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EXECUTIVE SUMMARY 

Described in this report are the results of the investigations undertaken by two collaborating 

research groups at the University of New Brunswick and The University of Calgary under a 

DSS research contract #23244-9-4198/01-SS for the Geodetic Survey Division of the Canada 

Centre for Surveying. The investigations addressed the problem of geodetic network analysis 

techniques, and proposed alternatives to the standard statistical analysis techniques designed to 

analyse network sensitivity to gross errors and blunders. 

The original aim of the investigations was to study the differences between and merits of 

two such alternative techniques: the reliability technique, introduced by Baarda and 

implemented by The University of Calgary group, and the geometrical strength analysis 

formulated by the University of New Brunswick group. It was discovered at the beginning of 

the investigation that these two techniques are very much complementary: that is, the weakness 

of each is in the area of the strength of the other. It was decided thus to combine the two 

techniques into one, which we call "robustness analysis." 

Experiments with both simulated and real networks have shown that robustness analysis 

works very well in depicting the strong and the weak points in the network, which have to be 

judged in three independent senses. The strength/weakness of a network must be studied in 

the sense of scale, shear, or local twist, each of which provides a different picture of strength. 

These three indicators (primitives) cannot be combined into a single scalar indicator. 

It has been concluded that robustness analysis should be carried out side-by-side with the 

standard statistical analysis from which it differs fundamentally. It is recommended that the 

Canadian federal specifications for horizontal geodetic networks be amended to include 

pertinent prescriptions as far as desired robustness is concerned, i.e., specific robustness to be 

achieved through meeting robustness tolerance limits. 
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1. INTRODUCTION 

In Canada, as in most other countries, geodetic networks are designed and classified on the 

basis of the standard statistical approach. This approach, called in this report simply 

"covariance analysis," assumes that only random, normally distributed errors are present in the 

observations. This analysis is oblivious to what may happen to the network if a sizeable error, 

called here an outlier or a blunder, fails to get intercepted by statistical testing performed during 

the covariance analysis. 

About ten years ago, two groups- one at the University of New Brunswick (UNB) and 

the other at The University of Calgary (U of C) - independently started a quest for an 

alternative approach to network design and classification. The U of C group had taken 

Baarda's [1968] statistically based reliability technique and implemented it for the case of 

horizontal geodetic networks [Mackenzie, 1985]. It was implemented in a program package 

called CANDSN [Mepham and Krakiwsky, 1984]. The UNB group took a completely 

geometrical approach to develop their "geometrical strength analysis" [Dare, 1983] based on 

using strain as the deformation descriptor. This technique was incorporated in the NET AN 

program developed for the Geodetic Survey Division of the Canada Centre for Surveying 

[Craymer et al., 1989]. 

The idea of looking at the response of geodetic networks to the presence of blunders in 

observations has been on many people's minds for some time. It was responsible for the 

Geodetic Survey Division letting out a research contract on 24 August 1989, administered by 

DSS under SSC file #05555.23244-9-4198 and #23244-9-4198/01-SS, to UNB with the U of 

Cas a subcontractor. The aims of this contract can be summarized as follows: 

(i) to show that the network response to blunders in observations is different than its 

response to random errors; 
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(ii) to show the differences between and relative merits of Baarda's reliability analysis 

and the geometrical strength analysis; 

(iii) to demonstrate how the two new techniques work with both a simulated and a real 

network; 

(iv) to present suggestions for updating the Canadian specifications for geodetic 

horizontal networks to include the reliability/strength aspects. 

It became rather obvious at the earliest stages of the investigations that while the reliability 

analysis is based on rigorous statistical concepts, its treatment of the geometry of virtual 

(potential) network deformation, which is needed in studying the network response, is rather 

weak. Conversely, the geometrical strength analysis treats the virtual deformation quite 

rigorously, while its statistical foundations are weak. Thus, rather than dealing with the two 

techniques side-by-side, it was decided to combine the advantages of both into one technique 

called here the "network robustness analysis." 

This report, being the final report on the above cited research contract, addresses the 

required issues in the following way: the three techniques that had to be studied and compared 

are described in Chapters 2, 3, and 4, respectively. Since the covariance analysis is a rather 

standard tool, it is presented in a more compact way than the other two techniques. 

Robustness analysis is discussed in Chapter 5, together with its comparison with geometrical 

strength and covariance analyses. Chapter 6 is devoted to describing how robustness analysis 

is implemented on the computer within the framework of the existing NET AN program. The 

required numerical examples are gathered together in Chapter 7, proposed specifications are in 

Chapter 8, and our conclusions and recommendations are brought forward in Chapter 9. 

Suggestions for new federal specifications are submitted as an external appendix to this report. 

1. Introduction 2 
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2. COVARIANCE ANALYSIS 

2.1 Introduction 

Throughout the discussion in this chapter, we will consider only distance, angle, and 

azimuth observations. This will simplify our discussion, but some generalizations for the 

benefit of the reader are thus necessary. We first consider the mathematical model shown 

below: 

Ax =t + v, Ct ' 
(2.1) 

where A = the design matrix, 

X = vector of unknown parameters, 

t = vector of observations, 

v = vector of residuals, and 

Q = covariance matrix of the observation. 

Equation (2.1) is merely the differential form of a non-linear mathematical model. The 

equation is formed by linearizing around the Taylor point x(O) with x = l) (correction to initial 

approximate parameter vector) and t = w (misclosure vector). x can be solved using the well-

known least-squares estimation technique utilizing the normal equations shown below: 

N~ = A1Ptt , (2.2) 

where N = AtPeA + c-1 (Cxo is the a priori covariance matrix for the unknown xo 

parameters; it is optional and is not considered further in our discussion), and 

P 2 c-t c 2 . th . . . ~ ) e = 0'0 e OQ lS e a pnon vanance tactor . 

Before we can use the results from our estimation, we need to assess our observations and 

mathematical model. This allows us to determine if we can rely on the results that we have 

obtained. The assessment is made using statistical testing. The most important tests that 

usually are carried out are briefly discussed below. 

2. Covariance Analysis 3 
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2. 2 Statistical Testing of Observations 

Testing of observations is done before they are used to estimate unknown parameters. The 

reason for testing observations is quality control. We want to know whether the observations 

that have been collected contain any gross errors. Screening the observations for gross errors 

before they are used is supposed to ensure that the estimated unknown parameters will not be 

biased. 

The quantities used for testing the observations are either the observations themselves or 

their residuals. In the latter case, we assume that the observations t are composed of two 

parts, 

t=~-~. (2.3) 

where ~ = the estimated value of the observations, 

1\ 
v = the estimated value of the residual of the observations. 

Since we are testing only one observation at a time here, univariate testing is used in this 

context. 

There are three types of tests that can be carried out on the observations: namely,: 

(a) x2 goodness of fit test, 

(b) test on the variance, and 

(c) test on the mean. 

The frrst test determines whether the histogram of the residuals is compatible with a postulated 

probability density function (PDF). The PDF that is used here is the normal distribution. This 

test is important as all the other statistical tests assume that the residuals are normally 

distributed. (There are, however, statistical tests that do not rely on the normality assumption, 

known as the non-parametric test [Rao, 1973]. These are seldom used in network analysis and 

will not be discussed here.) 

The second test determines whether the hypothesized population variance r? is compatible 

with the assessed variance s2 and can be used only when several values have been collected for 

one observable. cJl can sometimes be viewed as the design variance. If this test fails, then 
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there is a reason to believe that the observations were not collected according to the design. 

The third test is designed to examine the mean of the data collected for one observable. The 

comparison between the population mean (J.J.) and the sample mean (T) tells us of the presence 

of possible biases in the observed sample. The last two tests cannot be performed on 

residuals. 

For the three tests described above, there are six situations under which the tests can be 

carried out These situations reflect whether the population mean J.1 and the population variance 

cr2 are known or unknown. If J.1 and/or cr are unknown, they are estimated from the sample 

mean r and the sample variance s2. It is important to know whether we are treating the 

population parameters as known or unknown as this will determine the PDF that we should use 

to carry out the tests. Van~ek and Krakiwsky [ 1986] explain the tests described above in 

greater details. 

2. 3 A Posteriori Testing of Observation and/or Model . 

The tests use the estimated residuals~ or the misclosure vector w' (when w' is a function 

of the observation and not due to the linearization process). The residuals~ are indicative of 

the behaviour of both the observation and the mathematical model. It is generally impossible to 

separate the two, therefore, the observations and the model are tested simultaneously. 

There are two tests that can be conducted on ~ and w' depending on whether the variance 

factor cr~ used for scaling the covariance matrix of observations is known or unknown. When 

carrying out the test to detect outliers, the covariances between the residuals have to be taken 

into consideration. In such a situation, the Baarda test statistic should be used or Bonferroni's 

inequality employed. Both approaches take covariances into account in quite different ways. 

The assumption behind the standard testing is that the observations ~ are normally 

distributed with expected value of At i.e., 

Ho : ~ E n (~; A~, Ct) (2.4) 
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(Any symmetrical probability distribution function with mean A~ will suffice to satisfy 

conditions for unbiasness and maximum likelihood of~ but not for testing.) 

This hypothesis is tested by the "test on the variance factor." The a posteriori variance 

factor~ is computed from 
II. II. 

~~. 2 _ v Pe v ao - , 
v 

(2.5) 

where v is the number of degrees of freedom. If the a priori variance factor ~ is known, then 

the null hypothesis for testing is 

v~ 
Ho: ~E x2(~; V) 

0 

(2.6) 

One of the necessary conditions for this null hypothesis to be satisfied is that the expected 

value of v equals to 0, i.e., that the observations t are burdened only with random errors (with 

zero-mean). Thus observations are usually again screened against gross errors/biases using 

tests for outliers. 

2. 4 Outlier Detection in Observations 

Outliers are observations that are considered statistically incompatible with the rest of the 

series [Van~ek and Krakiwsky, 1986]. This incompatibility is thought to be caused by a 

blunder made in the measurement or by some sort of disturbance affecting the performance of 

the measuring system. Outliers can be detected by examining the residuals of the observations 

after the estimation process. 

Because the residuals are mathematically correlated to each other, we would have to work 

with a multivariate distribution function. This would make the testing procedure quite 

complex. It is easier and more efficient to work with a univariate distribution. To do this we 

have to standardize the residuals. Since it is assumed that all the residuals are coming from the 

same population with different normal density, the standardization process is straightforward. 

The standardization process is accomplished by the transformation : 

2. Covariance Analysis 6 



Robustness Analysis Final Report 

(2.7) 

1\ 1\ 

where ri = ei- ei and crti = cr<Zi- ~) . 

The univariate tests that are available for outlier detection are shown in Table 13.5 in 

Vamcek and Krakiwsky [1986]. The table shows the tests when each ei has been taken out of 

context, i.e., the question as to whether the other members of the series may also be outliers is 

deliberately ignored. The tests are thus called the out-of-context tests. An in-context test 

examines the ei in light of their existence as one of the members of the series. In this case, the 

significance level for the test is different from that used in the out-of-context tests. The 

significance level for the in-context and the out-of-context tests is related by the equation: 
a 

a~N' (2.8) 

where a = out-of-context significance level, 

a = in-context significance level, and 

N = the number of observations. 

A more detailed description of the out-of-context and the in-context testing can be found in 

Vamcek and Krakiwsky [1986]. 

The outlier detection process plays a very important role in our robustness analysis 

technique as will be shown later. As a matter of fact, there may exist observations in a network 

that cannot be tested for outliers and the level of detectability varies with network geometry. 

What happens if ei burdened with blunders .1.ei, e.g., gross error of bias, are used in the 

computation? The effect of the blunder and whether it is detectable will depend on the 

geometry of the network. Figure 2.1 illustrates this point. 

Figure 2.1 (a) shows a closed network of points. All the points in the network are 

determined employing redundant observations. If observation e3 is burdened with a blunder, it 

either can be detected from the residual of that observation or has only a small effect on point A 

as other observations are also used to compute coordinates of the point. In Figure 2.1 (b), the 

2. Covariance Analysis 7 



Robustness Analysis Final Report 

(a) 

(b) 

A 

Figure 2.1. Detectability of blunders and their effect on a horizontal network. 
(a) A blunder either can be detected or has a small effect on the network. 

(b) Blunder ~e3 cannot be detected and has a large effect on the network (only on point A). 
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blunder in the observation cannot be detected as there are no redundant measurements made to 

point A. The effect of the blunder will be large as only the observation burdened with the 

blunder was used to compute the position of A. 

The effect of a blunder on the network depends on the following two circumstances: 

(a) if Aei can be detected by statistical testing, and 

(b) how the network reacts to the presence of Aei. 

Both are functions of network geometry, the observation accuracy, and the magnitude of Aei. 

When can a blunder be detected? The answer lies in Baarda's reliability theory explained in 

Chapter 3. 

2. 5 Assessment of the Estimated Positions 

Once the observations have been screened and the mathematical model examined, the 

estimated parameters {positions) should be assessed. The assessment consists of the 

determination of confidence regions (sometimes known as error ellipses for 2D positions or 

error ellipsoids for 3D positions) for the positions. These represent the amount of trust that 

one can place on the estimated positions. 

The confidence region determined for the estimated position depends on the test statistic y 

shown below. There are two different cases where y can be determined, i.e., when~ is either 

known or unknown. If ~ is known then the test statistic used is: 

y = (x - ~)t C~1 (x - ~) , 
X 

. (2.9) 

where X = the unknown parameters (coordinates), 
1\ 
x = estimate of the unknown parameters, and 

C~ = covariance matrix of the estimated parameters. 

The test statistic y shown above has a y} distribution with u degrees of freedom, where u is 

also the number of unknown parameters in the estimation process. If ~ is unknown, then the 

testy is given by: 

2. Covariance Analysis 9 
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A t -1 A (x - x) c~ (x - x) 

y= u 
(2.10) 

The test statistic shown in equation (2.10) has an F(u,v,oo) distribution (v =number of 

observations minus the number of unknown parameters). 

For a given significance level a, the critical value of y can be looked up from the X2 of the 

F tables depending on whether ~ is known or unknown. If we substitute this value for y in 

equations (2.9) or (2.10), we will get au-dimensional hyperellipsoid. This hyperellipsoid can 
1\ 

be understood as a u-dimensional confidence region centred at x. Any tested value x that falls 
1\ 

within the hyperellipsoid must then be considered compatible with x on the level of probability 

( 1-a). Two-dimensional, sub vectors of x similarly fall into 2D confidence regions centred on 
1\ 

corresponding 2D subvectors of x, i.e., the points of the network. The axes and orientation of 

the confidence regions can be computed by solving the eigenvalue problem for each confidence 

ellipse. The equations for computing the axes and orientation of the confidence ellipse can be 

found in Steeves and Fraser [1983]. 

There are two types of confidence regions: point confidence and relative confidence region. 

The point confidence region reflects how accurately the station has been positioned with respect 

to the 'datum' of the network: point confidence regions thus depend on the datum defining the 

network. The relative confidence region represents the relative accuracy between the two 

stations. It is not datum dependent and is most often used to define the accuracy of a network. 

The confidence regions are usually computed for a probability level of 39%. Such 

confidence regions are called the standard confidence regions. This probability level can be 

increased by multiplying it with an expansion factor. The expansion factor is given by: 

Ca(u) = ...J~{y, 1-a)· (2.11) 

where ~(y, 1-a) is the absence of the appropriate PDF corresponding to the 1-a probability. 

This expansion factor is multiplied with the axes of the standard confidence region to obtain the 

1-a. in-context confidence interval. 

2. Covariance Analysis 10 
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3. RELIABILITY ANALYSIS 

3.1 Baarda 's Reliability Theory 

Before we go into detail on the theory, the concept of hypothesis testing should be 

explained first. The role of hypothesis testing is to allow us to make a statistical decision 

concerning postulated population parameters, e.g., mean Jl or variance cr2, etc., to have some 

particular value. This is called the null hypothesis (Ho). For every null hypothesis, there 

exists an infinite number of alternative hypotheses (H1), each of which states that the 

population parameters have some other particular values. 

When we perform hypothesis testing, there are only two possible outcomes, i.e., to accept 

Ho or to reject HQ. Similarly, there are two possible outcomes for the test of the alternative 

hypothesis H1. None of the hypotheses may be true, in which case the test at least should tell 

us which hypothesis is better. To make a definite decision concerning Ho. we need to have an 

infinite sample to work with. Since this is never available, a decision made on a finite sample 

should be trusted only to a certain degree. Such a decision has attached to it only a limited 

confidence. 

The probability a of rejecting Ho when in fact Ho is true (Type I error) is called the 

significance level. The complementary probability (1-a) is called the confidence level, and it is 

the measure of confidence we have in the decision (Type I error). Likewise, a situation might 

arise that Ho is false and we accept it. This is called the Type II error. The probability of 

making this decision is p. (1-P) is called the power of the test, and it expresses the confidence 

we have in the decision made. The situation described above can be summarized in Table 3.1. 

When Baarda first developed his reliability theory, he treated the blunders as unknown 

parameters to be estimated, i.e., the blunders are treated as deterministic quantities. Most of 

the research work and literature dealing with outliers or blunders treat them as deterministic 

quantities that have to be estimated. 

3. Reliability Analysis 11 
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Table 3.1. Testing of a null hypothesis Ho against an alternative hypothesis Ht 
(afterVamcek and Krakiwsky [1986]). 

Decision Test tells us to Test tells us to 
Situation acceptHo rejectHo 

Ho true Correct decision Type I error 

Probability = 1-a. Probability= a. 
(confidence level) (significance level) 

Ho false Type II error Correct decision 

(HI true) Probability = ~ Probability = 1-~ 
(power of test) 

The blunders can be estimated from the residuals obtained after a least-squares adjustment. 

The relationship between the observational errors and the residuals is shown below 

[Stefanovic, 1978; Kavouras, 1982]: 

where " v = the estimated residuals, 

e = the true observational errors, 

Q~ = the cofactor matrix of the estimated residuals, and 

c~ = the covariance matrix of the observations. 

(3.1) 

The cofactor matrix and the covariance matrix of the residuals is related by cio [Mikhail, 197 6]. 

Therefore, if cr~ is assumed known, then equation (3.1) can be rewritten as: 

" c/\ -• v = v c~ e (3.2) 

where C~ is the covariance matrix of the residuals. 

3. 2 Effect of Blunders 

Now, if we assume E to be made up of two parts consisting of a random partEr and a gross 

error part (blunder) ve, we have: 

E = Er + Ve , 
Substituting equation (3.3) into equation (3.2), we have: 

3. Reliability Analysis 

(3.3) 
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~ = C~Cf_1 (Ev + Vt) 

= c~ Cf-1 Er + c~ Cf-1 v t 
" v = Vr + Vv , (3.4) 

where Vr = influence of the random error on the residual, 

V v = influence of the blunder on the residual. 

If an observation ei is not burdened with a blunder, then vei will be zero. On the other hand, 

if observation ei is burdened with a blunder, then vei will be non-zero. Therefore, through 

testing of the residuals~. an observation containing a blunder could be detected. 

In carrying out the statistical test on our observations, we always assume that the 

observations are normally distributed with mean 1..1. and variance o-2. If an observation is 

burdened with a blunder, then it will have a distribution with mean, say, 1..1. +..JA, and variance 

of o-2. This method of modelling the blunder is called the mean shift model [Chen et al., 1987] 

where the (unknown) mean shift is given by ..JA. The PDF of the observation containing a 

blunder is shifted by -.JA from its own PDF not burdened by a blunder. This situation is 

depicted in Figure 3.1. 

One of the statistical tests carried out after a least-squares adjustment is to test the estimated 

reference variance~ against a hypothesized reference variance~. as described in the previous 

chapter. 

There are many reasons why the test can fail and Ho be rejected. Some of these reasons 

can be found in Uotila [1976], or VaniCek and Krakiwsky [1986]. For our purpose, however, 

we shall assume that the reason why the test fails is that blunders exist in our observations. 

This is a valid assumption because blunders have an influence on ~. Since &~ is estimated 

using ¢, the presence of blunders will cause the distribution of test statistic y to be shifted by 

A. The shift A is also known as the non-centrality parameter [Mackenzie, 1985]. The amount 

of shift can be computed from the blunders themselves, through their influence Vv. The 

derivation of A using Vv is discussed below. 

3. Reliability Analysis 13 
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0 

Figure 3.1 The central and non-central normal distribution (after Mackenzie [1985]). 
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3. 3 Formulation of an Alternative Hypothesis 

Under the null hypothesis, the expectation ofy' = y/v is 1, as seen from equation (2.6). In 

an alternative hypothesis, the expected value of y' is not equal to 1. We can write the expected 

value ofy' under H1 in two parts as shown below: 

E[y'IHI] = E[y'IHo] + V[y'] (3.5) 

where Vy' is the amount by which the X2 distribution has shifted due to the presence of 

blunders. Therefore, 

E[y'IH1] = 1 + V[y'] . 

But y' = &~I~ and substituting y into equation (3.6) we get: 

V[y'] = V <&~~ 

=V~~ 

where V~ is the amount of shift of ~ due to the presence of blunders 

1 -1 
V[y'] = ~ (Vvt C~ Vv)/v 

0 

Equation (3.6) can be rewritten as: 
1 -1 

E[y'IHt] = 1 + ~ (Vvt C~ Vv)/v 

0 

=1+'AJv 

where 

Since Vv = C~ Cf_1 Vt (equation (3.4)), we can write equation (3.8) as 

A.= ~ (C~ Cf_1 Vt)t Cf_1 C~ ct Vt 
0 

= ~ Vtt Cf_1 C~Cf_1 C~Cf_1 Vt 
0 

Using the indempotence property ofC~ Cf-1 [Mikhail, 1976], we can write, 

3. Reliability Analysis 

(3.6) 

(3.7) 

(3.8) 

(3.9a) 

(3.9b) 
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A.= _!_ vtt cf_1 c~ ci vt 
~ 

(3.9c) 

If~= 1, then equation (3.9c) is reduced to: 

0 -1 -1 0 
A.= v~t Ce C~Ct v~ (3.9d) 

Figure 3.2 shows the shift of the probability distribution function of Ho due to blunders Vt in 

the observations. 

When formulating the reliability technique, we are not interested in the magnitude of Vt 

itself. What is important is to know the magnitude of the blunder that cannot be detected. To 

be able to determine this we need to know A.. Since Vt is unknown, however, A. cannot be 

computed using equation (3.9d). Instead, we can select a critical value Ao (based upon selected 

ao and ~o. as shown later) to determine the magnitude of vt that cannot be detected. Equation 

(3.9d) can then be rewritten as 

0 -1 -1 0 A.o = vo~1 c t c~ c t Vo~ (3.10) 

In carrying out the test for detecting blunders in our observations, we have assumed that 

only one blunder at a time was present: each observation is tested in turn to see if it is 

burdened with a blunder. The hypothesis set up for each observation is 

. { Hoi : V t i = 0 
V1 = 1, n : 

Hu:Vti-:J:.O 

Baarda called the consecutive testing of the alternative hypotheses Hti "a data snooping 

strategy" [Baarda, 1968; Kok, 1984]. 

3.4 Redundancy ~easure 

Since we are testing one observation at a time, the test hypothesis will be one dimensional 

[Kok, 1984]. Therefore, we only have to deal with a univariate probability distribution. 

Baarda [1968] has ascertained that in testing the residuals to detect the presence of blunders, 
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Figure 3.2 Probability distribution function of test statistic y under 
Ho and Ht (after Kavouras [1982]). 
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the most sensitive test quantity is the weighted residual. If we test one observation at a time, 

the weighted residual of observation~ is given by 
. • -1 " 

'rh : vi = (Ct v)i (3.11) 

The variance of the weighted residual in equation (3.11) is given by: 

(3.12) 

The test statistic that is used to test the hypothesis above is the standardized residual having a 

standard normal distribution with I!= 0 and o2 = 1. The test statistic is thus 

Vi (3.13) 

If lwil > n(l-a) then Hoi is rejected. If Hti is true, then observation e.i is burdened with a 

blunder. Under Hu, Wi will have a non-central standard normal distribution. The amount of 

shift with respect to the central distribution is given by ...JJ..o. This situation is depicted in 

Figure 3.3. Under the null hypothesis, the expectation of Wi is zero 

E[ wiiHo] = o , 

and under the alternative hypothesis, the expectation of Wi is -../J..o 

E[ WiiHt] = -.JJ..o • 

(3.14) 

(3.15) 

The practical application of Baarda's reliability theory is to determine the magnitude of 

blunders that cannot be detected on a given probability level ao when accepting a level of risk 

Po of committing a Type IT error (accepting that there is no blunder present when there is one 

present). If we assume that all our observations are burdened with blunders, then we are 

interested in the minimum size of blunder in each observation that can still be detected. 

Therefore, having preselected ao and J3o (the selection of these two quantities will be discussed 

later), -.JJ..o can be determined. Figure 3.3 shows how V/..o can be computed using the formula 

shown below: 

-.JJ..o = ~n(O,l),l-0/2 + ~n(O,l),l-~ · (3.16) 
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Figure 3.3 ..J'AQ shows the shift of the standard normal distribution of w 
when H1 is true (after Kok [1984]). 
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The maximum undetectable blunder (or minimum detectable blunder) can be computed using 

equation (3.10). Since we are testing one observation e.i at a time, equation (3.10) can be 

rewritten as: 

(3.17) 

In equation (3.17), the product (C~)(Ce1 )ii is called the redundancy number ri [Forstner, 1979; 

Mackenzie, 1985]. The ri gives an insight into the 'controllability' of the observations. An 

observation is said to be 'fully controlled' if all of the observational errors (random and non

random) show up in the estimated residual [Mackenzie, 1985]. This is obvious from equation 

(3.2) which can be rewritten as 

A 
v =re 

-1 
where r = C~ C e . Rewriting now equation (3.17), we get 

Vi : Ao = V of,~ (Ce\i ri 

Rearranging equation (3.19), we arrive at 

or 

Vi 

Since (Ct)ii = cr~i' we have 

Vi : Voe· = cro· ~ 
1 t-1 -vri 

(3.18) 

(3.19) 

(3.20a) 

(3.20b) 

Voei is called the internal reliability measure [Baarda, 1968]. It represents the maximum 

blunder in an observation undetectable with selected <X() and f3o. We note that if ri = 0, no error 

can be detected by the outlier test (case requiring only the minimal number of observations 

linking the point to the rest of the network). The ri = 1 case represents the other extreme when 

any ..Jt..o multiple of aei could be recognized as an outlier. 
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3. 5 External Reliability 

Another reliability measure that Baarda developed in 1968 is called the external reliability. 

External reliability tells us about the effect of voei on the positions obtained through the least

squares adjustment. External reliability, however, is not used in our method; the effect of V ~ 

on the result is handled in a different way. To make our discussion more complete and to make 

a comparison between our method and Baarda' s method in assessing the effect of V oei , a brief 

discussion on the external reliability is still given below. 

In the least-squares adjustment, the unknown parameters are estimated using equation 

(1.2). If we pre-multiply equation (1.2) by N-1, we get: 

(3.21a) 

or 

(3.21b) 

Supposing that the observation vector tis burdened by blunders Vt, i.e., t· = e + ve and 

substituting t• into equation (3.21b), we get 

~· = (At Pt A)-1 At Pt t• , (3.22) 

where ~· are the shifted unknown parameters affected by blunders ve. Substituting fort· 

into equation (3.22), we get 

~· =(At Pt A)-1 At Pt (t + Vt) 

=(At Pt A)-1 At Pt t +(At Pt A)-1 At Pt Vt 

and denoting by v~ the shift of ~ due to ve yields 

V~ =(At Pt A)-1 At Pt Vt 

(3.23) 

(3.24) 

The effect of the maximum undetectable blunder Voei on the estimated parameters can be 

determined by substituting Voei for ve : 

(3.25) 

Here, VoQi is dependent on the coordinate definition, i.e., it is datum dependent. Baarda 

[1976; 1979] proposed another kind of external reliability measure: 
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(3.26) 

known as the relative external reliability measure. 

As we shall see in the next chapter, the effect of blunders on the network is better handled 

as a virtual deformation and thus depicted by a more appropriate technique than the 'external 

reliability.' 
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4. GEOMETRICAL STRENGTH ANALYSIS 

In this chapter, the use of strain for the strength analysis of geodetic networks is described. 

The basic concepts of strain are given followed by its application to geodetic networks, and 

specifically its use as a tool for analysing the geometrical strength of networks. We also show 

that changes in the network datum have only a second-order effect on strength. 

4 . 1 Concept of Strain 

Strain is a purely geometric approach to the analysis of the deformation of a physical body. 

It is based on the theory of elasticity in mechanics where it is applied to the description of the 

relative deformation of a body with respect to some initial state. Here deformation is taken to 

mean the change in shape or configuration of the body. 

Deformation can be classified as either homogeneous or nonhomogeneous. If the 

deformation is homogeneous, straight or parallel lines will remain as straight or parallel lines 

after deformation. If, on the other hand, the deformation is nonhomogeneous, initially straight 

or parallel lines become curved or nonparallel after deformation. These deformations are 

illustrated in Figure 4.1. 

U ndeformed state Homogeneous strain Nonhomogeneous strain 

Figure 4.1 Examples of homogeneous and nonhomogeneous deformations. 
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Strain induced by homogeneous deformation is called homogeneous strain and is constant 

over all parts of the region of deformation. Nonhomogeneous deformation, on the other hand, 

produces a more complicated nonhomogeneous strain field. 

Deformation and strain can also be classified as fmite or infinitesimal. Finite strain usually 

describes an instantaneous deformation of a continually deforming body with respect to its 

original undeformed state, i.e., cumulative strain. On the other hand, infinitesimal or 

incremental strain describes the instantaneous deformation of the current deformed state with 

respect to some earlier, not necessarily undeformed, instantaneous state. 

Only nonhomogeneous and infinitesimal deformation is needed in strength analysis due to 

the following considerations: 

(a) the deformation of a geodetic network is generally nonhomogeneous, and 

(b) in the strength analysis of a geodetic network, the deformation is much smaller compared 

to the size of the network and we can thus use infinitesimal strain theory. 

The latter allows us to take advantage of the fact that infmitesimal deformation is differentially 

small in order to simplify the mathematical description of strain. 

Mathematically, infinitesimal strain is defined as the rate of change (i.e., gradient or slope) 

of an object's displacement field with respect to position. Given a three-dimensional (3D) 

displacement field u(x,y,z)=(u,v,w)T, as a function of position x=(x,y,z)T, the strain matrix E 

consists of 9 linear displacement gradients given by 

au au au 
ax ay az 

[ eux euy euz ] au(x,y,z) av av av E = grad(u) = ax = ax ay az = evx evy evz , (4.1) 

aw aw aw ewx ewy ewz 
ax ay dz 

where the derivatives are evaluated at the point of concern. These linear strains e correspond to 

the rate of change of displacement in each of the three coordinate components along the three 

coordinate axes. For example, euy is the rate of change or gradient of displacement in the x

direction with respect to position in the x-direction. 
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Note that the mechanical properties of the material are not involved in strain. Strain is 

applicable, whatever the mechanical behaviour of the material. Note also that strains describe 

only the relative displacement of points so that rigid body translations do not affect strain. This 

will be discussed in more detail later in this chapter. 

4. 2 Deformation Primitives 

The strain matrix contains all of the strain information about the displacement field. It is 

not easily interpreted, however. Various scalar parameters can be derived from the strain 

matrix in order to make the interpretation of strain more convenient and illustrative. We call 

these parameters deformation primitives. 

The strain matrix E can be decomposed into its symmetric S and anti-symmetric A parts; 

i.e., 

E = S+A 
' 

(4.2) 

where 
1 1 

eux ¥euy+evx) ¥euz+ewx) 
[ Eux Euy .. , ] 1 1 

S = Evx Evy Evz = ¥euy+evx) evy ¥evz+ewy) (4.3) 

Ewx Ewy Ewz 1 1 
¥euz+ewx) 2<evz+ewy) ewz 

0 
1 1 

0 -COz 
roy ] 

-¥euy-evx) ¥euz-ewx) 
1 1 

A ~ [ ro, 0 -;x = ¥euy-evx) 0 - 2( evz--ewy) (4.4) 

-COy COx 1 1 
0 -2(euz-ewx) 2< evz--ewy) 

The symmetric part is often referred to as the symmetric strain tensor. 

The symmetric strain tensor S describes the expansion and contraction as well as the 

shearing deformation at a point. The strain tensor is usually parameterized in terms of the so

called strain ellipse or ellipsoid in the same manner that error ellipses and ellipsoids are 

computed from covariance matrices, except that no square roots of the semi-axis lengths are 

taken. The principal strains (At. A.2, A.3) are the eigenvalues of the strain tensor and the 
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eigenvectors are the directions of the principal axes. Negative principal strains indicate 

contraction and positive principal strains expansion. 

The anti-symmetric strain matrix A describes the twisting deformation at a point. The 

quantities ro are called average differential rotations and describe the twisting about each of the 

three coordinate axes at a point. Note that in the two-dimensional case there is only a twist COz 

about the local z-axis (i.e., in the x-y horizontal plane). 

More convenient scalar deformation primitives for strength analysis can also be derived 

from the strain matrix (see Schneider [1982]). Dilation cr describes the average extension or 

contraction at a point and is defmed as the average of the principal strains; e.g., for 3D 

(4.5) 

Note that the sum of principal strains is equivalent to the trace of the symmetric strain tensor 

which is equal to the trace of the strain matrix. Total strain A is a similar quantity, defined as 

the geometric mean of the principal strains [Dare, 1983]; i.e., 

(4.6) 

Shear strain can be classified as either pure shear or simple shear. Pure shear 't 

deforms a square into a rectangle so that separation between lines changes. It is defined by 

[Schneider, 1982] 

1 1 (au a v) 'txy = -'tyx = 2 (eux- evy) = 2 ax- ay ' (4.7) 

1 1 (au a w) 'txz = -'tzx = 2 (eux- ewz) = 2 ax - dZ ' (4.8) 

1 1 (av a w) 'tyz = -'tzy = 2 (evz- ewy) = 2 az - ay . (4.9) 

Simple shear u deforms a rectangle into a rhombus so that angles between lines change. It is 

defined as [Schneider, 1982] 
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1 1 (au a v) 
'Uxy = -'Uyx = 2 (euy + evx) = 2 ay + dx ' (4.10) 

1 1 (au a w) 
'Uxz = -'Uzx = 2 (euz + ewx) = 2 az + dx ' (4.11) 

1 1 (av a w) 'Uzz = -'Uzy = 2 (evy +ewz) = 2 dy + dz . (4.12) 

Neither type of shear produces any rotation. These two types of shear are illustrated in Figure 

4.2. Another type of shear, total shear y, is the geometric mean of the components of pure and 

simple shear; i.e., 

'Yxy = ""''txy2 + 'Ux/ , 

'Yxz = ""''txz2 + 'Uxz2 , 

'Yyz = ""''tyz2 + 'Uyz2 

(4.13) 

(4.14) 

(4.15) 

The principal axes of the strain tensor define the directions in which no shear takes place. The 

directions of maximum shear are at 45° to the principal axes of the strain ellipse/ellipsoid. The 

magnitude of shear can also be determined indirectly from the difference of the principal strains 

(lengths of the principal axes of the strain ellipse/ellipsoid) [Schneider, 1982]. 
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Figure 4.2 Pure and simple shear. Solid lines are the undeformed state 
and broken lines are the deformed state. 
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Note that the symmetric strain tensorS can be represented in terms of dilation, pure shear, 

and simple shear. Using the above definitions, we find that 

[ 
CJ+'txy+'txz 'Uxy 'Uxz ] 

S = 'U yx CJ+'txy+'txz 'U yz · 

'U zx 'U zy CJ+'txy+'txz 

(4.16) 

Although the expressions for the various deformation primitives have been developed in 

3D, previous investigations by Craymer et al. [1987] have found that only 2D primitives have 

any practical meaning in the context of geodetic networks. The problem is that geodetic 

networks are inherently only 2D in nature since they lie on the surface of the Earth whose 

variations in height are much smaller than those in the horizontal dimension. When two points 

have very nearly the same height (a common occurrence), the displacement field gradients with 

respect to height can become extremely large or even discontinuous, resulting in artificially 

large and misleading results. 

The deformation can be displayed in a variety of ways (see Thapa [1980], Schneider 

[1982], Dare [1983], and Craymer [1987]). In network strength applications, the only scalar 

primitives needed are differential rotation, dilation, and total shear. These scalar deformation 

primitives are most conveniently displayed using either 3D surfaces or contour plots. Only the 

latter is currently supported in the NET AN software which implements this analysis. 

4. 3 Virtual Deformation of Geodetic Networks 

The concept of strain can be readily applied to the analysis of geodetic networks by 

considering the network to be a structure in itself. That is, stations are held together by the 

interconnecting observations as a building is held together by its beams. In this analogy, 

stations are considered to be the joints and observations are the beams and brackets. Distance 

observations can be thought of as beams of rigid length whose orientation in space is not fixed. 

Angles can be considered as brackets which fix the relative orientation (angles) between beams 

of arbitrary length. Azimuths can be thought of as brackets that fix the orientation of a beam of 
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arbitrary length with respect to the foundation (which acts as the datum definition). We have 

found that using such an analogy helps in the interpretation of the strain parameters. 

In practice, the displacement field over a structure is never known as a continuous function 

of the position of points on the body. The displacements are known only for a discrete set of 

points describing the structure. Only a discrete displacement field can therefore be obtained 

which approximates the actual continuous displacement field. 

For the strain analysis of geodetic networks, the displacements are of a virtual nature. 

They represent changes to the coordinates of the points in the network that may result from a 

variety of changes (perturbations) of the network. Some of these are: 

• changes in observation values, 

• changes in observation weights, 

• deletion or addition of observations, 

• deletion or addition of points, 

• changes in network constraints. 

The virtual displacement field is the set of coordinate changes for all points in the network. 

Only virtual displacements due to changes of observation values are needed in strength 

analysis. 

Given a local displacement field l) around a point, the strain can be easily determined from 

the displacement gradient evaluated at the point. For geodetic networks, we can define the 

"local displacement field" at a point to consist of displacements of either all interconnected 

points (i.e., all points connected by observations to the point of interest) or all stations within a 

specified radius of the point of interest. The virtual displacements (i.e., changes in 

coordinates) of all points within the local displacement field can then be approximated by a 

simple surface such as a plane or low-degree algebraic surface (surface described by a low

degree algebraic polynomial). In our experience, we have found a plane to be the most robust 

approximation of the local displacement field at each point. Higher-order algebraic 

polynomials are not suitable for such applications since they tend to produce spurious gradients 
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when the points are not regularly distributed in space (i.e., they tend to 'fall through' areas 

without stations). 

The gradients of the local displacement field are evaluated separately for each of the 

coordinate components. A separate local displacement field is detennined for each coordinate 

component and the gradients along each of the coordinate axes are evaluated to give the 

components of the strain matrix. Fitting a plane surface to each displacement field results in a 

very simple detennination of the strain; the strain components are just the slopes of the planes 

along each of the coordinate axes. 

For the 2D case, the local displacement field components u and v are approximated by 

u = ao + a1 x + a2 y , 

v = bo + b1 x + b2 y , 

(4.17) 

(4.18) 

where x and y are the coordinate components of the points in the local displacement field, and 

the a's and b's are the coefficients defining the planes. For numerical stability, these 

coordinates are expressed relative to the point of interest. Solving for the coefficients in both 

sets of equations results in 

(4.19) 

(4.20) 

where N=A T A and A=[l x y] with 1 being a column of ones. The strain elements are then 

-
(4.21) 

(4.22) 

Letting N denote the reduced normal equation matrix with ao or bo eliminated, the elements of 

the strain matrix can be expressed together in vector form as 
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[
eux] "'IT _ euy _ N- A u _ Q l) 

e - evx - [ N -1 A Tv] - ' 
evy 

(4.23) 

where the local displacement field vector is ordered as l;T=(u T, vT). 

4. 4 Strength Analysis Using Strain 

The use of strain to analyse the strength of a geodetic network was first proposed by 

Vamcek et al. [1981] and later developed by Dare [1983]. Rather than describing the ability of 

a network to resist the propagation and accumulation of random errors, the strain approach is 

based on the ability to resist the propagation and accumulation of systematic errors or blunders 

(i.e., changes of a non-random nature). 

The basic approach is to perform a series of separate strain analyses by individually 

changing the observation values. Each such perturbation produces a new displacement field 

and thus strain at each point. The most realistic results were obtained when changing each 

observation by its standard deviation [Dare, 1983]. A measure of strength is obtained by 

assuming the network is only as strong as its weakest link. The weakest link corresponds to 

the largest strain parameter at each station from the entire series of strain solutions for all 

observation perturbations. 

With this technique, a virtual displacement field must be generated for every observation in 

the network. Although this may seem like a daunting task, sequential estimation methods can 

be used to advantage here (see Craymer et al. [1989]). The displacement field l) in response to 

a change of an observation can then be given directly in terms of the perturbed observation 

vector ~1, which contains only one non-zero element equal to the standard deviation of the 

observation; i.e., 

5 = -N-1 AT P M = T 6.1 
' 

(4.24) 

where A is the design matrix, P is the weight matrix of the observations and N = AT P A is 

the normal equation matrix. Because only one observation is changed at a time, only one 
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column of the normal equation matrix is needed to evaluate the displacement field if the 

observations are independently weighted. Since the strain elements are linear functions of the 

displacements (see eqn. ( 4.23)), we can write the following system of linear equations for each 

change to an observation: 

e = Ql) = QT~I = R~I. (4.25) 

We are now interested only in the largest deformations at each point as measured by the 

deformation primitives: dilation 0', total shear y, and differential rotation ro (cf. eqns. (4.5), 

(4.13) to (4.15) and (4.4)). New deformation primitives are computed one at a time for a 

change in each observation by its standard deviation. Only the largest primitives (in absolute 

value) at each point are retained as a measure of the weakest link. These maximum values 

(denoted by O'max. "fmax. and COmax) at each point in the network describe the network strength 

and are referred to as strength in scale, strength in shear, and strength in rotation (twist), 

respectively. They can be displayed as contour plots or 3D surface plots. Only the former is 

currently supported in the NET AN program [Craymer et al., 1988; 1989]. 

4. 5 Datum Independence of Strength 

The effect of the coordinate system or datum definition on the computed strain parameters 

is an important issue in the strength analysis of networks. Datum is taken here to mean the 

defmition of the origin and orientation of the coordinate system as well as the scale. The origin 

is usually defined by specifying fixed or heavily weighted coordinates for one or several points 

in the network. The orientation is often defined using weighted observations such as azimuths 

or observed position differences between points. The scale is generally defined using weighted 

distances or, again, position difference observations. Two or more weighted position 

observations can also be used to defme datum orientation and scale. 

Ideally the strength of a network should not depend on the choice of a datum so that 

different people analysing the same network, but using different datums, will get the same 

strength parameters. It is shown here that rotations and scale changes have only a very small 
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and negligible effect on the strength parameters and that translations of the datum origin have 

no effect at all. The effects of translations, rotations, and scale changes on strength parameters 

will be evaluated in terms of strain parameters only, strength being just the largest strain 

parameter at each station resulting from a series of virtual displacement fields. 

It is important to bear in mind that only one datum definition is used in a single strength . 

analysis. The virtual displacement fields generated for the strength analysis are due only to 

changes in the network observations ('blunders') and not to changes in the datum. The 

question is whether a displacement field generated by such a 'blunder' gives the same strain as 

another displacement field also generated by the same 'blunder' but using a different datum. In 

practice, the differences in datums are likely to be very small; say, less than a degree in the 

orientation of the coordinate axes, and a few hundred parts per million in scale. 

Translations of Datum Origin 

Differences in the datum origin between different strain (or strength) solutions completely 

cancel in the determination of the displacement field. That is, the displacement fields for both 

solutions are identical even though they may be based on datums with different origins. 

This can be proven very easily by considering one strain solution where x1 are the original 

coordinates of points in the local displacement field and x2 are the coordinates after the network 

has been perturbed by a single blunder. The local displacement field l) is then 

(4.26) 

Consider now a second strain solution using a different datum origin which is offset from that 

for the first solution by a translation .6.x. For this solution, the original coordinates XI* and 

those X2 * after perturbation by the same blunder can be expressed in terms of the coordinates 

for the frrst solution as 

XI* = XI + dX , 

X2 * = X2 + dX . 

The displacement field l)* for this second solution is then 
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~* * * ~ u = X2 -XI = X2 -XI = u , (4.29) 

which is identical to that for the first solution. Any translation of the datum origin therefore 

cancels in the virtual displacement field. Since the virtual displacement fields are identical in 

both strain solutions, the strain and strength parameters also will be identical. Strain and 

strength parameters are therefore invariant to translations of the datum origin. 

It is important to point out here that strain is also invariant to displacements resulting from 

the translation of all points in a network .. The 2D.displacement fields in this case will have 

constant values for both the u and v components at all stations (i.e., they will be horizontal 

planes). The gradients (strain) of these displacement fields will be zero since a horizontal plane 

will have zero slope. This is the reason that strain is preferred in studies of crustal motion 

where it is not known whether the point fixed in a previous adjustment has moved. 

Rotations of Datum Coordinate Axes 

A change in the orientation of the coordinate axes defining the datum in a strain (or 

strength) analysis results in only a very small and negligible effect on the resulting strain and 

strength parameters. Given the same displacement field 5 for the first strain solution as above 

(generated by a blunder), the strain matrix E is defmed by 

(4.30) 

Consider a second solution where the coordinate system has been rotated by an arbitrary 

rotation matrix R. The new coordinates before and after perturbation by the same blunder are, 

respectively, 

XI* = R X}' 

X2* = R X2. 

The displacement field 5 * for this second solution is then 

li* = X2 * -XI* = R x2 - R xl = R li . 

(4.31) 

(4.32) 

(4.33) 

Note that for a small angle of rotation, the term R li is only a second-order effect. The 

corresponding strain matrix E* is 
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E* = grad(ll*) = R grad(ll) = R E . (4.34) 

If the rotation angle &a. is small, the rotation matrix for a single rotation about, e.g., the z-

axis can be simplified to 

R- [-~a &a. 0] [ 0 
1 0 = I+ -&a. 
0 1 0 

The strain matrix in this new datum is then 

&a. 

0 
0 

g]=l+AR. 

E* = R E "" E + &R E = E + &E . 

(4.35) 

(4.36) 

The effect of a change in datum orientation is therefore &E=&R E. For strength analyses of 

geodetic networks, the changes to this will result in only a very small effect which will be 

negligible in all practical cases. 

A worst case effect can be estimated by considering a solution with very large strains of 

about e=1xlo-4 (100 ppm). If the datum is changed by a rotation of the coordinate system by 

a large amount, say &a=1x1Q-2 radians (over half a degree), the change in the strain matrix 

from the first solution is only &a·e=1x1o-6 (1 ppm). In a strength analysis, the strain elements 

are unlikely to exceed 50 ppm in which case a rotation of over 1° will be required to produce a 

1 ppm effect on strain. In practice, the orientation of the network datum will generally be 

known to much better than 1 degree accuracy. These estimates have been verified using 

numerical tests. 

Changes of Datum Scale 

The effect on strain (and strength) parameters due to changes in datum scale can be 

determined in a similar manner. In this case, the strain solutions before and after a change in 

scale of &s results in the following coordinates 

XI* = (1 + &s) XI , 

X2 * = (1 + &s) X2 • 

The displacement field ll* for this second solution is then 

ll* = x2* -xi* = (1 + &s) ll. 
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(4.38) 

(4.39) 
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and the corresponding strain matrix E* is 

E* = grad(fi*) = (1 +~s) grad(fi) = (1 +&) E = E- ~s E . (4.40) 

Note that ~s l;, and thus ~s E, is again only a second-order effect 

A worst case effect can also be estimated by again considering a solution with very large 

strains of about e=1x1o-4 (100 ppm). If the datum is changed in scale by an extremely large 

amount, say ~s=1x1o-2 (10 000 ppm), the change in the strain matrix from the frrst solution is 

only ~s-e=lx1o-6 (1 ppm). In a strength analysis, the strain elements are unlikely to exceed 

50 ppm in which case a scale change of over 20 000 ppm will be required to produce a 1 ppm 

effect on strain. In practice, the orientation of the network datum will generally be known to 

much better than 10 ppm accuracy which would result in scale effects of only 0.001 ppm for 

this example. These estimates have been verified using numerical tests. 
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5. ROBUSTNESS ANALYSIS 

5. 1 Merging Reliability and Geometrical Strength Analysis 

In the 20 plus years since Baarda [1968] proposed the concept of reliability analysis, the 

technique has found, albeit quite slowly, many proponents and followers. Based on a rigorous 

statistical foundation, the technique offers an alternative tool for analysing networks of various 

kinds, e.g., geodetic, photogrammetric , and those for engineering surveys. The only problem 

with reliability analysis is that the interpretation of its results, particularly those pertaining to 

positions as opposed to observations, is rather difficult. We can quantify the maximum 

expected observation residual that can escape purging as an outlier (blunder) by the standard 

statistical test for outliers. What we cannot learn from the analysis is just how much damage 

(distortion) such an undetected error (possible blunder) can cause to the network. On the other 

hand, there is a global indicator of 'external reliability' (equation (3.26)) provided in Baarda's 

technique, but this is far too coarse a measure to be of much real use. What is really needed is 

a much finer measure, commensurate in its fineness with the distinguishing power of the 

internal reliability, that would pinpoint areas, or even better, points, where one can expect the 

damage to be significant and other points where the damage should be expected to be 

insignificant. The individual indicators of 'external reliability' (equation (3.25)) associated 

with individual points provide a fine enough measure but they are datum dependent and there 

are far too many of them to be practical. 

Some 10 years ago, work on one such measure started at UNB and culminated in 1983 

with Dare's [1983] formulation of 'geometrical strength analysis' (GSA). This technique 

approaches the problem of network deformability or lack of it, i.e., strength, from a purely 

geometrical point of view. The question GSA answers is: How could a geodetic network 

deform in the worst case if the observations were burdened with some undetected non-random 

errors? The answer includes a somewhat unexpected complication - there does not exist one 
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single scalar measure of such a deformation, but three independent measures. In Chapter 4, 

these three measures are called the 'deformation primitives.' They are the pure strain (scale), 

the total shear (shape), and the differential rotation (twist). Every one of these primitives 

shows one independent aspect of network deformation. 

In Dare's formulation of GSA and the later application program NET AN [Craymer et al., 

1988], little attention was paid to possible values of observation errors that could cause the 

virtual deformation analysed by GSA. Values equal to the standard deviations of individual 

observations were used to generate the studied deformation. GSA thus starts where Baarda's 

reliability analysis ends. This became obvious to us at the outset of this contract, and we 

decided to put these two techniques together to obtain a full image of the strength of a geodetic 

network. All that is required to 'marry' the two techniques is to take the maximum errors 

(blunder) undetectable by the standard statistical tests for outliers as estimated by the reliability 

analysis and use them as values that can cause the virtual deformation of the network in GSA. 

The result is that equation ( 4.25), which generates the vector of displacement gradients 

(strains), changes to 

e = ..JA.oRa* , (5.1) 

where 

* O"j a. = :-r- . 
1 -vri (5.2) 

In other words, this equation is created by substituting vei from equation (3.20b) for O"i in 

equation (4.25). The subsequent treatment of e remains the same as in GSA. 

5. 2 Properties of Robustness Analysis 

The resulting analysis, which combines the statistical aspects of Baarda's theory with the 

geometrical aspects of GSA, gives an answer to the proper question that one must ask if 

analysing the strength of a network; namely, What would be the worst possible deformation of 

a network whose observations had been tested for outliers (and detected outliers purged) on a 
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specific confidence level l-ao? The analysis- we call it 'network robustness analysis,' to 

reflect contemporary statistical terminology where robustness means insensitivity to blunders 

- gives a picture of the network's potential worst deformation in terms of the three 

independent deformation primitives. Clearly, a high value of one of the primitives associated 

with a point, or a region, shows a weakness (in resistance to deformation) of the network at 

that point, or region, in the sense of that particular primitive (aspect). Low values, on the other 

hand, are indicative of good resistance to deformation, i.e., indicative of strength. 

For the purpose of designing a network that would meet specific strength criteria, it would 

be necessary to formulate meaningful tolerance limits for admissible weaknesses in the three 

independent primitives: scale, shear, and twist. In other words, for specifications dealing with 

a design of desirably strong networks, it will be necessary to come up with a specific value of 

A.o, which scales the three indicators of strength. (As we see from equation (5.1), --./'Ao is a 

common scale factor to all the results obtained from the robustness analysis.) In Chapter 3, it 

was shown that AO is a function of ao, the significance level selected for testing adjusted 

observations for outliers, and Po. the probability of Type II error in the testing. While a.o is 
selected beforehand, prior to the outlier testing, Po is free but should be specified for the 

purpose of choosing tolerance limits in the robustness specifications. 

Two types of singularities can appear in a network subjected to robustness analysis: a 

geometrical singularity, and a singularity due to no redundancy. The first singularity is caused 

by specific geometrical configurations when the point to be analysed is either connected only to 

one other point, or when it is colinear with all the connected points. This type of singularity 

does not have anything to do with the strength of the network at that point; strength simply 

cannot be (reliably or at all) determined at that point. In the enhanced NET AN (see Chapter 6), 

strength indicators at these singular points are simply not plotted at all. 

The other type of singularity occurs at points attached to the network by observation(s) 

whose redundancy number equals zero, i.e., at points whose position is derived from the 

minimal number of observations with no redundancy (e.g., two intersecting directions). 
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Because such observations are not checked at all by the test for outliers, there is no guarantee 

that such observations are not burdened with huge blunders and the point in question 

represents a point of infinite weakness - zero strength - in the network. The strength 

indicators at these points show very large values. 

Finally, we wish to note here that robustness analysis is datum independent The proof for 

the independence was shown in the previous chapter for the geometrical strength analysis and it 

fully applies here as well. The consequence of this property is that any choice of a minimally 

constrained adjustment model will yield the same results as far as network strength is 

concerned. It must be emphasized, however, that a network adjusted with some weighted 

constraints, e.g., a network for which positions of some points, together with their errors, are 

known a priori, cannot be viewed in the same light. Weighted constraints become an 

indivisible part of the network itself as much as the observations are, and the strength of such a 

network is as much affected by the constraints (and their weights) as it is by the observations 

(and their weights). The fact that the weighted constrains may also supply a datum for the 

adjustment is only incidental. 

5. 3 Comparison of Robustness and Geometrical Strength Analyses 

To demonstrate the difference between the GSA and the robustness analysis, results of 

both analyses applied to the HOACS 3D synthetic network, are shown here. For a full 

discussion of the HOACS 3D network and its robustness, the reader is referred to Chapter 7. 

Figures 5.1 and 5.2 show strength in scale as estimated by both techniques. The results 

are somewhat similar insofar as the extreme values are concerned: the maxima (in absolute 

value) are located at the same points, the northeast and the southwest corners, i.e., the 

weaknesses of the network have been pinpointed by both techniques the same way. On the 

other hand, the details are quite different and so are the magnitudes, as one should expect. 
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Figures 5.3 and 5.4 show strength in shear. Once again, the point of extreme weakness is 

placed at the easternmost part of the network equally by both techniques. In the other aspects, 

the two plots are different 

Figures 5.5 and 5.6 display strength in twist. This time even the locations of extreme 

weaknesses are different; so much so that the point at the westernmost end of the network is at 

once identified as being the geometrically strongest, yet showing the least robustness. 

Interestingly, all the values of robustness in twist are negative, while geometrical strength 

shows both positive and negative values. 

5. 4 Comparison of Robustness and Covariance Analyses 

In Chapter 2, we described what is generally understood by covariance analysis: the 

conglomerate of statistical tests based on the covariance matrices of the observations and of the 

adjusted positions (coordinates). This traditional analysis is based solely on statistical 

considerations and is concerned only with Type I error, random errors and their effect on the 

network. The effect is normally quantified by absolute and relative confidence regions and 

various derived quantities such as relative accuracies, whose purpose is to show just how 

much the network may be distorted (deformed) by the presence of errors presumed random. 

In many countries, including Canada, this kind of analysis is the only one ever applied 

to geodetic networks. It forms the basis for Canadian federal specifications for horizontal 

control networks. The information contained in the covariance matrix of estimated positions is 

the only information about the 'strength of the network.' The effect of possible blunders that 

may escape detection by appropriate statistical tests is not considered and neither is the effect of 

geometrical weaknesses, at least not directly. The test that comes closest to a consideration of a 

blunder (but not its effect) is the one for outlier detection, where the result is assumed to be a 

set of blunderless observations. In brief, the covariance analysis deals with the second 

moments of the PDFs of observations and estimated parameters. 
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Robustness analysis looks at the network from a different point of view, assuming that 

some blunders inevitably escape detection and make their presence felt by deforming the 

network. Hence it uses statistical tools also but only to estimate the magnitudes of potential 

undetectable blunders, i.e., it deals with first-order moments of the PDFs of observations. The 

rest of the analysis is purely deterministic (geometrical) and has no statistical connotation 

whatever. The picture of the network presented by the robustness analysis is what one should 

expect the strength to be: the ability to resist deformation, and should be understood as such; 

the robustness analysis is a strength analysis. 

Clearly, the two analyses present quite different pictures of the analysed network. In 

some parts of the network, the messages from both analyses may be similar; in other parts, 

they may be very different, even contradictory. As an example, let us take the strength 

singularity caused by the lack of redundancy. In this case, the point in question will have zero 

strength while both absolute and relative confidence regions may not show any irregularity at 

all. Quite the contrary; if the single observation has a very low standard deviation, the pertinent 

relative confidence region will be very small, indicating a good network design. 

To show the difference between the information contained in the results of either 

analysis, Figure 5.7 is included here. This figure is a plot of some relative confidence ellipses 

for the HOACS 3D network (for a full discussion of this network, see Chapter 7). This plot 

should be compared with Figures 5.2, 5.4, and 5.6 to see that the information content is quite 

different. One would be hard pressed to find any similarities between Figure 5.7 and any of 

the other three figures. 

In some countries, e.g., Switzerland and Germany, Baarda's reliability analysis is used 

side-by-side with the standard covariance analysis. Robustness analysis should replace 

(complete) the reliability approach as a tool for analysing networks, side-by-side with the 

standard covariance analysis. As such, robustness analysis should make its way into network 

specifications to be used as a tool for network design, classification, and analysis. 
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6. NETAN ENHANCEMENTS 

6.1 Introduction 

In this chapter, we discuss the incorporation of robustness analysis into the original 

NET AN software developed by Craymer et al. [1988; 1989]. Only a general description of the 

changes will be given. More details can be found in the source code. 

The first modification was to replace the use of total strain with dilation to represent 

strength in scale. Total strain is computed from the square root of the sum of squares of the 

principal strains (eigenvalues) of the symmetric strain tensor. This quantity is a geometric 

mean and reflects only the absolute values of the principal strains. Negative changes in scale 

(i.e., contractions) can never be represented by this quantity. Dilation, on the other hand, is 

simply the sum of the principal strains (or the diagonal elements of the symmetric strain tensor) 

which accounts for the sign of the principal strains. The strength in scale based on this 

quantity can therefore represent both extension in scale (positive dilation) as well as contraction 

in scale (negative dilation). 

The selection of the largest strain primitives to represent the strength parameters at each 

point in the network has also been changed. In the former version, the sign of the strain 

primitive was taken into account when searching for the largest value at each station. This 

resulted in large negative values being ignored in favour of small positive values. In the 

current version, this problem has been corrected by selecting the largest absolute value of the 

strain primitives representing the strength at each point. 

The most significant change to NET AN involved the incorporation of robustness analysis. 

This necessitated computing the standard deviations of all residuals within NET AN since the 

GHOST software uses only Pope's approximation. Because these approximate values are 

identical for observations with the same standard deviation, they were of no use for 

determining the internal reliability; the redundancy numbers would (incorrectly) be the same for 
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all observations with the same a priori standard deviation. Although the internal reliability 

results (i.e., the maximum undetectable error for each observation) are not presently included 

in the strength output, primarily because of the volume of information, this can be added in a 

later version if deemed necessary. 

The practical implementation of robustness analysis required us to identify observations. 

which are used to uniquely determine points in the network. For example, two intersecting 

directions to a point, two intersecting distances, or a distance and direction all provide only a 

unique determination of the relative position of a point. There is zero redundancy in these 

cases, and the maximum undetectable error is in theory infinite. Such observations are 

currently identified in the output listing and omitted from the strength computations for the 

purposes of this report. It is recommended, however, that this be changed in the next version 

of NET AN by assigning a specific value representing a very large number (say, 0.33E33) to 

the strength parameters at these stations. These points would then show up as very large peaks 

in the contour plots. Currently, these points are assigned zero strains and omitted from the 

plots. 

A similar problem can also arise when a single observation is used to define the network 

datum. Examples are a single azimuth observation defining the network orientation or a single 

distance defining the network scale. A single position difference observation without any 

azimuths or distances defines both azimuth and scale. Large maximum undetectable errors 

result in these cases, which would overwhelm the strength results. Therefore these 

observations have also been omitted from the strength analysis for the purposes of this report. 

Currently, a tolerance limit of 0.001 for the redundancy number is used to detect such cases. 

Observations with redundancy numbers smaller than this will be identified in the output listing 

and omitted from the strength analysis. We recommend, however, that the software be 

changed to use the actual (large) maximum undetectable errors in the strength computations so 

that these points will show up as very large peaks in the contour plots of the strength 

parameters. 
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A more fundamental problem with the strength (and strain) computation occurs when there 

is only one unique observation tie to a station. For example, a direction and distance both 

along the same line. Such cases represent geometric singularities in the determination of strain 

since it will not be possible to fit a plane surface to just two points and no strain can therefore 

be computed. These strength and robustness parameters at points with such geometric 

singularities are currently assigned zero values. It is recommended instead to flag these points 

using a specific value representing an undefined quantity (say, 0.33E33) in the next version of 

NET AN. 

Geometric ill-conditioning or near-singularities can also arise when the observation ties to a 

station are near collinear. The fitting of a plane to nearly collinear lines will be very ill

conditioned and may result in spuriously large strain elements. An example of this is shown 

for the real network analysed in Chapter 7. Presently NETAN does not identify such 

geometric ill-conditioning. One possibility may be to simply check the determinant of the 

normal equation matrix for the surface fitting solution. Small values would indicate geometric 

ill-conditioning. An alternative and more general approach may be to estimate standard 

deviations for the strain elements and strength parameters and to perform some elementary 

statistical tests for significance. It is strongly recommended to investigate these and other 

methods of identifying and dealing with such geometric ill-conditioning. 

External reliability is not computed since the robustness analysis of the internal reliability 

provides a better and more detailed picture of the strength (deformation) of the network. 

Although this could be incorporated if desired, it would be very time consuming (of the same 

order as the robustness analysis). Nevertheless, external reliability may provide a means of 

providing strength estimates at points where there are geometric singularities or ill

conditioning. 
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6.2 Update to User's Guide 

The incorporation of robustness analysis into the NET AN software resulted in a new 

"Strength Analysis Option" menu for selecting the type of strength analysis to be performed; 

either geometrical strength or robustness analysis (see Figure 6.1). The geometrical strength 

analysis uses the observation standard deviations to. perturb the network as in the original 

version ofNETAN. The robustness analysis perturbs the network using the internal reliability 

measure, i.e., the maximum undetectable error for each observation. This menu is presented 

immediately after selecting the "Strength Analysis" option from the main menu. 

Strength Analysis Options 

0) Robustness analysis 
1) Geometrlca1 strength analysis 

Select option [0]: 

Figure 6.1 "Strength Analysis Options" menu. 

In addition to the prompts already described in Craymer et al. [1988], selection of the 

"robustness analysis" option also presents an additional prompt to enter the non-centrality 

parameter for the internal reliability computations. The following prompt is used to list the 

acceptable non-centrality values together with their associated levels of significance and power 

of the test: 

Non-centrality parameters: 

Significance Power of the Test (%) 
Level (%) 99.0 95.0 90.0 85.0 80.0 
----------- ------------------------------

0. 1 5.60 4.94 4.58 4.34 4. 14 
1 . 0 4.90 4.22 3.86 3.62 3.42 
5.0 4.29 3.61 3.24 3.00 2.80 

Enter non-centrality parameter: 
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Finally, the output listing for the strength analysis has also been augmented with additional 

information pertinent to the robustness analysis. Added to the original strength output listing is 

a list of the omitted observations which uniquely determine points or uniquely define the 

network datum. 
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7. NUMERICAL EXAMPLES 

7 .1 Introduction 

In this chapter, examples of robustness analysis are given for both simulated and real three

dimensional (3D) networks, each with a variety of different types of geodetic observations 

including azimuths, directions, distances, 3D position observations, and 3D position difference 

observations. 

The plots of the robustness results presented here have been generated in two ways. The 

plots of observation ties were created using NET AN. Hard copies were inade from screen 

dumps to a Tektronix 4693D Color Image Printer using a thermal wax printing process. Plots 

of the robustness in rotation, shear, and scale were generated using the CARIS software 

system only for the purposes of this report. A temporary data flle containing the information to 

be plotted was generated by NET AN for input to CARIS. CARIS allowed us to include on the 

contour plots the robustness values at each point in the network. NET AN does not display this 

information on the plot but instead lists station and observation information interactively when 

the user graphically selects a point or observation tie. 

7.2 Simulated Network HOACS 

A simulated network, called HOACS, was obtained from the Canadian Geodetic Survey. 

This test network was originally created by the U.S. National Geodetic Survey for testing their 

own network adjustment software and is also used by the Canadian Geodetic Survey to test 

their 3D adjustment software GHOST. The network consists of a variety of geodetic 

observations including: 

• 11 free stations (none explicitly fixed) 

• 3 azimuth observations with 1 second standard deviations 

• 77 direction observations with 0.7 second standard deviations 
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• 6 distance observations with 2 ppm standard deviations 

• 8 three-dimensional position observations with 10 em standard deviations (i.e., 24 

coordinate observations) 

• 3 three-dimensional position difference observations with 5 mm standard deviations 

(i.e., 9 coordinate difference observations) 

• 3 three-dimensional position difference observations with 1 em standard deviations 

(i.e., 9 coordinate difference observations) 

Figures 7.1 to 7.5 illustrate the locations of the stations and the different types of observations. 

Table 7.2 gives a listing of the input GHOST data file for this network. 

The results from the NET AN robustness analysis are displayed in terms of robustness in 

rotation (local twisting), robustness in shear (local changes in configuration or shape), and 

robustness in scale in Figures 7.6, 7.7, and 7.8, respectively. The NETAN output listing for 

this analysis is given in Table 7 .3. These robustness results are all based on a 0 =5% and 

~0=5% which gives a non-centrality parameter of ..JA.0 =3.61 (the standardized value of 

maximum undetectable error). Different ao and ~0 result in a different ..JA.o which only scales 

the magnitude of the strength parameters by the ratio of the non-centrality parameters. The 

plots are otherwise identical. 

The results indicate that the perimeter of the network is relatively weaker than the middle 

since the largest values for rotation, shear, and scale are all located on the edges of the 

network. No points uniquely determined by a minimum number of observations are present. 

The datum orientation and scale are defined by a multitude of observations. Because of the 

ideal geometry of this network, all strain determinations were well conditioned. Table 7.1 

summarizes the range of values, the largest and smallest (absolute) values in magnitude, and 

the average and standard deviation (dispersion about the mean) for each robustness parameter. 

Note that the averages and standard deviations of these parameters are all of the same 

magnitude as the relative accuracy of the observations. Individual values less than about 

10 ppm may therefore not be very statistically significant (this should be investigated more 
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rigourously by developing and implementing algorithms for determining the standard 

deviations of the strength parameters). 

Table 7.1 Summary of robustness results for the HOACS network. 

Maximum 
Minimum 
Largest absolute 
Smallest absolute 
Mean 
Standard deviation 

Robustness in 
rotation (IJ.rad) 

-1.6 
-9.1 
-9.1 
-1.6 
-5.3 

2.2 

Robustness in 
shear (ppm) 

10.9 
2.1 

10.9 
2.1 
5.1 
2.6 

Robustness in 
scale (ppm) 

10.4 
-7.7 
10.4 
3.4 
2.4 
5.9 

The robustness in rotation results are illustrated in Figure 7.6 and listed in Table 7.3. 

These results describe the ability of the network to resist local changes in orientation (twisting). 

The largest values are obtained for station 1017 ( -9.1 J.IIad due to position observation # 117), 

station 1015 (-8.4 J.lrad due to position observation #117), station 1016 (-8.0 J.IIad due to 

position observation #117), and station NO SUCH MOUNTAIN (-8.0 J.lrad due to direction 

observation #8). All of these weak points are located on the perimeter of the network where 

there are fewer observations tying these stations to the rest of the network. Even the largest of 

these values, however, is well within first-order accuracy standards (20 ppm). The best 

(smallest absolute value) robustness in rotation is obtained for station 1007 (-1.6 J.lrad) which, 

although located at the bottom edge of the network, has many observations tying this point to 

the rest of the network. The average of the differential rotations is only -5.3 j.l.rad and the 

standard deviation (dispersion about the mean) only 2.2 j.l.fad. 

The robustness in shear results are given in Figure 7.7 and Table 7.3. These results 

describe the ability of the network to resist local deformations in configuration or shape. The 

largest values are obtained for station NO SUCH MOUNTAIN (10.9 ppm due to direction 

observation #8) and station 1016 (10.6 ppm due to position observation #123), both of which 

are on the perimeter of the network and have fewer observation ties. These values are also well 
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within first-order accuracy limits. The best (smallest absolute value) robustness in shear is 

obtained for station 1008 (2.1 ppm) which is in the middle of the network and has many 

observation ties connecting it to the rest of the network. The average shear is only 5.1 ppm 

and the standard deviation is 2.6 ppm. 

The robustness in scale results are given in Figure 7.8 and Table 7 .3. These results 

describe the ability of the network to resist local deformations in scale (dilation). The largest 

values are obtained for station 1003 (10.4 ppm due to position difference observation #90), 

station 1002 (9.6 ppm due to position difference observation #90), station NO SUCH 

MOUNTAIN (9.2 ppm due to position observation #114), and station 1016 (-7.7 ppm due to 

position difference observation #105). All of these stations are on the perimeter of the network 

and have fewer observation ties to the rest of the network. These values are again well within 

first-order accuracy limits. The best (smallest absolute value) robustness in scale is obtained 

for station 1001 (3.4 ppm) which, although at the edge of the network, has many observation 

ties (especially 3D position differences) to the rest of the network. The average dilation is only 

2.4 ppm and the standard deviation is 5.9 ppm. 

Other than the number of observations to and from the points of interest, there does not 

seem to be much indication of the cause of the weaknesses. Although different observations 

seem to affect different robustness parameters in some cases, there are other cases where these 

trends breaks down. We therefore have to rely on an analytical approach to learn about the 

weaknesses. More experience and experiments will be required to gain a better understanding 

of how the robustness parameters are affected by the different types of observations. 
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Figure 7.1 Distance observations for simulated 3D HOACS network. 
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Figure 7.2 Direction observations for simulated 3D HOACS network. 
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Figure 7.3 Azimuth observations for simulated 3D HOACS network. 
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Figure 7.4 3D position observations for simulated 3D HOACS network. 
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Figure 7.5 3D position difference observations for simulated 3D HOACS network. 
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Figure 7.6 Robustness in rotation for simulated 3D HOACS network. 
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Figure 7.7 Robustness in shear for simulated 3D HOACS network. 
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Figure 7.8 Robustness in scale for simulated 3D HOACS network. 
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Table 7.2 GHOST input data file for simulated 3D HOACS network. 

HOACS TERRESTRIAL TEST DATA 
1 3 1 1 111 

* 
*STATION INFORMATION SECTION 

* 
10 
4300NO SUCH MOUNTAIN 
43001001 STATION 
43001002 STATION 
43001003 STATION 
43001004 STATION 
43001005 STATION 
43001006 STATION 
43001007 STATION 
43001008 STATION 
43001009 STATION 
43001010 STATION 
43001011 STATION 
43001012 STATION 
43001013 STATION 
43001014 STATION 
43001015 STATION 
43001016 STATION 
43001017 STATION 
43001018 STATION 

* 
*ASTRONOMIC DATA RECORDS 

* 
7 1001 STATION 
7 1002 STATION 
7 1003 STATION 
7 1004 STATION 
7 1005 STATION 
7 1006 STATION 
7 1007 STATION 
7 1008 STATION 
7 1009 STATION 
7 1010 STATION 
7 1011 STATION 
7 1012 STATION 
7 1013 STATION 
7 1014 STATION 
7 1015 STATION 
7 1016 STATION 
7 1017 STATION 

* 
* GEOIDAL DATA RECORDS 
* 

9300NO SUCH MOUNTAIN 
93001001 STATION 
93001002 STATION 

7. Numerical Examples 

30 5 o.ooooow 89 55 0.00000 3500.000 
30 0 o.ooooow 90 0 0.00000 1955.800 
30 1 o 54.03925w 89 58 58.98067 2164.320 
30 25 40.03862w 90 o 54.04869 1 996.800 
30 1 46.97851w 90 14 9.01720 2015.190 
30 11 47.98894w 90 14 58.98289 1914.260 
30 23 40.99617w 90 15 57.95561 2203.180 
30 o 1.94870w 90 30 52.04613 1937.020 
30 11 35.94621 w 90 30 33.01558 2075.930 
30 24 16.94934W 90 30 56.02636 2042.170 
30 o 57.03795w 90 43 .04138 1987.610 
30 12 20.95802w 90 43 35.04939 1954.820 
30 22 1.99561 w 90 45 25.95232 1874.160 
29 59 43.97387w 90 59 10.05335 1819.660 
30 13 29.02889w 90 59 34.0056 7 2006.1 80 
30 23 53.99599w 90 58 39.97635 1950.240 
29 58 51.95506w 91 15 3.97056 2150.690 
30 12 46.02388W 91 15 1.05684 2071.250 
30 25 15.02776w 91 13 42.95407 1990.500 

30 1.08 w 90 1.94000 
30 1 0 56.48 w 89 59 0 1.1 0000 
30 25 37.30 w 90 00 54.33000 
30 0 1 45.69 w 90 14 15.54000 
30 11 49.69 w 90 15 0 1.50000 
30 23 38.59 w 90 16 02.12000 
30 3.51 w 90 30 49. 12000 
30 11 36.81 w 90 30 36.41000 
30 24 16.69 w 90 30 59.39000 
30 55.32 w 90 43 01.90000 
30 12 30.51 w 90 43 37.08000 
30 21 49.15 w 90 45 23.98000 
29 59 45.81 w 90 59 14.06000 
30 13 29.75 w 90 59 33.45000 
30 23 53.10 w 90 58 47.00000 
29 58 50.08 w 91 15 6.39000 
30 12 45.48 w 91 15 2.23000 

0 0 .000 1 0 0 0 .000 1 0 0.000 
0 0 .000 1 0 0 0 .000 1 0 10.200 
0 0 .000 1 0 0 0 .000 1 0 1 0.1 00 
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93001003 STATION 0 0 .00010 0 0 .00010 10.000 
93001004STATION 0 0 .00010 0 0 .00010 9.600 
93001005 STATION 0 0 .00010 0 0 .00010 9.600 
93001006 STATION 0 0 .00010 0 0 .00010 9.600 
93001007 STATION 0 0 .00010 0 0 .00010 9.600 
93001006 STATION 0 0 .00010 0 0 .00010 9.500 
93001009 STATION 0 0 .00010 0 0 .00010 9.400 
93001010 STATION 0 0 .00010 0 0 .00010 9.600 
93001011 STATION 0 0 .00010 0 0 .00010 9.200 
93001012 STATION 0 0 .00010 0 0 .00010 9.400 
93001013 STATION 0 0 .00010 0 0 .00010 9.300 
93001014 STATION 0 0 .00010 0 0 .00010 9.100 
93001015 STATION 0 0 .00010 0 0 .00010 9.000 
93001016 STATION 0 0 .00010 0 0 .00010 6.900 
93001017 STATION 0 0 .00010 0 0 .00010 9.100 
93001016 STATION 0 0 .00010 0 0 .00010 9.000 

* 
* AUXILIARY PARAMETER DECLARATIONS 

* 
94disDISSCAL SCAL 
943dcDOPXF ROTX ROTY ROTZ SCAL 
943ddGPSXF ROTXROTYROTZSCAL 
* 
* DIRECTION OBSERVATIONS 

* 
10 
512 0.7 
12 1001 STATION 1002 STATION 0 0 0.00000 .70000 
12 1001 STATION NO SUCH MOUNTAIN 36 22 19.00000 .70000 
12 1001 STATION 1004 STATION 273 39 55.61000 .70000 
12 1001 STATION 1005 STATION 307 35 44.15000 .70000 
12 1002 STATION 1001 STATION 0 0 0.00000 .70000 
12 1002 STATION 1005 STAT ION 69 7 46.95000 .70000 
12 1002 STATION I 003 STATION 168 56 24.90000 .70000 
12 1002 STATION NO SUCH MOUNTAIN 324 56 2.00000 .70000 
12 1003 STATION 1002 STATION 0 0 0.00000 .70000 
12 1003 STATION 1005 STATION 47 52 52.20000 .70000 
12 1003 STATION 1006 STATION 87 51 43.81000 .70000 
12 1004 STATION 1001 STATION 0 0 0.00000 .70000 
12 1004 STATION 1007 STAT ION 165 1 48.21000 .70000 
12 1004STATION 1005 STATION 257 41 6.38000 .70000 
12 1004 STATION NO SUCH MOUNTAIN 340 48 40.00000 .70000 
12 I 005 STATION lOOt STATION 0 0 0.00000 .70000 
12 I 005 STATION 1004 STATION 43 45 22.67000 .70000 
12 1005 STATION 1007 STATION 97 32 3.44000 .70000 
12 1005 STATION 1008 STATION 137 6 52.3 I 000 .70000 
12 1005 STATION 1009 STATION I 80 0 39.45000 .70000 
12 1005 STATION 1006 STATION 223 47 36. I 5000 .70000 
12 1005 STATION 1003 STATION 269 I 3 30.41 000 .70000 
12 1005 STATION I 002 STATION 321 32 4. 11 000 .70000 
12 I 006 STATION 1003 STATION 0 0 0.00000 .70000 
12 1006 STATION I 005 STATION 94 35 13.50000 .70000 
12 1006 STATION 1009 STATION I 91 24 35.41000 .70000 
12 I 007 STAT ION 1004 STATION 0 0 0.00000 .70000 
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12 1007 STATION 1010 STATION 19 1 56 23.05000 .70000 
12 1007 STATION 1011 STATION 235 3 54.6 7000 .70000 
12 1007 STATION 1008 STATION 278 17 28.81000 .70000 
12 1007 STATION 1005 STATION 326 26 1 .39000 .70000 
12 1008 STATION 1005 STATION 0 0 0.00000 .70000 
12 1008 STATION 1007 STATION 921637.74000 .70000 
12 1008 STATION 1011 STATION 184 45 23.59000 .70000 
12 1008 STATION 1009 STATION 269 24 40.25000 .70000 
12 1009 STATION 1005 STATION 0 0 0.00000 .70000 
12 1009 STATION 1008 STATION 46 30 55.20000 .70000 
12 1009 STATION 1011 STATION 90 40 53.58000 .70000 
12 1009 STATION 1012 STATION 127 56 .10000 .70000 
12 1009 STATION 1006 STAT ION 320 36 12.55000 .70000 
12 1010 STATION 1007 STATION 0 0 0.00000 .70000 
12 1010 STATION 1013 STATION 170 12 55.49000 .70000 
12 1010 STATION 1011 STATION 262 32 42.46000 .70000 
12 1011 STATION 1007 STATION 0 0 0.00000 .70000 
12 1011 STATION 1010 STATION 39 25 12.88000 .70000 
12 1011 STATION 1013 STATION 89 4 44.90000 .70000 
12 1011 STATION 1014 STATION 136 42 14.89000 .70000 
12 1011 STATION 1015 STATION 173 27 34.71000 .70000 
12 1011 STATION 1012 STATION 212 33 47.39000 .70000 
12 1011 STATION 1009 STATION 264 31 31.23000 .70000 
12 1011 STATION 1008 STATION 315 42 19.42000 .70000 
12 1012 STATION 1009 STATION 0 0 0.00000 .70000 
12 1012 STATION 1011 STATION 90 47 7.63000 .70000 
12 1012 STATION 1015 STATION 199 30 15.18000 .70000 
12 1013 STATION 1010 STATION 0 0 0.00000 .70000 
12 1013 STATION 1016 STATION 1 a 1 29 32.oeooo .70000 
12 1013 STATION 1017 STATION 228 28 33.78000 .70000 
12 1013 STATION 1014 STATION 273 33 42.8 1 000 .70000 
12 1013 STATION 1011 STATION 321 59 17.07000 .70000 
12 1014 STATION 1011 STATION 0 0 0.00000 .70000 
12 1014 STATION 1013 STATION 83 56 57.60000 .70000 
12 1014 STATION 1017 STATION 172 24 26.66000 .70000 
12 1014 STATION 1015 STATION 269 40 59.47000 .70000 
12 1015 STATION 1011 STATION 0 0 0.00000 .70000 
12 1015 STATION 1014 STATION 52 55 42.06000 .70000 
12 1015 STATION 1017 STATION 100 35 .28000 .70000 
12 1015 STATION· 1018 STATION 1 44 36 30.28000 .70000 
12 1015 STATION 1012 STATION 327 49 16.76000 .70000 
12 1016 STATION 1013 STATION 0 0 0.00000 .70000 
12 1016 STATION 1017 STATION 273 49 41.47000 .70000 
12 1017 STATION 1013 STATION 0 0 0.00000 .70000 
12 1017 STATION 1016 STATION 46 50 42.45000 .70000 
12 1017 STATION 1018 STATION 23 1 49 22.16000 .70000 
12 1017 STATION 1015 STATION 278 28 27.94000 .70000 
12 1017 STATION 1014 STATION 313 32 37.58000 .70000 
12 1018 STATION 1 0 I 5 STAT I 0 N 0 0 0.00000 .70000 
12 1018 STATION 1017 STATION 89 19 25.16000 .70000 

* 
*DISTANCE OBSERVATIONS 
* 
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52V 0.0 2.0 .0 .0 DISSCAL 
2V 1003 STATION 1002 STATION 27 464.39500 5.492879 
2V 1006 STATION 1005 STATION 22020.80400 4.404168 
2V 1009 STATION 1008 STATION 23448.91400 4.689782 
2V 1012 STATION 1011 STATION 18140.43400 3.628086 
2V 1015 STATION 1014 STATION 1 9305.54400 3.861108 

2V 1018 STATION 1017 STATION 23165.241 00 4.633048 

* 
-* AtiMUTH OBSERVATIONS 
* 
53B 1.0 
3B 1005 STATION 1004 STATION 175 51 33.33000 1.00000 
3B 1010 STATION 1014STATION 31 1 5 55.59000 1.00000 
3B 1015 STATION 1014STATION 184 17 23. 14000 1.00000 

* 
*DOPPLER POSITION OBSERVATIONS 

* 
953dcDOPPLER POSITION OBSERVATIONS 
92 1001 STATION -55.64-5530068.70 3171200.3400 
92 1003 STATION -1497.17 -5506232.99 321221 1.510 
92 1005 STATION -24110.43 -5519043.83 3190045.920 
92 1009 STATION -49612.74 -5507343.03 3210029.190 
92 1010 STATION -69214.24-5528784.75 3172735.750 
92 1014 STATION -95655.96 -5516780.82 3192779.730 
92 1016 STAT ION -120827.22 -5529963.78 3169482.250 
92 1018 STATION -118126.76-5505349.97 3211543.350 
943dcDOPXF 
97POVDIAGONAL 
98 0.0 1 0.0 1 0.0 1 
98 0.0 1 0.0 1 0.0 1 
98 0.01 
98 0.01 
98 0.01 
98 0.01 
98 0.01 
98 0.01 

* 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

* VLBI POSITION DIFFERENCE OBSERVATIONS 

* 
913ddVLBI POSITION DIFFERENCE OBSERVATIONS 
92 1001 STATION 0.00 -5530065.28 3171180.470 
92 1009 STATION -49557.16 -5507340.00 3210009.750 
92 1010 STATION -69158.69 -5528781.74 3 1 727 16.390 
92 1018 STATION -118070.97 -5505347.69 32 I 1524. 130 
97PDVUPPER 
98 0.25E-4 0.20E-5 0.0 
98 0.0 -0.40E-5 0.0 
98 0.0 0.0 0.0 
98 0.16E-4 0.0 -0.12E-5 
98 -0.16E-5 0.0 0.0 
98 0.0 -0.40E-5 
98 0.90E-5 0.0 0.0 
98 0.0 0.15E-5 0.15E-5 
98 0.0 
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98 0.90E-5 0.0 0.0 
98 0. 15E-5 0.0 0.0 
98 0.16E-4 -0.20E-5 -0.40E-5 
98 0.0 0.0 
98 0.25E-4 0.0 0.0 
98 0.0 
98 0.25E-4 0.0 0.0 
98 0.25E-4 0.25E-5 
98 0.25E-4 

* 
* GPS POSITION DIFFERENCE OBSERVATIONS 

* 
9 13ddGPS POSITION DIFFERENCE OBSERVATIONS 
92 1010 STATION -69251.20 -5528758.12 3172774.76 
92 1013 STATION -95267.38 -5529349.94 3170743.46 
92 1014STATION -95692.56 -5516753.96 31928 18.800 
92 1016 STATION -120864.08 -5529936.89 3169521.400 
943ddGPSXF 
97PDVDIAGONAL 
98 l.OE-4 1.E-4 2.25E-4 
98 1.0E-4 0.64E-4 1.0E-4 
98 l.OE-4 1.0E-4 l.OE-4 
99 
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Table 7.3 NETAN listing of reliability analysis results for simulated 3D HOACS network. 

NET AN: Network Analysis (Version 21 Nov 90) 
Network Strength Analysis 

Piece-Wise Linear Approximation-- Connected Stations 

Input network date me: lJ 
(NETAN) TEST HOACS GHOST TERRESTRIAL DATA 

Station Neme 
Let (OMS), Long (DMS), Ht (m) 

Strength in Rotation: Let/Lon, Let/Ht, Lon/Ht (red) 
Obs • end Type 

Strength in Sheer: Let!Lon, Let!Ht, Lon/Ht (strain) 
Obs • end Type 

Strength In Scale: (strain) 
Obs • end Type 

NO SUCH M MOUNTAIN 
30 4 59.849800 -89 54 59.736034 3500.000000 

-0.80265814 t 2E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 · 
8 dir o o 

0. I 0915 13284E -04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
8 dir o o 

0. 9239484003E -05 
114 pos 

2 tOOl STAT TION 
29 59 59.85 t 957 -89 59 59.73430 t t 966.254360 

-0.2388609726£-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
111 pos o o 

0.311255 t 925E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 
114 pos o o 

0.3395127742E-05 
90 dpos 

3 1002 STAT TION 
30 I 0 53.849676 -89 58 58.732088 2174.420000 

-0.5816950042E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 
a dir o o 

0. 7 489362239E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
8 dir o o 

0. 9625842198E -05 
90 dpos 

4 I 003 STAT TION 
30 25 39.85 1202 -90 0 53.729260 2006.840615 

-0.5517790657E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 
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1 1 1 pos 0 0 
0.432096961 OE-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

90 dpos 0 0 
0. 1 044322603E -04 

90 dpos 

5 1004STAT TION 
30 1 46.853908 -90 14 8.733804 2024.990000 

-0.41 93263814E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

111 pos 0 0 
0.50466 79535E -05 0.0000000000[ +00 0.0000000000[ +00 

8 dir 0 0 
0.440928520 1 E -05 

90 dpos 

6 1005STAT TION 
30 11 47.852079 -90 14 58.732385 1 924.276268 

-0.4299814151 E -05 O.OOOOOOOOOOE +00 0.0000000000[ +00 

111 pos 0 0 
0.2644233588[ -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

111 pos 0 0 
0.507576437 4E -05 

90 dpos 

7 1006STAT TION 
30 23 40.852787 -90 15 57.734057 2212.980000 

-0.49 11522032[ -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO · 

111 pos 0 0 
0.56892897 49E -05 O.OOOOOOOOOOE +00 0.0000000000[ +00 

90 dpos 0 0 
0.69 13426577[ -05 

90 dpos 

8 1007STAT TION 
30 0 1.854932 -90 30 51.730790 1 946.620000 

-0.1625908368[-05 0.0000000000[ +00 0.0000000000[ +00 
44 dir 0 0 

0.2272408046[ -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO 
31 dir 0 0 

-0.63 1400 1371 E -05 
114 pos 

9 1008STAT TION 
30 11 35.852757 -90 30 32.729836 2085.430000 

-0.2329687269[-05 O.OOOOOOOOOOE+OO 0.0000000000[ +00 
44 dir 0 0 

0.2080895605[ -05 0.0000000000[ +00 O.OOOOOOOOOOE+OO 
96 dpos 0 0 

-0.6123746780[-05 
114 pos 

10 1009STAT TION 
30 24 16.851410 -90 30 55.730357 2051.734562 

-0.43191 15962E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 
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111 pos 0 0 

0.3635786501 E-05 0.0 OOOOOOOOOE +00 O.OOOOOOOOOOE +00 

114 pos 0 0 

0.4993779365E -05 

111 pos 

1 1 1010 STAT TION 

30 0 56.853268 -90 42 59.731058 1997.382402 

-0.4370081402E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

117 pos 0 0 

0.7321804042E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

123 pos 0 0 

0.558501 0897E-05 

123 pos 

12 1011 STAT TION 
30 12 20.852495 -90 43 34.725644 1964.020000 

-0.4090951484E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO 

117 pos 0 0 
0.2837360333E -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

123 pos 0 0 

0.43952711 48E -05 

111 pos 

13 1012 STAT TION 
30 22 1.852968 -90 45 25.723984 1883.560000 

-0.34857351 96E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

117 pos 0 0 
0.6204770709E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

111 pos 0 0 
0.5532237335E-05 

111 pos 

14 1013 STAT TION 

29 59 43.854453 -90 59 9.729649 1829.087 482 
-0.7154654314E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

117 pos 0 0 
0.7849933001 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

123 pos 0 0 
0.5357576345E -05 

123 pos 

15 1014 STAT TION 
30 13 28.853227 -90 59 33.729039 20 15.332708 

-0.7117499833E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
117 pos 0 0 

0.3786634816E-05 0.0 OOOOOOOOOE +00 O.OOOOOOOOOOE +00 
123 pos 0 0 

-0.3498957363E -05 

1 os dpos 

16 1015 STAT TION 

30 23 53.852800 -90 58 39.727600 1 959.240000 

-0.8411430 126E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
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117 pos 0 0 
0.3517979138£-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

114 pos 0 0 
0.3743625715£-05 

90 dpos 

17 1016 STAT TION 
29 58 51.854512 -91 15 3.728499 2159.6 75769 

-0.803207 4231 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

117 pos 0 0 
0.1062148367£-04 O.OOOOOOOOOOE +00 0.0000000000£ +00 

123 pos 0 0 
-0.7689695578£-05 

105 dpos 

18 1017 STAT TION 
30 12 45.855024 -91 15 0.725979 2080.350000 

-0.9132876044£-05 0.0000000000£ +00 O.OOOOOOOOOOE +00 
117 pos 0 0 

0.4900893724£-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 
126 pos 0 0 

-0.5868983027£-05 
126 pos 

19 1018 STAT TION 
30 25 14.852635 -91 13 42.726788 1 999.590054 

-0.6260417822£-'05 0.0000000000£ +00 O.OOOOOOOOOOE +00 
117 pos 0 0 

0.3538720212£-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
126 pos 0 0 

0.3535383204£-05 
90 dpos 
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7. 3 Real 2D Network 

A real 2D network was obtained from the Canadian Geodetic Survey for an area in Quebec 

along the south shore of the St. Lawrence River. The network consists of a total of 58 

stations. Only one point is fixed and a single azimuth observation is used to control the datum 

orientation. The network consists of the following observations: 

• 125 distance observations with standard deviations ranging from 1 em+ 2 ppm to 6 em 

+ 6 ppm (most around 3 em + 3 ppm) 

• 307 direction observations with standard deviations ranging from 0.6 to 2.0 seconds 

(most around 0.7 seconds) 

• 1 azimuth observation with a standard deviation of 0.8 seconds. 

Figures 7.9 to 7.11 illustrate the locations of the stations and the different types of 

observations. Table 7.5 gives a listing of the input GHOST data file for this network. 

The results from the NET AN robustness analysis are displayed in terms of robustness in 

rotation (local twisting), robustness in shear (local changes in configuration or shape), and 

robustness in scale in Figures 7.12, 7.13, and 7.14, respectively. The NET AN output listing 

for this analysis is given in Table 7 .6. These robustness results are all based on a.o=5% and 

Po=5% which gives a non-centrality parameter of ..J/...0 =3.61 (the standardized value of 

maximum undetectable error). Different a 0 and Po result in a different ..JA.o which only scales 

the magnitude of the strength parameters by the ratio of the non-centrality parameters. The 

plots are otherwise identical. 

The results indicate that the weakest point in the network is at station HEMMING where 

the differential rotation is 33 11rad, shear is 39 ppm, and dilation is 21 ppm. These relatively 

large deformations, however, are actually a result of a weakness in the determination of the 

strain primitives rather than a weakness in the network itself. The points connected to this 

station are nearly collinear which makes the fitting of a plane surface to these points ill

conditioned for the determination of the strain elements. This problem with the determination 

of strain has already been pointed out by Craymer et al. [1989]. It may be possible to detect 
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such ill-conditioning by computing the determinant of the matrix of normal equations for the 

determination of the strain elements. On the other hand, it would be more useful in general to 

compute standard deviations for the strain primitives and test them for statistical significance. 

Station HEMMING will therefore not be considered further in the following discussion of the 

results. 

A number of points were found to be uniquely determined by a minimum number of 

observations. These observations were omitted from the robustness analysis since their 

redundancy numbers are zero resulting in infinitely large maximum undetectable errors. The 

robustness parameters for these points have been set to zero in the output listing. As discussed 

in the previous chapter, it is recommended to include these observations and points in the next 

version of NET AN by setting their maximum undetectable errors to a very large number (say, 

0.33E33) so that they will show up as very large weaknesses in the contour plots of the 

robustness parameters. 

The single azimuth controlling the datum orientation was also omitted from the analysis 

since its redundancy number was very small. This would give a very large maximum 

undetectable error that would overwhelm the robustness analysis. As discussed in the previous 

chapter, we also recommend that in a future version of NET AN these observations be included 

in the robustness analysis so that the weakness in datum definition would be evident as large 

robustness parameters in the contour plots. 

The results indicate that the north part of the network is relatively weaker than the south 

part. Table 7.4 summarizes the range of values, the largest and smallest (absolute) values in 

magnitude, and the average and standard deviation for each robustness parameter. Note again 

that the average and standard deviations of these parameters are all of the same magnitude as 

the relative accuracy of the observations. Values less than about 10 ppm are therefore probably 

not very statistically significant. The only obviously common feature to most of these weak 

points is the lack of direction observations emanating from them. Although it seems reasonable 
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that this may have a detrimental effect on differential rotation and shear, it is not clear why this 

would also cause relatively large dilations. 

Table 7.4 Summary of robustness results for the real network. 

Maximum 
Minimum 
Largest absolute 
Smallest absolute 

Robustness in 
rotation {1J.I1id) 

16.2 
-19.8 
-19.8 

1.8 

Robustness in 
shear (ppm) 

38.7 
0.6 

38.7 
0.6 

Robustness in 
scale {m!m) 

22.5 
-4.2 
22.5 

0.7 

The robustness in rotation results are illustrated in Figure 7.12 and listed in Table 7.6. 

These results describe the ability of the network to resist local changes in orientation (twisting). 

The largest values are obtained for station STRATFORD (-19.8 IJ.fad due to direction 

observation #228), station KINGSEY FALLS (16.2 J..Lrad due to distance observation #412), 

station ADSTOCK (-12.3 IJ.fad due to direction observation #151), station ARTHABASKA 

(11.9 1J.I1id due to distance observation #412), and station ST ZEPHIRIN (-11.1 J..Lrad due to 

distance obsexvation #401). All these stations have relatively fewer obsexvation ties connecting 

them to the rest of the network (generally only a few directions and distances at most). Note 

that these values are within flrst-order accuracy standards, however. The best (smallest 

absolute value) robustness in rotation is obtained for station ST ARMAND (1.8 J.lrad) which 

has many more observation ties (14 directions and 2 distances) than the weak points. 

The robustness in shear results are given in Figure 7.13 and Table 7.6. These results 

describe the ability of the network to resist local deformations in configuration or shape. The 

largest values are obtained for station ST ZEPHIRIN (21.4 ppm due to distance obsexvation 

#40 1 ), station STRATFORD ( 17.8 ppm due to direction obsexvation #228), station 

ARTHABASKA (15.9 ppm due to distance obsexvation #412), station VIANNEY (15.0 ppm 

due to distance obsexvation #383), station KINGSEY FALLS (14.0 ppm due to distance 

obsexvation #412), and station GILBERT (13.5 ppm due to position obsexvation #123). All of 
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these points have relatively fewer observation ties connecting them to the rest of the network. 

With the exception of ST ZEPHIRIN, these values are also within first-order accuracy limits. 

The best (smallest absolute value) robustness in shear is obtained for station HEREFORD (0.6 

ppm) which has many more observation ties (16 directions and 4 distances) than the weak 

points. 

The robustness in scale results are given in Figure 7.14 and Table 7.6. These results 

describe the ability of the network to resist local deformations in scale (dilation). The largest 

values are obtained for station VIANNEY (22.5 ppm due to distance observation #383), station 

ARTIIABASKA (18.0 ppm due to distance observation #412), station ST ZEPHIRIN (17.0 

ppm due to distance observation #401), station STRATFORD (15.4 ppm due to distance 

observation #422), station ADSTOCK (12.9 ppm due to distance observation #395), and 

station KINGSEY FALLS (11.6 ppm due to direction observation #244). All of these points 

have relatively fewer observation ties connecting them to the rest of the network. With the 

exception of VIANNEY, these values are also within first-order accuracy limits. The best 

(smallest absolute value) robustness in scale is obtained for station SHERBROOKE (0.7 ppm) 

which has many more observation ties (18 directions and 9 distances) than the weak points. 
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Figure 7.9 Distance observations for real2D network. 
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Figure 7.10 Direction observations for real 20 network. 
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Figure 7.11 Azimuth observation for real 2D network. 
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Figure 7.12 Robustness in rotation for real 2D network. 

7. Numerical Examples 83 



Robustness Analysis Final Report 

'l 
N 

Lll 

\ 

(]J :~ ,.... 

"' "' Cl 
U1 ,.... "' 

"' 
CJl 

a. <0 
'l 

N 
0 

CJl w 
<D " N 

0 

I ~ \ ~~. a. m 

" "' <') 

"' "' 0 

" " OJ 

u.~ 
,.... 

"' 0 "' -:-m 
"' tO "' ... '~ 

tO en 0 <') 

N 

" 
"' "' 
(\J a. 

co 
c;, 
<0 

0) 

"' "' 
"' 

Figure 7.13 Robustness in shear for real 2D network. 
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Figure 7.14 Robustness in scale for real 2D network. 
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Table 7.5 GHOST input data file for real 2D network. 

Real 2D Network, Geodetic Survey of Canada. Sigma records commented out. 
1 3 1 1 111 

4 09206 ORFORD N45 1843.080825W 72 1430.207541 851.9000 
10 
5 08200 ST ARMAND N45 246.875283W 72 4420.977882 711.7200 
5 09201 VAMASKA N45 2645.375984W 72 52 8.649835 421.7800 
4 652401 FARNHAM N45 1743.910275W 72 5719.624866 77.9800 
4 652402 BROMONT N45 1721.079434W 72 3816. 142978 552.8000 
4 69K4238 DAIGLE QLF N45 29 9.969288W 72 3138.846985 276.3000 
5 712051 ST MAJORIQUE 1 QLF N45 5458.877438W 72 38 1.278776 82.9280 
4 712056 WICKHAM 1 QLF N45 46 7 .568544W 72 3621.113477 1 06.8230 
4 08207 OWLS HEAD N45 345.156706W 72 1752.895781 749.9000 
5 09202 DUSABLE 1 274 N46 1237.122695W 73 1159.764446 135.9410 
5 09204 CARMEL 1 173 N46 2958.646202W 72 3739.182006 188.641 0 
5 09205 HAM N45 4728.148868W 71 38 .735368 711.7000 
4 09207 HEREFORD N45 457 .209129W 71 36 3.594684 872.1000 
4SBF 09208 MEGANTIC N45 2651.257597W 71 713.0032151085.7875 
5 09209 THETFORD N46 848.515359W 71 20 11.406 728 694.0700 
5 09210 Ll NIERE N45 4945.092500W 70 2220.286423 776.0900 
5 09216 ARTHABASKA 1 233 N46 314.11 0312W 71 5316.763943 350.2910 
5 14200 STRATFORD 2 233 N45 4739.752238W 71 1520.012822 436.9000 
5 65K0335 CROIX N45 3346.481649W 70 5222.732410 490.8600 
5 66KP 115 CARIBOU E-15 1 164 N46 0 15.967744W 71 2410.058178 556.7000 
4 68K2071 SHERBROOKE N45 2046.261393W 71 5533.821339 440.3000 
4 68K2073 BEAUVOIR 164 N45 2717.1 04197W 71 5353.741152 307.9000 
5 692009 HONORE N45 5653. 160925W 70 5016.132369 47 4.3400 
5 6920 1 0 GRELOTS 1 172 N45 59 2. 193228W 71 121.630665 408.7890 
5 692011 BROUGHTON 1 172 N46 817.581129W 71 549.572672 608.5880 
5 692012 ADSTOCK 164 N46 146.97291 OW 71 1218.355831 713.1880 
4 69K4239 DUSSAULT 164 N45 28 4.320930W 72 1351.756838 430.8000 
4 69K4240 GALLUP HILL 1 164 N45 38 6.700659W 72 1157.248631 348.2000 
4 69K4241 SOUTH DURHAM 1 164 N45 3848.371625W 72 2126.889288 208.81 00 
4 69K4242 PINNACLE I QLF N45 4321.445932W 72 041.591747 416.4000 
4 69K4243 LAROCHELLE 1 164 N45 3143.227349W 72 423.551476 333.1000 
4 69K4346 CHARLES 163 N45 5234.275759W 72 2739.825309 93.3900 
4 69K4348 LEMAIRE 163 N45 5123.415278W 72 3452.384059 93.5300 
4 69K4349 BREBOEUF 
4 69K4350 HEMMING 
4 70K4244 MAGOG 
4 70K4245 AUSTIN 
4 70K4631 HATLEY 
4 70K4632 MARTIN 
4 70K4633 CHAPMAN 
4 70K4634 ASBESTOS 
4 70K4635 WEEDON 
5 70K4637 GILBERT 
5 70K4638 COULOMBE 
4 70K4639 MOISAN 
5 712050 BON CONSEIL 
5 712053 ST ZEPHIRIN 
4 712055 MALLARD 

7. Numerical Examples 

163 N45 5020.787836W 72 2959.667450 89.2000 
2 163 N45 5146.549886W 72 27 .762848 115.3700 

N45 1357.376894W 72 7 2.330626 345.0000 
N45 12 7.7611 03W 72 1445.003137 318.3000 
N45 9 8.355020W 7 I 5318.368308 423.0000 
N45 1823.800369W 71 3831.348936 423. I 000 
164 N45 3416.980871 W 71 4044.156151 658.4000 
QLF N45 4516.870 156W 71 5442.774960 338.1000 
N45 3832.841 031 W 71 2642.205826 413.6000 
N45 3621.022836W 70 5844.386984 570.8000 

I QLF N45 51 I 2.412896W 71 2919.000750 465.8000 
4 164 N45 5356.869207W 71 3435.946548 597.5000 

174 N45 5840.686135W 72 2258.068549 121.2210 
I 174 N46 447.587703W 72 39 2.801747 55.2430 
I QLF N45 4628.67471 SW 72 24 5.669217 171.4480 
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4 712057 DRUMMOND 
5 71K6154STORNOWAV 
5 71 K6155 STE PRAXEDE 
5 71 K6156 SEBASTIEN 
5 71K6159 LAPOINTE 
5 71K6165 VIANNEV 1 
5 72K7455 VICTORIAVILLE 
5 72K7457 SEVIGNY 1 
5 72K7462 KINGSEV FALLS 
5 72K7463 ST FELIX 1 
7 36 09202 DUSABLE 
7 71 09206 ORFORD 

17 4 N45 5416.6 73859W 72 3135.417580 93.6 700 
N45 4245.3780 12W 71 1213.496977 510.0000 

164 N45 5351.21 0905W 7 1 1323.129308 391.4000 
N45 4536.557799W 70 5519.545890 825.7000 

QLF N45 54 6.371447W 71 3414.951193 627.8000 
QLF N46 452.995542W 71 3730.212463 592.3000 
1 QLF N46 041.609238W 71 5546.742907 274.7530 
QLF N45 5613.6 77 425W 71 4317.715169 528.2000 
1 QLF N45 54 5.083744W 72 440.296902 154.5000 
QLF N45 4758.866518W 72 1128.912506 209.6000 
274 N46 12 36.48 W 73 12 01.40 135.9 

233 N45 18 39.31 W 72 14 30.93 838. 
7 72 09208 MEGANTIC 233 N45 26 52.92 W 71 07 14.60 1082. 
7 38 09216 ARTHABASKA 233 N46 03 26.0 1 W 71 53 35. 16 350.291 
7 72 692009 HONORE 164 N45 56 57.00 W 70 50 1 8.42 47 4.3 
7 72 69K4241 SOUTH DURHAM 163 N45 38 53.69 W 72 21 41.72 206.9 
7 72 712057 DRUMMOND 174 N45 54 25.52 W 72 31 50.58 93.7 
9 08200 ST ARMAND MAIN 1.3 4.33 -10.02 -28.38 
9 08207 OWLS HEAD MAIN 1.3 -1.11 1.25 -27.64 
9 09201 VAMASKA MAIN 1.3 2.30 -8.89 -29.49 
9 09202 DUSABLE GEM 1 OB 1 1.22 -4. 1 8 -31.16 
9 09204 CARMEL GEM 1 OB 1 1.45 -4.06 -30.02 
9 09205 HAM MAIN 1.3 -2.39 -2.41 -27.72 
9 09206 ORFORD MAIN 1.4 -3.12 -.48 -27.99 
9 09207 HEREFORD MAIN 1.3 -.74 -5.85 -26.57 
9 09208 MEGANTIC MAIN 1.3 3.21 -3.41 -26.32 
9 09209 THETFORD MAIN 1.3 4.08 -.49 -27.50 
9 09210 LINIERE MAIN1.3 5.49 -8.74 -25.80 
9 09216 ARTHABASKA GEM 1062 1.05 -3.77 -28.56 
9 14200 STRATFORD GEM 1 OB2 .73 -3.46 -27.03 
9 652401 FARNHAM MAIN 1.3 1.91 -6.72 -29.28 
9 652402 BROMONT MAIN 1.3 1.22 -12.62 -28.71 
9 65K0335 CROIX MAIN 1.3 2.05 -4.21 -26.14 
9 66KP 115 CARIBOU E-15 GEM 1 OB2 .97 -3.56 -27.54 
9 68K2073 BEAUVOIR GEM 1 OB2 .40 -3.67 -27.60 
9 692009 HONORE GEM 1 062 .87 -3.28 -26.57 
9 692010 GRELOTS MAIN 1.3 .98 .87 -26.88 
9 692011 BROUGHTON GEM 1062 1.09 -3.44 -27.09 
9 692012 ADSTOCK MAIN 1.3 -1.44 3.70 -27.21 
9 68K2071 SHERBROOKE GEM 1062 .27 -3.65 -27.45 
9 69K4238 DAIGLE GEM 1 OB2 .50 -3.90 -28.95 
9 69K4239 DUSSAULT MAIN 1.3 -1.05 .29 -28.30 
9 69K4240 GALLUP HILL GEM 1 OB 1 .63 -3.82 -28.61 
9 69K4241 SOUTH DURHAM GEM 1 082 .66 -3.88 -28.97 
9 69K4242 PINNACLE GEM10B2 .71 -3.77 -28.39 
9 69K4243 LAROCHELLE GEM 1062 .50 -3.75 -28.11 
9 69K4346 CHARLES GEM 1 OB 1 .90 -3.95 -29.62 
9 69K4348 LEMAIRE GEM 1060 .89 -3.99 -29.83 
9 69K4349 BREBOEUF GEM 1060 .87 -3.96 -29.64 
9 69K4350 HEMMING GEM 1061 .89 -3.95 -29.57 
9 70K4244 MAGOG MAIN 1.4 -2.76 -.19 -27.60 
9 70K4245 AUSTIN MAIN 1.4 -2.62 .52 -27.78 
9 70K4631 HATLEY GEM 1062 .04 -3.59 -27.06 
9 70K4632 MARTIN GEM I 062 .1 9 -3.52 -26.88 
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9 70K4633 CHAPMAN 
9 
9 
9 
9 

70K4634 ASBESTOS 
70K4635 WEEDON 
70K4637 GILBERT 
70K4638 COULOMBE 

9 70K4639 MOISAN 
9 712050 BON CONSE I L 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

712051 ST MAJORIQUE 
712053 STZEPHIRIN 
712055 MALLARD 
7 1 2056 WICKHAM 
712057 DRUMMOND 
71K6154 STORNOWAV 
71 K6155 STE PRAXEDE 
71 K6156 SEBASTIEN 
71 K6159 LAPOINTE 
71 K6165 VIANNEV 

MAIN1.3 
GEM10B2 

GEMIOB2 
MAIN 1.3 

MAIN1.3 
MAIN 1.4 

GEM lOBO 
GEM lOBO 

GEM lOBO 
GEM10BO 
GEM10BO 
GEM10BO 

GEMIOB2 
MAIN 1.3 

MAIN 1.3 
MAIN 1.4 
MAIN 1.3 

-3.42 
.74 

.57 
1.97 
-3.47 

-3.03 
1.00 

.95 
1.10 
.80 
.80 

-1.45 -27.41 
-3.74 -28.23 

-3.51 -27.12 
-2.60 -26.34 

.35 -27.53 
-1.74 -27.76 

-3.94 -29.59 
-4.0 1 -30.02 

-4.04 -30.22 
-3.92 -29.32 
-3.98 -29.72 
-3.98 -29.79 
-3.42 -26.83 
1.24 -27.11 

-2.42 -26.47 
-1.67 -27.76 

-4.28 -28.02 
9 72K7455 VICTORIAVILLE GEM10B1 

.93 
.63 

-1.41 
2.48 

-2.99 
5.99 

1.01 -3.79 -28.62 
9 72K7457 SEVIGNV GEM 1 OB2 .92 

.90 
.81 

-3.69 -28.1 0 

* 

9 
9 

72K7462 KINGSEV FALLS GEM 1 OB 1 
72K7 463 ST FELl X GEM 1 OB 1 

-3.83 -28.83 
-3.85 -28.92 

* Observations 
* 
40 

* 51 F 16 0.85 0.0 0.0 I 969 .20 .20G-213 QLF 
69K4238 DAIGLE 712056 WICKHAM 0 0 0.00000 .850 
69K4238 DAIGLE 712055 MALLARD 27 57 34.93000 .850 
69K4238 DAIGLE 69K4241 SOUTH DURHAM 47 32 33.13000 .850 
69K4241 SOUTH DURHAM 69K4238 DAIGLE 0 0 0.00000 .850 
69K4241 SOUTH DURHAM 712055 MALLARD 129 45 4.61 000 .851 
712056 WICKHAM 69K4348 LEMAIRE 0 0 0.00000 .852 
712056 WICKHAM 69K4349 BREBOEUF 35 21 4.54000 .852 
712056 WICKHAM 712055 MALLARD 76 28 25.74000 .851 
712056 WICKHAM 69K4238 DAIGLE 157 51 13.81000 .850 
712055 MALLARD 69K4241 SOUTH DURHAM 0 0 0.00000 .851 
712055 MALLARD 
712055 MALLARD 
712055 MALLARD 
712055 MALLARD 
712055 MALLARD 
69K4350 HEMMING 
69K4350 HEMMING 
712057 DRUMMOND 
712057 DRUMMOND 
712057 DRUMMOND 
712057 DRUMMOND 
69K4348 LEMAIRE 
69K4348 LEMAIRE 
69K4348 LEMAIRE 
69K4348 LEMAIRE 
69K4348 LEMAIRE 
69K4349 BREBOEUF 
69K4349 BREBOEUF 
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69K4238 DAIGLE 
712056 WICKHAM 
69K4348 LEMAIRE 
69K4349 BREBOEUF 
69K4346 CHARLES 
69K4346 CHARLES 
712057 DRUMMOND 
69K4346 CHARLES 
69K4350 HEMMING 
69K4349 BREBOEUF 
69K4348 LEMAIRE 

712057 DRUMMOND 
69K4346 CHARLES 
69K4349 BREBOEUF 
7 I 2055 MALLARD 
712056 WICKHAM 
712055 MALLARD 
69K4348 LEMAIRE 

30 39 56.09000 .850 
101 19 33.90000 .851 
136 45 37.08000 .851 
1 46 47 25.39000 .852 
171 21 7.70000 .851 

0 0 0.00000 .917 
337 49 5 1.27000 .854 

0 0 0.00000 .856 
6 8 43.91000 .854 
42 17 1.97000 .853 

96 35 36.40000 .854 
0 0 0.00000 .854 

38 I 9 48.12000 .852 
68 33 46.39000 .855 
84 36 03.20000 .851 
152 41 34.08000 .852 

0 0 0.00000 .852 
153 55 56.77000 .855 
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69K4349 BREBOEUF 
69K4349 BREBOEUF 
69K4346 CHARLES 
69K4346 CHARLES 
69K4346 CHARLES 

712057 DRUMMOND 
69K4346 CHARLES 
69K4349 BREBOEUF 
69K4348 LEMAIRE 
712057 DRUMMOND 

211 3 36.34000 .853 
263 4 13.69000 .858 

0 0 0.00000 .858 
40 37 44.90000 .852 

85 42 1 9.22000 .856 
69K4346 CHARLES 69K4350 HEMMING 294 1 10.24000 .917 
69K4346 CHARLES 712055 MALLARD 301 29 29.62000 .851 

* 51 F 17 .70 0.0 0.01971 .20 .20FORGUESRL GEOD 
1 712057 DRUMMOND 712055 MALLARD 0 0 0.00000 .70 1 

712057 DRUMMOND 712056 WICKHAM 56 10 20.86000 .701 
712055 MALLARD 712056 WICKHAM 0 0 0.00000 . 701 
712055 MALLARD 712057 DRUMMOND 58 25 52.51000 .701 
712056 WICKHAM 712055 MALLARD 0 0 0.00000 .701 
712056 WICKHAM 712057 DRUMMOND 294 36 9.46000 .701 

* 51 F 18 . 70 0.0 0.06971 .20 .20G-252 QLF 
09201 VAMASKA 69K4238 DAIGLE 0 0 0.00000 .700 
09201 VAMASKA 09206 ORFORD 26 14 32.07000 .700 
69K4238 DAIGLE 
69K4238 DAIGLE 
69K4238 DAIGLE 
69K4238 DAIGLE 
09206 ORFORD 
09206 ORFORD 
09206 ORFORD 
09206 ORFORD 

69K4241 SOUTH DURHAM 0 0 0.00000 
69K4239 DUSSAULT 58 20 6.87000 
09206 ORFORD 94 12 10.59000 
09201 VAMASKA 224 4 44.22000 

0920 I VAMASKA 0 0 0.00000 
69K4238 DAIGLE 23 52 57.48000 
69K4239 DUSSAULT 75 40 44.35000 
68K2071 SHERBROOKE 154 4 12.77000 

.700 
.700 

.700 
.700 

.700 
.700 

.701 
.700 

09206 ORFORD 70K4631 HATLEV 195 23 38.11000 .700 
09206 ORFORD 70K4244 MAGOG 204 58 14.12000 .701 
09206 ORFORD 70K4245 AUSTIN 254 26 4.14000 .702 
09206 ORFORD 08207 OWLS HEAD 262 0 29.83000 .700 
69K4241 SOUTH DURHAM 69K4240 GALLUP HILL 0 0 0.00000 .702 
69K4241 SOUTH DURHAM 69K4239 DUSSAULT 57 39 21.24000 .700 
69K4241 SOUTH DURHAM 69K4238 DAIGLE 120 46 53.20000 .700 
69K4239 DUSSAULT 68K2071 SHERBROOKE 0 0 0.00000 .700 
69K4239 DUSSAULT 09206 ORFORD 63 20 52.66000 .701 
69K4239 DUSSAULT 69K4238 DAIGLE 155 41 2.20000 .700 
69K4239 DUSSAULT 69K4241 SOUTH DURHAM 214 13 25.92000 .700 
69K4239 DUSSAULT 69K4240 GALLUP HILL 248 10 34.54000 .701 
69K4239 DUSSAULT 69K4243 LAROCHELLE 30 I 48 33.39000 .701 
69K4239 DUSSAULT 68K2073 BEAUVOIR 333 40 3.05000 .700 
69K4240 GALLUP HILL 69K4242 PINNACLE 0 0 0.00000 .701 
69K4240 GALLUP HILL 69K4243 LAROCHELLE 83 54 31.06000 .701 
69K4240 GALLUP HIll 69K4239 DUSSAULT 131 17 30.49000 .701 
69K4240 GALLUP HILL 69K4241 SOUTH DURHAM 219 41 1.14000 .702 
69K4242 PINNACLE 70K4634 ASBESTOS 0 0 0.00000 .703 
69K4242 PINNACLE 70K4633 CHAPMAN 57 32 43.37000 .700 
69K4242 PINNACLE 69K4243 LAROCHELLE 127 18 20.41000 .700 
69K4242 PINNACLE 69K4240 GALLUP HILL 171 10 14.78000 .701 
69K4243 LAROCHELLE 69K4242 PINNACLE 0 0 0.00000 .700 
69K4243 LAROCHELLE 70K4633 CHAPMAN 68 32 34.91000 .700 
69K4243 LAROCHELLE 68K2073 BEAUVOIR 108 22 53.91000 .701 
69K4243 LAROCHELLE 68K2071 SHERBROOKE 137 48 47.34000 .700 
69K4243 LAROCHELLE 69K4239 DUSSAULT 228 47 2 1. 19000 .701 
69K4243 LAROCHELLE 69K4240 GALLUP HILL 307 46 24.87000 .701 
68K2073 BEAUVOIR 68K2071 SHERBROOKE 0 0 0.00000 .702 
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68K2073 BEAUVOIR 69K4239 DUSSAULT 83 5 20.51 000 .700 
68K2073 BEAUVOIR 69K4243 LAROCHELLE 11 0 49 24.26000 .701 
68K2073 BEAUVOIR 70K4632 MARTIN 299 2 22.45000 .700 
68K2071 SHERBROOKE 69K4243 LAROCHELLE 0 0 0.00000 .700 
68K2071 SHERBROOKE 68K2073 BEAUVOIR 39 44 44. 1 0000 .702 
68K2071 SHERBROOKE 70K4633 CHAPMAN 67 7 11.58000 .700 
68K2071 SHERBROOKE 70K4632 MARTIN 130 36 5.77000 .700 
68K2071 SHERBROOKE 70K4631 HATLEY 201 42 34.67000 .701 
68K2071 SHERBROOKE 08207 OWLS HEAD 252 29 39.97000 .700 
68K2071 SHERBROOKE 70K4244 MAGOG 259 31 22.7 I 000 .701 
68K207 1 SHERBROOKE 09206 ORFORD 290 54 20.2 I 000 .700 
68K2071 SHERBROOKE 69K4239 DUSSAULT 329 9 59.13000 .700 
70K4244 MAGOG 08207 OWLS HEAD 0 0 0.00000 .700 
70K4244 MAGOG 70K4245 AUSTIN 34 30 27.98000 .702 
70K4244 MAGOG 09206 ORFORD 95 8 2.19000 .701 
70K4244 MAGOG 68K2071 SHERBROOKE 1 92 51 3.39000 .701 
70K4245 AUSTIN 08207 OWLS HEAD 0 0 0.00000 .701 
70K4245 AUSTIN 09206 ORFORD 166 40 21.85000 .702 
70K4245 AUSTIN 70K4244 MAGOG 236 34 57. 1 I 000 .702 
70K4633 CHAPMAN 68K2071 SHERBROOKE 0 0 0.00000 .700 
70K4633 CHAPMAN 69K4243 LAROCHELLE 43 36 38.24000 .700 
70K4633 CHAPMAN 69K4242 PINNACLE 85 18 27.31000 .700 
70K4633 CHAPMAN 70K4634 ASBESTOS I 00 36 48.69000 .700 
70K4633 CHAPMAN 09205 HAM 150 27 22.68000 .700 
70K4633 CHAPMAN 70K4635 WEEDON 208 44 22.87000 .701 
70K4633 CHAPMAN 70K4632 MARTIN 316 37 6.26000 .700 
70K4632 MARTIN 70K4635 WEEDON 0 0 0.00000 .700 
70K4632 MARTIN 09208 MEGANTIC 46 29 13.96000 .700 
70K4632 MARTIN 09207 HEREFORD 150 IS 5.41000 .700 
70K4632 MARTIN 70K4631 HATLEY 206 II 12.76000 .700 
70K4632 MARTIN 68K2071 SHERBROOKE 258 55 12. I 7000 .700 
70K4632 MARTIN 70K4633 CHAPMAN 332 3 25.58000 .700 
70K4631 HATLEY 68K2071 SHERBROOKE 0 0 0.00000 .701 
70K4631 HATLEY 70K4632 MARTIN 56 9 32.26000 .700 
70K4631 HATLEY 09207 HEREFORD 1 16 36 44.09000 .700 
70K4631 HATLEY 08207 OWLS HEAD 260 44 22.26000 .700 
70K4631 HATLEY 09206 ORFORD 31 0 31 6. 17000 .700 

09205 HAM 0 0 0.00000 .701 
70K4633 CHAPMAN 58 54 59.51000 .700 
69K4242 PINNACLE 166 3 56.41000 .703 

70K4634 ASBESTOS 
70K4634 ASBESTOS 
70K4634 ASBESTOS 
09205 HAM 70K4639 MOISAN 0 0 0.00000 .70 I 
09205 HAM 
09205 HAM 
09205 HAM 
09205 HAM 
09205 HAM 
70K4635 WEEDON 
70K4635 WEEDON 
70K4635 WEEDON 
70K4635 WEEDON 
70K4635 WEEDON 
70K4635 WEEDON 
70K4639 MOISAN 
70K4639 MOISAN 

7. Numerical Examples 

70K4638 COULOMBE 38 I 0 20.70000 .701 
09208 MEG ANTIC I 13 16 24.69000 . 700 
70K4635 WEEDON 11 8 8 13.44000 .700 
70K4633 CHAPMAN 168 3 43.54000 .700 
70K4634 ASBESTOS 239 18 10.09000 .70 I 

09205 HAM 0 0 0.00000 .700 
70K4638 COULOMBE 
71 K6154 STORNOWAV 
09208 MEGANTIC 
70K4632 MARTIN 
70K4633 CHAPMAN 
70K4638 COULOMBE 
09205 HAM 

33 19 38.48000 .700 
I 08 55 30. 15000 .70 1 

171 54 56.82000 .700 
244 I 45.40000 .700 

288 12 29.60000 .70 I 
0 0 0.00000 .703 

73 39 27.26000 .70 I 
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70K4638 COULOMBE 
70K4638 COULOMBE 
70K4638 COULOMBE 
70K4638 COULOMBE 
70K4638 COULOMBE 
70K4638 COULOMBE 
70K4638 COULOMBE 
71 K6159 LAPOINTE 
71K6159 LAPOINTE 
71K6159 LAPOINTE 
71 K6154 STORNOWAV 
71 K6154 STORNOWAV 
71 K6154 STORNOWAV 
71 K6154 STORNOWAV 
71K6154 STORNOWAV 
71K6154 STORNOWAV 
71 K6155 STE PRAXEDE 
7 1 K6155 STE PRAXEDE 

71 K6159 LAPOINTE 0 0 0.00000 .703 
66KP115 CARIBOU E-15 71 29 28.41000 .701 
71 K6155 STE PRAXEDE 126 24 50.10000 . 70 1 
71 K6154 STORNOWAV 175 1 59.09000 .700 
70K4635 WEEDON 221 38 54.81 000 .700 
09205 HAM 288 21 25.12000 .701 
70K4639 MOISAN 356 31 35.59000 .703 

71 K6165 VIANNEV 0 0 0.00000 .701 
66KP 115 CARIBOU E-1 5 .60 35 18.24000 .701 
70K4638 COUL.OMBE 141 55 10.70000 .703 

71 K6155 STE PRAXEDE 0 0 0.00000 . 70 1 
71 K6156 SEBASTIEN 80 31 13.62000 .700 
70K4637 GILBERT 128 12 39.02000 .701 
09208 MEGANTIC 
70K4635 WEEDON 
70K4638 COULOMBE 
692012 ADSTOCK 
692010 GRELOTS 

171 40 32.86000 . 700 
251 44 19.65000 .701 

309 31 32.90000 .700 
0 0 0.00000 .701 

52 48 9.24000 .70 1 
71K6155 STE PRAXEDE 71K6156 SEBASTIEN 117 37 8.74000 .700 
71K6155 STE PRAXEDE 71K6154STORNOWAV 170 23 33.07000 .701 
71 K6155 STE PRAXEDE 70K4638 COULOMBE 251 17 57.87000 . 70 1 
71 K6155 STE PRAXEDE 66KP 115 CARIBOU E-15 305 5 56.85000 .701 
692010 GRELOTS 692009 HONORE 0 0 0.00000 .70 1 
692010 GRELOTS 71 K6156 SEBASTIEN 57 3 46.11000 .700 
692010 GRELOTS 71 K6155 STE PRAXEDE 132 53 33.64000 .701 
69201 0 GRELOTS 6920 12 AD STOCK 184 23 49.21 000 . 70 1 

* 51 F20 .70 0.0 0.0 1971 .20 .20FORGUESRL GEOD 
712050 BON CONSEIL 712055 MALLARD 0 0 0.00000 .700 
712050 BON CONSEIL 712056 WICKHAM 33 3 44.15000 .700 
712050 BON CONSEIL 
712050 BON CONSEIL 
712051 ST MAJORIQUE 
712051 ST MAJORIQUE 
712051 ST MAJORIQUE 
712051 ST MAJORIQUE 
712050 BON CONSEIL 
7 I 2050 BON CONSEIL 
712050 BON CONSEIL 
712050 BON CONSE I L 
712057 DRUMMOND 
712057 DRUMMOND 
712057 DRUMMOND 
7 1205 I ST MAJOR I QUE 
712051 ST MAJORIQUE 
712057 DRUMMOND 
712057 DRUMMOND 
712055 MALLARD 
712055 MALLARD 
712057 DRUMMOND 
712057 DRUMMOND 
712057 DRUMMOND 
712056 WICKHAM 
712056 WICKHAM 
712056 WICKHAM 

7. Numerical Examples 

712057 DRUMMOND 
712051 ST MAJORIQUE 
712050 BON CONSEIL 
712057 DRUMMOND 
712055 MALLARD 
71 2056 WICKHAM 

712057 DRUMMOND 
712051 ST MAJORIQUE 
712055 MALLARD 
7 12056 WICKHAM 
712050 BON CONSEIL 
712055 MALLARD 
712056 WICKHAM 
712053 ST ZEPHIRIN 
712050 BON CONSE I L 

712055 MALLARD 
712050 BON CONSEIL 

712056 WICKHAM 
712050 BON CONSEIL 
712056 WICKHAM 
712051 ST MAJOR I QUE 
712050 BON CONSEIL 

7 12051 ST MAJOR I QUE 
712050 BON CONSEIL 
7 I 2055 MALLARD 

50 10 11.76000 .701 
66 59 55.20000 .70 1 
0 0 0.00000 .70 1 
28 21 2.07000 .703 

60 32 35.67000 .700 
101 58 5.17000 .701 
0 0 0.00000 .701 
16 49 43.04000 .701 

309 49 48. 1 1000 . 700 
342 53 33.1 I 000 .700 

0 0 0.00000 .701 
92 18 10.08000 .701 
148 28 26.40000 .701 

0 0 0.00000 .70 I 
74 40 32.39000 .701 

0 0 0.00000 .70 I 
26 7 41 50.59000 . 70 1 
0 0 0.00000 .701 
95 57 33.41000 .700 

0 0 0.00000 .70 1 
76 42 19.2 I 000 .703 

211 31 33.55000 .701 
0 0 0.00000 .70 1 

44 5 44.55000 .700 
95 4 29.34000 . 70 I 
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712055 MALLARD 
712055 mollord 

712051 ST MAJORIQUE 0 0 0.00000 .700 
712050 bon conseil 52 27 30.03000 .700 

7 12056 WICKHAM 
712056 WICKHAM 
712055 MALLARD 
712055 MALLARD 
712055 MALLARD 
712056 WICKHAM 
7 12056 WICKHAM 
712056 WICKHAM 

712055 MALLARD 0 0 0.00000 . 70 I 
712050 BON CONSEIL 309 I 15.17000 .700 
712057 DRUMMOND 0 0 0.00000 .70 I 
712050 BON CONSEIL 37 31 41.70000 .700 
712056 WICKHAM 30 I 34 9.60000 .70 I 
712057 DRUMMOND 0 0 0~0000 ~01 

712050 BON CONSEIL 14 25 4.78000 .700 
712055 MALLARD 65 23 48.98000 .70 I 

* 51 F I 9 . 70 0.0 0.0 I 969 .20 .20SELLEVAD GEOD 
6920 I 0 GRELOTS 6920 12 AD STOCK 0 0 0.00000 . 70 I 
6920 I 0 GRELOTS 6920 II BROUGHTON 51 35 38.80000 .70 I 
692010 GRELOTS 692009 HONORE 

* 51 F21 .70 0.0 0.01965 .20 .20G-22 QLF 
652402 BROMONT 08200 ST ARMAND 
652402 BROMONT 652401 FARNHAM 
652402 BROMONT 0920 I VAMASKA 
652402 BROMONT 09206 ORFORD 
09206 ORFORD 652402 BROMONT 
09206 ORFORD 0920 I VAMASKA 
09206 ORFORD 08200 ST ARMAND 
65240 I FARNHAM 0920 I VAMASKA 
652401 FARNHAM 652402 BROMONT 
65240 I FARNHAM 08200 ST ARMAND 
0920 I VAMASKA 09206 ORFORD 
0920 I VAMASKA 652402 BROMONT 
0920 I VAMASKA 08200 ST ARMAND 
0920 I VAMASKA 65240 I FARNHAM 

I 75 36 I 0.89000 .701 

0 0 0.00000 .700 
75 14 59.77000 .700 

117 28 38.98000 . 700 
248 43 2.52000 .700 

0 0 0.00000 .700 
21 35 53.30000 
327 38 30.11 000 

0 0 0.00000 

.700 
.700 

.701 
69 29 59.23000 .700 
126 21 55.30000 .700 

0 0 0.00000 .700 
27 9 43.36000 .700 
60 23 6.94000 .700 
95 26 7.78000 .70 I 

* 51 F22 .60 0.0 0.00917 .20 .20BIGGERCA GEOD 
09206 ORFORD 08200 ST ARMAND 
09206 ORFORD 0920 I VAMASKA 
09206 ORFORD 09205 HAM 
09206 ORFORD 
09206 ORFORD 
09206 ORFORD 
0920 I VAMASKA 
09201 VAMASKA 
0920 I VAMASKA 
09201 VA MASK A 
0920 I VAMASKA 
09205 HAM 

09208 MEGANTIC 
09207 HEREFORD 
08207 OWLS HEAD 

08200 ST ARMAND 
09202 DUSABLE 
09204 CARMEL 
09205 HAM 
09206 ORFORD 

09209 THETFORD 

0 0 0.00000 
53 57 23.47000 

168 22 58.78000 
206 44 27.02000 
243 30 22.34000 
315 57 53.29000 

0 0 0.00000 
176 15 45. 12000 
20 I 58 27.05000 

.600 
.600 

.600 
.600 
.600 
.600 
.600 
.600 
.600 

260 49 45.47000 .600 
299 36 53.83000 .600 

0 0 0.00000 .600 
09205 HAM 092 I 0 Ll N I ERE 56 58 9.61 000 .600 
09205 HAM 14200 STRATFORD 59 3 26.46000 .600 
09205 HAM 09208 MEG ANTIC I 03 21 26.36000 .600 
09205 HAM 09207 HEREFORD 148 I 39.92000 .600 
09205 HAM 09206 ORFORD I 91 49 56.63000 .600 
09205 HAM 09201 VAMASKA 218 37 20.09000 .600 
09205 HAM 09202 DUSABLE 261 27 29.72000 .600 
09205 HAM 09204 CARMEL 285 58 2. 16000 .600 

* 51 F 12 .70 0.0 0.01914 .20 .20BIGGERCA GEOD 
14200 STRATFORD 09205 HAM 0 0 0.00000 .700 
14200 STRATFORD 09209 THETFORD 81 29 40.13000 .700 

* 51 F04 1.20 0.0 0.01909 .20 .20BIGGERCA GEOD 

7. Numerical Examples 

Final Report 

92 



Robustness Analysis Final Report 

09205 HAM 09209 THETFORD 0 0 0.00000 1.200 
09205 HAM 09216 ARTHABASKA 295 55 51.30000 1.200 

* 5 1 F23 .85 0.0 0.0 197 4 .20 .20G-272 QLF 
71 K6159 LAPOINTE 70K4638 COULOMBE 0 0 0.00000 .853 
71 K6159 LAPOINTE 09205 HAM 71 35 7.76000 .851 
71K6159 LAPOINTE 72K7457 SEVIGNY 158 34 38.99000 .851 
71 K6159 LAPOINTE 71 K6165 VIANNEY 218 4 52.37000 .850 
72K7457 SEVIGNY 72K7455 VICTORIAVILLE 0 0 0.00000 .851 
72K7457 SEVIGNY 09216 ARTHABASKA 18 1 30.66000 .851 
72K7457 SEVIGNY 71 K6165 VIANNEY 87 43 47.83000 .851 
72K7457 SEVIGNY 71 K6159 LAPOINTE 171 17 16.76000 .851 
72K7457 SEVIGNY 09205 HAM 219 53 4.95000 .851 
72K7457 SEVIGNY 70K4634 ASBESTOS 278 55 28.28000 .850 
70K4638 COULOMBE 09205 HAM 0 0 0.00000 .851 
70K4638 COULOMBE 71 K6159 LAPOINTE 71 38 33.63000 .853 
09205 HAM 70K4634 ASBESTOS 0 0 0.00000 .850 
09205 HAM 72K7457 SEVIGNY 77 41 6.70000 .851 
09205 HAM 71 K6159 LAPOINTE 122 5 47.43000 .851 
09205 HAM 70K4638 COULOMBE 158 52 6.90000 .851 
70K4634 ASBESTOS 72K7457 SEVIGNY 0 0 0.00000 .850 
70K4634 ASBESTOS 09205 HAM 43 16 30.97000 .850 

* 51 F24 2.00 0.0 0.01974 .20 .20G-333-1 QLF 
1 72K7462 KINGSEY FALLS 72K7463 ST FELIX 0 0 0.00000 2.000 

72K7462 KINGSEY FALLS 09216 ARTHABASKA 182 54 18.41000 2.000 
72K7462 KINGSEY FALLS 70K4634 ASBESTOS 283 37 1.02000 2.000 
70K4634 ASBESTOS 69K4242 PINNACLE 0 0 0.00000 2.001 
70K4634 ASBESTOS 72K7462 KINGSEY FALLS 76 21 35.35000 2.000 
70K4634 ASBESTOS 09205 HAM 193 56 4.07000 2.000 
09205 HAM 69K4242 PINNACLE 0 0 0.00000 2.000 
09205 HAM 72K7463 ST FELIX 15 50 11.28000 2.000 
09205 HAM 09216 ARTHABASKA 70 25 24.97000 2.000 
72K7463 ST FELIX 72K7462 KINGSEV FALLS 0 0 0.00000 2.000 
72K7463 ST FELIX 69K4240 GALLUP HILL 144 1 10.17000 2.000 
72K7463 ST FELIX 712055 MALLARD 222 30 17.05000 2.000 
69K4240 GALLUP HILL 72K7463 ST FELIX 0 0 0.00000 2.000 
69K4240 GALLUP HILL 69K4242 PINNACLE 54 24 31.70000 2.000 
69K4240 GALLUP HILL 712055 MALLARD 312 40 43.99000 2.000 

* 52T33 5.00 5.0 0.0 1969 .20 .20G-213 QLF 
2 69K4238 DAIGLE 69K4241 SOUTH DURHAM 4 22248.805 12.199 
2 69K4238 DAIGLE 712055 MALLARD 4 33538.096 17.500 
2 69K4241 SOUTH DURHAM 7 12055 MALLARD 4 14620.739 8.861 
2 69K4348 LEMAIRE 712056 WICKHAM 4 9938.004 7.055 
2 712056 WICKHAM 69K4349 BREBOEUF 4 11356.349 7.571 
2 712055 MALLARD 69K4348 LEMAIRE 4 16666.069 9.722 
2 712055 MALLARD 69K4349 BREBOEUF 4 I 0478.186 7.247 
2 69K4238 DAIGLE 712056 WICKHAM 4 32007.383 16.768 
2 712056 WICKHAM 712055 MALLARD 4 15903.665 9.397 

* 52G66 1.00 1.2 0.0 I 969 .20 .20G-213 QLF 
2 712055 MALLARD 69K4346 CHARLES 4 12198.025 1.795 
2 69K4348 LEMAIRE 712057 DRUMMOND 4 6830.520 1.324 
2 69K4348 LEMAIRE 69K4346 CHARLES 4 9583.193 1.550 
2 69K4348 LEMAIRE 69K4349 BREBOEUF 4 6605.216 1.307 
2 69K4349 BREBOEUF 69K4346 CHARLES 4 5107.571 1.207 
2 69K4349 BREBOEUF 71 2057 DRUMMOND 4 7570.098 1.380 
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2 69K4346 CHARLES 69K4350 HEMMING 4 1697.535 
2 69K4346 CHARLES 712057 DRUMMOND 4 5982.974 
2 69K4350 HEMMING 712057 DRUMMOND 4 7520.554 

* 52T34 3.00 3.0 0.0 1 971 .20 .20FORGUESRL GEOD 
2 712056 WICKHAM 712057 DRUMMOND 1 
2 712056 WICKHAM 712055 MALLARD 
2 712055 MALLARD 712057 DRUMMOND 

* 52T03 5.00 5.0 0.06971 .20 .20G-252 QLF 

16311.219 
15903.735 
17406.470 

1.059 
1.263 
1.376 

5.747 
5.643 

6.029 

2 68K2073 BEAUVOIR 70K4632 MARTIN 4 25958.954 13.911 
2 70K4632 MARTIN 09207 HEREFORD 4 25114.522 13.516 
2 70K4632 MARTIN 70K4631 HATLEV 4 25855.606 13.863 
2 70K4631 HATLEV 09207 HEREFORD 4 23915.600 12.961 
2 09201 VAMASKA 09206 ORFORD 4 51349.497 26.155 
2 09201 VAMASKA 69K4238 DAIGLE 4 27087.768 14.439 
2 69K4238 DAIGLE 69K4241 SOUTH DURHAM 4 22248.919 12.199 
2 69K4238 DAIGLE 69K4239 DUSSAULT 4 23266.547 12.665 
2 69K4238 DAIGLE 09206 ORFORD 4 29589.185 15.615 
2 09206 ORFORD 69K4239 DUSSAULT 4 17353.488 1 0.0 15 
2 09206 ORFORD 68K2071 SHERBROOKE 4 25042.285 13.483 
2 09206 ORFORD 70K4631 HATLEV 4 32937.049 17.210 
2 09206 ORFORD 70K4244 MAGOG 4 13167.713 8.268 
2 09206 ORFORD 70K4245 AUSTIN 4 12221.058 7.896 
2 09206 ORFORD 08207 OWLS HEAD 4 28074.228 14.902 
2 69K4241 SOUTH DURHAM 69K4240 GALLUP HILL 4 12404.558 7.971 
2 69K4241 SOUTH DURHAM 69K4239 DUSSAULT 4 2220 1.299 12.177 

14.605 
10.634 
8.634 

13.963 

2 69K4239 DUSSAULT 68K2071 SHERBROOKE 4 27 441.6 76 
2 69K4239 DUSSAULT 69K4240 GALLUP HILL 4 18763.557 
2 69K4239 DUSSAULT 69K4243 LAROCHELLE 4 14067.426 
2 69K4239 DUSSAULT 68K2073 BEAUVOIR 4 26069.828 
2 69K4240 GALLUP HILL 69K4242 PINNACLE 4 17557.730 
2 69K4240 GALLUP HILL 69K4243 LAROCHELLE 4 15392.461 
2 69K4242 PINNACLE 70K4634 ASBESTOS 4 8537.313 
2 69K4242 PINNACLE 70K4633 CHAPMAN 4 30904.295 
2 69K4242 PINNACLE 69K4243 LAROCHELLE 4 22087.271 
2 69K4243 LAROCHELLE 70K4633 CHAPMAN 4 31156.248 
2 69K4243 LAROCHELLE 68K2073 BEAUVO I R 4 15954.418 

10.106 
9.182 

6.580 
16.242 
12.125 

16.361 
9.419 

2 69K4243 LAROCHELLE 68K2071 SHERBROOKE 4 23323.516 12.691 
2 68K2073 BEAUVOIR 68K2071 SHERBROOKE 4 12262.20 I 7.916 
2 68K2071 SHERBROOKE 70K4633 CHAPMAN 4 3 1626.690 16.586 
2 68K2071 SHERBROOKE 70K4632 MARTIN 4 22698.097 12.404 
2 68K2071 SHERBROOKE 70K4631 HATLEV 4 21747.938 11.971 
2 68K207 1 SHERBROOKE 08207 OWLS HEAD 4 42989.262 22.068 
2 68K2071 SHERBROOKE 70K4244 MAGOG 4 19608.686 1 1.009 
2 70K4244 MAGOG 08207 OWLS HEAD 4 23652.302 12.840 
2 70K4244 MAGOG 
2 70K4245 AUSTIN 
2 70K4633 CHAPMAN 
2 70K4633CHAPMAN 
2 70K4633 CHAPMAN 
2 70K4632 MARTIN 

70K4245 AUSTIN 
08207 OWLS HEAD 

70K4634 ASBESTOS 
09205 HAM 
70K4632 MARTIN 

70K4635 WEEDON 

4 10647.587 
4 16056.795 

4 27291.916 
4 24683.525 

4 29571.329 
4 40381.821 

7.309 
9.459 

14.534 
13.318 

15.609 
20.802 

2 70K4634 ASBESTOS 09205 HAM 4 22030.464 12.098 
2 09205 HAM 70K4639 MOISAN 4 12790.996 8.122 
2 09205 HAM 70K4638 COULOMBE 4 13223.970 8.293 
2 09205 HAM 70K4635 WEEDON 4 22105.434 12.133 
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2 09205 HAM 
70K4635 WEEDON 

09209 THETFORD 4 45751.072 23.415 
2 
2 70K4635 WEEDON 
2 70K4639 MOISAN 
2 70K4638 COULOMBE 
2 70K4638 COULOMBE 
2 70K4638 COULOMBE 
2 70K4638 COULOMBE 
2 71 K6159 LAPOINTE 
2 71 K6159 LAPOINTE 
2 71 K6154 STORNOWAY 

71K6154 STORNOWAY 
71 K6154 STORNOWAY 

2 
2 
2 7 1 K6 155 STE PRAXEDE 
2 71 K6155 STE PRAXEDE 
2 71 K6155 STE PRAXEDE 

70K4638 COULOMBE 4 23696.215 12.862 
71 K6154 STORNOWAY 4 20354.838 11.342 
70K4638 COULOMBE 4 8516.299 6.573 

71 K6159 LAPOINTE 4 8343.637 6.517 
66KP 115 CARIBOU E -15 4 1 8055.555 10.323 
71 K6155 STE PRAXEDE 4 21190.456 11.718 
71 K6154 STORNOWAY 4 27127.252 14.458 

71 K6165 VIANNEY 4 20404.081 11.364 
66KP115 CARIBOU E-15 4 17319.615 10.003 

71 K6155 STE PRAXEDE 4 20613.706 11.458 
71 K6156 SEBASTIEN 4 22553.585 12.337 
70K4637 GILBERT 4 21159.368 11.704 
692012 ADSTOCK 
692010 GRELOTS 
71 K6156 SEBASTIEN 

4 14759.889 
4 18269.250 

4 27938.314 

8.917 
10.417 

14.837 
2 71 K6155 STE PRAXEDE 66KP 115 CARIBOU E-15 4 18311.539 I 0.435 

* 52T02 6.12 6.1 0.06971 .20 .20G-252 QLF 
2 692010 GRELOTS 692009 HONORE 4 14873.258 10.947 

* 52G83 1.40 1.7 0.06971 .20 .20G-252 QLF 
2 70K4635 WEEDON 70K4633 CHAPMAN 4 19884.200 3.669 

* 52T 43 1.50 3.0 0.0 1969 .20 .20SELLEYAD GEOD 
2 6920 1 0 GRELOTS 6920 1 1 BROUGHTON 1809 1.6 70 5.637 
2 692010 GRELOTS 692012 ADSTOCK 1 15021.754 4.757 

* 52T35 3.00 3.0 0.01971 .20 .20FORGUESRL GEOD 
2 712050 BON CONSEIL 712053 ST ZEPHIRIN 1 23639.304 7.705 
2 712050 BON CONSEIL 712051 ST MAJORIQUE 1 20623.942 6.882 
2 712050 BON CONSEIL 712057 DRUMMOND 1 13807.056 5.122 
2 712050 BON CONSEIL 712056 WICKHAM 2 28993.797 9.205 
2 712051 ST MAJORIQUE 712057 DRUMMOND 1 8417.650 3.932 
2 712051 ST MAJORIQUE 712053 ST ZEPHIRIN 1 18224.873 6.243 
2 712056 WICKHAM 712051 ST MAJOR I QUE 1 16545.896 5.807 
2 712055 MALLARD 712051 ST MAJORIQUE 23942.647 7.789 

* 52T36 6.00 3.0 0.0 1 971 .20 .20FORGUESRL GEOD 
2 712055 MALLARD 712050 BON CONSEIL I 22647.652 9.069 

* 52T32 3.70 3.7 0.0 I 965 .20 .20G-22 QLF 
2 09201 YAMASKA 08200 ST ARMAND 4 45568.921 17.262 
2 09201 VAMASKA 
2 09201 YAMASKA 

65240 1 FARNHAM 
652402 BROMONT 

4 18037.649 
4 25135.574 

7.635 
10.012 

2 652402 BROMONT 09206 ORFORD 4 31174.455 12.115 
2 652402 BROMONT 652401 FARNHAM 4 24932.164 9.941 

* 52TO 1 5.00 5.0 0.0 1972 .20 .20G-272 QLF 
2 7 1 K6 159 LAPOINTE 09205 HAM 4 13226.475 8.295 
2 72K7457 SEVIGNY 72K7455 VICTORIAVILLE 4 18125.702 10.353 
2 72K7457 SEVIGNY 09216 ARTHABASKA 4 18296.441 10.428 
2 72K7457 SEVIGNY 09205 HAM 4 17609.832 10.128 
2 72K7457 SEVIGNY 70K4634 ASBESTOS 4 25096.466 13.510 
2 71 K6159 LAPOINTE 72K7457 SEVIGNY 4 12340.221 7.946 

* 52G84 1.40 1.7 0.01974 .20 .20G-333-1 QLF 
2 72K7463 ST FELIX 69K4240 GALLUP HILL 4 18293.961 3.422 
2 72K7463 ST FELIX 712055 MALLARD 4 16581.838 3.160 

* 52T04 5.00 5.0 0.01974 .20 .20G-333-1 QLF 
2 72K7462 KINGSEY FALLS 72K7463 ST FELIX 4 14338.006 8.745 
2 72K7462 KINGSEY FALLS 70K4634 ASBESTOS 4 20793.098 11.539 
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2 72K7 463 ST FELl X 69K4242 PINNACLE 4 16404.403 9.609 
2 72K7463 ST FELIX 69K4240 GALLUP HILL 4 18293.913 10.428 

* 52T05 5.20 5.2 0.0 .20 .20G-257 SGQ 
2 09205 HAM 14200 STRATFORD 4 29394.835 16.146 

* 53??? .80 .2 1.0 .20 .20 GEOD 
3 09206 ORFORD 09201 YAMASKA 287 4 48.92700 1.089 

* 5 I F25 .70 0.0 0.06971 .20 .20G-252 QLF 
I 09208 MEGANTIC 09207 HEREFORD 0 0 0.00000 .700 

09206 MEGANTIC 70K4632 MARTIN 26 7 1.67000 .700 
09206 MEGANTIC 70K4635 WEEDON 87 31 3.36000 .700 
09206 MEGANTIC 
09206 MEGANTIC 
09206 MEGANTIC 
09208 MEGANTIC 
06207 OWLS HEAD 
06207 OWLS HEAD 
08207 OWLS HEAD 
06207 OWLS HEAD 
08207 OWLS HEAD 
08207 OWLS HEAD 
09207 HEREFORD 
09207 HEREFORD 
09207 HEREFORD 

09205 HAM 90 44 18.86000 .700 
71 K6154 STORNOWAY 124 27 51.03000 .700 
70K4637 GILBERT 168 57 40.27000 .701 
65K0335 CROIX 
09206 ORFORD 
70K4245 AUSTIN 
70K4244 MAGOG 
68K2071 SHERBROOKE 
70K4631 HATLEY 
09207 HEREFORD 

08207 OWLS HEAD 
70K4631 HATLEY 
70K4632 MARTIN 

193 15 38.35000 .700 
0 0 0.00000 .700 

5 45 13.57000 . 701 
27 49 43.37000 .700 

33 39 5.61000 .700 
63 36 25.33000 .700 
78 22 59.22000 .700 
0 0 0.00000 .700 

21 5 48.54000 .700 
84 42 29.48000 .700 

09207 HEREFORD 09208 MEGANTIC 134 49 36.75000 .700 
* 51 F26 .70 0.0 0.01965 .20 .20G-22 QLF 

08200 ST ARMAND 09201 YAMASKA 0 0 0.00000 
06200 ST ARMAND 652402 BROMONT 29 18 .75000 
08200 ST ARMAND 09206 ORFORD 65 39 36.76000 
08200 ST ARMAND 65240 1 FARNHAM 341 24 53.93000 

* 51 F27 .60 0.0 0.00917 .20 .20BIGGERCA GEOD 
1 08200 ST ARMAND 09201 YAMASKA 0 0 0.00000 

08200 ST ARMAND 09206 ORFORD 65 39 37.18000 
08200 ST ARMAND 08207 OWLS HEAD 99 46 8.20000 

.700 
.700 

.700 
.700 

.600 

.600 
.600 

08207 OWLS HEAD 08200 ST ARMAND 0 0 0.00000 .600 
08207 OWLS HEAD 09206 ORFORD 1 0 1 51 26.66000 .600 
08207 OWLS HEAD 09207 HEREFORD I 80 14 25.69000 .600 
09207 HEREFORD 08207 OWLS HEAD 0 0 0.00000 .600 
09207 HEREFORD 09206 ORFORD 29 9 3 1 .30000 .600 
09207 HEREFORD 09205 HAM 90 13 59.17000 .600 
09207 HEREFORD 
09208 MEGANTIC 
09208 MEGANTIC 
09208 MEGANTIC 
09208 MEGANTIC 
09208 MEGANTIC 

09208 MEGANTIC 
09205 HAM 
09209 THETFORD 
09210 LINIERE 
09207 HEREFORD 
09206 ORFORD 

* 52TOO 5.00 5.0 0.06971 .20 .20G-252 
2 08207 OWLS HEAD 70K4631 HATLEY 
2 08207 OWLS HEAD 09207 HEREFORD 

65K0335 CROIX 
70K4637 GILBERT 

134 49 35.51 000 .600 
0 0 0.00000 .600 

34 2 22.24000 .600 
99 52 16.74000 .600 

269 15 43.17000 .600 
306 49 50.20000 .600 

QLF 
4 33747.646 17.599 
4 54940.557 27.920 

4 2320 1.228 12.63 1 
4 20774777 11.528 

2 09208 MEGANTIC 
2 09208 MEGANTIC 
2 09208 MEGANTIC 
2 09208 MEGANTIC 
2 09208 MEGANTIC 
2 09208 MEGANTIC 

71 K6154 STORNOWAY 4 30177.294 15.894 
09205 HAM 4 55331.838 28.1 11 
70K4635 WEEDON 4 33363.916 17.413 
70K4632 MARTIN 4 43778.057 22.450 
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* 52T05 5.12 5.1 0.05971 .20 .20G-252 
2 09208 MEGANTIC 09207 HEREFORD 

* 52T37 3.70 3.7 0.01955 .20 .20G-22 
2 08200 ST ARMAND 55240 1 FARNHAM 
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4 32503.501 
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Table 7.6 NET AN listing of reliability analysis results for real 2D network. 

NETAN: Network Analysis (Version 21 Nov 90) 
Network Strength Analysis 

Piece-Wise Linear Approximation.;;_ Connected Stations 

Input network data file: [ong.work.gscl 
Real 20 Network. Sigma record commented out. November 16, 1990. 

Station Name 

2 

Lat (OMS), Long (OMS), Ht (m) 
Strength in Rotation: Lat/Lon, Lat/Ht, Lon/Ht (rad) 

Obs • and Type 
Strength in Shear: Lat!Lon, Lat/Ht, Lon/Ht (strain) 

Obs • and Type 
Strength In Scale: (strain) 

Obs • and Type 

09206 ORFORD 
45 16 43.060625 -72 14 30.207541 623.910000 
0.2291992303E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

216dlr o o 
0.6780170 129E-06 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

406 dis o o 
0.1048841776E-05 

408 dis 

08200 ST ARMAND 
45 2 46.871261 -72 44 20.953894 683.340000 
0.1787265735E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

406 dis 0 0 
0. 1887607 1 08E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

408 dis 0 o 
0.2712184001 E-05 

408 dis 

3 0920 1 VAMASKA 
45 26 45.351290 -72 52 8.645262 392.290000 
0.2439381765E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

225 dir o o 
0.3127375182E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

224dir o o 
0.3791708636E-05 

224 dir 

4 652401 FARNHAM 
45 17 43.897511 -72 57 19.611919 48.700000 
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0.500 1618512E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO 

204 dir 0 0 
0.3307516240E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

202 dir 0 0 
0.3517456435E-05 

409 dis 

5 652402 BROMO NT 
45 17 21.072496 -72 38 16.135074 524.090000 

-0.1843621826E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

221 dir 0 0 
0.1889051795E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

293 dir 0 0 
0.24377637 48E -05 

408 dis 

6 69K4238 DAIGLE 
45 29 9.961951 -72 31 38.850628 247.350000 

0.2953850819E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417 dis 0 0 
0.2575428970E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

310 dis 0 0 
0.2161766696E-05 

310 dis 

7 712051 ST MAJORIQUE 

45 54 58.861380 -72 38 1.304256 52.908000 
0. 77 49727553E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417 dis 0 0 
0.9316988431 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

401 dis 0 0 
0.5348008518E -05 

401 dis 

8 712056 WICKHAM 
45 46 7.554535 -72 36 21.129165 77.103000 
0.7476142592E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417 dis 0 0 
0.2536399 125E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

9 dir 0 0 
0. 1 995342595E -05 

310 dis 

9 08207 OWLS HEAD 
45 3 45. 158627 -72 17 52.885732 722.260000 
0.2594546255E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216 dir 0 0 
0.1615778936E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

215 dir 0 0 
0.1226679828E-05 

408 dis 

10 09202 DUSABLE 
46 12 37.072604 -73 11 59.806107 I 04.781000 
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0.310 1339429E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

225 dir 0 0 

0.39941 9 1380E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

224 dir 0 0 

-0.4188316514E -05 

232 dir 

11 09204 CARMEL 

46 29 58.6 1 9050 -72 37 39.231578 158.621000 

0.2303922089E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

225 dir 0 0 

0.4533089469E -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

224 dir 0 0 

0.4979524888E -05 

224 dir 

12 09205 HAM 

45 47 28.152005 -71 38 0.762182 683.980000 

0.2419608259E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216 dir 0 0 

0.2157032141 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

224 dir 0 0 

0.2422139615E-05 

224 dir 

13 09207 HEREFORD 

45 4 57.225000 -71 36 3.592868 845.530000 

0.2897 477348E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216 dir 0 0 

0.60 1 0754979E -06 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

109 dir 0 0 

0. 7700208902E -06 

393 dis 

14 09208 MEG ANTIC 

45 26 51.274493 -71 7 13.028206 1059.467500 

0.2854532175E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216dir 0 0 

0.3987041417E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

226 dir 0 0 

0.3929598540E-05 

375 dis 

15 09209 THETFORD 

46 8 48.5 15 18 1 -7 1 2 0 1 1 . 43 7 4 1 9 666.570000 
-0.8307484869E -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

226 dir 0 0 

0.9 124208779E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

226 dir 0 0 

0.10 11247600E-04 

375 dis 

16 09210 LINIERE 

45 49 45.115005 -70 22 20.319318 750.290000 
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0.2999085842E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

216dlr o o 
0.5236910 I 86E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

229 dlr o o 
0.5514152198E-05 

229 dir 

17 09216 ARTHABASKA 
46 3 14.104500 -71 53 16.799699 321.731000 

0.1191 938293E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

412dis o o 
0. 15876 70 111 E -04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

412dis o o 
0.17986369 I OE-04 

412 dis 

I 8 14200 STRATFORD 
45 47 39.761115 -71 IS 20.039726 409.870000 

-0.1980789843E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 
228 dir o o 

0. 1777116246E -04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
228 dir o o 

0.1534542300E -04 
422 dis 

19 65K0335 CROIX 
45 33 46.497791 -70 52 22.787639 464.720000 
O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 

0 

20 66KPIIS CARIBOU E-15 
46 0 15.971155 -71 24 I 0.097848 529.160000 

-0.5562603072E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
136 dir o o 

0.7851738514E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 
156 dir 0 o 

0.5604775540E -OS 
391 dis 

21 68K2071 SHERBROOKE 
45 20 46.266313 -71 55 33.826884 412.850000 
0.2689331661 E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

216dir o o 
0.8202859858E -06 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

88 dir o o 
0. 7052087 482E -06 

338 dis 

22 68K2073 BEAUVOIR 
45 27 17.108246 -71 53 53.751099 280.300000 
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0.3135858519E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
47 dir 0 0 

0.2486 786173E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
83 dir 0 0 

0.2375535604E -05 
358 dis 

23 692009 HONORE 
45 56 53.174517 -70 50 16.176131 447.770000 
O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 o:ooooooooooE +oo 

0 0 0 
O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 

0 

24 692010 GRELOTS 
45 59 2.203154 -71 1 21.673533 381.909000 

-0. 7953237833E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
152 dir 0 0 

0.5792329569E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
158 dir 0 0 

0.3850007066E -05 
158 dir 

25 692011 BROUGHTON 
46 8 17.589232 -71 5 49.617509 581.498000 
O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 

0 

26 692012 AD STOCK 
46 1 46.979836 -71 12 18.397682 685.978000 

-0.1230437573E-04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
151 dir 0 0 

0.9751390846E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
151 dir 0 0 

0.1287876464E-04 
395 dis 

27 69K4239 DUSSAULT 
45 28 4.3 18988 -72 13 51.763295 402.500000 
0.406481 0816E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

47 dir 0 0 
0. 1295113346E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

58 dir 0 0 
0.1122547988E-05 

308 dis 

28 69K4240 GALLUP HILL 
45 38 6.697228 -72 11 57.261594 319.590000 
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0.4348054981 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

47 dir 0 0 
0.4027722157E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417 dis 0 0 
0.4826614114E -05 

417 dis 

29 69K4241 SOUTH DURHAM 

45 38 48.365666 -72 21 26.900929 179.840000 

0.5526232020E -OS O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

47 dir 0 0 
0.4290238242E-OS O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

310 dis 0 0 
0.3002360240E -05 

310 dis 

30 69K4242 PINNACLE 

45 43 21.443910 -72 0 41.610936 388.010000 

0.3371 893597E -OS O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

47 dir 0 0 
0.2236453538E-OS O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

416 dis 0 0 
0.1793648331E-OS 

416 dis 

31 69K4243 LAROCHELLE 
45 31 43.227302 -72 4 23.562369 304.990000 
0.3266237003E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

47 dir 0 0 
0.1435730976E-OS O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

75 dir 0 0 
0.1486183689E-05 

350 dis 

32 69K4346 CHARLES 
45 52 34.266330 -72 27 39.849084 63.770000 
0.7867890981 E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

11 dir 0 0 
0.2237129517E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

317 dis 0 0 
0.2443078905E -05 

317 dis 

33 69K4348 LEMAIRE 
45 51 23.40 1352 -72 34 52.406629 63.700000 
0.7749620783E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417 dis 0 0 
0.137837031 OE-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

317 dis 0 0 
0.254306696 7E -05 

317 dis 

34 69K4349 BREBOEUF 
45 so 20.776812 -72 29 59.688552 59.560000 

7. Numerical Examples 103 



Robustness Analysis Final Report 

0.7749624063E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417dis 0 0 

0.1378626132E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

317 dis 0 0 

0.254306696 7E -05 

317 dis 

35 69K4350 HEMMING 

45 51 46.540782 -72 27 0.785585 85.800000 

0.3299870489E -04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

323 dis 0 0 

0.3869778647E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

323 dis 0 0 

0.2082584995E -04 

34 dir 

36 70K4244 MAGOG 

45 13 57.380010 -72 7 2.328885 317.400000 

0.3125550595E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

48 dir 0 0 

0.1775246505E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

366 dis 0 0 
0.1629930264E-05 

296 dir 

37 70K4245 AUSTIN 

45 12 7.762168 -72 14 44.998966 290.520000 

-0.3892163923E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

53 dir 0 0 

0.3882404481 E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO 

53 dir 0 0 
0.3175721289E-05 

365 dis 

38 70K4631 HATLEY 

45 9 8.363523 -71 53 18.366476 395.940000 

0.2849218070E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

216 dir 0 0 
0.13920 14735E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

I 09 dir 0 0 
0.1255207336E-05 

330 dis 

39 70K4632 MARTIN 
45 18 23.8 1 0822 -71 38 31.356562 396.220000 
0.29076 76552E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216 dir 0 0 
0.1293804221 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

108 dir 0 0 

0. 1238682002E-05 

393 dis 

40 70K4633 CHAPMAN 

45 34 16.985548 -71 40 44.175426 630.990000 
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0.2809255876E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

47 dir 0 0 
0.1139954816E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

393 dis 0 0 
0.1463766489E-05 

393 dis 

41 70K4634 ASBESTOS 
45 45 16.869121 -71 54 42.797011 309.870000 

-0.6302590378E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

418 dis 0 0 
0.4380594903E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

418 dis 0 0 
0.2612630896E -05 

412 dis 

42 70K4635 WEEDON 

45 38 32.848965 -71 26 42.228373 386.480000 
0.29442821 03E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216 dir 0 0 
0.1462416377E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

393 dis 0 0 
0.1634337190E-05 

393 dis 

43 70K4637 GILBERT 
45 36 21.037028 -70 58 44.422322 544.460000 

-0.106507481 9E-04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
277 dir 0 0 

0.13500 12469E-04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
277 dir 0 0 

0.7872459230E-05 

426 dis 

44 70K4638 COULOMBE 
45 51 12.417696 -71 29 19.031780 438.270000 
0.29359 17950E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

216 dir 0 0 
0.2318051541 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

136 dir 0 0 
0.2066990702E -05 

384 dis 

45 70K4639 MOISAN 
45 53 56.871982 -71 34 35.977949 569.740000 

-0.8540689454E -OS O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 
141 dir 0 0 

0.8638607 481 E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
121 dir 0 0 

0. 7271839907[ -05 

378 dis 

46 712050 BON CONSEIL 
45 58 40.678773 -72 22 58.101451 91.631000 
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0.77 49729450E -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

417 dis 0 0 

0.9320161 087E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

401 dis 0 0 

0.5348008518E-05 
401 dis 

47 712053 ST ZEPHIRIN 

46 4 47.569228 -72 39 2.842686 25.023000 

-0.1111213491E-04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

401 dis 0 0 

0.2135469992E -04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

401 dis 0 0 

0.1695259473E-04 

401 dis 

48 712055 MALLARD 
45 46 28.667244 -72 24 5.686794 142.128000 

0.55031 02695E -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

47 dir 0 0 
0.4757724749E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

417 dis 0 0 

0.4607355053E -05 

417 dis 

49 712057 DRUMMOND 

45 54 16.662029 -72 31 35.443646 63.880000 

0. 7752047 465E -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

417 dis 0 0 
0.1308349826E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

400 dis 0 0 
0.1457931203E-05 

317 dis 

50 71K6154 STORNOWAV 

45 42 45.387397 -71 12 13.529074 483.170000 
-0.4225622773E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

146 dir 0 0 
0.4797120232E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

146 dir 0 0 
0.27947096 71 E -05 

386 dis 

51 71K6155 STE PRAXEDE 

45 53 51.218892 -71 1323.166549 364.290000 
-0.5422173217E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

146 dir 0 0 
0.3967224861 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

151 dir 0 0 

0.3178432040E-05 

386 dis 

52 71K6156 SEBASTIEN 

45 45 36.572370 -70 55 19.585027 799.230000 
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-0.9 159936778E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

146 dir 0 0 

0.8023707250E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO 

146 dir 0 0 

0.6881894531 E -05 

386 dis 

53 71K6159 LAPOINTE 

45 54 6.374812 -71 34 14.982987 600.040000 

-0.5360384814E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO 

383 dis 0 0 
0.9092228940E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

383 dis 0 0 

0.1107144575E-04 

383 dis 

54 71K6165 VIANNEV 

46 4 52.998888 -71 37 30.248075 564.280000 

-0.7362515097E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

245 dir 0 0 

0. 150215B604E -04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

383 dis 0 0 
0.2253310 123E-04 

383 dis 

55 72K7455 VICTORIAVILLE 

46 0 41.601241 -715546.779541 246.133000 

O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

0 0 0 
O.OOOOOOOOOOE +00 

0 

56 72K7457 SEVIGNY 

45 56 13.678515 -71 43 17.746867 500.100000 
0.6385320893E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

383 dis 0 0 
0. 907B455909E -05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

412 dis 0 0 
0. 9200836578E -OS 

412 dis 

57 72K7462 K I NGSEV FALLS 
45 54 5.080 1 73 -72 4 40.320796 125.670000 

0. 16 17695032E -04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00 

412 dis 0 0 

0. 1396636558E -04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 
412 dis 0 0 

0.1159093134E -04 

244 dir 

58 72K7463 ST FELIX 

45 47 58.863308 -72 11 28.930794 180.680000 
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-0.6566929503E -OS O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00 

41 B dis o o 
O.B513433793E-OS O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO 

41Bdis o o 
0.7365212531 E-05 

416 dis 

99 
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8. PROPOSED SPECIFICATIONS FOR THE 
TOTAL ANALYSIS OF NETWORKS 

8.1 Overall Scheme 

Final Report 

Based upon the scientific analysis presented in the foregoing chapters, we are now in a 

position to propose a methodology to be used in the complete analysis of a 2D network (Table 

8.1). The columns contain the various quantities to be assessed, while the rows contain the 

various measures and tests to be used. The proposal clearly integrates the standard assessment 

tools of random error analysis (covariance analysis- row 1), with that of the robustness (row 

2), and external reliability (row 3) analyses. The quantities to be assessed consist of the 

estimated positions, model, observables, and functions of estimated positions. The 

observation and model measures are used in two modes: preanalysis and postanalysis. 

8. 2 Preanalysis 

In standard statistical testing procedures, it is mandatory to predict beforehand the point and 

relative confidence regions of the coordinates. This yields a measure of how random errors 

will propagate from the observations into the estimated positions. 

It is also mandatory to predict how the systematic blunders (if made) will propagate 

throughout the network and bias the estimated positions. These can be measured by internal 

reliability measures on the observables, i.e., the maximum undetectable errors, robustness, and 

external reliability measures on the estimated positions. Here, the robustness analysis gives us 

a measure of how strong the network is in resisting blunders or systematic errors in the 

observations. Recall, that the internal reliability measure is an estimate of how large a blunder 

can be before standard statistical testing can catch it, whereas robustness and the external 

reliability quantify the effect on the unknown parameters. 

8. Proposed Specifications for the Total Analysis of Networks 109 



?0 

~ 
~ a 
en 
] 
s 
£ 
§· 
::I 

"' 0' ., 
g-
Ql 
ei 
~ 
~ 
~;;· 

g, 
~ 

I 

--0 

\Juantlty 
Assessed 

Type 
of 
Measure 

Accuracy 
(Type I 
error
random) 

Internal 
Reliability, 
Robustness 
(Type II 
error
blunder) 

External 
Reliability 
(Type II 
error
blunder) 

TableS.! Total analysis of a network. 

Observations and model 
Positions pre-

11------.------land 

Preanalysis 

Given C.e and 
design 
matrices A and 
B, predict CQ 
:::) (1-a) 
confidence 
ellipses 

a) Maximum 
undetectable 
errors Y'.f.i 

b) Redundancy 
numbers ri 

c) Predicted 
residuals vi 

= r i v.ei 

Postanalysis 

Tests listed 
in Tables 
13.2 to 13.5 
in Vanicek 
and 
Krakiwsky 
[1986] 

a) Max. 
undetectable 
errors -y. ei 

b) Redundancy 
numbers fi 

c) Actual " 
residuals vi 

= ri V'ei 

postanalysis 

Point and 
relative (1-a) 
confidence 
ellipses 

a) Robustness 
in scale a 

b) Robustness 
in shear"( 

c) Robustness 
in twist ro 

External 
reliability 
Y'x· 1 

Network as 
a whole 

a) Test on ~ I ~ 
b) Test on 

distribution of 
residuals 

a) Average lol 

b) Average "( 

c) Average lrol 

a) Global 
external 
reliability V'xT 

-1 
C" Vx 

X 
b) Average ext. 

reliability Vxi 

Functions 
of positions 

a) Accuracy of 
position 
differences 

b) Accuracy of 
distances 

c) Accuracy of 
directions 

a) Strain of a 
line 

b) Rotation of a 
line 

Remarks 

These are all 
standard tests 
and measures 

Robustness of 
functions to be 
yet formulated 

Only under 
exceptional 
circumstances 

~ g. 
c: 
"' ~ 
~ 

~ 
"" .:( 

"' ~;;· 

'Tl s· 
e:.. 
~ 

~ 



Robustness Analysis Final Report 

8. 3 Postanalysis 

Postanalysis, like preanalysis, is extended to take care of the Type II error, that is, the 

quantification of what happens when one considers the presence of blunders in the solution. 

The standard tests consisting of the null hypothesis Ho (no blunders) must be amended to 

include the alternative hypothesis Ha (blunders). In this way, we are able to track down how 

our tests are affected by this new dimension. 

The tests affected by the consideration of Ha are those listed in VanK:ek and Krakiwsky 

[1986] as follows: 

(a) Univariate testing of an observational series as a unit (fable 13.2). 

(b) Univariate testing of individual observations (fable 13.3). 

(c) Multivariate testing of observables as model as a unit (Table 13.4). 

(d) Multivariate testing of individual observables (fable 13.5). 

8. 4 Other Considerations 

The proposed total analysis scheme includes an extended preanalysis activity where both 

the Types I and II errors are modelled. We note that for reasons explained in Chapter 5, the 

external reliability measures should be used only when robustness cannot be computed because 

of some peculiar network configuration. 

Robustness of functions of estimated positions, such as computed distances, angles, 

possibly coordinate differences, have not been formulated yet. It is clear from the theoretical 

viewpoint that such measures should exist, but mathematical expressions for these are yet to be 

derived. 

We reiterate the point here that robustness of a network has to be measured by three 

independent primitives. It is not possible to combine these into a single measure. Tolerance 

limits and design criteria for robustness will have to be worked out on the basis of a 

'reasonable' selection of ~o-value (probability of Type II error). This selection requires further 

investigation. 

8. Proposed Specifications for the Total Analysis of Networks 111 



Robust Analysis Final Report 

9. CONCLUSIONS, RECOMMENDATIONS, AND 
ACKNOWLEDGEMENTS 

The collaboration of UNB and U of C researchers on the comparison of reliability analysis 

with geometric strength analysis resulted in the conception of a new technique, robustness 

analysis, which is a natural merger of the two existing techniques. First experiences with 

robustness analysis show that it is a very powerful technique capable of providing a picture of 

the analysed network, which is complementary to the one furnished by the standard covariance 

analysis. 'Network robustness' (strength, as an ability to resist deformations induced by 

undetectable blunders, might be a term more readily understood) is invariant with respect to 

coordinate shifts and almost invariant with respect to orientation and scale changes. 

Robustness is expressed in terms of three independent deformation primitives; namely, 

robustness in scale (strain), local configuration (shear), and twist (differential rotation). It thus 

makes no sense to talk about robustness in general but only about "robustness in scale," 

"robustness in shear," and "robustness in twist." This will sound complicated to a surveyor 

uninitiated in the concepts of deformation analysis, where the three primitives are used 

routinely. Let us emphasize here that the full description of a deformation cannot be achieved 

with fewer than three primitives. If we wish to deal with network strength meaningfully, then 

we have to accept this fact and learn to live with it. It seems to us that the introduction of 

robustness analysis will require some educational effort aimed at the surveying community. 

Specifically, a guide/manual will have to be written with the aim to assist in the transfer of 

knowledge. 

We recommend that robustness analysis be used side-by-side with the standard covariance 

analysis for a complete network analysis in the future. The Canadian federal specifications for 

horizontal control networks should be extended to include robustness analysis. It should be 

mentioned here that under special circumstances, the 'external reliability' measure discussed in 
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Chapter 3 would have to be used (in case of geometrical singularity encountered at a network 

point or set of points) and provisions should be made for this in the specifications. 

As we have seen in Chapter 7, it is not always easy, or even possible, to guess at the 

reason behind a specific weakness in the network from the network configuration alone. More 

experiments should be conducted with robustness analysis, and more experience gained with 

practical application as well as the interpretation of robustness analysis results, particularly 

before specific values of robustness tolerance limits can be imposed through federal 

specifications. Some general criteria, however, can be formulated already, and these were 

spelled out in Chapter 8. A better graphical representation of robustness primitives is a must. 

Our investigations were definitely hindered by the unavailability of a decent graphics package 

on the UNB V ax computer system. 

A strategy will have to be worked out on how to deal with the two kinds of singularities 

that may arise in robustness analysis. While the generic singularity associated with the extreme 

weakness of the network has so far been shown by 'large' values of the robustness primitives, 

geometrical singularities have been simply eliminated by leaving out the singular points. More 

worrisome is the case of geometrical near-singularities such as the one encountered at station 

HEMMING in the analysis of the real network in Chapter 7. A measure of ill-conditioning 

based either on confidence regions for strength primitives or the value of the determinant in the 

least-squares fitting of planes in the determination of strain matrices will have to be devised. 

Some refinement of the reliability analysis as the first part of robustness analysis is called 

for in order to understand better the role of the probabilities (significance levels) used in the 

univariate and multivariate tests and their impact on the non-centrality parameter A.a. The total 

picture of how those probabilities work together should be assembled and illustrated on 

numerical examples to be shown in the guide/manual as mentioned above. Even though the 

appropriate selection of ~a-probability was not necessary in our investigations- ~0 affects 

only the scale of the robustness primitive plots- it will become necessary for formulating the 

robustness tolerance limits. This point thus deserves further investigation. 
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