The first and the second calls on 

subroutine CRING are for the inner sub-zone and the middle sub-zone contributions, 

respectively. The third and the subsequent calls are for the outer sub-zone contribution. 

The contributions from these three sub-zones are then added up to obtain the short 

wavelength contribution to N 1 for the first end point of the baseline. This process is 

repeated for the second end point of the baseline to obtain N2 and the difference (N2 - N1) 
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between these values will be the short wavelength contribution to geoidal height difference 

across this baseline. 

Subroutine GRAMID is called by subroutine CRING to determine the coordinates 

of the point which lies in the center of the compartment using the following steps: 

Step 1: obtain the azimuth(am) and the spherical distance(ytm) for the center of the 

compartment: 

am = (al + a2)12 

'I'm = ('I'J + '1'2)/2 

1.1 

1.2 

where (a 1 ,a2, yt1, ljl2). are the .boundary limits of the .compartment (See Figure 1 ). 

0(.1 

Cen1er 
of-----t--ill"" 

Compartment 

( 41m., Am.) 

Point 
of .,. 

In1erest 
( 41t,At ) 

Figure 1: Determination of Coordinates for the Center of the Compartment. 

Step 2: compute the differences in latitude( .t1t/J) and in longitude( .t1A.) between the point of 

interest(t/JJ>AJ) and the center of the compartment (t/Jm,A,J: 

.t14J = 'I'm cos( a,J , 

.t1A = 'I'm sin( am) , 

Step 3: obtain the coordinates for the center of the compartment: 

Am = ..1A. + A.1, 

tPm = L14J + tP1 · 

1.3 

1.4 

1.5 

1.6 
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Subroutine SURBND is called to delineate the boundary limit of the cell for the 

prediction of ai. It has been discussed in chapter five that the size of the compartment was 

different from the size of the cell. This section, the two will be differentiated. The size of 

the compartment is bounded by the selected L1a and L1yt(deperidlng on which sub-zone is 

to be computed) as shown in Figure 2. The prediction point lies in the center of the cell 

which coincides with the center of the compartment.. However, the size of the cell is a 

square area (shaded region) which is chosen to be 10' by 10'. If there is no point gravity 

anomalies inside this cell, the dimension of the cell will increase to 15' by 15', or 20' by 

20', or 30' by 30', or 60' by 60' until at least one set of observation is present inside the 

cell. If there is still no point gravity anomaly inside the 60' by 60' cell, the computation 

will skip that cell and move on to the next compartment. 

Genter 
of 

Cell 
= 

Genter 
of 

Compartment 
(~m.•Am) 

Point 
of • .. 

Interest 
(~1,).1) 

Figure 2: Cell (Shaded Area) Used for Predicting L1;. 

The boundary limits of the cell are defined by the latitudes of the north-east and south-east 

comers of the cell and the longitudes of the north-west and north-east comers of the cell 

(See Figure 3). 
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Figure 3: The Boundary Limits of the Cell. 

They are computed as follows: 

lf>NE = tPm + .1l/Jc I 2 , 

tPsE = tPm - .1¢c I 2 , 

AsE = Am + &c I 2 , 

ANw = Am - .1A.c I 2 , 

where .1l/Jc = .1A.c = 10', 20', 30', or 60' as mentioned in the above. 

1.7 

1.8 

1.9 

1.10 

Once the boundary limits are known, subroutine EXTR is called to extract all the 

point gravity anomalies, including its associated coordinates, within the square cell and to 

reassign them into new arrays. Of all the subroutines, this subroutine is the most time 

consuming part. This is because for each cell, 4793 set of data have to be scanned through 

and to determine one of the .1N between two points, contributions from 828 cells (for 'flo = 

1.0") have to be computed. 

Arithmetic mean technique (as described in the above section) is utilized in 

subroutine AMEAN to predict the mean gravity anomaly at the center of the cell. 

Subroutine CPSI is called by Subroutine AMEAN to compute the spherical distances('Jf;, 
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i=l ,2, ... ,n, where n is the total number of point gravity anomalies within the cell) between 

the point gravity anomalies within the cell and the center of the cell (See Figure 3). 

1. 2 The RININT. UN RED Program 

This program computes ~N using the unreduced ~g as described in chapter 5.1. 

The procedures are written basically the same as the RININT.RED program. A set of data 

file is used in this program, namely: DATA.UNRED. The DATA.UNRED file consists of 

the unreduced free-air gravity anomalies, the bouguer anomalies, and their associated 

coordinates (latitudes, longitudes and elevations). 

Instead of reading the reduced free-air anomalies, subroutine READP reads in the 

Bouguer anomalies and stores them into arrays. Subroutine EXTR is then called to extract 

the topographic heights within the cell and reset them into different arrays. Once the 

topographic heights are extracted, they are transferred to subroutine AMEAN to compute 

the mean value (arithmetic mean) of the height in that cell. This mean value and the mean 

value of the Bouguer gravity anomaly (computed in subroutine AMEAN) are then used to 

determine the mean value of the free-air anomalies for equation (5.1.2). 



APPENDIX 1.2 

Pro~m RININT.RED 

IIRINGRED JOB '*-RESEARCH',NONEWS 
I*JOBPARM S=30,L=S,R=2048,PRINT=ALL 
II EXEC FORTVCLG,REGION=2048K, 
II PARM.FORT='NOXREF,NOMAP,OPTIMIZE(3)' 
IIFORT.SYSIN DD * 
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C******************************************************************** 
C* * 
C* PROGRAM NAME 
C* FUNCTION 

RININT.RED 
GEOIDAL HEIGHT COMPUTATION 
FORTRAN 77 C* COMPILER 

C* AUTHOR ARTHUR TSEN 
C* HISTORY JULY 31, 1991 - VERSION 1.0 
C* REFERENCE KEARSLEY'S PAPERS(l985,1986a,1986b,1988) 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

This program is designed to compute geoidal height 
difference using Kearsley's method. 

DELTA G' is used for the integration, i.e., 
DELTA G' = DELTA G - DELTA G", 

where DELTA G" is computed from the Geopotential Coefficients 
(RAPP180) and DELTA G is the terrestrial gravity anomaly. 

MAIN Program 

CALLS: 
Subroutine READP 
Subroutine THICK 
Subroutine CRING 

Input parameters: 
LATDl, LATMl, LATSl: the geodetic latitude of the first 

point in degree, minute and seconds 
LONGDl,LONGMl,LONGSl: the geodetic longitude of the first 

point in degree, minute and seconds 
LATD2, LATM2, LATS2: the geodetic latitude of the second 

point in degree, minute and seconds 
LONGD2,LONGM2,LONGS2: the geodetic longitude of the second 

point in degree, minute and seconds. 

Output parameters: 
LATDl, LATMl, LATSl: the geodetic latitude of the first 

point in degree, minute and seconds 
LONGDl,LONGMl,LONGSl: the geodetic longitude of the first 

point in degree, minute and seconds 
LATD2, LATM2, LATS2: the geodetic latitude of the second 

point in degree, minute and seconds 
LONGD2,LONGM2,LONGS2: the geodetic longitude of the second 

point in degree, minute and seconds 
GDIFF: height difference between two points 

across the baseline. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 



c 

IMPLICIT REAL*8(A-H,O-Z) 
CHARACTER*6 STA 
INTEGER NUMl,SS,CAPSIZE 
INTEGER LATOl, LATMl, LONGOl, LONGMl 
REAL*8 LATSl, LONGSl 
INTEGER LAT02, LATM2, LONG02, LONGM2 
REAL*8 LATS2, LONGS2 
REAL*8 P(4800), 0(4800), OG(4800) 
REAL*8 H(4800) 

105 

C******************************************************************** 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

Subroutine READP is called to read in the reduced point 
gravity anomalies (PGA) and its associated coordinates. 

Output parameters: 
OG: arrays of reduced point gravity anomalies in mGals. 

P,O: its associated latitudes and longitudes in decimal 
degree. 

H: its associated heights in meters. 

NUMl: total number of reduced PGA in data file. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

CALL READP(P,O,H,OG,NUMl) 

PI = OARCOS(-1.00) 
WRITE(6,500) 
WRITE (6, 501) 

C***********************************************~******************** 
C* * 
C* Read in the geographical coordinates of the terminal points * 
C* of the line. * 
C* * 
C******************************************************************** 
c 

999 READ(11,502,END=900) LATOl,LATMl,LATSl,LONGOl,LONGMl,LONGSl, 
$ LAT02,LATM2,LATS2,LONG02,LONGM2,LONGS2 

c 
C******************************************************************** 
C* * 
C* 
C* 

Converts degree, minute, second into decimal degree. * 
* 

C******************************************************************** 
c 

PHil =OFLOAT (LATOl) + OFLOAT(LATMl)/(60.00) + LATSl/(3600.00) 
XOLAMl =OFLOAT(LONGOl) + OFLOAT(LONGMl)/(60.00) + LONGSl/(3600.00) 

c 
PHI2 =OFLOAT(LAT02) + OFLOAT(LATM2)/(60.00) + LAT$2/(3600.00) 

XDLAM2 =OFLOAT (LONG02) + OFLOAT(LONGM2)/(60.00) + LONGS2/(3600.00) 
c 
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C******************************************************************** 
C* * 
C* Converts Longitude West to Longitude East (decimal degree) . * 
C* * 
C******************************************************************** 

DLAMl 
DLAM2 

360.00 
360.00 

XDLAMl 
XDLAM2 

C******************************************************************** 
C* 
C* 
C* 

Initialization of Parameters. 
* 
* 
* 

C******************************************************************** 
c 

c 

TGRAV = O.DO 
XTRINGl = 0. DO 
XTRING2 = O.DO 
PSIO O.DO 
ss = 0 

C******************·**·**'*'·*-*****·*****·******·*****·*********'************** 
C* * 
C* CN: Contribution of 0.0003 meter per mGals in a compartment. * 
C* R: Major-semi axis of the earth. * 
C* G: the normal gravity of the ellipsoid. * 
C* * 
C******************************************************************** 
c 

700 
c 

CN 
R 
G 

PHI 
DLAM 

0.0003000 
6378137.00 
979764.465600 
=PHil 
= OLAMl 

CONTINUE 

C******************************************************************** 
C* * 
C* Subroutine THICK is called to compute the outer radius of the * 
C* 
C* 
C* 
C* 
C* 
C* 

ring for the inner sub-zone. 

Subroutine CRING is called to compute the total contribution 
to geoidal height for the inner sub-zone. There are total 
of 6 compartments in this sub-zone. 

* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

DALFl = 60.00 
SKl = (R*OALF1)/(720.DO*G) 

CALL THICK(SKl,CN,PSIO,PSil) 

CALL CRING(6,0.00,PSI1,PHI,OLAM,NUM1, 
$ P,O,H,OG,TRINGA) 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

Subroutine THICK is called to compute the outer radius of the 
ring for the middle sub-zone. 

Subroutine CRING is called to compute the total contribution 
to geoidal height for the middle sub-zone. There are total 
of 12 compartments in this sub-zone. 

* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

DALF2 = 30.00 
SK2 = (R*DALF2)/(720.DO*G) 

CALL THICK(SK2,CN,PSI1,PSI2) 

CALL CRING(l2,PSI1,PSI2,PHI,DLAM,NUM1, 
$ P,D,H,DG,TRINGB) 

C******************************************************************** 
C* * 
C* Subroutine THICK is called to compute the outer radii of the * 
C* ring for the·outer ·sub-zone. *" 
C* * 
C* Subroutine CRING is called to compute the total contribution * 
C* to geoidal height for the outer sub-zone. There are 36 * 
C* compartments between the inner radius and the outer radius * 
C* of the rings. * 
C* * 
C* If CAPSIZE = 5, Then spherical cap size is 0.5 degree. * 
C* If CAPSIZE = 6, Then spherical cap size is 0.6 degree. * 
C* If CAPSIZE =11, Then spherical cap size is 1.0 degree. * 
C* If CAPSIZE =13, Then spherical cap size is 1.2 degree. * 
C* * 
C******************************************************************** 
c 

c 

c 

300 
c 

c 

$ 

DALF3 
SK3 
TRA 

10.00 
(R*DALF3)/(720.DO*G) 
0.00 

CAPSIZE = 11 
DO 300 I2 = l,CAPSIZE 
CALL THICK(SK3,CN,PSI2,PSI3) 

CALL CRING(36,PSI2,PSI3,PHI,DLAM,NUM1, 
P,D,H,DG,TRINGC) 

TRA = TRA + TRINGC 
PSI2 = PSI3 
CONTINUE 

TGRAV TRINGA + TRINGB + TRA 

IF (SS.EQ.O)THEN 
XTRINGl TGRAV 

ELSE 
XTRING2 TGRAV 

END IF 
ss = ss + 1 
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C******************************************************************** 
C* * 
C* If 'SS' less than 2, then start computing geoidal height * 
C* for the second point. If 'SS' greater than 2, then take * 
C* the difference of the geoidal heights between the two points. * 
C* * 
C*******************************.************************************* 
c 

cc 

c 

IF (SS.LT.2)THEN 
PHI = PHI2 

DLAM = DLAM2 
GO TO 700 

ELSE 

END IF 

GDIFF 
GDIFF 

XTRING2 - XTRINGl 
(XTRING2 - XTRINGl)*CN 

C******************************************************************** 
C* 
C* 
C* 
C* 

Print out the geoidal height difference between two points 
and its associated coordinates. 

* 
* 
* 
* 

C******************************************************************** 
c 

WRITE(6,250) LATDl, LATMl, LATSl, LONGDl, LONGMl, LONGSl, 
$ LATD2, LATM2, LATS2, LONGD2, LONGM2, LONGS2, 
$ GDIFF 

c 
GO TO 999 

c 
C******************************************************************** 
C* * 
C* 
C* 

Format Statements. * 
* 

C******************************************************************** 
c 

250 
500 

c 

501 

502 
900 

FORMAT(2X,4(2(I3,1X),F9.6,2X),2X,F8.3) 
FORMAT(20X,'COMPUTATION OF GEOIDAL HEIGHT DIFFERENCES',/, 

$ 20X, 1 USING THE RING INTEGRATION METHOD ' ) 
FORMAT (2X, I PHil (OMS) 1 I 5X, 1 LAMDAl (OMS) 1 , 

$ 7X, 'PHI2 (DMS) 1 I 5X, 1 LAMDA2 (DMS) 1 , 

$ 7X, 'ON (METRES)',/) 
FORMAT(2(2(I3,1X),F9.6),2(2(I3,1X),F9.6)) 
STOP 
END 
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C******************************************************************** 
C* * 
C* SOURCE FILE: CRING * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

* 
CALLED BY: MAIN Program * 

* 
CALLS: Subroutine CAP * 

Subroutine GRAMID * 
Subroutine SURBND * 
Subroutine EXTR * 
Subroutine AMEAN * 

* 
PURPOSE: This subroutine CRING computes the total gravity * 

anomalies of all the compartments for one ring. * 

Input parameters: 
NC: the total number of compartments in a ring 

BPSIO: the inner radius of the ring in radian 
BPSil: the outer radius of the ring in radian 

YPHI,YDLAM: The lat. and long. coordinates of the point of 
interest in decimal degree 

·XNUM2: The total number of reduced PGA in data file 
P,D: The lat. and long. of PGA in decimal degree 

H: The height of PGA in meters 
DG: the reduced PGA in mGals. 

Output paramters: 
TRINGl: The sum of the mean gravity anomalies from 

all the compartments in a ring. 

Other parameters: 
AZI: The initial boundary of the compartment in 

radian 
XAZI: The end boundary of the compartment in radian. 
CAZI: The size of the compartment in radian 

FPHI,FDLAM: The lat. and long. coordinates of the point at 
the center of the compartment 

DIM: The size of the cell for computing the mean 
gravity anomaly. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** C 
SUBROUTINE CRING(NC,BPSIO,BPSil,YPHI,YDLAM,XNUM2, 

c 

$ P,D,H,DG,TRINGl) 
IMPLICIT REAL*8 (A-H, 0-Z) 
INTEGER XNUM2 
INTEGER XNUM,NUM2,NC 
REAL*8 P(XNUM2),D(XNUM2),DG(XNUM2),H(XNUM2) 
REAL*8 YP2(500),YD2(500),YDG2(500),YH2(500) 
PI= DARCOS(-1.00) 
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C******************************************************************** 
C* * 
C* Setting input parameters into another variables. * 
C* * 
C******************************************************************** 
c 

APSIO BPSIO 
APSil BPSil 

XPHI YPHI 
XDLAM YDLAM 

NUM2 XNUM2 
c 
C******************************************************************** 
~ * 
C* Initialization of variables. * 
C* * 
C******************************************************************** 
c 

c 

c 

c 

TRING1 
AZI 

O.DO 
O.DO 

CAZI = 2·.DO*PI·/DFLOAT(NC) 
CALL CAP (APSIO,API) 
CALL CAP (APSil,APJ) 
APJI = APJ - API 

DO 100 J = 1,NC 
XAZI = AZI + CAZI 
FPHI = O.DO 
FDLAM = O.DO 

C******************************************************************** 
C* * 
C* Subroutine GRAMID is called to compute the coordinates of the * 
C* center of the compartment. * 
C* * 
C******************************************************************** 
c 

c 

115 

c 

c 
300 

c 

CALL GRAMID(AZI,XAZI,APSIO,APSI1,XPHI,XDLAM,FPHI,FDLAM) 

K9 = 0 
DIM= 10.DO 
XPHIN = O.DO 
XPHIS = O.DO 
XDLAMW O.DO 
XDLAME = 0. DO 
XNUM = 0 
ANOINT1=0.DO 

DO 300 Jl = 1,500 
YP2(J1) = O.DO 
YD2(Jl) = O.DO 
YDG2(J1) = O.DO 
YH2(J1) = O.DO 

CONTINUE 
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C******************************************************************** 
C* * 
C* 
C* 
C* 

Subroutine SURBND is called to delineate the boundaries for 
cell. 

* 
* 
* 

C******************************************************************** 
c 

CALL SURBND(FPHI,FDLAM,DIM,XPHIN,XPHIS,XDLAMW,XDLAME) 
c 
C******************************************************************** 
C* 
C* 
C* 
C* 
C* 

Subroutine EXTR is called to extract all the PGA, together 
with its associated coordinates, within the cell size defined 
by the boundaries computed from subroutine SURBND. 

* 
* 
* 
* 
* 

C******************************************************************** 
c 

CALL EXTR(NUM2,XPHIN,XPHIS,XDLAMW,XDLAME,P,D,H,DG, 
$ YP2,YD2,YH2,YDG2,XNUM) 

c 
C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

If there is at least one set of PGA exists within the 
cell, then subroutine AMEAN is called to predict the mean 
gravity anomaly within that cell. If there is no PGA within 
the cell, then the cell size (DIM) will be enlarged to a 
(15' by 15'), or to (30' by 30'), or to (60' by 60') cell 
whichever cell contains at least one set of record. If there 
is still no PGA found within the 60' by 60' cell, then the 
computation for that particular cell is simply skipped. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

c 

c 

IF(XNUM .GT. O)THEN 
CALL AMEAN(XNUM, FPHI, FDLAM, YP2, YD2, YH2, YDG2-,ANOINT1) 
GO TO 113 

END IF 

IF ( (K9 .EQ. 0) .AND. (XNUM. LE. 0)) THEN 
DIM = 15.DO 
K9 = K9 + 1 
GO TO 115 

END IF 

IF ( (K9 . EQ. 1) .AND. (XNUM. LE. 0)) THEN 
DIM= 20.DO 
K9 = K9 + 1 
GO TO 115 

END IF 

IF( (K9 .EQ. 2) .AND. (XNUM.LE.O) )THEN 
DIM= 30.DO 
K9 = K9 + 1 
GO TO 115 

END IF 



c 

c 

IF ( (K9 . EQ. 3) .AND. (XNUM. LE. 0)) THEN 
DIM= 60.DO 
K9 = K9 + 1 
GO TO 115 

END IF 

IF ( (K9 .EQ. 4) .AND. (XNUM .LE. 0)) THEN 
GO TO 111 

END IF 

C113 TRING1 = TRINGl + ANOINTl*APJI 
113 TRING1 = TRING1 + ANOINT1 

c 

111 CONTINUE 
AZI = XAZI 

100 CONTINUE 
RETURN 
END 

112 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 

C* 
C* 
C* 
C* 
C* 
C* 
C* 

C* 
C* 

SOURCE FILE: CAP 

CALLED BY: 

PURPOSE: 

CRING 

This subroutine CAP computes the ~ which 
will be use to compute the geoidal heights. 

Input parameter: 
XPSI: The radius of the ring. 

Output parameter: 
XFIL : The 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE CAP(XPSI,XFIL) 
IMPLICIT REAL*8(A-H,O-Z) 

PARTl XPSI * 2.00 
PART2 (S.D0/4.DO)*(XPSI**2) 
PART3 (10.D0/12.DO)*(XPSI**3) 
PART4 (3.D0/2.DO)*(XPSI**2) 
IF (XPSI .NE. O.DO) THEN 
PARTS = DLOG(XPSI/2.00 + XPSI**2/4.DO - XPSI**3/24.D0) 
ELSE 

PARTS = 0.00 
END IF 
XFIL = PARTl - PART2 - PART3 - PART4*PARTS 

RETURN 
END 

CC SUBROUTINE CAP(XPSI,XFIL) 
CC IMPLICIT REAL*8(A-H,O-Z) 
c 
CC PARTl 4.DO*(DSIN(XPSI/2.D0)) 
CC PART2 DCOS (XPSI) 
CC PART3 6.DO*(DSIN(XPSI/2.D0)**3) 
CC PART4 (7.D0/4.DO)*(OSIN(XPSI/2.D0)**2) 
CC PARTS (3.D0/2.DO)*(OSIN(XPSI)**2) 
CC IF (XPSI .NE. O.DO) THEN 
CC PART6 = OLOG(DSIN(XPSI/2.00) + (OSIN(XPSI/2.00)**2)) 
CC ELSE 
CC PART6 = O.DO 
CC ENDIF 
CC XFIL = l.OO+PART1-PART2-PART3-PART4-(PARTS*PART6) 
CC RETURN 
CC END 
c 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: THICK 

CALLED BY: 

PURPOSE: 

MAIN PROGRAM 

This subroutine THICK computes the spherical 
distance (radius) of the ring or the thickness 
of the compartments. 

Input parameters: 
SSKl: a scale that use to determine the size of 

the ring (See MAIN program) 
XCN: = 0.0003 mlmGal per compartment 

PSIA: the inner radius of the ring in radian. 

Output par.meters: 
PSIB: the outer radius of the ring in radian. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE THICK(SSKl,XCN,PSIA,PSIB) 
IMPLICIT REAL*8(A-H,O-Z) 

PSI2P PSIA + XCN I (2.00 * SSKl) 
TERM2 (S.OOI8.00)*(PSI2P**2 - PSIA**2) 
TERM3 (10.00I24.00)*(PSI2P**3- PSIA**3) 
TERM4A = (PSI2P**2)*0LOG( (PSI2PI2.D0) + 

$ (PSI2P**214.D0) - (PSI2P**3124.D0) 
IF (PSIA .NE. O.OO)THEN 

TERM4B (PSIA**2)*0LOG( (PSIAI2.DO) + 
$ (PSIA**214.00) - (PSIA**3124.D0) 

ELSE 
TERM4B 

END IF 
TERM4 
TERMS 
PSIB 
RETURN 
END 

0.00 

(3.0014.00) * (TERM4A - TERM4B) 
XCN I (2.00 * SSKl) 
PSIA + TERM2 + TERM3 + TERM4 + TERMS 
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C******************************************************************** 
C* * 
C* SOURCE FILE: AMEAN * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

* 
CALLED BY: Subroutine CRING * 

* 
CALLS: Subroutine CPS! * 

* 
PURPOSE: This subroutine AMEAN computes the mean gravity * 

anomaly within a compartment using the weighted * 
arithmetic mean. * 

Input parameters: 
XNUM: the total number of extracted reduced PGA 

within the boundaries of the cell. 
GPHI,GOLAM: the lat. and long. coordinates of the center of 

cell in decimal degree. 
OGEXTR: array of extracted reduced PGA within the cell 

in mGals. 
PEXTR,OEXTR: its associated lat. and long. coordinates 

in decimal degree. 
HEXTR: its associated heights in meters 

Output parameters: 
TOGR: the mean gravity anomaliy within the cell. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C* Other parameters: * 
C* OLO: array of spherical distances (in decimal degree) * 
C* between the point at the center of the cell and * 
C* the PGA points. * 
C* * 
C***********************************************~******************** 

c 

c 

200 
c 

c 

100 
c 

c 

SUBROUTINE AMEAN(XNUM,GPHI,GOLAM,PEXTR,OEXTR,HEXTR,OGEXTR,TOGR) 
IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER XNUM 
REAL*8 PEXTR(XNUM), OEXTR(XNUM), OGEXTR(XNUM) 
REAL*8 OLO(SOO), HEXTR(XNUM) 

BTEST 0.00 
TOGR 0.00 
SUMDLO 0.00 

DO 200 MN 1,500 
OLO(MN) 0.00 

CONTINUE 

CALL CPSI(OLO,PEXTR,OEXTR,GPHI,GOLAM,XNUM) 

DO 100 MM 
BTEST 

SUMDLO 
CONTINUE 

TOGR 

RETURN 
END 

= l,XNUM 
BTEST 

= SUMDLO 
+ OGEXTR(MM)/(OLO(MM)**3.5) 
+ (1.00/0LO(MM)**3.5) 

BTEST /SUMDLO 
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C******************************************************************** 
C* * 
C* SOURCE FILE: GPSI * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

* 
CALLED BY: Subroutine AMEAN * 

PURPOSE: 
* 

This subroutine CPSI computes the spherical * 
distances between the point at the center of the * 
cell and the PGA extracted within the cell. * 

Input parameters: 
XNUM: the total number of extracted reduced PGA 

within the boundaries of the cell 
PEXTR,DEXTR: the lat. and long. coordinates of the extracted 

PGA stations in decimal degree 
HPHI, HDLAM: the lat. and long. coordinates of the center of 

the cell in decimal degree. 

output parameters: 
YLO: array of spherical distances in decimal degree. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C****************"*******'**************************.**********.********* 
c 

c 

c 

c 

c 

c 

c 
100 

c 

SUBROUTINE CPSI(YLO,PEXTR,OEXTR,HPHI,HOLAM,XNUM) 
IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER XNUM 
REAL*8 PEXTR(XNUM),DEXTR(XNUM),YL0(500) 
REAL*8 SINP,COSP,COSL,PP,DO,APSI 

PI = OARCOS(-1.00) 
RAD = PI/180.00 
PHI = HPHI*RAD 
DLAM HOLAM*RAD 
SINP OSIN(PHI) 
COSP DCOS (PHI) 

DO 100 I =l,XNUM 
PP PEXTR(I)*RAD 
DD = DEXTR(I)*RAD 

SIND 
COSD 
COSL 

APSI 

YLO(I) 

OSIN(PP) 
OCOS(PP) 
DCOS(DABS(DD-DLAM)) 

DARCOS(SINP*SIND + COSP*COSO*COSL) 

APSI*(l80.D0/PI) 

CONTINUE 
RETURN 
END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: READP 

CALLED BY: 

PURPOSE: 

MAIN Program 

This subroutine READP reads the reduced gravity 
anomalies, together with its associated coordi
nates, from file DATA.RED and stores them 
into memories. 

Input parameters: 
NONE 

Output parameters: 
RDELGl: array of PGA in mGals. 

PHIX: array of latitudes of PGA stations in decimal 
degree. 

DLAMX: array of longitudes of PGA stations in decimal 
degree. 

H: array of heights of PGA stations in meters. 
K: the total number of PGA in DATA.RED file. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE READP(PHIX,DLAMX,H,RDELGl,K) 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 PDEGl,DLDEGl 
INTEGER K 
REAL*8 ELSTAl 
REAL*8 PHIX(4800),DLAMX(4800) 
REAL*8 DLAME,H(4800) 
REAL*8 DELG,DELGl,DELG2,DIST 
REAL*8 RDELG1_(4800) 

C******************************************************************** 
C* * 
C* 
C* 

Initializing PGA record fields. * 
* 

C******************************************************************** 
c 

c 

K = 0 
DO 20 L=1,4800 

PHIX(L)=O.DO 
DLAMX(L)=O.DO 
RDELGl(L)=O.DO 
H(L) = O.DO 

20 CONTINUE 
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C******************************************************************** 
C* * 
C* Reading in record fields. * 
C* * 
C******************************************************************** 
c 

c 

50 READ(l0,88,END=100)PDEGl,DLDEGl,ELSTAl,DELG,DELG2,DELGl,DIST 
88 FORMAT(2X,F13.8,2X,Fl3.8,2X,F6.2,3(2X,F6.1),2X,F9.3) 

C******************************************************************** 
C* * 
C* 
C* 

Redefining the fields. * 
* 

C******************************************************************** 
c 

c 

c 
100 

c 

K=K+l 
RDELGl(K)=DELGl 
H(K) = ELSTAl 

PHIX(K) = PDEGl 
IF (DLDEGl.LT.O)THEN 

DLAME = DLDEGl 
DLAMX(K) = DLAME + 360.00 

ELSE 
DLAME = DLDEGl 
DLAMX(K) = DLAME 

END IF 
GO TO 50 

RETURN 
END 
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C******************************************************************** 
C* * 
C* SOURCE FILE: SURBND * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

CALLED BY: 

PURPOSE: 

Subroutine CRING 

This subroutine SURBND computes the boundaries 
limits of a cell for the prediction of mean 
gravity anomaly. 

Input parameters: 
PHI,DLAM: the lat. and long. coordinates of the center 

of the compartment 
XNX: the size of the cell. 

Output parameters: 
PHIN: the latitude of the north-east corner 
PHIS: the latitude of the south-east corner 

DLAMW: the longitude of the north-west corner 
DLAME: the longitude of the south-east corner. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

SUBROUTINE SURBND(PHI,DLAM,XNX,PHIN,PHIS,DLAMW,DLAME) 
IMPLICIT REAL*8 (A-H,O-Z) 
XNXD (XNX/2.0)/60.00 
PHIN = PHI + XNXD 
PHIS = PHI - XNXD 
DLAMW = DLAM - XNXD 
DLAME = DLAM + XNXD 
RETURN 
END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: EXTR 

CALLED BY: Subroutine CRING 

PURPOSE: This subroutine SURBND extracts the reduced 
PGA and its associated coordinates and heights 
within the boundaries limits defined by 
subroutine SURBND. 

Input parameters: 
NK: the total number of PGA in data file 

PHIN: the latitude of the north-east corner 
PHIS: the latitude of the south-east corner 

DLAMW: the longitude of the north-west corner 
DLAME: the longitude of the south-east corner 

DG: the PGA in mGals 
P,D: its associated lat. and long. coordinates 

in decimal degree 
H: its associated height in meters. 

Output parameters: 
YDG1: the extracted PGA (in mGals) within the cell 

YPl,YDl: its associated lat. and long. coordinates 
in decimal degree 

YHl: its associated height in meters 
NUMl: the total number of PGA within the cell. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

100 
c 
ClOOO 

c 

SUBROUTINE EXTR (NK, PHINN, PHISS, DLAMW, DLAME·, P, D, H, DG, 
$ YPl,YD1,YHl,YDG1,NUM1) 

IMPLICIT REAL*8 (A-H,O-Z) 

INTEGER NK, NUM1 
DIMENSION P(NK), D(NK), DG(NK), H(NK) 
DIMENSION YPl(NK), YD1(NK), YDGl(NK), YHl(NK) 

NUMl = 0 
DO 100 I = l,NK 

IF (( P(I) .LE. PHINN) .AND. (P(I) .GE. PHISS) .AND. 
$ ( D(I) .LE. DLAME) .AND. (D(I) .GE. DLAMW)) THEN 

NUM1 = NUMl. + 1 
YPl(NUMl) = P(I) 
YD1(NUM1) = D(I) 
YDGl(NUMl) = DG(I) 
YHl(NUMl) = H(I) 

END IF 
CONTINUE 

WRITE(6,1000) NUM1 
FORMAT(SX, 'NUMl = I ,I4) 
RETURN 

END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: GRAMID 

CALLED BY: 

PURPOSE: 

Subroutine CRING 

This subroutine GRAMID computes the coordinates 
of the point which lies in the center of the 
compartment. The latitude and the longitude 
that come out from this subroutine are in 
decimal degree. 

Input parameters: 
AZil: the initial boundary of the compartment in 

AZI2: 
XPSil: 
XPSI2: 

PHil,DLAMl: 

radian 
the end boundary of the compartment in radian 
the inner radius of the ring in radian 
the outer radius of the ring in radian 
the lat. and long. coordinates of the point of 
interest in decimal degree. 

Output parameters: 
PHI2,DLAM2: the lat. and long. coordinates of the center of 

compartment in decimal degree. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

SUBROUTINE GRAMID(AZil,AZI2,XPSil,XPSI2,PHil,DLAMl,PHI2,DLAM2) 
IMPLICIT REAL*8 (A-H, 0-Z) 
PI = DARCOS(-l.DO) 

c 

c 

AZIMID 
PSIMID 

DLAT 
DLONG 
XDLAT 

XDLONG 
PHI2 

DLAM2 
RETURN 
END 

//GO.FTlOFOOl DD * 
/INCLUDE DATA.RED 
I /GO.FTllFOOl DD * 
/INCLUDE INPUTD 

(AZI2 + AZI1)/2.D0 
(XPSI2 + XPSI1)/2.DO 
DCOS(AZIMID) * PSIMID 
DSIN(AZIMID) * PSIMID 
DLAT * (180.D0/PI) 
DLONG * (180.00/PI) 
XDLAT + PHil 
XDLONG + DLAMl 

//*GO.FT12F001 DD DSN=UNBPLOT.AT.RININT6.0UT,SPACE=(TRK, (lO,lO),RLSE), 
//* DCB=(LRECL=80,RECFM=FB,BLKSIZE=3200), 
//* DISP=(NEW,CATLG,DELETE),UNIT=DASD 
II 



APPEND IX 1.3 

Promm RININT.UNRED 

I /RININT JOB I *-RESEARCH I, NONEWS 
/*JOBPARM S=30,L=S,R=2048,PRINT=ALL 
/*SERVICE -4 
II* 
// EXEC FORTVCLG,REGION=2048K, 
II PARM.FORT='NOXREF,NOMAP,OPTIMIZE(3). 
//FORT.SYSIN DD * 
c 
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C********************************************t*********************** 
C* * 
C* PROGRAM NAME 
C* FUNCTION 
C* COMPILER 
C* AUTHOR 
C* HISTORY 
C* REFERENCE 
C* 

RININT.UNRED 
GEOIDAL HEIGHT COMPUTATION 
FORTRAN 77 
ARTHUR TSEN 
AUGUST 2, 1991 -VERSION 1.0 
KEARSLEY'S PAPERS (1985,1986a,1986b,1988) 

C* 
C* 
C* 

This program is designed to compute geoidal height 
difference using the unreduced free-air gravity anomaly. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
C* * 
C* MAIN Program * 
C* * 
C* CALLS: Subroutine READP * 
C* Subroutine THICK * 
C* Subroutine CRING * 
C* * 
C* Input Parameters: * 
C* LATDl,LATM1,LATSl the geodetic latitude of the first * 
C* point in degree, minute, and second * 
C* LONGD1,LONGMl,LONGSl: the geodetic longitude of the first * 
C* point in degree, minute, and second * 
C* LATD2,LATM2,LATS2 : the geodetic latitude of the second * 
C* point in degree, minute, and second * 
C* LONGD2,LONGM2,LONGS2: the geodetic longitude of the second * 
C* point in degree, minute, and second. * 
C* * 
C* Output parameters: * 
C* LATD1,LATMl,LATS1 the geodetic latitude of the first * 
C* point in degree, minute, and second * 
C* LONGD1,LONGMl,LONGS1: the geodetic longitude of the first * 
C* point in degree, minute, and second * 
C* LATD2,LATM2,LATS2 : the geodetic latitude of the second * 
C* point in degree, minute, and second * 
C* LONGD2,LONGM2,LONGS2: the geodetic longitude of the second * 
C* point in degree, minute, and second * 
C* GDIFF: geoidal height difference between two * 
C* points across the baseline. * 
C* * 
C******************************************************************** 
c 



c 

IMPLICIT REAL*8(A-H,O-Z) 
CHARACTER*6 STA 
INTEGER NUMl, CAPSIZE 
INTEGER LATDl, LATMl, LONGDl, LONGMl 
REAL*8 LATSl, LONGSl 
INTEGER LATD2, LATM2, LONGD2, LONGM2 
REAL*8 LATS2, LONGS2 
REAL*8 P(4800), D(4800) 
REAL*8 H(4800), BG(4800) 

123 

C******************************************************************** 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

Subroutine READP is called to read in the point bouguer 
gravity anomalies (BGA) and its associated coordinates. 

Output parameters: 
BG: arrays of point bouguer gravity anomalies in mGals. 

P,D: its associated latitudes and longitudes in decimal 
degree. 

H: its associated heights in meters. 

NUMl: total number of BGA in data file. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

CALL READP(P,D,BG,H,NUMl) 
PI = DARCOS(-l.DO) 
WRITE(6,500) 
WRITE(6,501) 

C******************************************************************** 
C* * 
C* Read in the geographical coordinates of the terminal points * 
C* of the line. · * 
C* * 
C******************************************************************** 
c 

999 READ(l1,502,END=900) LATDl,LATMl,LATSl,LONGDl,LONGMl,LONGSl, 
$ LATD2,LATM2,LATS2,LONGD2,LONGM2,LONGS2 

c 
C******************************************************************** 
C* * 
C* Converts degrees, minutes, seconds into decimal degree. * 
C* * 
C******************************************************************** 
c 

PHil =DFLOAT(LATDl) + DFLOAT(LATM1)/(60.D0) + LATSl/(3600.00) 
XDLAMl =DFLOAT(LONGDl) + DFLOAT(LONGM1)/(60.D0) + LONGS1/(3600.D0) 

c 
PHI2 =DFLOAT(LATD2) + DFLOAT(LATM2)/(60.DO) + LATS2/(3600.D0) 

XDLAM2 =DFLOAT (LONGD2) + DFLOAT(LONGM2)/(60.D0) + LONGS2/(3600.DO) 
c 
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C******************************************************************** 
C* * 
C* 
C* 

Converts Longitude West to Longitude East (decimal degree) . * 
* 

C******************************************************************** 
c 

c 

DLAMl 
DLAM2 

360.00 
360.00 

XDLAMl 
XDLAM2 

C******************************************************************** 
C* * 
C* 
C* 

Initialization of Parameters. * 
* 

C******************************************************************** 
c 

c 

TGRAV = O.DO 
XTRINGl O.DO 
XTRING2 = O.DO 
ss = 0 
PSIO = O.DO 

C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 

CN: Contribution of 0.0003 meter per mGals in.a compartment. 
R: Major-semi axis of the earth. 
G: the normal gravity of the ellipsoid. 

* 
* 
* 
* 

C******************************************************************** 
c 

700 
c 

CN 0.0003DOO 
R 6378137.00 
G 979764.465600 

PHI = PHil 
DLAM = DLAMl 
CONTINUE 

C******************************************************************** 
C* * 
C* Subroutine THICK is called to compute the outer radius of the * 
C* ring for the inner sub-zone. * 
C* 
C* 
C* 
C* 
C* 

Subroutine CRING is called to compute the total contribution 
to geoidal height for the inner sub-zone. There are total 
of 6 compartments in this sub-zone. 

* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

DALFl = 60. DO 
SKl = (R*DALF1)/(720.DO*G) 
CALL THICK(SKl,CN,PSIO,PSil) 

CALL CRING(6,0.DO,PSil,PHI,DLAM,NUMl, 
$ P,D,BG,H,TRINGA) 
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C******************************************************************** 
C* * 
C* Subroutine THICK is called to compute the outer radius of the * 
C* ring for the middle sub-zone. * 
C* 
C* 
C* 
C* 
C* 

Subroutine CRING is called to compute the total contribution 
to geoidal height for the middle sub-zone. There are total 
of 12 compartments in this sub-zone. 

* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

DALF2 = 30.00 
SK2 = (R*DALF2)/(720.DO*G) 
CALL THICK(SK2,CN,PSil,PSI2) 

CALL CRING(12,PSI1,PSI2,PHI,DLAM,NUM1, 
$ P,D,BG,H,TRINGB) 

C******************************************************************** 
C* *-
C* Subroutine THICK is called to compute the outer radii of the * 
C* ring for the outer sub-zone. * 
C* * 
C* Subroutine CRING is called to compute the total contribution * 
C* to geoidal height for the outer sub-zone. There are 36 * 
C* compartments between the inner radius and the outer radius * 
C* of the rings. * 
C* * 
C* If CAPSIZE = 5, Then spherical cap size is 0.5 degree. * 
C* If CAPSIZE = 6, Then spherical cap size is 0.6 degree. * 
C* If CAPSIZE =11, Then spherical cap size is 1.0 degree. * 
C* If CAPSIZE =13, Then spherical cap size is i.2 degree. * 
C* * 
C******************************************************************** 

c 

c 

300 
c 

c 

c 

$ 

DALF3 = 10.00 
SK3 (R*DALF3)/(720.DO*G) 
TRA = O.DO 

CAPSIZE = 11 
DO 300 I2 = 1,CAPSIZE 
CALL THICK(SK3,CN,PSI2,PSI3) 

CALL CRING(36,PSI2,PSI3,PHI,DLAM,NUM1, 
P,D,BG,H,TRINGC) 

TRA = TRA + TRINGC 
PSI2 = PSI3 
CONTINUE 

TGRAV = TRINGA + TRINGB + TRA 

IF (SS.EQ.O)THEN 
XTRING1 = TGRAV 

F. .SE-
XTRING2 TGRAV 

END IF 

ss = ss + 1 
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C******************************************************************** 
C* * 
C* If 'SS' less than 2, then start computing geoidal height * 
C* for the second point. If 'SS' greater than 2, then take * 
C* the difference of the geoidal heights between the two points. * 
C* * 
C******************************************************************** 
c 

c 

c 

IF (SS.LT.2)THEN 
PHI = PHI2 

DLAM = DLAM2 
GO TO 700 

ELSE 
GO IFF 
GO IFF 

END IF 

XTRING2 - XTRINGl 
(XTRING2 - XTRINGl) * CN 

C******************************************************************** 
C* * 
C* 
C* 
C* 

Print out the geoidal height difference between two points 
and its associated coordinates. 

* 
* 
* 

C******************************************************************** 
c 

WRITE(6,250) LATDl, LATMl, LATSl, LONGDl, LONGMl, LONGSl, 
$ LATD2, LATM2, LATS2, LONGD2, LONGM2, LONGS2, 
$ GDIFF 

c 
GO TO 999 

c 
C******************************************************************** 
C* * 
C* Format Statements. * 
C* * 
C******************************************************************** 
c 

250 
500 

c 

501 

502 
900 

FORMAT(2X,4(2(I3,1X),F9.6,2X),2X,F8.3) 
FORMAT(20X,'COMPUTATION OF GEOIDAL HEIGHT DIFFERENCES',/, 

$ 20X, 1 USING THE RING INTEGRATION METHOD ', //) 
FORMAT(2X,'PHI1(DMS)',5X,' LAMDAl(DMS) ', 

$ 7X,'PHI2(DMS)',5X,' LAMDA2(DMS)', 
$ 7X, 'ON (METRES)',/) 

FORMAT(2(2(I3,1X),F9.6),2(2(I3,1X),F9.6)) 
STOP 
END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: CRING * 
* 

CALLED BY: MAIN Program * 
* 

CALLS: Subroutine CAP * 
Subroutine GRAMID * 
Subroutine SURBND * 
Subroutine EXTR * 
Subroutine AMEAN * 

* 
PURPOSE: This subroutine CRING computes the total gravity * 

anomalies of all the compartments for one ring. * 

Input parameters: 
NC: the total number of compartments in a ring. 

BPSIO: the inner radius of the ring in radian. 
BPSil: the outer radius of the ring in radian. 

YPHI,YDLAM: The lat. and long. coordinates of the point of 
interest in decimal degree. 

XNUM2: The total number of BGA in data file. 
P,D: The lat. and long. of BGA in decimal degree. 

H: The height of PGA in meters. 
BG: the BGA in mGals. 

Output paramters: 
TRINGl: The sum of the mean gravity anomalies from 

all the compartments in a ring. 

Other parameters: 
AZI: The initial boundary of the compartment in 

radian. 
XAZI: The end boundary of the compartment in radian. 
CAZI: The size of the compartment in radian. 

FPHI,FDLAM: The lat. and long. coordinates of the point at 
the center of the compartment. 

DIM: The size of the cell for computing the mean 
gravity anomaly. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

SUBROUTINE CRING(NC,BPSIO,BPSil,YPHI,YDLAM,XNUM2, 
$ P,D,BG,H,TRINGl) 

IMPLICIT REAL*8 (A-H, 0-Z) 
INTEGER XNUM2,XNUM,NUM2,NC 
REAL*8 P(XNUM2),D(XNUM2),BG(XNUM2),H(XNUM2) 
REAL*8 YP2(500),YD2(500),YBG2(500),YH2(500) 
PI = DARCOS(-l.DO) 
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C******************************************************************** 
C* * 
C* Setting input parameters into another variables. * 
C* * 
C******************************************************************** 
c 

APSIO BPSIO 
APSil BPSil 

XPHI YPHI 
XDLAM YDLAM 

NUM2 XNUM2 
c 
C******************************************************************** 
C* * 
C* 
C* 

Initialization of variables. * 
* 

C******************************************************************** 
c 

c 

c 

TRINGl 
AZI 

CAZI 

O.DO 
O.DO 
2.DO*PI/DFLOAT(NC) 

CALL CAP (APSIO, API) 
CALL CAP (APSil,APJ) 
APJI = APJ - API 

DO 100 J = 1,NC 
XAZI = AZI + CAZI 
FPHI = O.DO 
FDLAM = O.DO 

C******************************************************************** 
C* * 
C* Subroutine GRAMID is called to compute the coordinates of the * 
C* center of the compartment. * 
C* * 
C******************************************************************** 
c 

c 

115 

c 

c 
300 

c 

CALL GRAMID(AZI,XAZI,APSI0,APSI1,XPHI,XDLAM,FPHI,FDLAM) 

K9 = 0 
DIM= 10.DO 
XPHIN = O.DO 
XPHIS = O.DO 
XDLAMW O.DO 
XDLAME = O.DO 
XNUM = 0 
ANOINTl=O.DO 

DO 300 J1 = 1,500 
YP2(Jl) = O.DO 
YD2(Jl) = O.DO 
YBG2(Jl) = 0.00 
YH2(Jl) = O.DO 

CONTINUE 
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C******************************************************************** 
C* * 
C* 
C* 
C* 

Subroutine SURBND is called to delineate the boundaries for 
cell. 

* 
* 
* 

C******************************************************************** 
c 

CALL SURBND(FPHI,FDLAM,DIM,XPHIN,XPHIS,XDLAMW,XDLAME) 
c 
C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 

Subroutine EXTR is called to extract all the BGA, together 
with its associated coordinates, within the cell size defined 
by the boundaries computed from subroutine SURBND. 

* 
* 
* 
* 

C******************************************************************** 
c 

CALL EXTR(NUM2,XPHIN,XPHIS,XDLAMW,XDLAME,P,D,BG, 
$ H,YP2,YD2,YBG2,YH2,XNUM) 

c 
C******************************************************************** 
C* * 
C* If there is at least one set of BGA is existing within the * 
C* cell, then subroutine AMEAN is called to predict the mean * 
C* gravity anomaly within that cell. If there is no BGA within * 
C* the cell, then the cell size (DIM) will be enlarged to a * 
C* (15' by 15'), or to (30' by 30'), or to (60' by 60') cell * 
C* whichever cell contains at least one set of record. If there * 
C* is still no BGA found within the 60' by 60' cell, then the * 
C* computation for that particular cell is simply skipped. * 
C* * 
C******************************************************************** 
c 

c 

c 

c 

c 

c 

IF (XNUM .GT. -O)THEN 

CALL AMEAN(XNUM,FPHI,FDLAM,YP2,YD2,YBG2,YH2,ANOINT) 
GO TO 113 
END IF 

IF ( (K9.EQ. 0) .AND. (XNUM.LE. 0)) THEN 
DIM = 15.DO 
K9 = K9 + 1 
GO TO 115 

END IF 

IF ( (K9.EQ.1) .AND. (XNUM.LE. 0) )THEN 
DIM= 20.DO 
K9 = K9 + 1 
GO TO 115 

END IF 

IF ( (K9. EQ. 2) .AND. (XNUM.LE. 0)) THEN 
DIM = 30.DO 
K9 = K9 + 1 
GO TO ll5 

END IF 



c 

c 

IF { {K9. EQ. 3) .AND. {XNUM. LE. 0)) THEN 
DIM = 60.00 
K9 = K9 + 1 
GO TO 115 

END IF 

IF { (K9 .EQ. 4) .AND. (XNUM .EQ. 0) )THEN 
GO TO 111 

END IF 

C113 TRING1 = TRING1 + ANOINT1*APJI 
113 TRING1 = TRING1 + ANOINT 
111 CONTINUE 

AZI = XAZI 
c 

100 CONTINUE 
RETURN 
END 

c 

130 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 

C* 
C* 
C* 
C* 
C* 
C* 
C* 

C* 
C* 

SOURCE FILE: CAP 

CALLED BY: 

PURPOSE: 

CRING 

This subroutine CAP computes the q) which 
will be used to compute the geoidal heights. 

Input parameter: 
XPSI: The radius of the ring. 

Output parameter: 
XFIL: The q) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE CAP(XPSI,XFIL) 
IMPLICIT REAL*8(A-H,O-Z) 

PARTl XPSI * 2.00 
PART2 (5.00/4.00)*(xPSI**2) 
PART3 (10.00/12.00)*(XPSI**3) 
PART4 (3.00/2.00)*(XPSI**2) 
IF (XPSI .NE. 0.00) THEN 
PARTS = OLOG(XPSI/2.00 + XPSI**2/4.00 - XPSI**3/24.D0) 
ELSE 

PARTS = 0.00 
END IF 
XFIL = PARTl - PART2 - PART3 - PART4*PART5 

RETURN 
END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: THICK 

CALLED BY: 

PURPOSE: 

MAIN Program 

This subroutine THICK computes the spherical 
distance (radius) of the ring or the thickness 
of the compartments. 

Input parameters: 
SSKl: a scale that use to determine the size of 

the ring (See MAIN program) . 
XCN: = 0.0003 mlmGal per compartment. 

PSIA: the inner radius of the ring in radian. 

Output par.meters: 
PSIB: the outer radius of the ring in radian. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE·THICK(SSKl,XCN,PSIA,PSIB) 
IMPLICIT REAL*8(A-H,O-Z) 

PSI2P PSIA + XCN I (2.00 * SSKl) 
TERM2 (S.OOI8.00)*(PSI2P**2 - PSIA**2) 
TERM3 (10.00I24.00)*(PSI2P**3 - PSIA**3) 
TERM4A (PSI2P**2) *OLOG( (PSI2PI2.00) + 

$ (PSI2P**214.00) - (PSI2P**3124.00) 
IF (PSIA .NE. O.OO)THEN 

TERM4B (PSIA**2)*0LOG( (PSIAI2.00) + 
$ (PSIA**214.00) - (PSIA**3124.00) 

ELSE 
TERM4B 0:00 

END IF 
TERM4 
TERMS 
PSIB 
RETURN 
END 

= (3.0014.00) * (TERM4A - TERM4B) 
= XCN I (2.00 * SSKl) 
= PSIA + TERM2 + TERM3 + TERM4 + TERMS 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: AMEAN * 
* 

CALLED BY: Subroutine CRING * 

* 
CALLS: Subroutine CPSI * 

PURPOSE: 
* 

This subroutine AMEAN computes the mean gravity * 
anomaly within a compartment using the weighted * 
arithmetic mean. * 

Input parameters: 
XNUM: the total number of extracted BGA 

within the boundaries of the cell. 

* 
* 
* 
* 

GPHI,GDLAM: the lat. and long. coordinates of the center of * 
cell in decimal degree. * 

DGEXTR: array of extracted BGA within the cell in mGals. * 
PEXTR,DEXTR: its associated lat. and long. coordinates 

in decimal degree. 
HEXTR: its associated heights in meters 

Output parameters: 
TOGR: the mean gravity anomaliy within the cell. 

* 
* 
* 
* 
* 
* 

C* * 
C* Other parameters: * 
C* DLO: array of spherical distances (in decimal degree) * 
C* between the point at the center of the cell and * 
C* the BGA points. * 
C* * 
C******************************************************************** 

c 

c 

200 
c 

100 
c 

SUBROUTINE AMEAN(XNUM,GPHI,GDLAM,PEXTR,DEXTR,DGEXTR,HEXTR,TOGR) 
IMPLICIT REAL*S· (A-H,O-Z) 
INTEGER XNUM . 
REAL*8 PEXTR(XNUM),DEXTR(XNUM),DGEXTR(XNUM),DLO(SOO),HEXTR(XNUM) 

HTOT O.DO 
HMEAN O.DO 
BTEST O.DO 
TOGR O.DO 

SUMDLO O.DO 

DO 200 MN = 1,500 
DLO(MN) = 0.00 

CONTINUE 

CALL CPSI(DLO,PEXTR,DEXTR,GPHI,GDLAM,XNUM) 
DO 100 MM = 1, XNUM 

HTOT = HTOT + HEXTR(MM) 
BTEST = BTEST + DGEXTR(MM)/(DLO(MM)**3.5) 
SUMDLO = SUMDLO + (1.D0/DLO(MM)**3.5) 

CONTINUE 

HMEAN = HTOT/DFLOAT(XNUM) 
TOGR = BTEST/SUMDLO + 0.1119DO*HMEAN 

RETURN 
END 
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C******************************************************************** 
C* * 
C* SOURCE FILE: CPS! * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

CALLED BY: 

PURPOSE: 

Subroutine AMEAN 
* 
* 
* 

This subroutine CPS! computes the spherical * 
distances between the point at the center of the * 
cell and the PGA extracted within the cell. * 

* 
Input parameters: * 

* XNUM: the total number of extracted BGA within the 
C* boundaries of the cell. * 
C* PEXTR,DEXTR: the lat. and long. coordinates of the extracted * 
C* BGA stations in decimal degree. * 
C* HPHI, HDLAM: the lat. and long. coordinates of the center of * 
C* the cell in decimal degree. * 
C* 
C* 
C* 
C* 

Output parameters: 
YLO: array of spherical distances in decimal degree. 

* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

c 

c 

c 

c 
100 

c 

SUBROUTINE CPSI(YLO,PEXTR,DEXTR,HPHI,HDLAM,XNUM) 
IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER XNUM 
REAL*8 PEXTR(XNUM),DEXTR(XNUM),YLO(SOO) 
REAL*8 SINP,COSP,COSL,PP,DD,APSI 

PI 
RAD 
PHI 
DLAM 
SINP 
COSP 

DARCOS ( -1. DO) 
PI/180.00 
HPHI*RAD 
HDLAM*RAD 
DSIN(PHI) 
DCOS (PHI) 

DO 100 I = 1,XNUM 
PP PEXTR(I)*RAD 
DO= DEXTR(I)*RAD 

SIND 
coso 
COSL 

APSI 

YLO(I) 

DSIN(PP) 
DCOS(PP) 
DCOS(DABS(DD-DLAM)) 

DARCOS(SINP*SIND + COSP*COSD*COSL) 

APSI*(180.DO/PI) 

CONTINUE 
RETURN 
END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: READP 

CALLED BY: MAIN Program 

* 
* 
* 
* 

PURPOSE: This subroutine READP reads the bouguer gravity * 
anomalies, together with its associated coordi- * 
nates, from file DATA.UNRED and stores them * 
into memories. * 

Input parameters: 
NONE 

Output parameters: 
BA: array of BGA in mGals. 

PHIX: array of latitudes of BGA stations in decimal 
degree. 

DLAMX: array of longitudes of BGA stations in decimal 
degree. 

H: array of heights of BGA stations in meters. 
K: the total number of BGA in DATA.UNRED file. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE READP(PHIX,DLAMX,BA,H,K) 

IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER YRl,PIDl,PDEGl,DLDEGl 
INTEGER TERACl,GRAVAl,FACCl,BACCl 
INTEGER K 
INTEGER CACCl, EACCl 
INTEGER DEPWl, DEPTl, DEPACl 
CHARACTER*6 STAIDl 
REAL*8 PMINl,DLMINl,TERCOl,GRAVl 
REAL*8 ELSTAl 
REAL*8 PHIX(4800),DLAMX(4800) 
REAL*8 H(4800),BA(4800) 
REAL*8 FAl, BAl 

C******************************************************************** 
C* * 
C* Initializing BGA record fields. * 
C* * 
C*************************************************************·******* 
c 

c 

K = 0 
DO 20 L=l,4800 

PHIX(L)=O.DO 
DLAMX(L)=O.DO 
BA(L) = O.DO 
H(L) = O.DO 

20 CONTINUE 
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C******************************************************************** 
C* * 
C* 
C* 

Reading in record fields. * 
* 

C******************************************************************** 
c 

50 READ(l0,88,END=100)YRl,PIOl,STAIOl,POEGl,PMIN1, 
$ OLOEGl,OLMINl, 
$ CACCl,ELSTAl,EACCl,OEPWl,OEPTl,OEPACl, 
$ TERCOl,TERACl,GRAVl,GRAVAl,FAl,FACCl, 
$ BAl,BACCl 

88 FORMAT(I2,I3,A6,I3,F6.2,I4,F6.2,I2,F7.2,I2,I5,Il,Il,F4.1,I2,F8.1, 
$ I2,F6.l,I2,F6.1,I2) 

c 
C******************************************************************** 
C* * 
C* Redefining the fields. * 
C* * 
C******************************************************************** 
c 

c 

c 
100 

c 

K=K+l 
BA(K) = BAl 
H(K) = ELSTAl 

PHIX(K) = OBLE(POEGl) + PMINl/60.00 
IF (OLOEGl.LT.O)THEN 

OLAME OBLE(OLOEGl) - OLMINl/60.00 
OLAMX(K) OLAME + 360.00 

ELSE 
OLAME 
OLAMX(K) 

END IF 
GO TO 50 

RETURN 
END 

OBLE(OLOEGl) + OLMINl/60.00 
= OLAME 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: SURBND 

CALLED BY: 

PURPOSE: 

Subroutine CRING 

This subroutine SURBND computes the boundaries 
limits of a cell for the prediction of mean 
gravity anomaly. 

Input parameters: 
PHI,DLAM: the lat. and long. coordinates of the center 

of the compartment 
XNX: the size of the cell. 

Output parameters: 
PHIN: the latitude of the north-east corner 
PHIS: the latitude of the south-east corner 

DLAMW: the longitude of the north-west corner 
DLAME: the longitude of the south-east corner. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

SUBROUTINE SURBND(PHI,DLAM,XNX,PHIN,PHIS,DLAMW,DLAME) 
IMPLICIT REAL*8 (A-H,O-Z) 
XNXD (XNX/2.0)/60.00 
PHIN = PHI + XNXD 
PHIS = PHI - XNXD 
DLAMW = DLAM - XNXD 
DLAME = DLAM + XNXD 
RETURN 
END 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: EXTR 

CALLED BY: 

PURPOSE: 

Subroutine CRING 

This subroutine SURBND extracts the reduced 
PGA and its associated coordinates and heights 
within the boundaries limits defined by 
subroutine SURBND. 

Input parameters: 
NK: the total number of BGA in data file 

PHIN: the latitude of the north-east corner 
PHIS: the latitude of the south-east corner 

DLAMW: the longitude of the north-west corner 
DLAME: the longitude of the south-east corner 

BA: the BGA in mGals 
P,D: its associated lat. and long. coordinates 

in decimal degree 
H: its associated height .in meters. 

Output parameters: 
YBAl: the extracted BGA (in mGals) within the cell 

YPl,YDl: its associated lat. and long. coordinates 
in decimal degree 

YHl: its associated height in meters 
NUMl: the total number of BGA within the cell. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

100 
c 
ClOOO 

c 

SUBROUTINE EXTR(NK,PHINN,PHISS,DLAMW,DLAME,P,D,BA,H, 
$ YPl,YDl,YBAl,YHl,NUMl) 

IMPLICIT REAL*8 (A-H,O-Z) 

INTEGER NUM1, NK 
DIMENSION P(NK), D(NK), H(NK), BA(NK) 
DIMENSION YPl(NK), YDl(NK), YBAl(NK), YHl(NK) 

NUMl = 0 
DO 100 I = l,NK 

IF ( ( P (I) .LE. PHINN) .AND. 
$ ( D(I) .LE. DLAME) .AND. 

NUM1 NUMl + 1 
YPl(NUMl) P(I) 
YDl(NUMl) D(I) 
YBAl (NUMl) BA(I) 
YHl(NUMl) H(I) 

END IF 
CONTINUE 

WRITE(6,1000) NUM1 
FORMAT (SX, 'NUMl = I, !4) 
RETURN 

END 

(P(I) .GE. PHISS) .AND. 
(D(I) .GE. DLAMW)) THEN 
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C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: GRAMID 

CALLED BY: 

PURPOSE: 

Subroutine CRING 

This subroutine GRAMID computes the coordinates 
of the point which lies in the center of the 
compartment. The latitude and the longitude 
that come out from this subroutine are in 
decimal degree. 

Input parameters: 
AZil: the initial boundary of the compartment in 

AZI2: 
XPSil: 
XPSI2: 

PHil,DLAMl: 

radian 
the end boundary of the compartment in radian 
the inner radius of the ring in radian 
the outer radius of the ring in radian 
the lat. and long. coordinates of the point of 
interest in decimal degree. 

Output parameters: 
PHI2,DLAM2: the lat. and long. coordinates of the center of 

compartment in decimal degree. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C*****************************.*************************************** 
c 

c 

c 

SUBROUTINE GRAMID(AZil,AZI2,XPSil,XPSI2,PHil,DLAMl, 
$ PHI2,DLAM2) 

IMPLICIT REAL*8 (A-H, 0-Z) 
PI = DARCOS(-l.DO) 

AZIMID 
PSIMID 

DLAT 
DLONG 
XDLAT 

XDLONG 
PHI2 

DLAM2 
RETURN 
END 

(AZI2 + AZil)/2.00 
(XPSI2 + XPSil)/2.00 
DCOS(AZIMID) * PSIMID 
DSIN(AZIMID) * PSIMID 
DLAT * (180.D0/PI) 
DLONG * (180.DO/PI) 
XDLAT + PHil 
XDLONG + DLAMl 

//GO.FT10F001 DO * 
/INCLUDE DATA.UNRED 
//GO.FTllFOOl DO * 
/INCLUDE INPUTD 
//*GO.FT12F001 DO 
II* 

DSN=UNBPLOT.AT.RININT6.0UT,SPACE=(TRK, (10,10),RLSE), 
DCB=(LRECL=80,RECFM=FB,BLKSIZE=3200), 
DISP=(NEW,CATLG,DELETE),UNIT=DASD II* 

II 



//RAPP180 
/*JOBPARM 
/*SERVICE 
/*SETUP 
II* 

APPENDIX 1.4 

Pro~am POT.RED 

JOB I *-RESEARCH I , NONEWS 
M=l,L=9,R=2048 

NONPRIME 
SLOT=5172 VOLUME=SEOOOl 

I I EXEC FOR'IVCLG, 
II PARM.FORT= 1 NOXREF,NOMAP,OPTIMIZE(3) I 

//FORT.SYSIN DD * 
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C******************************************************************** 
C* * 
C* PROGRAM NAME 
C* FUNCTION 
C* COMPILER 
C* AUTHOR 
C* HISTORY 
C* REFERENCE 
C* 

POT.RED 
GEOIDAL HEIGHT COMPUTATION 
FORTRAN 77 
ARTHUR TSEN 
JULY 31, 1991 - VERSION 1. 0 
KEARSLEY 1 S PAPERS(1985,1986a,l986b,l988) 

C* 
C* 
C* 
C* 

This program is designed to compute geoidal height 
from the Geopotential Coefficients (Rappl80) and to 
be used in conjuction with RININT.RED. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

MAIN Program 

CALLS: 
Subroutine POTl (Store in MAINFRAME) 

Input parameters: 
STAT: 

HT: 
PHID,PHIM,PHIS: 

DLOND,DLONM,DLONS: 

Output parameters: 
STAT: 

PHID,PHIM,PHIS: 

DLOND,DLONM,DLONS: 

HT: 
XIl: 

ETAl: 
UNl: 

DISTl: 

Name of Station 
Height of Station in meters 
the geodetic latitude of the point of 
interest in degree, minute and seconds 
the geodetic longitude of the point of 
interest in degree, minute and second 

Name of Station 
the geodetic latitude of the point of 
interest in degree, minute and seconds 
the geodetic longitude of the point of 
interest in degree, minute and seconds 
Height of Station in meters 
N-S deflection component in arc second 
E-W deflection component in arc second 
geoidal height in meters. 
gravity disturbance in mGal 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 



LOGICAL FIRST 
REAL*8 PHI,DLON,HT,UN,XI,ETA,DIST 
REAL*8 PHIS,DLONS,DLONl 
REAL*8 UNl,XIl,ETAl 
REAL*4 C,CO 
REAL*8 Gl,G,CM3,CM2,CM1 
CHARACTER*6 STAT 
INTEGER PHID,PHIM,DLOND,DLONM 
DIMENSION Gl(3),G(3,3),C(32760) 
COMMON /CM/ Gl,G,CM3,CM2,CMl,CO,C 
COMMON /ENTRY/ FIRST,NMAX 
FIRST = .FALSE. 
NMAX = 170 
WRITE(6,1001) 
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1001 FORMAT('PHI DLON HT UN XI ETA OIST') 
c 
C******************************************************************** 
C* * 
C* 
C* 

Reading in the Point of interest. * 
* 

C******************************************************************** 
c 

88 
800 

c 

READ(5,800,END=999)STAT,PHID,PHIM,PHIS,OLOND,DLONM,OLONS,HT 
FORMAT(A6,1X,2(I2,1X,I2,1X,F9.6,2X),F7.3) 

C******************************************************************** 
C* * 
C* 
C* 
C* 

Converts degree, minute and seonds into decimal degree and 
converts longitude wesy to longitude east. 

* 
* 
* 

C******************************************************************** 
c 

c 
c 

PHI = DFLOAT(PHIO) 
OLONl = OFLOAT(DLOND) 
OLON = 360.00 - OLONl 
HT = 0.00 

+ (OFLOAT(PHIM)/60.00) 
+ (OFLOAT(DLONM)/60.00) 

+ (PHIS/3600.00) 
+ (OLONS/3600.00) 

C******************************************************************** 
C* * 
C* Subroutine POT1 is called to generate the geoidal height. * 
C* * 
C******************************************************************** 
c 

c 

CALL POT1 (PHI,OLON,HT,UN,XI,ETA,OIST) 
UNl= UN*1.D-6 
X!l = XI*l.D-6 
ETAl = ETA*l.D-6 
OIST1 = DIST*1.D-6 

C******************************************************************** 
C* * 
C* 
C* 

Write out the results. * 
* 

C******************************************************************** 
c 

WRITE(6,1000) STAT,PHIO,PHIM,PHIS,OLOND,DLONM,DLONS, 
$ HT,UNl,XIl,ETA1,DISTl 
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1000 FORMAT(SX,A6,3X,2(I2,1X,I2,1X,F9.6,3X),F7.3,3X,4(F8.3,2X)) 

c 

c 

GO TO 88 
999 STOP 

END 

IILKED.USERLIB DD DSN=A.M12129.SELIBOBJ,DISP=OLD 
IIGO.FT12F001 DD DSN=RAPP180.UNFMD,UNIT=3480,VOL=SER=SE0001, 
II LABEL=(164,,,IN),DISP=(OLD,DELETE) 
II*GO.FT12F001 DD DSN=GEM10C.UNFMD,UNIT=3480,VOL=SER=SE0001, 
II* LABEL=67,DISP=(OLD,DELETE) 
IIGO.SYSIN DD * 
59414 50 3 41.611144 96 
59419 so 1 15.637452 97 
59422 so 3 37.520306 97 
60401 so 3 54.680565 98 
60404B 50 3 22.397743 98 
774009 so 56 56.133045 98 
774031 so 31 16.397259 98 
774032 so 30 23.812182 97 
82R311 50 56 57.255900 97 
82R370 50 19 46~526621 97 
82R382 50 45 59.306985 98 
II 

33 59.958490 
9 40.646471 

27 0.552741 
18 32.628058 
47 22.546782 

9 48.081569 
1 33.334982 
2 40.967285 
2 19.063788 

52 30.695424 
1 5.027375 

217.071 
203.593 
219.363 
227.155 
249.266 
240.392 
221.670 
201.748 
192.429 
231.822 
231.603 



APPENDIX 1.5 

Prowro POT.UNRED 

//TGEOIDl JOB '*-RESEARCH',NONEWS 
/*JOBPARM M=30,L=S,R=4096,PRINT=ALL 
/*SERVICE NONPRIME 
/*SETUP SLOT=5172 
II* 

VOLUME=SEOOOl 

II EXEC FORTVCLG,REGION=4096K, 
PARM.FORT='NOXREF,NOMAP,OPTIMIZE(3) I 

DD * 
II 
//FORT.SYSIN 
c 
c 
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C******************************************************************** 
C* 
C* PROGRAM NAME 
C* FUNCTION 
C* COMPILER 
C* AUTHOR 
C* HISTORY 
C* REFERENCE 
C* 

POT.UNRED 
GEOIDAL HEIGHT COMPUTATION 
FORTRAN 77 
ARTHUR TSEN 
JULY 31, 1991 -VERSION 1.0 
KEARSLEY'S PAPERS(l985,1986a,1986b,1988) 

C* 
C* 
C* 
C* 

This program is designed to compute geoidal height 
from the Geopotential Coefficients (Rapp180) and to 
be used in conjuction with RININT.UNRED. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
C* * 
C* MAIN Program * 
C* * 
C* CALLS: * 
C* Subroutine TCPAL * 
C* Subroutine POTl * 
C* * 
C* Input parameters: * 
C* STAT: Name of Station '* 
C* PHID, PHIM, PHIS: the geodetic latitude of the point of * 
C* interest in degree, minute and seconds * 
C* DLAMD,DLAMM,DLAMS: the geodetic longitude of the point of * 
C* interest in degree, minute and second * 
C* * 
C* * 
C* Output parameters: * 
C* STAT: Name of Station * 
C* PHID,PHIM,PHIS: the geodetic latitude of the point of * 
C* interest in degree, minute and seconds * 
C* DLAMD,DLAMM,DLAMS: the geodetic longitude of the point of * 
C* interest in degree, minute and seconds * 
C* DELTAN: geoidal height in meters. * 
C* * 
C******************************************************************** 
c 



c 

c 

IMPLICIT REAL*8 (A-H,O-Z) 
LOGICAL FIRST 
CHARACTER*6 STAT 
INTEGER PHIO,PHIM,OLAMM,OLAMD 
REAL*8 PHIS,OLAMS 
REAL*4 C,CO 
REAL*8 G1,G,CM3,CM2,CM1 
COMMON/CM/G1(3),G(3,3),CM3,CM2,CM1,CO,C(32760) 
COMMON/POT1CM/FIRST 
INTEGER NMAX,NMAXC,MAX,NN 
REAL*8 Q6(200),R6(200,200) 
REAL*8 RAl,SUM,XGAMMA,OELTAN 
REAL*8 OELG(200) 

PII = OARCOS(-1.00) 
RPSI6 = 0.600*(PII/180.00) 
ARG6 = OCOS(RPSI6) 
MAX = 180 
MAX1 = 181 
NN = 181 
RAl = 6378137.00 
XGAMMA = 979764.465600 
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C******************************************************************** 
C* * 
C* Subroutine TCPAL is called to compute the Molodenskjj * 
C* truncation functions. · * 
C* * 
C******************************************************************** 
c 

CALL TCPAL(NN,MAXl,ARG6,Q6,R6) 
c 
C******************************************************************** 
C* 
C* 
C* 

Reading in the Point of interest. 
* 
* 
* 

C******************************************************************** 
c 

88 
1000 

c 

READ(10,1000,END=99)STAT,PHIO,PHIM,PHIS,OLAMD,OLAMM,OLAMS 
FORMAT(A6,2X,2(2(I3,1X),F9.6)) 

C******************************************************************** 
C* * 
C* Converts degree, minute and seonds into decimal degree and * 
C* converts longitude wesy to longitude east. * 
C* * 
C******************************************************************** 
c 

c 

PHI 
OLAM 
OLON 

OFLOAT(PHIO) + (OFLOAT(PHIM)/60.00) + (PHIS/3600.00) 
OFLOAT(OLAMD) + (OFLOAT(OLAMM)/60.00) + (OLAMS/3600.00) 
360.00 - OLAM 
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C******************************************************************** 
C* * 
C* Initialization of variables. * 
C* * 
C******************************************************************** 

llO 
c 

c 

c 

DO 110 J2 = 1,MAX1 
DELG(J2) = O.DO 

CONTINUE 

FIRST = .FALSE. 

DIST2 = O.DO 
SUM2 = O.DO 
KMAX = 0 

DO 120 J3 = 1,MAX1 

HT = O.DO 
C******************************************************************** 
C* * 
C* 
C* 

Subroutine POT is called to generate the geoida1 height. * 
* 

C******************************************************************** 
c 

120 
c 

c 
c 

130 
c 

c 

CALL POTl(KMAX,PHI,DLON,HT,UN1,XI1,ETA1,DISTl) 
DG = DIST1 - DIST2 
UN = UN1 - SUM2 
DELG(J3) = (DG-0.3086*UN)*1.D-6 
DIST2 = DIST2 + DG 
SUM2 = SUM2 + UN 
KMAX = KMAX + 1 

CONTINUE 

SUM = O.DO 

DO 135 J7 3,MAX 
DO 130 J6 3,MAX1 

SUM= SUM+ Q6(J6)*DELG(J6) 
CONTINUE 

DELTAN = (RA1/(2.DO*XGAMMA))*SUM 

WRITE(6,1010)STAT,PHID,PHIM,PHIS,DLAMD,DLAMM,DLAMS,DELTAN 
1010 FORMAT(2X,A6,2X,2(2(I3,1X),F9.6),2X,F10.3) 

GO TO 88 
99 STOP 

END 
c 



146 
C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: Subroutine POT 

CALLED BY: MAIN program 

CALLS: Subroutine LOADCS 
Subroutine STORC 
Subroutine SETCM 
Function GCENLT 
Function POTCC 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

FUNCTION: Subroutine POT is called to generate the geoidal * 
height. * 

Input paramters: 
PHI: Latitude (GEODETIC) in degree 

DLON: Longitude (WEST) in degree 
HT: Height in meters 

Output parameters: 
UN: Height anomaly n meters 
XI: N-S deflection in second of arc 

ETA: E-W deflection in second of arc (WEST POSITIVE) 
DIST: Gravity Disturbance in mGals. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

SUBROUTINE POTl(NMAX,PHI,DLON,HT,UN,XI,ETA,DIST) 
IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER NMAX 
LOGICAL FIRST 
REAL*4 C,CO 
DIMENSION P (6) 
COMMON/CM/Gl(3),G(3,3),CM3,CM2,CM1,CO,C(32760) 
COMMON/POTlCM/FIRST 
DATA PI/3.141592653589793D0/ 

IF(FIRST) GO TO 300 
FIRST=. TRUE 
DTR=PI/180.D0 

300 CONTINUE 
CM3=3.986005D+14 
CM2=6378137.DO 
CMl=O.DO 
CO=O.DO 
DO 10 I=1,32760 
C(I)=O.DO 

10 CONTINUE 
NEGN=-NMAX 
CALL LOADCS (NMAX) 
CO=O.DO 
CALL STORC(O,O,O.DO,O.DO) 
CALL STORC(1,0,0.DO,O.D0) 
CALL STORC(1,1,0.DO,O.D0) 
CALL STORC(2,0,0.DO,O.D0) 
CALL SETCM (NMAX) 
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C******************************************************************** 
C* * 
C* 
C* 

Converts longitude West to Longitude East. * 
* 

C******************************************************************** 
DLAM=360.DO+DLON 

C******************************************************************** 
C* * 
C* 
C* 

Converts from geodetic to geocentric latitude * 
* 

C******************************************************************** 
DPHI=GCENLT( PHI,298.257D0) 
D=CM2+HT 
Z=D *DSIN(DPHI*DTR) 
R=D *DCOS(DPHI*DTR) 
X=R*DCOS(DLAM*DTR) 
Y=R*DSIN(DLAM*DTR) 
P(l)=DSQRT(X**2+Y**2) 
P(2)=DSQRT(X**2+Y**2+Z**2) 
COLAT=90.DO-DPHI 
P(3)=DCOS(COLAT*DTR) 
P(4)=DSIN(COLAT*DTR) 
P(S)=DSIN(DLAM*DTR) 
P(6)=DCOS(DLAM*DTR) 

C**********************************.********************************** 
C* * 
C* 
C* 
C* 

Pass negative N since potential coefficients have been 
quasi-normalized. 

* 
* 
* 

C******************************************************************** 
c 

POT=POTCC(P,NEGN,l) 
c 
C Height Anomaly 
c 

UN=POTI9.8DO 
c 
c N-S deflection 
c 

XI = -Gl(2)*206264.8DO I 9.800 
c 
C Output E-W deflection in the West system, 
C thus leave off the negative sign. 
C to convert ETA to WEST system. 
c 

ETA = Gl(1)*206264.8DO I 9.800 
c 
C Gravity Disturbance 
c 

c 

DIST =-Gl(3)*l.D+OS 
RETURN 
END 
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C******************************************************************** 
C* * 
C* SOURCE FILE: Function GCENLT * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
c 
C* 

CALLED BY: Subroutine POTl 

CALLS: NONE 

FUNCTION: To convert from geodetic latitude to geocentric 
latitude. 

Input parameters: 
GDETLT: Geodetic latitude in degree 

FLAT: !./Flattening approximately equal to 298.25 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 

c 

c 

FUNCTION GCENLT(GDETLT,FLAT) 
IMPLICIT REAL*8 {A-H,O-Z) 

DATA DTR /.1745329251994330D-1/ 
GCENLT=DATAN{DTAN(GDETLT*DTR)*(l.DO-l.D0/FLAT)**2) / DTR 
RETURN 
END 

C******************************************************************** 
C* * 

FUNCTION POTCC(PO,NMAX,ORDER) 
C* * 
C* GI REG.NO. 80039 AUTHOR -C.C.TSCHERNING, NOV 1980 IN ALGOL * 
C* -C.C.GOAD, MAR 1981 TRANSLATED * 
C* TO FORTRAN * 
C* * 
C* REFERENCES: * 
C*. (1) TSCHERNING, C.C.:ON THE CHAIN-RULE MET~OD FOR COMPUTING * 
C* POTENTIAL DERIVATIVES. MANUSCRIPTA GEODAETICA, VOL.l, * 
C* PP. 125-141, 1976 * 
C* * 
C* (2) 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

GERSTL,M. :VERGLEICH VON ALGORITMEN ZUR SUMMATION VON 
KUGELFLAECHENFUNKTIONEN. VEROEFFENTL. DER BAYER. KOMM 
F. D. INT. ERDMESSUNG DER BAYER. AKADEMIE DER WISSEN., 
HEFT NR. 38, PP. 81-88, 1978. 
THE PROCEDURE COMPUTES THE VALUE AND UP TO THE SECOND ORDER 
DERIVATIVES OF THE POTENTIAL OF THE EARTH (W) OR OF ITS 
CORRESPONDING AMONALOUS POTENTIAL(T). (THE COMPUTATION OF 
THE SECOND ORDER DERIVATIVES HAS NOT YET BEEN IMPLEMENTED) 

* 
* 
* 
* 
* 
* 
* 
* 

C* * 
C* THE POTENTIAL IS REPRESENTED BY A SERIES IN SOLID SPHERICAL * 
C* HARMONICS, WITH UN-NORMALIZED OR QUASI-NORMALIZED * 
C* COEFFICIENTS. * 
C* THE CHAIN-RULE IS USED COMBINED WITH THE CLENSHAW ALGORITHM. * 
C* THE ARRAY C MUST HOLD THE COEFFICIENTS, C(O,O)=l.DO * 
C* FOR WAND 0.0 FORT, C(l)=C(l,O),C(2)=C(l,l),C(3)=S(l,l) * 
C* ETC. UP TO C ( (N+l) **2-1) = S (N, N). * 
C* * 
C******************************************************************** 
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C******************************************************************** 
C* PARAMETERS: * 
C* * 
C* (A) INPUT VALUES: * 
C* * 
C* NMAX: * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

THE ABSOLUTE VALUES OF NMAX IS EQUAL TO THE 
MAXIMAL DEGREE AND ORDER OF THE SERIES. NEGATIVE 
NMAX INDICATES THAT THE COEFFICIENTS ARE QUASI
NORMALIZED. 

* 
* 
* 
* 
* 

IORDER: * 
THE MAXIMAL ORDER OF THE DERIVATIVES (< 2 P. T.) * 

PO: 

C: 

ARRAY HOLDING POSITION INFORMATION. P0(6) 
PO(l)=P: THE DISTANCE FROM THE Z (ROTATION) AXIS, 
P0(2)=R: THE DISTANCE FROM THE ORIGIN, 
PO {3) , PO ( 4) : COS AND SIN OF THE GEOCENTRIC POLAR 

ANGLE(COLATITUDE), 
PO(S),P0(6): SIN AND COS OF THE LONGITUDE. 

C MUST BE DECLARED WITH BOUNDS (-3: (N+l)**2-1) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

WHEN THE COEFFICIENTS ARE UN-NORMALIZED AND WITH * 
BOUNDS (-3: _(N+3) **2-2) WHEN THE COEFFICIENTS 
ARE QUASI-NORMALIZED. C(l) TO C((N+1)**2-1) 
CONTAIN THE COEFFICIENTS AND WE MUST HAVE 
C(-3)=GM 

* 
* 
* 
* 

C (-2) =A THE SEMI-MAJOR AXIS OF THE REF ELLIPSOID * 
C(-l)=THE ANGULAR VELOCITY 

(=0, WHEN DEALING WITH T) . 

SQUARE ROOT ARRAY 

* 
* 
* 
* 
* 
* 

C((N+1)**2+K) = SQRT(K), O.LE.K.LE.2(ABS(N)+l)-l WHEN N <0 * 

MOD--APRIL,l981 
WITH THE USE OF THE TABLE OF SQUARE ROOTS STORED IN ARRAY 
ROOT, THE DIMENSION OF THE C ARRAY ONLY NEEDS TO BE 
(N+l)**2-1 FOR BOTH UN-NORMALIZED AND NORMALIZED 
COEFFICIENTS. ARRAY ROOT MUST CONTAIN SQUARE ROOT OF 0 TO 
N+2. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
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C******************************************************************** 
C* (B) RETURN VALUES * 
C* * 
C* G: * 
C* THE RESULT IS STORED IN G AS FOLLOWS: * 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

Gl(l)=DW/DX, Gl(2)=DW/DY, G1(3)=DW/DZ 
G(l,l)=DDW/DDX, G(l,2)=G(2,1)=DDW/DXDY, 
G(1,3)=G(3,l)=DDW/DXDZ, G(2,2)=DDW/DDY, 
G(2,3)=G(3,2)=DDW/DYDZ AND G(3,3)=DDW/DDZ 
WHERE W MAY BE INTERCHANGED WITH T AND 
VARIABLES X, Y, Z ARE THE CARTESIAN COORDINATES 
IN A LOCAL (FIXED) FRAME WITH ORIGIN IN THE POINT 
OF EVALUATION, X POSITIVE NORTH, Y POSITIVE EAST, 
AND Z POSITIVE IN THE DIRECTION OF THE RADIUS 
VECTOR, (CF. REF. (l),EQ (4) AND (5)). 
THE VALUES OF W OR T WILL BE RETURNED IN POTCC. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER CAPN,ORDER,CAPN21 
LOGICAL QUASI,DERIVl,DERIV2 
REAL*4 C,CO 
REAL*B M21 
DIMENSION SML(181),CML(l8l),SMLP1(182),CMLP1(182),P0(6) 
COMMON/SQROOT/DZERO,ROOT(362) 
COMMON/CM/Gl(3),G(3,3),CM3,CM2,CMl,CO,C(32760) 
EQUIVALENCE(SML(l),SMLP1(2)), (CML(l),CMLP1(2)) 
DATA IZ/0/ 
NAMELIST/DBUG/ CM2,CM1,CO, QUASI,CAPN,S,S2,MAX,CM3 
CAPN=NMAX 
P=PO(l) 
R=P0(2) 
T=P0(3) 
U=P0(4) 
SL=PO(S) 
CL=P0(6) 
QUASI=.FALSE. 
IF(CAPN.LT.O)QUASI=.TRUE. 
IF(QUASI)CAPN=-CAPN 
S=CM2/R 
S2=S**2 
CMLPl (1)=1.00 

C CML(O)=l.DO 
SMLPl(l)=O.DO 

C SML(O)=O.DO 

c 

Ml=O 
DERIVl=.FALSE 
IF(ORDER.GT.O)DERIVl=.TRUE. 
DERIV2=.FALSE. 
IF( ORDER.GT.l)DERIV2=.TRUE. 
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C******************************************************************** 
C* * 
C* SML(M) AND CML(M) ARE THE SINE AND COSINE OF M*LONGITUDE * 
C* * 
C******************************************************************** 
c 
C WRITE(6,DBUG) 

c 

c 

DO 1 M=1,CAPN 
SML(M)=SML(Ml)*CL+CML(Ml)*SL 
CML(M)=CML(Ml)*CL-SML(M1)*SL 

1 Ml=M 

CAPN21=CAPN+CAPN+1 
VM=O.DO 
VXM=O.DO 
VYM=O.DO 
VZM=O.DO 
SQNM1=1.DO 
SQNPMl=l. DO 
KM=(CAPN+l)**2 

C******************************************************************** 
C* * 
C* WE NOW USE THE CLENSHAW ALGORITHM, CF. REF. (2), EQ (9), * 
C* MODIFIED IN AN OBVIOUS WAY FOLLOWING REF. (1). * 
C* * 
C******************************************************************** 
c 
c 

ITW0=2 
DO 7 IM=IZ,CAPN 
M=CAPN-IM 
IF(M.EQ.0)ITW0=1 
KM=KM-ITWO . 
K=KM 
N21=CAPN21 
VY=O.DO 
VZ1=0.DO 
VZ=O.DO 
VYl=O.DO 
VX=O.DO 
VX1=0.DO 
V=O.DO 
V1=0.DO 
CM=CML(M) 
SM=SML(M) 
NMl=CAPN-M+2 
N1=CAPN+l 
NPMl=CAPN+M+2 
N=CAPN+1 
DO 5 IN=M, CAPN 
N=N-1 
NM2=NM1 
NMl=NMl-1 
NPMl=NPMl-1 
IF(.NOT.QUASI) GO TO 2 
SQNM2=SQNM1 
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SQNMl=ROOT (NMl) 
SQNPM2=SQNPM1 
SQNPMl=ROOT (NPMl) 

c SQNPMl=C (NPMl) 
SQl=SQNMl*SQNPMl 
Al=S*N21/SQ1 
B2=-S2*SQ1/(SQNM2*SQNPM2) 
GO TO 3 

2 Al=S*N21/NM1 
B2=-S2*NPM1/NM2 

3 AlT=Al*T 
N21=N21-2 
CK=C(K) 
CKl=C(K+l) 
SMALLC=CM*CK+SM*CKl 
K=K-N21 
V2=Vl 
Vl=V 
V=Vl*A1T+V2*B2+SMALLC 
IF ( . NOT. DERIVl) GO TO 4 
D=-SM*CK+CM*CKl 
VX2=VX1 
VXl=VX 
VX=VXl*AlT+Vl*Al*U+VX2*B2 
VY2=VY1 
VYl=VY 
VY=VYl*AlT+VY2*B2+D 
VZ2=VZ1 
VZl=VZ 
VZ=VZl*AlT+VZ2*B2-Nl*SMALLC 
Nl=N 

4 CONTINUE 
5 CONTINUE 

AUX=NPMl 
IF(QUASI)AUX=SQNPM1/SQNPM2 
M2l=S*AUX 
IF ( . NOT. DERIVl) GO TO 6 
VXM=VX+M21* (-T*VM+U*VXM) 
AUX=U 
IF(M.EQ.O)AUX=l.DO 
VYM=M*VY+M2l*AUX*VYM 
VZM=VZ+M21*U*VZM 

c 
6 VM=V+M21*U*VM 
7 CONTINUE 

c 
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C******************************************************************** 
C* * 
C* 
C* 

NOW ADD THE CONTRIBUTIONS FROM THE ROTATIONAL POTENTIAL * 
* 

C******************************************************************** 
OM2=CM1**2 
S=CM3/R 
POTCC=S*VM+OM2*P**2/2 
S=S/R 
G1(1)=S*VXM-T*P*OM2 
G1(2)=S*VYM 
G1(3)=VZM*S+U**2*0M2*R 
RETURN 
END 

c 
C******************************************************************** 
C* * 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: Subroutine SETCM 

CALLED BY: Subroutine POT1 

CALLS: NONE 

FUNCTION: To set the square root table in commom CM and 
creates quasi-normalized coefficients from. 
normalized coefficients. 

APRIL 1981 CCG 
THIS VERSION STORES SQUARE ROOT TABLE IN COMMON SQROOT 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

SUBROUTINE SETCM(CAPN) 
IMPLICIT REAL*8(A-H,O-Z) 
INTEGER CAPN 
REAL*4 C,CO 
COMMON/SQROOT/DZERO,ROOT(362) 
COMMON/CM/G1(3),G(3,3),CM3,CM2,CM1,CO,C(32760) 

DZERO=O.DO 
DO 22 I=1,362 

22 ROOT(I)=DSQRT(DFLOAT(I)) 
G1(1)=0.DO 
G1(2)=0.DO 
G1(3)=0.DO 
SMALLC=1.D0 
IF(CO.NE.O.D0)SMALLC=1.D0/CO 
SQ2=DSQRT(2.D0) 
DO 200 N=l,CAPN 
N2=N+N 
S21=DSQRT(N2+1.D0) 
K=N**2 
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C******************************************************************** 
C* * 
C* 
C* 

D IS THE QUASI-NORMALIZATION FACTOR FOR ZONAL TERMS * 
* 

C******************************************************************** 
D=SMALLC*S21 
C(K)=C(K)*D 

C**~***************************************************************** 

C* * 
C* 
C* 

GG IS THE QUASI-NORMALIZATION FACTOR FOR NON-ZONAL TERMS * 
* 

C******************************************************************** 
C* 

c 

100 
200 

GG=D*SQ2 
DO 100 J=l,N 
KJ2=J+J+K 
C(KJ2-l)=C(KJ2-l)*GG 
C(KJ2)=C(KJ2)*GG 
CONTINUE 
CONTINUE 
RETURN 
END 

* 

C******************************************************************** 
C* * 
C* SOURCE FILE: Subroutin.e STORC * 
C* * 
C* CALLED BY: Subroutine POTl * 
C* * 
C* CALLS: NONE * 
C* * 
C* FUNCTION: To store individual C and S terms * 
C* * 
C******************************************************************** 
c 

c 

c 
c 
c 

c 

10 

SUBROUTINE STORC(N,M,CNM,SNM) 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*4 C,CO 
COMMON/CM/Gl(3),G(3,3),CM3,CM2,CM1,CO,C(32760) 

SUM OF THE PREVIOUS NUMBER OF TERMS 

J=(N-l)*(N+l) 
IF(M.EQ.O) GO TO 10 
K=M+M 
C(J+K)=CNM 
C(J+K+l)=SNM 
RETURN 
C (J+l)=CNM 
RETURN 
END 
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C******************************************************************** 
C* * 
C* SOURCE FILE: Subroutine LOADCS * 
C* * 
C* CALLED BY: Subroutine POT! * 
C* * 
C* CALLS: NONE * 
C* * 
C* FUNCTION: To read in the geopotential coefficients. * 
C* * 
C******************************************************************** 

1 

c 
c 55 
C1000 

2 

c 

SUBROUTINE LOADCS(NMAX) 
IMPLICIT REAL*8 (A-H,O-Z) 
READ(l2,END=2)N,M,C,S 
IF(N.GT.NMAX) GO TO 1 
IF(N.LT.5)WRITE(6,55)N,M,C,S 
FORMAT(1X,4G20.12) 
FORMAT(2I3,2G15.8) 
CALL STORC(N,M,C,S) 
GO TO 1 
CONTINUE 
REWIND 12 
RETURN 
END 

C******************************************************************** 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

SOURCE FILE: Subroutine TCPAL 

CALLED BY: MAIN program 

CALLS: LGNDR 

FUNCTION: To compute the Molodenskjj Truncation FunctionS. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

C******************************************************************** 
c 

c 

c 

c 

c 

SUBROUTINE TCPAL(NN,MAX,ARG,Q,R) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION Q(200),U(200),V(200),P(200),R(200,200) 

MAXI=MAX+5 
IF(MAX.GT.400)GO TO 2000 

ARG2 = ARG*ARG 

CALL LGNDR (ARG, P, MAXI) 

U(1) 0.00 
V(1) 0.00 
u (2) 0.00 

OSQ - 0.00 
ARG1 0.00 
IF(ARG.GT.0.9999999999) GO TO 100 
ARG1 = OSQRT((l.OO-ARG)/2.00) 
OSQ = OSQRT(2.00-2.00*ARG) 
U(1) OLOG(l.OO + 2.00/0SQ) 



V(1) = U(1) 
U(2) = DLOG(2.D0/(1.DO-ARG+DSQ)) 

10 0 CONTINUE 

c 

c 

c 

V(2) = ARG * V(1) + DSQ- 1.DO 
U(3) = ARG * U(2) - DSQ - ARG 
V(3) = (3.DO*ARG*V(2) - V(1) + DSQ)/2.DO 
MAXA =MAX+ 2 
DO 200 N = 3,MAXA 
N1 = N+ 1 
U(N1) = ((2*N-3)*ARG*U(N) - (N-2)*U(N-1) - DSQ 

1 +(P(N1-3)-P(N1-1))/(2*N-3))/(N-1) 
V(N1) = ((2*N-1)*ARG*V(N)-(N-1)*V(N-1)+DSQ)/N 

200 CONTINUE 

DO 45 K=1,MAX 
DO 46 J=1,MAX 

R(K,J) = O.DO 
46 CONTINUE 
45 CONTINUE 

R(1,1) = 1.D0 + ARG 
DO 300 N=2,MAX 
N1 = N-1 
PN1 == P (N) 
PNN = P (N1) 
Z1 = DFLOAT(2*N1-1) 
Z2 = DFLOAT(2*N1+1) 
R(N,N) = (Z1*R(N1,N1)+ARG*(PN1*PNl+PNN*PNN) 

1 -2.DO*PNl*PNN)/Z2 
300 CONTINUE 

DO 301 N=3,MAX 
Nl = N-1 
EN = DFLOAT (Nl) 

DO 302 K=2,Nl 
Kl = K - l 
AK=DFLOAT(K1) 
F1=(EN-AK)*(EN+AK+1.D0) 
F2=(EN-AK)*ARG*P(N)*P(K) 
F3=EN*P(N1)*P(K) 
F4=AK*P(N)*P(K1) 
R(N,K)=(F2-F3+F4)/F1 
R(K,N)=R(N,K) 

302 CONTINUE 
301 CONTINUE 

c 

c 

DO 303 J=2,MAX 
Jl = J-1 

R(J,1)=(P(J+1)-P(Jl))/DFLOAT(2*Jl+l) 
R(1,J)=R(J,l) 

303 CONTINUE 

Q(1) = o.oo 
Q(2) = O.DO 
IF(ARGl.LT.l.D-10) GO TO 350 
Q(l) = -4*ARG1+5*ARG1**2+6*ARG1**3-7*ARG1**4 

1 +6*(ARG1**2-ARG1**4)*DLOG(ARG1+ARG1**2) 
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c 

c 

c 

c 

c 

THR = DFLOAT ( 3) 
Q(2)=-2*ARG1+4*ARG1**2+28*ARG1**31THR-14*ARG1**4-8*ARG1**5 

1 +32*ARG1**61THR+(6*ARG1**2-12*ARG1**4+8*ARG1**6) 
2 *DLOG(ARG1+ARG1**2) - 2*DLOG(1.DO+ARG1) 

350 CONTINUE 

Ul= U(2) 
U2 = U(3) + 1.DO 
U3 = U(4) + O.SDO + ARG 

DO 400 N=3,MAX 
N1 = N-1 
AN = DFLOAT(Nl) 
UA1 = U(N) + 1.DOI(AN-l.D0) 
UA2 = U(N1+2)+1.DOIAN+ARGI(AN-l.D0) 
UA3 = U(N1+3)+1.DOI(AN+1.DO)+ARGIAN+(3.DO*ARG2-1.DO)I2.DO 

1 I(AN-1.DO) 
VAl= V(N1)-1.DOIAN-ARGI(AN+l.D0)-(3.DO*ARG2-1.D0)12.DO 

1 I(AN+2.DO) 
VA2 = V(N) - l.DOI(AN+1.D0)-ARGI(AN+2.D0) 
VA3 = V(N1+2) - 1.DOI(AN+2.D0) 

F1 = (2.D0*(2.DO*AN+1.DO)IANI(AN+1.DO)*(Ul-U3) 
1 -(AN+2.DO)*(UA1-UA3)-(AN-1.DO)*(VA3-VA1))*P(N) 

F2 = (3.DO*U2-(AN+2.D0)*UA2+(AN-l.D0)*VA2)*(P(N1+2)-P(N1)) 
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Fl = AN*(AN+1.DO)I(2.DO*AN+l.DO)I(AN-1.DO)I(AN+2.DO)*(Fl+F2) 
F2 = - (2. DO*AN*AN+2 .DO*AN+l. DO) I (AN-1. DO) I ( (2. DO*AN+l.DO) **2) 

1 *P(N)*(P(Nl+2)-P(N1)) 
Q(N) = F1 + F2 + (2.DO*AN+1.DO)I(AN-1.DO)*R(N,N) 

400 CONTINUE 
GO TO 1000 

2000 CONTINUE 
WRITE(6,2001) MAX 

2001 FORMAT(1X,'ITCHAG:',I,1X, 
1 'DIMENSIONING OF ARRAY IS INSUFFICIENT REQUESTED: ',IS) 

10 0 0 CONTINUE 
RETURN 
END 
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C******************************************************************** 
C* * 
C* SOURCE FILE: Subroutine LGNDR * 
C* * 
C* CALLED BY: Subroutine TCPAL * 
C* * 
C* CALLS: NONE * 
C* * 
C* FUNCTION: To compute the legendre polynomial functions .. * 
C* * 
C******************************************************************** 
c 

c 

c 

c 

c 

SUBROUTINE LGNDR(ARG,P,MAX) 

IMPLICIT REAL*B (A-H,O-Z) 
DIMENSION P(200) 

P (1) l.DO 
P (2) ARG 

DO 100 L=2,MAX 
B= DFLOAT(L) 
P(L+1) = (2*B-1)/B*P(L)*ARG- (B-1)/B*P(L-1) 

100 CONTINUE 
RETURN 
END 

//GO.FT12F001 DD DSN=RAPP180.UNFMD,UNIT=3480,VOL=SER=SE0001, 
II LABEL=(164,,,IN),DISP=(OLD,DELETE) 
//GO.FT10F001 DD * 
/INCLUDE INPUTA 
II 
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APPENDIX 1.6 

Test on A <I> 

RING NO <1>1 <1>2 ..1.<1>21 ..1.<1>21 
(in radian} (in radian} (in Radian) (in Degn;&} 

1 .00000 .00055 .00055 .03169 INNER SUB-ZONE 
1 .00055 .00166 .00111 .06341 MIDDLE SUB-ZONE 
1 .00166 .00498 .00332 .19046 
2 .00498 .00831 .00333 .19076 
3 .00831 .01165 .00333 .19103 
4 .01165 .01499 .00334 .19127 
5 .01499 .01833 .00334 .19150 
6 .01833 .02167 .00335 .19170 
7 .02167 .02502 .00335 .19189 
8 . .02502 .02838 .00335 .19206 
9 .02838 .03173 .00335 .19222 

10 .03173 .03509 .00336 .19237 
11 .03509 .03845 .00336 .19252 
12 .03845 .04181 .00336 .19265 
13 .04181 .04517 .00336 .19278 OliTER SUB-ZONE 
14 .04517 .04854 .00337 .19291 
15 .04854 .05191 .00337 .19302 
16 .05191 .05528 .00337 .19314 
17 .05528 .05865 .00337 .19324 
18 .05865 .06203 .00337 .19335 
19 .06203 .06541 .00338 .19345 
20 .06541 .06878 .00338 .19355 
21 .06878 .07216 .00338 .19364 
22 .07216 .07554 .00338 .19373 
23 .07554 .07893 .00338 .19383 
24 .07893 .08231 .00338 .19392 
25 .08231 .08570 .00339 .19401 
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APPENDIX I. 7 

Test on fl'V 

RING NO 'Vl 'V2 fl'V2l 'V2 
(in radian) (in radian) <in Radian) (in Demel 

1 .00000 .00028 .00028 .01582 INNER SUB-ZONE 
1 .00028 .00083 .00055 .04732 MIDDLE SUB-ZONE 
1 .00083 00246 .00164 .14103 
2 .00246 .00408 .00162 .23371 
3 .00408 .00568 .00160 .32550 
4 .00568 .00727 .00159 .41649 
5 .00727 .00884 .00158 .50674 
6 .00884 .01041 .00156 .59630 
7 .01041 .01196 .00155 .68522 
8 01196 .01350 .00154 .77353 
9 .01350 .01503 .00153 .86127 

10 .01503 .01655 .00152 .94845 
11 .01655 .01807 .00151 1.03512 
12 .01807 .01957 .00150 1.12129 
13 .01957 .02107 .00150 1.20698 OUTER SUB-ZONE 
14 .02107 .02255 .00149 1.29221 
15 .02255 .02403 .00148 1.37700 
16 .02403 .02551 .00147 1.46137 
17 .02551 .02697 .00147 1.54533 
18 .02697 .02843 .00146 1.62889 
19 .02843 .02988 .00145 1.71208 
20 .02988 .03133 .00145 1.79490 
21 .03133 .03277 .00144 1.87736 
22 .03277 .03420 .00143 1.95948 
23 .03420 .03563 .00143 2.04127 
24 .03563 .03705 .00142 2.12273 
25 .03705 .03847 .00142 2.20389 
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APPENDIX 1.8 

Comparisons of Geoidal Height Differences 

(1) (2) (3) 
~GPS/LEV .1NUNB Dec.'86 Distance Ring + Rapp 180 (3)- (1) (3)- (2) 
(in metres} (in metres) (in me~s) (in metres) (in metres) (in metres) 

0.340 0.58 42835.632 0.597 0.257 0.017 
0.785 0.83 63264.550 0.830 0.045 0.000 
0. 917 0.85 115879.659 1.003 0.086 0.153 

-0.344 -0.49 60099.078 -0.360 -0.016 0.130 
-1.440 -1.66 104268.137 -1.470 -0.030 0.190 
1.051 1.08 98077.694 1.164 0.113 0.084 
0.066 0.00 129579.232 0.098 0.032 0.098 
0.445 0.25 21152.676 0.233 -0.212 -0.017 
2.777 2.70 116714.955 2.764 -0.013 0.064 

-0.793 -1.12 125347.849 -1.072 -0.279 0.048 
0.577 0.27 83040.513 0.406 -0.171 0.136 

-0.684 -1.07 54653.119 -0.957 -0.273 0.113 
-1.780 -2.24 103622.863 -2.067 -0.287 0.173 

0.711 0.50 61474.039 0.567 -0.144 0.067 
-0.274 -0.58 102898.395 -0.499 -0.225 0.081 

2.332 2.45 95918.573 2.531 0.199 0.081 
-1.238 -1.37 111035.239 -1.305 -0.067 0.065 

0.132 0.02 65658.204 0.173 0.041 0.153 
-1.129 -1.32 57432.930 -1.190 -0.061 0.130 
-2.225 -2.49 103092.652 -2.300 -0.075 0.190 

0.266 0.25 42634.058 0.334 0.068 0.084 
-0.719 -0.83 88307.111 -0.732 -0.013 0.098 
-3.570 -3.85 108790.916 -3.836 -0.266 0.014 
-2.200 -2.42 75083.356 -2.358 -0.158 0.062 
-3.461 -3.76 134078.448 -3.721 -0.260 0.039 
-2.066 -2.20 72030.842 -2.197 -0.131 0.003 
-3.051 -3.28 96176.696 -3.263 ...:0.212 0.017 
1.370 1.40 48559.933 1. 478 0.108 0.078 
0.109 0.06 93057.963 0.115 0.006 0.055 

-0.987 -1.12 79041.027 -0.995 -0.008 0.125 
1.504 1.63 71850.244 1.639 0.135 0.009 
0.519 0.54 22730.233 0.573 0.054 0.033 

-1.261 -1.34 69616.469 -1.363 -0.102 -0.023 
-2.357 -2.52 84411.431 -2.473 -0.116 0.047 

0.134 0.23 23857.125 0.161 0.027 -0.069 
-0.851 -0.85 27288.879 -0.905 -0.054 -0.055 
-1.096 -1.18 49242.025 -1.110 -0.014 0.070 
1. 395 1.57 62223.488 1.524 0.129 -0.046 
0.410 0.49 74682.196 0.458 0.048 -0.032 
2.491 2.75 90849.976 2.634 0.143 -0.116 
1.506 1.66 71899.842 1.568 0.062 -0.092 

-0.985 -l,QB ~96H.U9 -l.Q66 -Q,Q8l Q,QH 

Mean-Relative-Accuracy(in ppm) 1.7 1.1 

RQQt-Mean-Sguare(in ~entimetresl 14,4 9.1 
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APPENDIX 1.9 

Transformation from the Wvity disturbance (()~) to Wvity anomaly (,1e) 

The gravity anomaly is defined as the difference between the gravity (&J) measured 

on the geoid and the normal gravity (y0 ) computed for the ellipsoid: 

(1) 

and the gravity disturbance is defined as the difference between the gravity (g0 ) measured 

on the geoid and the normal gravity (y0 ) computed on the geoid at the same point: 

&g = ga - 'Ya · (2) 

To reduce the normal gravity at a point on the geoid onto a point on the ellipsoid, the 

normal gravity gradient has to be added: 
dy 

'Yo = 'Ya - ()h N, (3) 

where N is the separation between the geoid and the ellipsoid. To obtain a relationship 

between the gravity anomaly and the gravity disturbance, equation(2) can be subtracted 

from equation( I) which will result as folows: 

,1g = &g - 'Yo + 'Ya · (4) 

Now subsitute equation(3) into equation(4), we obtain: 
dy 

,1g = &g + db N. (5) 

Since the normal gravity gradient is [Heiskanen and Moritz, page 131 (1985)], 
dy 
db = -0.3086 mGal per metre, 

the gravity disturbance can be transformed into gravity anomaly using the following 

equation: 

,1g = &g - 0.3086 N, (6) 

where N is in metres. 



APPENDIX 1.10 

An Example For Computing the Scale N* 
c 

1Q 
Match the Spacing of the Point Gravity Anomalies 

Using equation(5.2.18), N• can be expressed as follows: c 

where 

R 
~ = -lla. 

4xy 
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If the average spacing of the point gravity anomalies is 10 km, i.e., ll'lf = 10 km or ll'lf = 

10/R in radian where R = 6371 km, then 

N• = Aa ( 10 km). 
c 2xy 

If we select the compartment size for lla = 1 o· and y = 980 000 mGal, then 

N* = 10"(10 km) 
c 360 • (980 000 mGal) 

= 2.83 x w-7 ,:;;a/ 
m 

- 0.0003 mGal . 
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