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ABSTRACT 

In hydrography and surveying the use of kinematic positioning techniques is 

nowadays very common. An optimal estimate of position of the kinematic user is 

usually obtained by means of the Kalman filter algorithm. Dynamic and measurement 

models are established for a discrete time, time varying system. Some problems in 

establishing such a model are addressed. Based on this model and the derived Kalman 

filter several aspects of Kalman filtering that are important for kinematic positioning 

applications are discussed. 

Computational and numerical considerations indicate that so-called covariance 

filters are to be used for kinematic positioning, and a specific covariance filter 

mechanization is described in detail. For some special applications linear smoothing 

techniques lead to considerably improved estimation results. Possible applications of 

smoothing techniques are reviewed. To guarantee optimal estimation results the 

analysis of the performance of Kalman filters is essential. Misspecifications in the 

filter model can be detected and diagnosed. The performance analysis is based on the 

innovation sequence. 

Overall, this report presents a detailed analysis of some aspects of Kalman 

filtering. 
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SOME ASPECTS OF KALMAN FILTERING 

1. INTRODUCTION 

The past decades have shown a considerable increase in the number of applications 

where a real-time estimate of position is required for a user in a so-called kinematic 

mode. Especially in the offshore environment, the demand for precise position and 

velocity estimates for a kinematic user has been growing constantly. Kinematic means 

that the point to be positioned is actually moving. If one also takes into account the 

forces underlying this movement one generally speaks of dynamic positioning. Most 

applications of kinematic positioning are found in marine environments (e.g., 

hydrography, seismic surveys, navigation), but also in land surveying kinematic 

methods are increasingly put into use (e.g., inertial surveying, motorized levelling, 

real-time differential GPS). In this report we have no specific kinematic positioning 

application in mind. Actual applications are described in an accompanying report 

[Salzmann, 1988]. 

This report mainly deals with aspects of the estimation process most frequently 

used in kinematic and dynamic positioning, namely the Kalman filter. Kalman 

filters have been used successfully for years for positioning related problems, which is 

mainly due to their convenient recursive formulation which enables an efficient 

solution for time varying systems. The concepts and characteristics of Kalman filters 

have been discussed extensively since its original inception [Kalman, 1960]. The 

Kalman filter is covered in numerous textbooks (e.g., Jazwinski [1970], Gelb 

[1974], Anderson and Moore [1979], Maybeck [1979; 1982]). Generally the term 

filter is used for all estimation procedures in time varying systems. Actually filtering 

Chapter 1: Introduction Page: 1 
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encompasses the topics of prediction, where one predicts the state of a system at some 

future time; filtering (in the strict sense), where the state of a system is estimated using 

all information available at a certain time; and smoothing, where the state is estimated 

for some moment in the past. The so-called state of a system constitutes a vector of 

parameters which fully describes the system of interest (e.g., a moving vehicle). 

In this report some specific aspects of Kalman filters considered relevant for 

kinematic positioning problems are discussed. For a general introduction and overall 

treatment of the estimation procedures for time varying sytems the reader is referred to 

the mentioned textbooks. 

In Chapter 2 the discrete time linear Kalman filter and its underlying model are 

introduced. The Kalman filter algorithm is derived using a least-squares approach. 

Some comments on difficulties in establishing an actual filter model are made. 

Chapter 3 is devoted to computational and numerical aspects of Kalman filtering. 

The concepts of covariance and inverse covariance (or information) filters are 

introduced. Specific implementation methods for the Kalman filter are considered. 

Also investigated is which specific method should be used for kinematic positioning 

problems. 

A general overview of linear smoothing is given in Chapter 4. Smoothing 

algorithms are not extensively used in kinematic positioning (a smoothed estimate 

hampers real-time applications because of its inherent delay). If a small delay is 

acceptable, however, smoothing techniques lead to greatly improved estimates. 

The performance analysis of Kalman filters is discussed in Chapter 5. It is very 

important that the filter operates at an optimum, because otherwise estimation results 

and all conclusions based on them are invalidated. For the performance analysis the 

so-called innovations approach is used. 

Page:2 Chapter 1: Introduction 
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Finally a summary of results is presented in Chapter 6. 
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2. THE LINEAR KALMAN FILTER 

2.1 SYSTEM MODEL AND THE LINEAR KALMAN FILTER 

In this chapter we introduce and briefly discuss the mathematical model and the 

relations of the linear discrete time Kalman filter. We are mainly interested in discrete 

time dynamic systems. 

A discrete time dynamic system can be described by the following difference 

equation (called the dynamic model): 

where 
k-1,k 
Kk 

<P(k,k-1) 

uk-1 

Bk-1 
wk-1 

Gk-1 

time indices with k = 0,1,2, .... 
n-dimensional vector of state variables; 
the state of a system is a vector of parameters with which the 
system can be fully described 
nxn state transition matrix 
p-dimensional vector of deterrninisitic control input 

nxp control input matrix 
s-dimensional vector of system noise 

nxs system noise input matrix. 

(2.1) 

An underscore indicates that a vector is a random variable. Nate that the dimensions of 

the control input vector and the system noise vector are not necessarily equal to the 

dimension of the state vector. 

Observations are available at discrete time intervals that are not necessarily 

equidistant. The observations are linearly related to the state by means of a design 

matrix and are corrupted by additive measurement noise. The so-called measurement 

model is given as: 

Chapter 2: The Linear Kalman Filter Page: S 
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(2.2) 

where 
Yk m-dimensional vector of observations 

Ak mxn design matrix 
~k m-dimensional vector of measurement noise. 

Before we proceed, the statistical model underlying the system and measurement 

model is specified. The (s-dimensional) vector random system noise and the (m-

dimensional) vector random measurement noise sequences are assumed to be zero 

mean, Gaussian, and uncorrelated. Hence: 

E{wiJ = 0 
E{w· w·t} = Q·O·· -1'-J l lJ 
E{.~iJ = 0 
E{e· e·t} = Ro·· -1'-'J 1 1J 
E{e· w·t} = 0 -1•-J 

where E{.} is the expectation operator, and Oij denotes the Kronecker delta (i.e., Oij=l 

if i=j, Oij=O otherwise). 

The measurement and system noise sequences describe model disturbances and 

noise corruption that affect the system but also uncertainty about the model. 

Furthermore initial conditions (k=O) have to be specified. The initial state may assume 

a specific value, but because this value is generally not known a priori, the initial state 

is considered to be a random vector with a Gaussian distribution and the known 

statistics: 

E{.!Q} = xo 
E{ (.!Q-x0) (.!Q-x0)t} = P01o . 

Finally it is assumed that the system noise and the measurement noise random 

sequences are uncorrelated with the initial state. 

Page:6 Chapter 2: The Linear Kalman Filter 
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E{ (.~.o-xo) wit} for all i=O,l,2, .... .. 
E{ (~-x0) ~it} for all i=0,1,2, ..... . 

The transition matrix ci>(k,k-1), the design matrix Ak, the noise and control input 

matrices (Gk_1 and Bk_1 respectively), and the covariance matrices PolO• Qk , and Rk 

are assumed to be known. 

Depending on the application one might want to obtain an estimate of the state at a 

certain time. If the state is estimated for some future time, the process is called 

prediction. If the estimate is made using all measurements up to and including the 

current moment, one speaks of filtering. If an estimate is made for some time in the 

past using measurements until the current moment, the process is called smoothing. 

In this chapter we limit ourselves to prediction and filtering. The Kalman filter 

process will now be introduced. It basically consists of two parts: 

• time update; the prediction of the state vector and its (error) covariance using 
the system model and its statistics. 

• measurement update; the improvement of the prediction (both the state and 
its (error) covariance) which gives the filtered state. 

The time update is given as: 

(2.3a) 

(2.3b) 

whilst the measurement update can be written in the following form 

(2.4a) 

(2.4b) 

(2.4c) 

where Kk is the so-called Kalman gain matrix. The indices of the form ilj denote 
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estimates at time i based on all measurements till time j. The index kik -1 thus indicates 

one step predicted values, whereas klk denotes the estimate at time k using all 

measurements including Yk· 

The filter model and the actual filter process are given in Fig. 2.1. 

It is postulated that the Kalman filter is the best filter among the subset of all linear 

filters and the best filter among the set of all filters when the noise processes are 

Gaussian [Anderson and Moore, 1979]. 

w i<k K 
(system noise) (measurement noise) 

~+ ~ Kk .. 
Bk-1 

· ... t\ ... 
+ 

.....___ <l>(k,k-1) r-- delay ...___ 

' 

+ ... " 

~ ~ h.?+ Kldk 

~ -

~klk-1 

t\ 
~ 9:-- <l>(k,k-1) ~ delay ~ ,.. 

Kklk-1 

.. 
Bk-1 

Fig. 2.1 Linear discrete time Kalman filter: filter model (top) and filter process 
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(bottom). 

2.2 THE LINEAR KALMAN FILTER: A DERIVATION 
BASED ON LEAST SQUARES 

There exist various derivations of the linear Kalman filter. These derivations are based 

on principles like least squares, minimum mean square error, maximum likelihood, 

and maximum a posteriori. In general the use of different principles leads to different 

estimators. However, in the case of linear systems where the probability density 

functions are assumed to be Gaussian all the above mentioned estimation methods 

yield the same estimator. Thus, the framework used to discuss such systems reduces 

to one of personal preference. Since the principle of least squares is probably the one 

which surveyors and hydrographers are the most familiar with, our derivation of the 

linear Kalman filter in this paragraph is based on this principle. The derivation is taken 

from Teunissen and Salzmann [1988]. Other derivatons of the filter process can be 

found in, e.g., Jazwinsky [1970], Gelb [1974], Anderson and Moore [1979], and 

Maybeck [1979]. 

The linear model of observation equations from which the linear Kalman filter can 

be derived is given as 

..... 
2Sk-llk-1 I 0 

E{ 4k } = -<I>k,k-1 I [ x:~'} 
~k 0 Ak 

Chapter 2: The Linear Kalman Filter Page: 9 
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pk-llk-1 

0 

0 

0 , 0 

0 

(2.5) 

This model is equivalent to the general linear model of the adjustment with 

observation equations. Note that in this derivation a deterministic control input is not 

taken into account. 

The Gaussian random vector ~k-llk-1> with covariance matrix Pk-llk-1• is the 

estimator of the state xk_1 at time k-1. It summarizes all the information available at 

time k-1 about state xk-1· The Gaussian random vector .dk, with covariance matrix 

Qk-1> is the estimator of the difference between the state xk and the propagated state 

<I>klk-1xk-1· If one would know the dynamic model perfectly, one would set both the 

mean E{dk} and covariance matrix Qk-1 equal to zero. Due to all sorts of random 

disturbances, however, in practice one is usually not able to model the dynamics of the 

system completely. This is why the difference between the state and propagated state is 

modelled as a random vector. 

The Gaussian random vector Yk· with covariance matrix Rk, is an estimator of the 

observational variates at time k. Its mean is related to the state xk through the design 

matrix Ak. 

In order to estimate we need sample values. In practice we have only samples 

available for Kk-llk-1 and Yk· The sample of Xk-11k-1 is given by the best estimate of xk-1 

at time k-1, and the sample of Yk is given by the observations. There is, however, no 

sample available for llk· Since the difference between the state and propagated state is 

considered to be small, the random vector .dk is treated as a pseudo-observational 

variate for which the sample value can be taken equal to zero. 

Page: 10 Chapter 2: The Linear Kalman Filter 
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Prediction 

The least-squares estimation of the state without the use of the observations Yk is 

considered first. Model (5) reduces then to 

0 

I 

pk-llk-1 

0 

Note that there is no redundancy since the model contains 2n equations with 2n 

unknowns. Thus the available estimatexk-11k-1 ofxk-1 cannot be improved upon. Due 

to the lack of redundancy in (2.6) the least-squares estimator of xk, which we shall 

denote by gklk-1> simply follows from inverting the design matrix of (2.6). Thus 

"" "" 
~klk-1 = Cl>k k-l~k-llk-1 + ~h ' . (2.7) 

Application of the error propagation law gives for the covariance matrix ofxklk-1: 

(2.8) 

Since the sample value of gk is taken equal to zero it follows from (2.7) that the least­

squares estimate of xk based on model (2.6) is given by 

~klk-1 = Cl>k k-1~k-llk-1 
' . (2.9) 

Equations (2.8) and (2.9) constitute the well known time update equation of 

the linear Kalman filter. They are equivalent to equations (2.3a) and (2.3b) in section 

2.1. 

Chapter 2: The Linear Kalman Filter Page: 11 
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Filtering 

The least squares estimation of the state with the observations Yk included is now 

considered. In this case model (2.5) applies. Since there is redundancy (the 

redundancy equals the dimension of the vector of observations) the available estimate 

~k-11k-1 of xk-1 can now be improved. This improvement is, however, part of 

smoothing (i.e., one uses the observations of time k to estimate the state at time k-1) 

and is not considered in the Kalman filter. The state xk_1 is therefore eliminated from 

model (2.5). This gives 

E { [ cl> k,k -1~ ;~11k- ,+Q k] } ~ [ ~J k { cl>k.k _,P k-llk-1cl>~.: 1 +G k-1<4-1G ~ -1 :J 
(2.10) 

With (2.7) and (2.8) this can also be written as 

(2.11) 

Straightforward application of the least-squares algorithm gives for the least-squares 

estimator of xk, denoted by Xklk: 

(2.12) 

Application of the error propagation law gives for the covariance matrix ofKklk: 

(2.13) 

Equations (2.12) and (2.13) constitute the so-called measurement update 

equations of the linear Kalman filter. An alternative form of the measurement update 
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equations can be obtained by invoking the following matrix inversion lemma: 

(2.14) 

where C and D are symmetric matrices. The identity (2.14) is easily verified by 

multiplying the right-hand side of (2.14) with [C-l+Btn-lB]. Application ofthe matrix 

inversion lemma (2.14) to (2.12) and (2.13) gives after some arrangements for the 

filtered state 

(2.15) 

and for its covariance matrix 

(2.16) 

The measurement update equations (2.15) and (2.16) are the ones which are 

usually presented in the literature. They are given as equations (2.4b) and (2.4c) in 

section 2.1. 

2.3 EXTENSIONS OF THE SYSTEM MODEL 

Now the Kalman filter has been established, a few remarks regarding the properties of 

the filter and possible extensions to the filter concept can be made. 

2.3.1 Alternative System Models 

The dynamic model on which the Kalman filter is based has been introduced as a 

discrete time linear dynamic system. Such a discrete time system can often be derived 

directly for the problem at hand. In many cases, however, such a system is based on a 

Chapter 2: The Linear Kalman Filter Page: 13 
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continuous time dynamic system. Especially if one wants to describe the dynamics 

(e.g., forces) underlying the model, the system model can often be better represented 

as 

i(t) = F(t)~(t) + B(t)u(t) + G(thy(t) (2.17) 

which is a linear differential equation with one independent variable (in our case time t) 

and where 

. d 
x(t) = dt x(t) • 

F(t) is the so-called nxn dynamics matrix. An initial condition !(to)=xo is 

assumed. It is assumed that the measurement model is based on sampled 

measurements and thus the measurement model remains unchanged. 

The Gaussian process w(t) is an m-dimensional Gaussian process of zero mean 

and strength Q(t). 

E{~(t))} = 0 
E{ w(t) w(s)t } = Q(t)8(t-s) 

where Q(t) is a spectral density matrix [Gelb, 1974]. 

Given model (2.17) the time update equations can be solved in continuous time. 

Using numerical integration techniques a solution for the system state 

iCt) = F(t)~(t) + B(t)u(t) (2.18) 

can be obtained starting from the initial value xo and its covariance matrix can be 

computed. The update equation for the covariance is not derived (see e.g. Gelb 

[1974]) and is given here for easy reference: 

P(t) = F(t)P(t) + P(t)F(t) t + G(t)Q(t)G(t) t (2.19) 

(starting from the initial value P0). 
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Although it might be advantageous to formulate the dynamic model in continuous 

time it is indicated how the discrete time equivalent of model (2.17) can be obtained. 

This enables us to perform the actual processing with the previously outlined discrete 

time algorithm. 

The solution of the differential eqn. (2.17) is given by: 

~(t) = <l>(t,to)x0 + ft<l>(t;t)B('t)u('t)dt + ft<l>(t,'t)G('t)W('t)d't 
to to (2.20) 

Although the last term in eqn. (2.20) cannot be evaluated properly, this imprecise 

notation will be maintained (for a discussion see Maybeck [1979]). By inserting the 

proposed solution in eqn. (2.17) it can be seen that this is a valid solution. <l>(t,to) is 

the state transition matrix that satisfies the differential equation 

d 
dt(<l>(t,t0)) = F(t)<l>(t,t0) 

and the initial condition 

<I>(t0,t0) = 1 . 

The transition matrix has the following property: 

and thus 

<l>(t,t0)<l>(t0,t) = <l>(t,t) = I 

so that 
-1 

<l>(t,t0) = <I>( to. t) . 

If the dynamics matrix F(t) is a constant matrix (i.e., F(t)=F for all t) the transition 

matrix <l>(t,to) is a function of the time difference (t-to) only. The transition matrix can 

then be expressed as a matrix exponential 
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Cl>(t,to) = Cl>(t-t0) = eF(t-to) 

or by the equivalent series expansion 

oo (t-to)~n 
Cl>(t-to) = L ' 

0 n. 
n= 

In the case of time invariant systems the transition matrix Cl>(t-to) can also be obtained 

via the inverse Laplace transform 

-1 -1 
Cl>(t-t0) = £ (si - F) . 

The derivation via Laplace transforms can be very advantageous for analytical studies. 

To summarize how the state transition matrix can be obtained is by numerical 

integration methods and in the time invariant case by a matrix series expansion or 

using Laplace transforms. 

If one assumes that the control input u(t) is constant between two measurement 

updates it follows that 

The term 

is equivalent to Gk-1wk-1 in eqn. (2.1) although it cannot be evaluated rigorously. 

Now that the time update of the state has been linked to the discrete time model the 

state covariances are discussed. In continuous time 

t t 
E{ (G('t)W('t))(G(cr)~(cr)) } = G('t)Q('t)G('t) O('t-cr) 
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The discrete time formulation can be derived as follows: 

which by taking the expectation operator into the integral signs and recalling the 

definition of the continuous time system noise can be written as: 

Note that Qk-l is a covariance matrix. Gk-lQk-lGk-lt is not necessarily positive 

definite, but always semi-positive definite. Furthermore it holds that 

Starting from a continuous time dynamic system model it has been shown how the 

discrete time equivalent form can be obtained. 

2.3.2 Model Nonlinearities 

Until now we have assumed a linear dynamic model and a linear measurement model. 

In practice, however, often nonlinear models are encountered. Although the linear 

model will not provide a valid description anymore (i.e., the nonlinearities in the 

model are not negligible) we still want to exploit the linear estimation concepts derived 

earlier, and thus apply the developed linear estimation results. 

In general both the dynamic model and the measurement model can be nonlinear. A 

continuous time nonlinear system can, e.g., be formulated as: 

~(t) = f(A(t),u(t),t) + G(thy(t) (2.21) 
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where f is a known n-vector of functions of three arguments. Note that the dynamic 

system noise (iy(t)) enters in a linear additive fashion. This does not generally hold 

true. The measurement model is still based on sampled measurements. The nonlinear 

measurement model is decribed by 

(2.22) 

with ~ as defined earlier. 

Note that also in this case the noise enters in a linear additive fashion. In many 

applications in surveying and hydrography the system dynamic model can be modelled 

adequately as being linear. The measurement model, however, will usually be 

nonlinear. A method to deal with nonlinearities in the model is to use a first-order 

approximation. Then the measurement model can be expanded in a Taylor series 

(neglecting the higher-order terms): 

where 

The design matrix obtained by linearization can then be used in the Kalman filter 

measurement update equations presented earlier. 

One can linearize the measurement function about different points. If some nominal 

trajectory is available and linearization is done about points of this trajectory, the filter 

process is called a linearized Kalman filter (LKF). If the linearization is done about the 

predicted state estimate (i.e., xkO = xklk- 1) the process is called an extended Kalman 

filter (EKF). If the solution is iterated (until a certain stopping criterion is met) using 
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the most recent state estimate (starting with the predicted state), the process is called an 

iterated extended Kalman filter (lEKF). See Fig. 2.2 

In the case of an lEKF the measurement update equation for the system state can 

be written as: 

iklk,(i+1) = iklk-1 + Kk,(i)(Yk- ak(iklk,(i~- Ak,(i)(iklk-1- iklk,(i~) 

where i denotes the number of iterations. 

Apart from this the lEKF equations are equivalent to those of the linear Kalman 

filter. Due to the iterative nature, the computational burden of the lEKF may be much 

larger than that of the linear Kalman filter. The lEKF is probably the most frequently 

used method in hydrography and surveying to deal with nonlinearities in the filter 

model. 

2.3.3 Filter Design Considerations 

If the Kalman filter model is linear, the Kalman filter process equations show that the 

propagation and update equations of the (error) covariance matrix of the system state 

and the Kalman gain matrix are independent of the actual observations. Thereby the 

opportunity is given to perform an a priori accuracy analysis of the Kalman filter 

performance 

In case the filter model is time invariant the filter will operate in steady state 

conditions after some time. This facilitates the assessment of the filter accuracy for the 

whole period of interest by only analyzing a single steady state sample. Even in case 

the filter model is nonlinear, however, an a priori accuracy analysis is not impossible. 
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Fig. 2.2 Iterated Extended Kalman Filter for a dicrete time filter model with nonlinear 
measurement model. 
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Assuming a nominal trajectory the update and propagation equations for the (error) 

covariance can be performed without the actual measurements being available. The 

obtained results will, however, only be approximate. 

2.3.4 Alternative Noise Models 

The Kalman filter described in this chapter is based on the fact that the system noise 

and measurement noise sequences are white and mutually uncorrelated. These results 

can be extended by allowing correlation between both noise sequences. If one assumes 

a correlation between the measurement noise at time k and the dynamic system noise of 

the ensuing sample period the statistical model is expanded as: 

E { wk~jt } = Skokj . 

Allowing this correlation leaves the Kalman filter measurement update unchanged. The 

equations of the time update change however (see Maybeck [1979, p.246], Anderson 

and Moore [1979, p.108]). 

If on the other hand one assumes correlation between the system noise over a 

sample period and the noise corrupting the measurement at the end of the sample 

interval, which can be stated as: 

then the time update equations remain unchanged, but the equations of the 

measurement update are slightly different (see Maybeck [1979, p.247]). 

Exploiting the correlation between system noise and measurement noise improves 

the estimation precision. Probabilistic information on the realization of the system 

noise is obtained by the observation of the particular realizations of the measurement 
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noise [Maybeck, 1979]. In practice it might be difficult, however, to specify a realistic 

S-matrix. 

Another possible extension to the statistical model is the assumption that the noise 

sequences are not white. The noise models can then be developed further in state space 

models and thereby lead to state augmentation. State augmentation is the most 

generally applied technique in this case. State augmentation can increase the 

computational load of the Kalman filter process considerably. 

Sometimes models for the measurement noise can be developed (e.g., the 

measurement noise sequence is a Markov process, that is, the realization of the noise 

process at certain time depends only on the realization of that process at the previous 

moment and a random input). This setup is equivalent to a measurement free problem 

and is not discussed here any further. 

2.4 FINAL MODEL CONSIDERATIONS 

In this chapter some aspects of the discrete time linear Kalman filter and its underlying 

model have been discussed. In the subsequent chapters some specific aspects of the 

Kalman filter will be investigated, which are basically unrelated to the exact structure 

of the filter model. Therefore a somewhat simplified model will be used for further 

investigations. 

The simplified dynamic model and measurement model are of the following form: 

~k = <l>(k,k-l)~k-1 + Gk-1Wk-1 

~k = Ak~k + ~k 

(2.23) 

(2.24) 

where all the terms are equivalent to those specified for the original model (eqn. (2.1) 

to (2.2)). Note that a deterministic control input is no longer part of the model. The 

Page:22 Chapter 2: The Linear Kalman Filter 



SOME ASPECTS OF KALMAN FILTERING 

derived Kalman filter time and measurement update equations remain unchanged 

provided that the deterministic control input is deleted. 
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3. COMPUTATIONAL CONSIDERATIONS 

3.1. INTRODUCTION 

In the previous chapter the linear Kalman filter was introduced. Time update and 

measurement update equations were derived for the linear Kalman filter. There exist, 

however, a range of different algorithms, generally called mechanizations. In the 

sixties and early seventies limited computer core memory size and low computing 

speeds led to the development of various mechanizations. Theoretically all these 

mechanizations lead to identical results. It was found, however, that if single precision 

arithmetic was used for the implementation of certain filter mechanizations, numerical 

problems could arise during the filter computations. Therefore numerous 

investigations concerning these numerical problems were set up. These investigations 

were mainly related to aerospace problems. In this context numerical properties and the 

computational efficiency of almost all mechanizations have been investigated. 

It is of interest up to what extent numerical problems will arise in kinematic 

positioning problems (and the closely related field of navigation) and which 

mechanization should be preferred. In this chapter we will review the two basic forms 

of Kalman filter mechanizations and we will investigate which mechanizations are best 

suited for our purposes. 

This chapter only addresses the computational aspects directly related to the 

different filter mechanizations of the linear Kalman filter. If, as often occurs in 

practice, the design, transition, and covariance matrices are not known (e.g., in case of 

nonlinearities of the model) the computational burden of computing these matrices can 
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account for up to 90% of the total computational burden of the Kalman filter. As is it 

likely that these computations have to be performed for every mechanization, 

compuational aspects not directly related to a specific mechanization are not considered 

here. 

In section 3.2. the concepts of the covariance and inverse covariance (or 

information) filters are introduced. Section 3.3. is devoted to square root filtering, 

where the square root of the covariance matrix of the state (rather than the covariance 

matrix itself) is propagated in time. In section 3.4 a closer look is taken at the U-D 

covariance factorization method which is closely related to the square root concept. 

Finally some implementation considerations are discussed in section 3.5. 

3.2 BASIC FILTER MECHANIZATIONS 

Filter mechanizations can be devided into two major classes. The covariance filters 

and the inverse covariance filters. Covariance filters propagate the covariance 

matrix of the state in time. Inverse covariance filters propagate the inverse of the 

covariance matrix. Inverse covariance filters are usually called information filters. 

The covariance-type (standard) Kalman filter equations have been derived in 

Chapter 2. The time and measurement update equations of the linear Kalman 

(covariance) filter are repeated here for easy reference. The time update equations for 

the estimate of the state and its covariance are given as: 

xklk-1 = <l>(k,k-l)ik-11k-1 (3.1a) 

(3.lb) 
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The measurement update equations are of the following form: 

(3.2a) 

"' "' "' 
xklk = xklk-1 + Kk(Yk- AiJCklk-1) (3.2b) 

(3.2c) 

An alternative version of the linear Kalman (covariance) filter is derived in 

Krakiwsky [1975] and is called the Bayes filter. In the Bayes filter eqns. (3.2a) and 

(3.2c) are replaced by 

(3.3a) 

and 

(3.3b) 

respectively. It can be seen that use of the Bayes filter can be advantageous with 

respect to the standard Kalman filter if the number of observations is larger than than 

the dimension of the state vector. The Bayes filter will not be pursued here any further. 

The information filter is algebraically equivalent to the linear Kalman (covariance) 

filter. It has, however, some unique characteristics. Because the inverse covariance is 

propagated in time, the information filter can be started with no information available 

on the initial state. The information filter can be found in, e.g., Maybeck [1979]. In 

order to generate a valid startup procedure for the case in which the initial inverse 

covariance matrix is singular, somewhat modified state variables are defined. 

... -1 "' 
zklk-1 = Pklk-1xklk-1 (3.4a) 

... -1 "' 
zklk = Pkl0klk (3.4b) 
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With 
t.... -1 

Mk = Cl>(k-l,k) t'k-llk-lci>(k-l,k) (3.5) 

the time update equations of the information filter are given as: 

(3.6a) 

(3.6b) 

The measurement update equations of the information filter are: 

(3.7a) 

(3.7b) 

It can be seen from eqns. (3.7a) and (3.7b) that the information filter is more efficient 

in computing the measurement update than the covariance filter. On the other hand the 

time update equations of the information filter are more complex than those of the 

covariance filter. The inverses that have to be computed for the covariance filter 

recursions basically depend on the dimension of the observation process, whereas for 

the information filter they depend primarily on the dimension of the state vector. 

The advantages of covariance filters can be summarized as follows: 

• Continuous estimates of state variables and their covariances are available at no 
extra computational cost. 

• Covariance type filters appear to be more flexible and are easier to modify to 
perform sensitivity and error analysis [Bierman, 1973a]. 

The advantages of inverse covariance or information filters are: 

• Large batches of data (i.e. m>>n) are processed very efficiently from a 
computational point of view. 
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e No information concerning the initial state is required to start the information 
filter process (i.e., the inverse covariance matrix at the start of the information 
filter process may be zero). 

In general covariance type filters will computationally be more efficient than 

information type filters if frequent estimates are required. 

In cycling through the filter equations the covariance matrix (or its inverse) of the 

state can result in a matrix which fails to be nonnegative positive. The measurement 

update of the covariance filter can be rather troublesome numerically. Equation (3.2c) 

can involve small differences of large numbers, particularly if at least some of the 

measurements are very accurate. It has been shown [Bierman, 1977] that on finite 

wordlength computers this can cause numerical precision problems. Therefore an 

equivalent form of (3.2c), called the Joseph-form, is often used: 

(3.8) 

Apart from better assuring the symmetry and positive definiteness of Pkik· the Joseph-

form is also insensitive, to first order, to small errors in the computed filter gain 

[Maybeck, 1979]. However, the Joseph-form requires a considerably greater number 

of computations than (3.2c). In the literature the Joseph-form is generally called the 

stabilized Kalman filter. 

For the information filter a stabilized version of the covariance time update 

equation (which is anagolous in form to the covariance measurement update of the 

covariance filter) exists. This analogue of the Joseph-form for the information filter is 

given in [Maybeck, 1979]: 

(3.9) 

Page:29 Chapter 3: Computational Considerations 



SOME ASPECTS OF KALMAN FILTERING 

where 

3.3 SQUARE ROOT FILTERING 

Because the stabilized filter mechanizations required to much storage and computations 

for early Kalman filter applications, an alternative strategy to cope with the numerical 

problems encountered in computing the (error) covariance matrix was developed. The 

limited computer capabilities forced the practitioners to use single precision arithmetic 

for their computations, while at the same time numerical accuracy had to be warranted. 

It was soon realized that nonnegative definiteness of the covariance matrix could also 

be retained by propagating this matrix in a so-called square root form. If M is a 

nonnegative definte matrix, N is called a square root of M if M = NNt. The matrix N is 

normally square, not necessarily nonnegative definite, and not unique. The matrix N 

can be recognized as a Cholesky factor, but the common name "square root" will be 

maintained. 

Let Sklk and Sklk-1 be square roots of Pklk and Pklk-1 respectively. The product 

P=SS1 is always non-negative definite and thus the square root technique avoids 

negative definite error covariance matrices. 

An overview of different square root filters is given in Chin [1983]. We will 

briefly discuss the square root forms of the covariance and information filters. The 

presentation of the square root filters is patterned after Anderson and Moore [1979]. 
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3.3.1 Square Root Covariance Filter 

The time update equations of the square root covariance filter can be summarized as: 

iklk-1 = <I>(k,k-1)ik-11k-1 (3.10a) 

[ s~lk-1] = T [ s~-11k-1<I>(k,k-1) 1] 
0 1 (Q1/2.. bt 

k-1) k-1 (3.10b) 

In general the matrix T1 can be any orthogonal matrix (i.e. T1T1t =T1tT1=I) making 

Sklk-lt upper triangular. In square root implementations the square rootS is chosen to 

be the Cholesky factor of P. The measurement update equations of the square root 

covariance filter can be represented as: 

(3.11a) 

s~~kl ] 

(3.llb) 

with T2 orthogonal. 

We will not dwell on the problems concerning the construction of the orthogonal 

matrices T1 and T2. Methods suggested in the literature ([Kaminski et al., 1971; 

Bierman, 1977; Thornton and Bierman, 1980]) are closely related to well known 

stable orthogonalization methods as the Householder and Givens transformations or 

the modified Gram-Schmidt orthogonalization scheme. It is due to these numerically 

stable orthogonalization methods that square root filters show improved numerical 

Page: 31 Chapter 3: Computational Considerations 



SOME ASPECTS OF KALMAN FILTERING 

stability. Square root filters show better numerical behaviour in computing covariance 

matrices than the standard Kalman filter. As far as error analysis is concerned this 

cannot be claimed for the gain matrix (K) or the estimate itself (x) (see LeMay [1984] 

and Verhaegen and van Dooren [1986]). For a more extensive treatment of square root 

covariance filters the reader is referred to Anderson and Moore [1979] and Maybeck 

[1979]. 

3.3.2 Square Root Information Filter 

The square root information filter (SRIF) is presented in an analogous fashion to the 

square root covariance filter. For the square root information filter again a somewhat 

modified state vector is defmed: 

"" 1 "" 
z 1klk-1 = sklk-1xklk-1 (3.12a) 

"", -1 "" 
z klk = skl0klk (3.12b) 

The measurement update equations of the SRIF are given as: 

(3.13a) 

[ ~·klk] = T [ ~·klk-1] 
* 3 R-1/2 

k Yk (3.13b) 

where the lower left part of the left hand side ( *) is of no interest. 

One has to find an orthogonal matrix T 3 such that the right hand side of (3.13a) is 

upper triangular. 

The time update equations of the SRIF can be derived from: 
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]= 

[ 
(Q~~~ -1 

T4 -1 
S k-llk-1<l>(k-1 ,k)Gk-1 

0 ] 
(3.14a) 

-1 s k-11k-l<l>(k-1,k) 

with Mk as defined in (3.5). 

Once again the general idea is to find an orthogonal matrix (T4) such that the right­

hand side of (3.14a) is upper triangular and with this T4 one finds: 

[ * J [ 0 J "' = T4 ,..... 
z'klk-1 z'k-llk-1 (3.14b) 

The square root information filter (SRIF) is covered extensively in Bierman [1977]. A 

large class of square root mechanizations for both covariance and information filters 

has been developed. These are not included here. For an overview the reader is 

referred to Chin [1983]. 

3.4 U-D COVARIANCE FACTORIZATION FILTER 

A different approach to square root covariance filters is the so-called U- D 

covariance factorization filter developed by Bierman [1977]. The covariance 

matrix is not decomposed into square root factors, but in the form UDUt, where U is a 

unitary upper traingular (i.e., with ones along the diagonal) and D is a diagonal matrix. 

The U-D covariance factorization filter (or U-D filter) is basically an alternative 
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approach to the classical square root filters (see, e.g., Kaminski et al. [ 1971 ]). The 

factors U and D are propagated in time. For the U-D factorization the covariance 

matrices of the predicted and filtered state are factored as: 

(3.15a) 

(3.15b) 

The close relationship of the U-D filter with square root filters is apparent, because 

uol/2 corresponds directly to a covariance square root. The main advantage of the U­

D filter algorithm over the conventional square root filters is that no explicit square root 

computations are required. At the same time the U-D factorization shares the 

favourable numerical characteristics of the square root methods. If a matrix is positive 

(semi) definite a U-D factor can always be generated. The algorithm of the U-D 

factorization is closely related to the backward running Cholesky decomposition 

algorithm and is given in Appendix I. 

3.4.1 U-D Filter Measurement Update 

The U-D filter measurement updates are performed component wise and hence scalar 

measurement updates are used. If more than one observation per update is available, 

the measurements are processed sequentially. If the covariance matrix of the 

observations (Rk) is originally not diagonal, the measurement variables have to be 

transformed first in order to be able to apply this algorithm. If the covariance matrix of 

the observations is non-diagonal the Cholesky decomposition of Rk into a lower 

triangular matrix (i.e., Rk = LkLk1) is computed first. Then the measurement model 

¥k = Akxk+ ~k 
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is converted to 

* * * ~k = Ak~k+~k 

where 

* LI&k = ~k 

It then follows that 

* *t 
E{~k~k} = I . 

After this transformation of variables the U-D filter measurement update can be used. 

Starting from the linear Kalman (covariance) filter measurement update equations of 

the covariance we fmd for a scalar measurement update: 

(3.16) 

where 

This form can be factored as (given the U-D factor ofPklk-1): 

Defming the vectors f and v (both of dimension n) as 

and substituting these in (3.17) yields: 
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(3.18) 

The part in parentheses in (3.18) is positive (semi) definite and can therefore be 

factored as UDUt. Furthermore the product of two unitary upper triangular matrices is 

again unitary upper triangular so that (3.18) can be written as: 

(3.19) 

where 
u klk = u klk-lu 

It can be seen that the construction of the updated U-D factors depends on the simple 

factorization 

----t t 
UDU = Dklk-l- (1/a)vv (3.20) 

The U-D factors can be generated recursively [Bierman, 1977]. In practical 

implementations of the measurement update of the U-D filter the Kalman gain matrix is 

not computed explicitly, but if desired it can be computed at very little extra 

computational cost. An algorithm for computing the U-D filter measurement update is 

given in Appendix I. 

3.4.2 U -D Filter Time Update 

For the time update of the U -D filters two methods are in use. The most trivial one is 

to "square up" the U-D factor to obtain the time propagated error covariance: 
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The matrix Pklk-1 can then be factored into Uklk-1 and Dklk-1 using the U-D 

factorization algorithm. This procedure is thought to be a stable process. Numerical 

difficulties can arise, however, if <I>(k,k-1) is large or Pklk-1 is ill conditioned 

[Thornton and Bierman, 1980]. An advantage of the above method is that the 

covariance matrix of the (predicted) state is readily available. 

The second approach, of which the development was motivated by numerical 

considerations, and for which the U-D factor is updated directly is based on a 

generalized Gram-Schmidt orthogonalization method. For square root filters it was 

proven that the square root of the covariance could be updated directly using an 

orthogonal transformation. Thornton was the first to apply this method to the U-D 

factor time update [Bierman, 1977]. This orthogonalization approach that yields Uklk-1 

and Dklk-1 directly is briefly discussed. The following matrices are defined: 

W = [ <l>(k,k-1)Uk-llk-l J (3.22a) 

D = [Dk-llk-1 0 J 
0 Qk-1 (3.22b) 

W is a (nx(n+s)) matrix and D a diagonal matrix of dimension (n+s) (recall that in 

Chapter 2,Gk-l was defined as a nxs system noise input matrix). It can be seen that the 

form WDWt satisfies relation (3.21). If Qk_ 1 is originally not diagonal it must be 

factored first as Uq-1Dq-1 Uq_{ Gk-1 and Qk-1 are then replaced by Gk-1 Uq_1 and Dq_1 

respectively so that Gk_1Qk-1Gk_1t = (Gk_1Uq_1)Dq-1(Gk-1Uq_1)t. 

The procedure to transform w:i5wt in the form UDUt is derived. We will show 

that use of the Gram-Schmidt orthogonalization method yields the desired result. With 

withe i throw (with dimension n+s) of W, this matrix can be written as: 
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W= 

(3.23) 

An orthogonal basis of vectors {v1, .... ,vn} is constructed applying the Weighted 

Gram-Schmidt (WGS) orthogonalization method to the rows of the matrix W 

(3.24) 

-f (wpvJ ·-
vj = wj- ~ t- vk , J-n-1, ... ,1 

k=j+l(vkDv0 

The algorithm defmed here is given in a backward recursive form, because the result is 

needed to construct an upper triangular matrix factorization. We can now define an 

orthogonal matrix T: 

(3.25) 

The vectors v1, .... ,vn are computed using the WGS procedure. The remaining s 

columns of T are additional orthogonal basis vectors (of dimension n+s) which, 

however, do not have to be computed explicitly. We can write the matrix product of 

the matrices Wand T as: 

Wf= 

(3.26) 
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Matrix W has rank n. Because the basis {v~o ... ,v0 } spans its range, and the basis 

vectors Vn+lo .... ,vn+s are orthogonal to this spanning set, it follows that the last s 

columns of (3.26) are zero. The orthogonal basis vectors v1, .... ,v0 are computed in a 

backward recursive way and thus 

w }v k = 0 , j > k . 

Therefore (3.26) can be written as 

WT= 

t t 
WtVtWtVz 

t 
0 w 2v 2 

0 0 

0 0 

0 

0 
(3.27) 

The upper left (nxn) partition of (3.27) is the upper triangular form Uklk-1 we have 

been looking for. We now have to find the D-factor. To satisfy relation (3.21) while 

using (3.27) we can write wDWt as WTTtDT(WT)t. From this it follows that the 

updated D-factor is: 

Dklk-1 = TDT (3.28) 

Summarizing the time update equationsof the U-D factors are given as: 

(3.29a) 

u klk-l(j,k) 

(3.29b) 

The classical (weighted) Gram-Schmidt orthogonalization method as given in 

(3.24) is known to be numerically unstable. The drawback of the classical algorithm is 

that the resulting vectors generally are not orthogonal and thus iterations are 
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necesssary. Actual implementations are based on the so-called Modified Weighted 

Gram-Schmidt (M-WGS) orthogonalization method [Kaminski et al., 1971]. TheM­

WGS is basically an algebraic re-arrangement of the classical algorithm. The modified 

procedure has favourable numerical characteristics. An algorithm for the U-D filter 

time update is given in Appendix I. 

3.5 IMPLEMENTATION CONSIDERATIONS 

Having introduced the covariance and information filters as well as their respective 

square root formulations and the U-D covariance factorization filter a choice between 

the different mechanizations for the actual implementation has to be made. To justify 

the choice of any mechanization its computational efficiency, numerical aspects and 

conditions imposed by the specific application have to be taken into account. 

3.5.1 Computational Efficiency 

A popular way to assess the computational efficiency of different filter mechanizations 

is to compare the number of operations (additions, multiplications, divisions, and 

square roots) necessary to compute a full filter cycle (one time update and one 

measurement update). These comparisons, usually called operation counts, give a 

measure of the relative speed of the algorithms. Operation counts for various 

mechanizations can be found in Kaminski et.al. [1971], Bierman [1973a,1977], 

Maybeck [1979], and Chin [1983]. 
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In the literature contradictory computational efficiencies are reported (see, e.g., 

LeMay [1984]). This may be due to the fact that some authors apply special storage 

strategies or only use scalar measurement updates. Usually the operation counts only 

consider the filter algorithm itself. Operations not directly related to the filter process 

(e.g., input/output and bookkeeping logic) are not taken into account. Furthermore the 

computation of the transition matrix (<D), the design matrix (A), and the process 

covariance matrix (Q) are not considered either. In cases where the filter model is non­

linear the computations of these matrices and the necessary iterations may account for 

90% of the total cycle time. In many applications a special problem structure can be 

exploited, which can reduce the computational burden as well, but this is not 

considered in the operation counts. 

As we are restricting ourselves to linear models some useful remarks can be made 

regarding the computational efficiency of the different mechanizations. Basically the 

standard Kalman (covariance) filter algorithm is the simplest to implement and usually 

the fastest. The information filters are of computational interest if the dimension of the 

measurement vector is larger than the dimension of the state vector. Covariance filters 

are more efficient if frequent estimates of the state are required. The stabilized Kalman 

filter is computationally always less efficient than the standard Kalman filter by about 

10%-50%. Square root covariance filters and U-D filters may be up to 50% slower 

than the standard Kalman filter. For certain applications, however, it has been shown 

[Thornton and Bierman, 1980] that non-standard mechanizations may be 

computationally just as efficient as the standard Kalman filter. In problems where the 

dimension of the state vector is small the differences between the various 

mechanizations are generally not of great importance, because then for all 

mechanizations low operation counts (and thus cycle times) can be obtained. 
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3.5.2 Numerical Aspects 

Up to now we only dealt with different Kalman filter mechanizations from a 

computational point of view. The usefulness of different mechanizations depends, 

besides on the computational efficiency, mainly on their numerical stability. It has been 

indicated that the equivalence of the square root and U-D factorization algorithms with 

the numerically stable Householder and Givens (orthogonal) transformations 

guarantees the numerical stability of these mechanizations. It has also been mentioned 

that this is only true for the (error) covariance update. Therefore the comparison of 

different mechanizations from a numerical point of view is very interesting. Such 

comparisons can be found in Thornton and Bierman [1980] and Verhaegen and van 

Dooren [1986]. 

The basic motive for the development of square root related filters was to enable 

filter computations in single precision arithmetic (to ease storage requirements and to 

speed up the computations). Single precision arithmetic computations are indeed 

possible due to the enhanced numerical stability of the square root filters. 

It has been shown in Thornton and Bierman [1980] that if computations are 

performed in double precision arithmetic, no numerical difficulties are to be 

encountered for any mechanization. In these cases the mechanization with the highest 

computational efficiency (which is not necessarily the standard Kalman filter) can be 

selected for the computations. 

When computing with single precision arithmetic one will always encounter some 

numerical degradation compared to the double precision computations [Thornton and 

Bierman, 1980]. With the use of the square root or U-D filters only limited 
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degradation will occur. Thornton and Bierman also encountered numerical instability 

using the stabilized Kalman Filter with single precision arithmetic. On the other hand 

Verhaegen and van Dooren [1986] show, by means of a theoretical error analysis, that 

square root formulations and the stabilized Kalman filter should have the same 

numerical accuracy. 

3.5.3 Practical Considerations 

For practical applications special characteristics of the problem can often be exploited, 

such as the sparseness of the transition or covariance matrices (which are often 

reduced to diagonal form). In applications the state transition matrix has often a (block) 

triangular form. Exploiting these characteristics can lead to considerable computational 

savings. 

In the investigation of Kalman filter mechanizations we dealt primarily with linear 

time varying systems. In some applications the Kalman filter may reach (after an initial 

transient period) a (almost) steady state condition. The computation of the gain matrix 

is the largest computational burden of the Kalman filter algorithm. The use of a steady 

state gain can lead to considerable computational savings. Even in time varying 

systems this not always leads to a serious performance degradation of the filter 

(although the filter will be suboptimal). In such cases an extensive a priori sensitivity 

analysis (see Gelb [1974]) is mandatory. An interesting application of the use of a 

temporary steady state gain matrix in a navigation environment is discussed by 

Upadhyay and Damoulakis [1980] and Gylys [1983]. 

Exploiting special characteristics of the problem at hand will always reduce the 

computational burden, irrespective of the mechanization used. Not considering the 
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problem characteristics has as advantage that readily available filter routines can be 

used in implementing a Kalman filter. 

3.5.4 Filter Mechanizations for Kinematic Positioning 

In kinematic positioning and navigation frequent updates of the state vector and its 

covariance matrix are needed. In a navigation environment the use of covariance filters 

seems to be the most appropriate. 

The use of the standard Kalman filter in (integrated) navigation systems at sea is 

very common. Mostly the standard Kalman filter mechanization is implemented. As 

long as the computations are performed in double precision arithmetic numerical 

problems are not likely to be encountered. An investigation of navigation filters which 

deals with numerical considerations is, e.g., Ayers [1985]. Ayers concludes that for 

his simple positioning problem (position a ship with two lines of position (ranges)) 

special numerical techniques are not necessary and the standard Kalman filter performs 

well. 

The most popular square root related covariance filter at the moment is the U-D 

filter. The U-D filter is very well documented [Bierman, 1977; and Thornton and 

Bierman, 1980]. This mechanization is computationally very efficient. It is actually the 

computationally most efficient square root related covariance filter mechanization. 

When using single precision arithmetic the results are only slightly worse than the 

standard Kalman filter results computed with double precision arithmetic. If computer 

burden is to be minimized or the computations can only be performed in single 

precision arithmetic (e.g., when programming in PASCAL) the U-D factorization 
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mechanization seems to be the most efficient alternative algorithm for navigation 

problems. 
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4. LINEAR SMOOTHING 

4.1 INTRODUCTION 

In Chapter 2 we dealt with the concepts of prediction and filtering. We now focus our 

attention on the case where one wants to obtain an optimal estimate of the system state 

in the past, using measurements both before and after the time of interest. This is the 

so-called smoothing problem. Although smoothing has been defined earlier the 

definition found in Gelb [1974] is repeated here: "Smoothing is a non-real-time data 

processing scheme that uses all measurements between to and tN to estimate the state 

of a system at a certain time tk, where to ~ tk ~ tN ". 

Because smoothing algorithms use data after the time for which the state is 

estimated a time delay in the estimation process is inevitable. For real-time state 

estimation filtering and prediction are therefore the only feasible techniques. For 

certain real-time applications in surveying and hydrography, however, a small time 

delay in obtaining a state estimate may be acceptable. In these cases a smoothed state 

estimate will be preferred as more information is taken into account in computing the 

estimate. Especially if for some application the data can be processed in an off-line, 

postmisson mode smoothing techniques should be considered. Generally a tradeoff 

has to be made between the extra computational burden and time delay related to the 

smoothing algorithms and the improved accuracy of a smoothed estimate. 

In section 4.2 the principles of smoothing are discussed on the basis of the 

forward-backward filter approach In section 4.3 three classes of smoothing problems 

are discussed. The concept of smoothability is introduced in section 4.4 and some 
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comments on the possible use of smoothing techniques in hydrography and surveying 

are made. 

4.2. PRINCIPLES OF SMOOTHING 

4.2.1 Forward-Backward Filter Approach 

The principles of a linear smoother can best be demonstrated as a suitable combination 

of two filters. The first filter, called the "forward filter", operates as a standard 

Kalman filter on all data up to and including time tk, starting at to. At the same time a 

second filter, called the "backward filter", operates on all data after time tk, starting at 

tN. These two filters use all available information in the specified interval and provide 

two uncorrelated estimates of the state and its covariance at time tk. The optimal 

combination of both estimates yields the optimal smoothed estimate (see Fig. 4.1). 

backward filter 
<:--------------------

1-------------------- I --------------------1 
to tk tN 
----------------------;> 
forward filter 

Fig. 4.1 Forward-backward filter approach. 

Before the forward-backward formulation is described in more detail some 

notational conventions are introduced. It is assumed that measurements are available 

from time t=O to t=N. The superscript b denotes backward filter estimate; the 

superscript s denotes smoothed estimate. The following notation for the time indices is 

used: 
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(klk-1) 
(klk) 

(k 

(klk) (NIN-1) I (NIN) 
(klk+1) (NIN) I (NIN+1) 

I N) (N I N) 
I ----------------------- I 
k N 

--> 
<--

A smoothed estimate of the state and its covariance at time tk for data given in the 

interval [O,N], where tk is an element of the time interval [O,N], are given as the 

optimal combination of two optimal filters [Gelb, 1974]: 

(4.1a) 

-1 -1 
s -1 b 

pkiN = pklk + pklk+1 (4.1b) 

Given that the forward and backward estimates are uncorrelated these equations can 

readily be verified using standard adjustment calculus.The equations show that the 

forward filter uses all data up to and including time tk , while the backward filter uses 

all data after time tk and in the last step is predicted "backward" to time tk· Equation 

(4.1b) shows that the covariance of the smoothed estimate is always smaller than or 

equal to the covariance of the forward filter. This is one of the motives to perform 

smoothing. This result could have been expected since one uses not only data up to 

and including time tk , but all available data in a certain interval. 

The linear (forward) Kalman filter was derived in Chapter 2. The formulation of 

the backward filter is less straightforward. This is mainly due to the starting values of 

the backward filter. Equation ( 4.1 b) shows that the error covariance of the smoothed 

estimate is always smaller than the error covariance of the forward filter except for the 

terminal time tN. It can be seen from eqn. (4.1b) that at time tN the covariance of the 

smoothed state is equal to the forward filter covariance as both are conditioned on 
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exactly the same data. Hence it follows that the a priori covariance of the backward 

filter is infinite, i.e., no a priori statistical information is available to start up the 

backward filter. Thus 

and assuming ~bNIN+ 1 is finite 

This means that the backward filter has to be implemented in the inverse 

covariance formulation (also called information filter), because the standard Kalman 

filter cannot cope with an infmite a priori covariance. The backward inverse covariance 

filter formulation is given in Maybeck [1982, pp. 9-10], where also a somewhat 

modified algorithm to compute the smoothed estimate from the the forward filter and 

the backward filter is given. Brown [1983] circumvents this problem by suggesting 

that as long as the a priori backward filter covariance is chosen 10 times as large as the 

a priori covariance of the forward filter a time reversed standard Kalman filter can be 

used to implement the backward filter. This may be a valid solution for the example 

Brown uses, but one can easily devise some smoothing application where this will 

lead to serious suboptimality of the backward filter. In general the inverse covariance 

formulation, at least for the first backward steps, is to be preferred. Thereafter one can 

use the covariance formulation for the backward filter. 

The measurement update equations of the covariance form of the backward filter 

are given as: 

(4.2a) 
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(4.2b) 

(4.2c) 

The time update equations of the backward filter are defined as (note the reversed time 

order in the transition matrices): 

...... b 
<l>(k,k+ 1)x k+llk+l (4.3a) 

(4.3b) 

Conceptually the forward-backward formulation of the optimal smoother is the 

easiest way to demonstrate the properties of an optimal smoother. For practical 

applications other mechanizations are utilized, which will be treated in the next section. 

It is apparent that smoothing involves more computational effort than filtering. A 

tradeoff between the extra computational cost and the availability of better estimates 

has to be made. 

The linear smoother has been introduced using a forward-backward filter 

formulation. In the literature numerous other derivations can be found. Kailath and 

Frost [1968] use the innovations approach. Koch [1982] uses best linear unbiased 

estimators in the regression model. Anderson and Moore [1979] employ the technique 

of state augmentation. Houtenbos [1982] formulates the smoothing problem as a least­

squares adjustment problem. Rauch et al. [1965] use maximum likelihood estimates. 

Starting from single-stage and double-stage optimal smoothers Meditch [1969] derives 

the smoothing algorithms via algebraic manipulations and induction. An overview of 

the development of smoothing theory is given by Meditch [1973]. 
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4.3 THREE CLASSES OF SMOOTHING PROBLEMS 

In the literature three classes of smoothing problems are distinguished. The 

classification depends on how the time k (for which an estimate is needed) and the 

length of the data interval N are related. The three classes are fixed-interval, fixed­

point, and fixed-lag smoothing. 

-Fixed-interval smoothing (k variable, N fixed) 

Given measurements in a fixed interval from initial time to to final time tN a smoothed 

state estimate at time tk, where tk is an element of the time interval [to,tN], is required, 

based on all measurements in the interval. This approach is usually followed in off­

line processing. 

-Fixed-point smoothing (k fixed, N increasing) 

Estimate the state at a single fixed point in time tk as more and more measurements 

become available after time tk. 

-Fixed-lag smoothing (k increasing, N-k fixed) 

A smoothed estimate at a fixed time interval back in the past is computed. The 

computation of the state estimate at time tk is delayed for a fixed time tlag to take 

advantage of the additional information in the interval of duration !Jag (=N-k) of the 

most recent measurements. 
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4.3.1 Fixed-Interval Smoothing 

The fixed-interval smoothing algorithm described in this paragraph is due to Rauch et 

al. (1965) and is known as the Rauch-Tung-Striebel (RTS) algorithm. For the 

complete time interval (say [O,N]) a forward filter solution is computed and the 

predicted and updated state estimates and their corresponding error covariances are 

stored. Starting from the boundary conditions 

XNIN = XNIN 
s 

PNIN = PNIN 

the smoothed estimate and its covariance are computed backwards (for k = N-1, 

N-2, ... ,0) as: 

"'s ,..., ,...s "' 
xkiN = xklk+ Bk(xk+liN- xk+ll0 

respectively, where 

t.-.. -1 
Bk = Pklk<l>(k+ l,k) .t'k+llk 

is the smoothing gain matrix. 

(4.4a) 

(4.4b) 

(4.4c) 

Drawbacks of the above algorithm are that the predicted covariance matrix 

(Pk+llk) has to be inverted for every recursion and that all results of the forward filter 

have to be stored. 

If some state variables become very well determined, the inversion of Pk+llk can 

lead to instability of the RTS-algorithm. To avoid this (numerical) instability Bierman 
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[1973b] developed an alternative algorithm (Modified Bryson-Frazier smoother). 

Gonthier [1984] found that if the smoother algorithm is implemented in double 

precision arithmetic both algorithms lead to identical results and no numerical 

problems are encountered. 

In the forward-backward formulation of the smoother, as described in section 4.2, 

the storage of intermediate results was not necessary. This, however, is only true if 

merely one smoothed state estimate at time tk in the interval [O,N] is required. Besides, 

the computational efficiency of the forward-backward formulation suffers from the 

combined use of the covariance and inverse covariance filter mechanizations. 

Because fixed-interval smoothers are mainly used in off-line processing storage 

requirements are not critical. Off-line the implementation of the algorithm can be done 

in double precision arithmetic, so that the RTS algorithm can be used. 

4.3.2 Fixed-Point Smoothing 

The fixed-point smoother as given in this paragraph is taken from Meditch [1969]. 

The fixed-point smoother uses the output of a standard forward running Kalman filter. 

The initial values of the state and its error covariance are: 

......_s 

xklk = xklk 
s 

pklk = pklk 

Assume that the fixed-point estimate at a certain time tk is required. The optimal fixed-

point smoothed state estimate and its covariance are generated by the following system 

of equations (fork fixed and j = k+ 1 ,k+2, ... ): 

""'s "' ,..... .......... 
xklj = xklj-1 + CjCxjlj- xjlj-1) (4.5a) 
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(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

Maybeck [1982, p. 16] gives an alternative algorithm which avoids the inversion of 

Pi+lli as required for each recursion. 

4.3.3 Fixed-Lag Smoothing 

The fixed-lag smoother is the most complicated one of the three smoothing categories 

discussed. One reason for this is the startup problem. The fixed-lag smoother is 

derived by Meditch [1969] and in an alternative way by Anderson and Moore [1979]. 

In this paper the fixed-lag smoother due to Meditch is given. The optimal fixed-lag 

smoothed state estimate and its covariance for aN-step time lag are generated by the 

following recursions (fork= 0,1,2, ... ): 

~s ~s 

xk+11k+N+1 = <I>(k+l,k)xklk+N+ 
.,....... ,.....s ""' 

ck+N+lKk+N+l(Yk+N+l- Ak+N+lxk+N+llk+N) + u k+l(xklk+N- xkiiJ 
(4.6a) 
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(4.6b) 

where 

(4.6c) 

Bk is defined as in (4c), and Uk+l is given by: 

t.,... ·1 u k+l = Qk<I>(k,k+ 1) t'klk . (4.6d) 

Equation (4.6d) is a simplified version of the general formula and is only valid if the 

dynamic system model is defined as: 

The fixed-lag smoother uses the output of a simultaneously running Kalman filter. 

The smoothed estimate and its covariance are computed with (4.6a) and (4.6b) 

respectively, starting from the initial conditions ~sOIN and P8oiN· These initial 

smoothed estimates must be generated by a fixed-point smoother which is iterated N 

times, starting at time tk=O. The start up problem increases the computational 

complexity of the fixed-lag smoother. 

From eqns. (4.6a) to (4.6d) it can be seen that the computational and storage 

burden of this algorithm is considerably larger than that of an linear Kalman filter for 

the same problem. The added computational burden and the availability of the state 

estimate after a delay of N-k steps have to be counterbalanced with the performance 

benefit of the fixed-lag smoother. 

Anderson and Moore [1979, ch. 7] state that the mechanization of the filter as 

given in (4.6a) to (4.6d) is unstable. Their alternative derivation of the fixed-lag 
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smoother is quite long and will be not be repeated here. Furthermore Anderson and 

Moore appear to be the only authors who seem to have noticed the inherent instability 

of the presented algorithm. Even the more recent textbooks (e.g. Maybeck [1982], 

Brown [1983]) give the fixed-lag smoother as derived by Meditch [1969]. 

To avoid the computational complexity of the fixed-lag smoother Brown [1983] 

suggests the use of the RTS-algorithm if the lag is not too large. Using this approach 

one filters forward to the current measurement and then sweeps back a fixed number 

of steps with the RTS algorithm outlined in section 4.3.1. The start up problem can be 

avoided by starting the backward sweep at time t = tlag· No smoothed estimates for 

the first tlag instants are then available. Brown [1983, pp. 283-285] gives a solution 

for the computation of these first estimates. 

4.4. SMOOTHABILITY, GENERAL REMARKS, AND 

APPLICATIONS 

4.4.1 Smoothability 

The defmition of smoothability is taken from Gelb [1974, p.163]: "A state is said to be 

smoothable if an optimal smoother provides a state estimate superior to that obtained 

when the final optimal filter estimate is extrapolated backwards in time". By defmition 

only components of the state which are controllable with respect to the dynamic 

system noise are smoothable. The concept of controllability is not discussed here; the 

reader is referred to Maybeck [1979, Ch. 2]. 
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In case of a linear system with no system noise (i.e., Qk = 0 for every k) 

smoothing should not be considered. Constant states are not smoothable. The optimal 

estimate of a constant state can be found by propagating the final forward filter state 

estimate backward in time. This is illustrated by means of the R TS-algorithm. The 

smoothing gain (4.4c) is given as: 

t....-1 
Bk = Pklk<I>(k+l,k) l"'k+llk 

In case (4 = 0, 

Inserting (4.7) in (4.4c) one finds: 

-1 
Bk = (<I>(k+l,k)) = <I>(k,k+l) 

The computation of the smoothed state estimate (4.4a) thus reduces to: 

.-.s ........,s ......... ,....,.s 

(4.7) 

(4.8) 

xkiN = xklk+ <I>(k,k+l)(xk+11N- <I>(k+l,k)xkiiJ = <I>(k,k+l)xk+11N (4.9) 

andfmally 

,....s ..... 
xkiN = <l>(k,N)xNIN (4.10a) 

which is nothing but the final forward filter state estimate propagated backwards in 

time. Similarly one finds for the covariance: 

s t 
PkiN = <l>(k,N)P~(k,N) (4.10b) 
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4.4.2 General Remarks 

In this chapter the algorithms for three classes of smoothing problems have been 

presented. Although the algorithms may look very different, they also have a lot in 

common. 

• A (standard) forward running filter is at the basis of all smoothing algorithms. 
A smoothed estimate cannot be obtained without a simultaneously forward 
running filter. 

• Unlike the filter algorithm (see Chapter 2) the computation of the smoothed 
state estimate (~\IN) does not require the computation of the corresponding 
smoothed covariance (P\IN)· 

• For actual smoother implementations most programming effort is related to 
data management and storage problems. 

4.4.3 Applications 

For surveying applications mainly fixed-interval and fixed-lag smoothing are of 

interest. Fixed-interval smoothing is usually performed off-line, because the (fixed) 

interval of data can be quite long. Fixed-lag smoothing is the real-time oriented class 

of smoothing problems, as the estimate of the state only lags for a certain lag tlag· For 

on-line processing only fixed-lag smoothing is of interest. A fixed-lag smoother can 

be implemented using the RTS-algorithm, as was suggested at the end of section 

4.3.3. 

Applications of smoothing techniques in surveying and hydrography are error 

control for inertial systems [Gonthier, 1984], the postmission analysis of three­

dimensional seismic campaigns at sea, and hydrographic surveys [Guenther and 
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Thomas, 1987]. It seems, however, that for most kinematic or dynamic problems in 

surveying filtering is deemed sufficient. 

Smoothing may be a useful extension to filtering in kinematic positioning if now 

and then no valid data are available due to, e.g., data outages or (rejected) outliers in 

the data. As smoothing always implies forward filtering the optimal filtered estimate is 

available, while smoothing may help bridge short data gaps. 
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5. PERFORMANCE ANALYSIS OF KALMAN 
FILTERS 

-THE INNOVATIONS APPROACH-

5.1 INTRODUCTION 

In kinematic positioning and navigation it is common to process data from different 

sensors simultaneously in a so-called integrated navigation system to obtain a best 

estimate of position. The algorithm implemented in these integrated navigation systems 

is usually the Kalman filter. To obtain useful (positioning) results using an integrated 

navigation system it is absolutely crucial that the performance of the underlying filter is 

at an optimum. Therefore performance analysis of Kalman filters is of considerable 

importance. Misspecifications in the dynamic and/or measurement model invalidate the 

results of estimation. It is therefore essential to have ways to verify the validity of the 

assumed mathematical model and to detect any misspecifications in the mathematical 

model. An important role in the process of performance analysis is played by the so­

called innovation sequence. 

Methods for the detection of departures from optimality are all based on the 

innovation sequence. Performance analysis of Kalman filters based on the innovation 

sequence was introduced by Mehra and Peschon [1971]. The innovation sequence of 

an optimal filter has precisely defined characteristics which can be compared with the 

output of an actually implemented Kalman filter. The innovation process contains all 

information to assess the optimality of filter operations. Furthermore the innovation 
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process is the primary source for the detection of misspecifications of the model (e.g., 

outliers in the data) and adaptive filtering. 

In section 5.2 the innovation sequence is introduced and its characteristics are 

outlined. The monitoring of the innovation sequence is discussed extensively in 

section 5.3. An introduction to error detection based on the innovation sequence is 

presented in section 5.4. Finally some implementation considerations are discussed in 

section 5.5. 

5.2 THE INNOVATION SEQUENCE 

The innovation sequence is defined as the difference between the actual system output 

and the predicted output based on the predicted state. The innovation sequence is given 

by: 

...... 
Yk = ~k - Ak~klk-1 , fork= 1 ,2,.... . (5.1) 

The sequence is called innovation sequence because it represents the new information 

brought in by the latest observation vector. As can be seen from the Kalman filter 

measurement update equations presented in Chapter 2 the filtered state is a linear 

combination of the predicted state and the innovation. Hence the innovations are an 

important quantity in the Kalman filter process. This was already pointed out by 

Kalman in his original derivation of the filter equations [Kalman, 1960]. In fact the 

filter algorithm can be derived completely based on the innovation sequence only 

[Kailath, 1968]. 
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For the objectives of this chapter the innovation sequence is considered to be the 

output of the filter. For linear systems the output is Gaussian if the input is Gaussian 

and thus the innovation sequence is considered to be Gaussian. Hence only the mean 

and covariance of the innovation sequence have to be specified to describe the 

statistical properties of the innovation sequence completely. Kailath [1968] has shown 

that if the filter is optimal, the innovation sequence is a white noise sequence with zero 

mean and known covariance (a sequence { x(n)} is called white (or purely random) if it 

consists of a sequence of uncorrelated random variables). Thus: 

where 

(5.2) 

is the covariance matrix of the innovation Y.k· 

The covariance of the innovation has been encountered in the derivation of the 

Kalman filter measurement update as well and thus it can be seen that the innovation 

sequence is an integral part of the Kalman filter process. 

Now the statistical properties of the innovation sequence have been described we 

indicate how the innovations can be used for the performance analysis of the Kalman 

filter. Since the properties of the innovation sequence are strictly defined if the filter is 

optimal, the innovation sequence resulting from an actually implemented filter can be 

monitored and compared to the faultless model description. Deviations from the 

theoretical characteristics may be caused by mismodelling of the dynamic and/or 

measurement model, failure of sensors, and outliers in the data. Mismodelling of any 

Chapter 5: Performance Analysis Page:63 



SOME ASPECTS OF KALMAN FILTERING 

kind will make the innovation sequence depart from its theoretically defined nominal 

values. 

If the system is modelled perfectly, the innovations will be "small" and correspond 

to random fluctuations in the output since all systematic trends are eliminated by the 

model. If the model is misspecified, the innovations will be "large" and will display a 

trend because the model no longer represents the physical system adequately. The 

general performance of the filter can be monitored by analyzing the zero mean, 

Gaussianness, given covariance, and whiteness of the innovation sequence. 

Furthermore the innovation sequence is the sole source for outlier detection. Outlier 

detection is also related to the wider field of failure detection, in which one tries to 

detect abrupt changes, called failures, in dynamical systems. The general theory of 

failure detection falls outside the scope of this paper. A survey of this topic is given by 

Willsky [1976]. Finally the innovation sequence offers a possible approach to adaptive 

filtering. Adaptive filtering techniques based on the innovation sequence are reviewed 

by Chin [1979]. The innovations approach thus facilitates an array of very useful 

Kalman filter related techniques. 

5.3 MONITORING THE INNOVATION SEQUENCE 

In this section we will focus our attention on the performance analysis of Kalman 

filters based on the approach of Mehra and Peschon [1971]. In their approach the 

innovation sequence is analyzed in the time domain and is used to assess the general 

performance of the filter. To facilitate performance analysis in both on-line and off-line 

environments the approach in the time domain is pursued throughout. 
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In monitoring the innovation sequence the assumption is that the filter operates at 

an optimum, i.e., the innovation sequence is zero mean, Gaussian, white, and of 

known covariance. This constitutes our so-called null hypothesis. The alternative 

hypothesis is that the null hypothesis is false. In the approach described in this section 

all characteristics of the innovation sequence are tested separately. The null hypothesis 

will not be tested in a large, all encompassing, test. In this section only tests for 

departures from the null hypothesis are presented. No methods for system diagnosis 

(i.e., determining the cause of of a detected departure) are presented. 

Before the actual monitoring techniques are discussed a general philosophy of data 

analysis, that is basically adhered to in this section, is outlined. Bendat and Piersol 

[ 1986] describe a general strategy for data acquisition and data processing. Once the 

data - in our case the innovations - have been obtained two actions are 

distinguished: data qualification and data analysis. Data qualification should precede 

data analysis, but in practice data qualification and data analysis are usually performed 

at the same time. 

Data qualification encompasses the investigation of the basic characteristics of the 

data, namely: stationarity, presence of periodicities, and normality. A sequence is 

called stationary if its statistical properties do not change in time. Stationarity of a 

sequence can often be derived from the properties of the underlying model generating 

the random data. In case of an optimal linear Kalman filter one expects a stationary 

innovation sequence. Nonstationarity in a stochastic sequence can, for instance, be 

revealed as a trend in the mean value of the data. Periodicity of the data is not 

investigated explicitely. Some inferences regarding periodicities can be made from the 

estimated autocorrelation function, to be discussed shortly. 
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Whiteness is the most important property of the innovation sequence. If whiteness 

of the innovation sequence is not established, data analysis cannot be performed 

properly. To test if the sequence of innovations is independent Bendat and Piersol 

[1986] introduce two non-parametric tests, namely, the run test and the reverse 

arrangements test. Non-parametric means that no assumptions concerning the 

probability distribution of the data being evaluated are made. 

Although it has been stated several times that the innovation sequence is Gaussian 

if the observations are distributed normally, normality has to be verified. The 

equivalence of the probability density function of the innovations to the normal density 

function is tested by means of the (Chi-square) goodness-of-fit test, once more a non­

parametric test [Bendat and Piersol, 1986]. 

Independence can also be tested with tests based on the autocorrelation function. 

The autocorrelation function describes the correlation between data for various time 

lags and renders some more information than the run test and reverse arrangements 

test. By means of the autocorrelation function one may, for example, be able to reveal 

periodicities in the data. 

Although it would seem logical to start with a test of the mean of the innovation 

sequence, we will defer the tests of mean to a later stage because they are dependent on 

the estimate of the covariance, which in its turn is based on the assumption of 

whiteness. We will see that to perform the analysis of whiteness, the sample mean of 

the innovation sequence still has to be computed first, only its analysis is deferred to a 

later stage. 

In the following time series and statistical techniques are used extensively. An 

overview of these topics can be found in Priestley [1981] and Morrison [1976] 
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respectively. To ease the derivations normalized innovations are considered in the rest 

of this section: 

(5.3) 

so that 

t 

E{ykyl} = 10kt · (5.4) 

In the following N denotes sample size (the number of samples used to analyse the 

innovation sequence). 

The autocorrelation function Pk of a stationary (normalized innovation) sequence 

for a lag k is defined as: 

t 
Pk = E {(yi- v )(yi+k- v)}, for k=0,±1,±2, .... (5.5) 

where v denotes the expected value of Yi (i.e., v = E {.Y.il ). 

Assuming that the innovation sequence is ergodic (a sequence is called ergodic if 

its ensemble averages (eqn. 5.5) correspond with its time averages (eqn. 5.6)) the 

autocorrelation function can be estimated as: 

k = 0,±1,±2, ... , ±(N-1) 

(5.6) 

...... 
where vis the sample mean 

(5.7) 

Under the null hypothesis the autocorrelation functions for different lags k are 

asymptotically independent and are normally distributed with zero mean and 
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covariance 1/N. In general it suffices to compute and check the diagonal elements of 

the autocorrelation function. At the a-level of significance the null hypothesis 

concerning whiteness is rejected if 

A 

where Rk(i) is the i th diagonal element of the autocorrelation matrix for lag k, and 

N(1/2)a is the upper a. probability point of the normal distribution N(O,l). 

The estimate of the autocorrelation function (eqn. 5.6) for a zero lag is nothing but 

the estimate of the covariance matrix of the innovation sequence: 

(5.8) 

Under the null hypothesis the separate elements of the m-dimensional innovation 

sequence are uncorrelated. Each correlation coefficient (of a total of l/2m(m-1)) can be 

tested for significance separately. It is prudent, however, to begin each study with a 

test of the hypothesis 

. "" 
H 0 : R0 = I 

against the alternative hypothesis 

An approximation of a test statistic for this test is given by Morrison [1976]: 
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A 

where rij are the elements of matrix R0. The statistic X2 has a Chi-squared distribution 

with l/2m(m-1) degrees of freedom. The null hypothesis is rejected at the a.-level of 

significance whenever 

2 2 
X > Xa; l/2m(m-1) 

where :x2a;l/2m(m-l) is the upper a. probability point of the Chi-squared distribution 

x21/2m(m-1) with 1/2m(m-1) degrees of freedom. 

The correlation coefficients can also be tested separately. Subject to some 

conditions [Bendat and Piersol, 1986] the quantity 

i < j 
(5.10) 

is distributed approximately normal under the null hypothesis with zero mean and 

variance 

~-3. 

The null hypothesis concerning a single correlation coefficient between elements of the 

innovation sequence is rejected at the a.-level of significance if 

I w . ·I > N (l/2)a/ 
lJ /{N-3 . 

If it is established that the innovation sequenece is white (i.e., correlations in time 

are negligible) the covariance matrix (which under the null hypothesis corresponds to 

the correlation matrix for a zero lag) and the mean can be tested. Both tests assume that 

the innovation sequence is white. 

Morrison [1976] shows that under the null hypothesis the covariance matrix times 

"' N (i.e. N*Ro) has a Wishart distribution. Mehra and Peschon [1971] state that the 
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A 
trace of Ro has a Chi-squared distribution with (n-1)m degrees of freedom. Using the 

trace of the sample covariance matrix it can thus be tested easily if the covariance 

matrix is equal to the identity matrix. 

Under the null hypothesis the innovation sequence is zero mean and the mean 

(eqn. 5.7) is normally distributed and has a covariance of 1/N. At the a-level of 

significance the null hypothesis concerning the zero mean is rejected whenever 

I vi I > N 112a, i=1, ... ,m . 

As is indicated in Mehra and Pesch on [1971] this test suffers from the fact that the 

covariance of the innovation sequence is assumed to be known. They propose to use 

'f2-statistic instead: 

~ t 1~ 2 ...... -
T =Nv R0 v (5.11) 

The derivation of this statistic can be found in Morrison [1976]. Under the null 

hypothesis the quantity is distributed according to the F-distribution with m and N-m 

degrees of freedom. The null hypothesis concerning the mean is rejected at the a-level 

of significance if 

T2 > m(N -1) F 
N _ m a; m,N-m 

In this section a general methodology for the analysis of (normalized) innovation 

sequences has been presented. Departures from zero mean, normality, whiteness, and 

a known covariance can be detected by the methods described herein. The described 

techniques, however, pertain to the innovation sequence in general. More specific 

alternative hypotheses could be formulated if one has some idea of the causes leading 

to the departures from nominal values (e.g., sensor failures, outliers in the data, etc.). 
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As part of the innovation sequence monitoring and analysis some extra model 

parameters can be estimated. One can try, for instance, to derive a possible model that 

accounts for departures from whiteness. The reader is referred to Priestley [1981] for 

details about the estimation of additional parameters. 

5.4 ERROR DETECTION 

Now that several techniques to monitor the general filter performance using the 

innovation sequence have been discussed, another important application of the 

innovation sequence can be introduced. We restrict ourselves to a specific application 

of the monitoring of the innovation sequence. The innovation process can be used to 

detect outliers in the observations. 

In section 5.2 we defined the innovation sequence as the sequence that contains all 

new information brought in by the latest observation. An outlier in the observations is 

certainly new information as the filter model cannot anticipate possible outliers. 

Therefore the innovation sequence is at the base of all outlier detection algorithms. 

Outliers in the data affect the property of zero mean of the innovation sequence. In 

statistics and adjustment theory various tests have been developed which deal with 

such phenomena. Misspecifications of the model at a certain time can be detected by a 

so-called overall model test. A misspecification detected by such an overall model 

test can be diagnosed further by a so-called slippage test if the misspecification 

affects the property of zero mean of the random variable. The application of overall 

model and slippage tests to Kalman filter performance analysis is discussed in 

Teunissen and Salzmann [1988]. The use of these tests in a more general setting in 
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adjustments is discussed in, e.g., Kok [1984]. In this section the terminology 

introduced in Teunissen and Salzmann [1988] is maintained. It must be kept in mind 

that a single outlier in the data not only affects the tests mentioned above but also the 

general innovation sequence monitoring described in the previous section. 

In adjustment theory most interest has been directed to so-called local tests. Local 

means that the tests performed at time tk only depend on the predicted state at time tk 

and the observations at time tk. The local overall model (LOM) test detects 

misspecifications in the mathematical model occurring at time tk. It is defined as: 

(5.12) 

Whenever at a certain time tk 

a misspecification of the model is detected. If it is assumed that the detected 

misspecification is due to a single outlying observation (this constitutes our so-called 

alternative hypothesis) we can apply the one-dimensional local slippage test 

~k = 
(5.13) 

where 

Ci = (0, ..... ,0, 1, O, ...... ,O)t , for i=1, .... ,m . 
1, i-l,i,i+l, ,m 

The vector Ci indicates that for the alternative hypothesis we assume that an outlier in 

the i th observation is the possible cause of the misspecification of the model. The 

observation i for which the w-test statistic is a maximum is then the most likely 
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outlying observation. In general other alternative hypotheses may be specified and this 

will affect the form of the c-vector. 

Equations (5.12) and (5.13) show that the test statistics are functions of the 

innovations. The above tests, frequently applied in adjustments, have the advantage 

that they can be executed in real time. Corrective action is thus also possible in real 

time. 

To apply testing methods for the detection of outliers the null hypothesis and the 

alternative hypothesis have to be defined quite precisely. The mere introduction of 

system noise in the filter model indicates that in general the knowledge of the 

underlying model for dynamic systems is not as perfect as in problems usually 

considered in surveying. Furthermore it is expected that in dynamic environments the 

measurement sensors are more prone to failures of any kind. Apart from the fact that 

the modelling of dynamic systems may not be as sophisticated as the models used in 

classical adjustment problems in surveying, often also the redundancy for a single 

Kalman filter measurement update can be quite low. Therefore a more cautious 

approach is usually followed for error detection in dynamic systems as the local tests 

may not be able to detect global unmodelled trends. 

In Willsky [1976] the following test statistic is defined: 

k L t t -1 
v·(A·P·1• 1A + R-) v· -1 1 11- 1 1 -1 

i=k-M+l (5.14) 

where M denotes the delay one is willing to accept in detecting a model 

misspecification. In practice a small delay M may be acceptable, though no real-time 

corrective action can be taken anymore. It can be seen that (5.14) actually represents 

nothing but a sum of the local overall model test statistics introduced earlier. The test 
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statistic (5.14) is actually closely related to the global overall model (GOM) test as 

given in Teunissen and Salzmann [1988] 

k 
~ m·T· £..J 1-1 

i=k-M+l k 
IooM = ---­

k 

L mi 
i=k-M+l 

A decision a misspecification has occurred is made once 

k 2 
TooM > Xa.; f. m; 

i=lr.-M+1 

(5.15) 

This test statistic is the weighted mean of the local overall model test statistics and can 

thus be computed very easily. Rejection of the global overall model test is due to 

misspecifications in the time interval [k-M+ 1,k]. The type of misspecification can be 

diagnosed with the global slippage test. The reader is referred to Teunissen and 

Salzmann [1988]. 

5.5 IMPLEMENTATION CONSIDERATIONS 

The innovation sequence is an intrinsic element of the Kalman filter. The innovations 

as well as their (second order) statistics are generated automatically by the filter 

process. The performance analysis of Kalman filters was dealt with in two separate 

sections. The general filter performance can be monitored using the techniques 

described in section 5.3. Specific model misspecifications can be detected more easily 

with the tests introduced in section 5.4. Although it is recommended that both types of 
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performance analysis techniques should be implemented some remarks concerning 

their implementation are made. 

The general filter performance analysis is extremely useful in the design and 

implementation stage of a Kalman ftlter. If the performance analysis can be performed 

off-line (which will usually be the case in the design stage), the full range of analysis 

techniques described in section 5.3 can be applied. It is felt, however, that this 

performance analysis can be executed in an on-line environment as well. The extent of 

the on-line performance analysis depends primarily on the computer power available. 

The number of samples used to analyse the innovation sequence (i.e., N) should 

neither be chosen too small or too large. A large value of N (e.g., N>200) requires 

considerable computing time, whilst a too small N (e.g., N <50) does not enable a 

proper time series analysis. Depending on the computer facilities available a happy 

medium has to be found for on-line applications. The analysis discussed in section 5.3 

requires computations every Nth cycle of the Kalman filter. For on-line environments 

it is suggested that the general performance analysis be used as an alarm system. If the 

null hypothesis (i.e., the Kalman filter operates at an optimum and thus the innovation 

process has strictly defined statistical properties) is (constantly) rejected, the user 

should be informed. If sufficient computer power is available, it can even be attempted 

to estimate extra model parameters that account for the possible departures from the 

nominal characteristics of the innovation sequence. If no additional parameters are 

estimated, the monitoring of the innovation sequence constitutes a fault detection 

technique. A diagnosis of what causes the ftlter to depart from its optimal properties is 

generally not performed. 

To detect misspecifications in the model on a real time or nearly real-time basis 

specific tests were introduced in section 5.4. It was shown that especially the local 
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tests can be implemented very easily. As the local redundancy in Kalman filter 

measurement updates is sometimes quite low and the dynamic model may not be very 

well defined it can be advantageous to implement the global overall model test and the 

global slippage test if a small delay in the error detection is acceptable. For the global 

tests the delay (i.e., M) should not be chosen too large. Firstly, a large M will hamper 

taking corrective action if a misspecification has been detected. Secondly, a large M 

may decrease the probability of correct detection of a model misspecification because 

averaging over a large number of innovations may smooth out the effect of a model 

misspecification. As a diagnostic tool (particularly if the model misspecifications are 

caused by outliers in the data) the tests described in section 5.4 are very powerful and 

supplement the general analysis discussed in section 5.3. 

As far as outliers in the data or sensor failures are not the cause for departures from 

the nominal characteristics of the innovation sequence, misspecifacations of the system 

and measurement noise are usually at the basis of these departures. This brings us into 

the realm of adaptive filtering which is outside the scope of this chapter. The interested 

reader is referred to Chin [1979]. 
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6. SUMMARY 

The use of Kalman filters in kinematic positioning is well established. In this report 

several aspects of Kalman filtering are reviewed that pertain to kinematic positioning 

problems. Actual applications of Kalman filtering techniques to specific kinematic 

positioning problems are not considered. 

Linear Kalman Filter 

A general discrete time dynamic and measurement models are introduced and the 

linear Kalman filter for this model is subsequently derived using a least-squares 

approach. It is indicated how continuous time models can be transformed to equivalent 

discrete time models. Some attention is paid to possible nonlinearities of the model. 

For applications in hydrography and surveying the iterated extended Kalman filter is 

probably the most frequently applied filter algorithm. 

Computational Considerations 

For actual implementations of Kalman filters various filter mechanizations can be 

used. If frequent estimates of the state and its covariance are required (as is the case in 

kinematic positioning) the so-called covariance filter mechanizations are to be 

preferred. In these mechanizations the covariance of the system state is propagated in 

time. It is found that if double precision arithmetic is used in the filter computations no 

numerical difficulties arise for any filter mechanization and thus the most efficient 

mechanization can be implemented. If computations have to performed in single 
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precision arithmetic or the reduction of the computational burden is of the utmost 

importance, the U-D covariance factorization filter can be considered for 

implementation. This mechanization is closely related to the square root covariance 

filters. For every application considerable computational savings can be achieved if the 

problem structure is taken into account. 

Linear Smoothing 

The number of applications of smoothing techniques is rather limited because of 

the delay inherent in the smoothing algorithm. In situations where off-line 

computations are feasible, however, smoothing techniques can greatly enhance the 

position estimates in a postmission approach. Conceptually the smoothing problem can 

be decomposed into two filtering problems. The smoothed estimate can be obtained 

from a combination of the two filtered estimates. The classes of fixed-interval, fixed­

point, and fixed-lag smoothing are discussed. For kinematic positioning problems 

fixed-interval smoothing seems most appropriate for a postmission approach. If a 

small delay in obtaining the state estimate is acceptable, a fixed-lag smoother can be 

considered for "real-time" applications. 

Performance Analysis 

If a Kalman filter operates at an optimum, the innovation sequence generated by 

the filter has some very well defined statistical properties. Any misspecification in the 

filter model will cause departures from these optimal characteristics. Therefore the 

innovation sequence of an actually implemented Kalman ftlter is the primary source for 

the analysis of the performance of the filter. A general filter performance analysis 

methodology is discussed which basically functions as an alarm system. General and 
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specific misspecifications in the model, in particular outliers in the observations, can 

be detected and diagnosed with the overall model test and the slippage tests 

respectively. These test statistics are also functions of the innovations. 
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APPENDIX I 

U-D COVARIANCE FACTORIZATION FILTER 
MECHANIZATION 

In this appendix (pseudo) FOR1RAN mechanizations of the basic computational parts 

of the U-D filter are given. The mechanizations are kept as simple as possible in order 

to provide a more detailed insight than is provided by the general algorithms. The 

mechanizations are derived from the algorithms as given in Maybeck [1979, pp. 392-

397]. These algorithms are not necessarily the most efficient ones computationally. 

Special (and probably faster) mechanizations can be found in Bierman [1977] and 

Thornton and Bierman [ 1980] (in the latter publication some printing errors are present 

· in the provided FOR1RAN mechanizations). 

For actual implementation the programmer can exploit the unitary upper triangular 

characteristic of the U-factor. The elements of the D-factor can be stored on the 

diagonal of U. Storage requirements can be reduced further by storing the matrices 

vector-wise. In these cases some bookkeeping logic has to be added. 

In the mechanizations n, s, and m denote the dimension of the state vector, the 

dimension of the system noise vector, and the dimension of the observation process 

respectively. 
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1.1 U -D Factorization 

An algorithm (closely related to the backward running Cholesky decomposition) to 

generate the U-D factors from a positive definite symmetric matrix is presented. 

m: P positive definite symmetric matrix 
out: U U-factor (unitary upper triangular) 

D D-factor 

D( n , n) = P(n,n) 
U(n,n) = 1 
do i = n-1, .... ,n 

U( i, n) = P( i, n)/ D( n, n) 
end do 
do j = n-1, .... ,1 

D(j,j) = P(j,j) 
do k = j+1, .... , n 

D(j,j)= D(j,j)-D(k,k)U(j, k)2 
end do 
do i = j , .... ,1 

if ( i = j) then 
U(i,j) = 1 

else 
U( i, j) = P( i, j) 
do k = j+1, .... , n 

U( i, j) = U( i, j)- D( k, k) U( i, k) U( j, k) 
end do 
U(i,j) = U(i,j)/D(j,j) 

end if 
end do 

end do 

matrix (dimension n) 
matrix (dimension n) 
vector (dimension n) 

1.2 U-D Covariance Factorization Filter Measurement Update 

The U-D filter processes observations sequentially. It is assumed that in general more 

than one observation is available for a measurement update. Therefore the complete 
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design matrix is introduced in the mechanization. The observations are assumed to be 

uncorrelated. If the original observations are correlated, a whitening procedure has to 

be applied first. If the Kalman gain matrix is to be computed explicitly the unweighted 

Kalman gain has to be extracted from the routine. In this mechanization the 

unweighted Kalman gain is computed solely per observation. 

For observation #i one finds: K(i,j) = b(j)/a( i) for j=1, .... ,n , with b(j) the 

unweighted Kalman gain and a(i) the variance of the innovation of observation #i. 

in: u 
D 

A 
y 
X 

R 
out: U 

D 

a 
res 
X 

U-factor (unitary upper triangular) Uklk-1 
D-factor ~lk-1 
design matrix 
observations 
predicted state ~klk-1 
variances of observations 
U-factor (unitary upper triangular) Uklk 
D-factor ~lk 

variances of innovations 
innovations (Yk - Akxklk-1) 
updated state ~klk 

matrix (dimension n) 
vector (dimension n) 

matrix (mxn) 
vector (dimension m) 
vector (dimension n) 
vector (dimension m) 

vector (dimension m) 
vector (dimension m) 
vector (dimension n) 

f(*) and v(*) are auxiliary vectors (of dimension n), andy, temp, and pare auxiliary 
variables. b(*) is the unweighted Kalman gain. 

do 1 = 1, .... , m 

res( 1) = y( 1) 
do i = 1, .... n 

res( 1) = res( 1) - A( 1, i ) x( i) 
end do 
do i = 1, .... , n 

f(i) = 0 
b(i) = 0 

end do 
do i = 1, .... , n 

do j = 1, .... i 
f( i) = f( i) + U(j, i) A(l,j) 

end do 

Appendix! 

@process m 
observations 
@ compute innovations 

@ reset f arid b for every 
loop 

@ compute f and v 
vectors 
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end do 
do i = 1, .... , n 

v( i) = D( i, i) f( i) 
end do 

y= R(l) 

a( 1) = y + f(1) v( 1) 

D( 1, 1) = D( 1, 1) *(y/a(l )) 
b(1) = v(1) 
do k = 2, .... , n 

y= a( 1) 

a( 1) = y + f(k) v(k) 

D( k, k) = D( k, k) *( y I a(l )) 
b(k) = v(k) 

p=-f(k)/y 
do j = 1, .... , k-1 

temp= U(j, k) 
U(j, k) = U(j, k) + b(j) p 
b( j) = b( j) + temp v( k) 

end do 
end do 

do i = 1, .... n 
x( i) = x( i) + ( b( i)/a( 1)) res( 1) 

end do 
end do 

@ update U-D factor 

@ save unweighted 
Ka1man gain if necessary 
@ update state 

1.3 U -D Covariance Factorization Filter Time Update 

For this mechanization the modified Weighted Gram-Schmidt orthogonalization 

method is used . The following matrices are defined: 

W = [ <l>(k,k-1)Uk_11k_ 1 J 
D = [Dk-11k-1 0 J 

0 Qk-1 
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In actual implementations the matrices Wand i5 have not to be used explicitely. The 

matrix W is destroyed completely during the update. The system noise variances 

(stored in Qc_1) remain unchanged. 

in: W matrix (nx(n+s)) 
U U-factor (unitary upper triangular) Uk-11k-1 matrix (dimension n) 
D D-factor and diagonal part system noise vector (dimension n+s) 

out: U updated U-factor (unitary upper triangular) Uklk-1 
D updated D-factor Dklk:-1 

c(*) and d(*) are auxiliary vectors of dimension (n+s). 

do k = n, .... ,1 
do j = 1, .. .:.:1 n+s 

c(j) = D(j,j) W( k,j) 
end do 
D( k, k) = 0 
do j = 1, .... , n+s 

D( k, k) = D( k, k) + W( k, j) c(j) 
end do 
do j = 1, .... , n+s 

d( j) = c( j) I D( k, k) 
end do 
do j = 1, .... , k-1 

U(j,k)=O 
do j = 1, .... , n+s 

U(j, k) = U(j, k) + W(j, i) d( i) 
end do 
do i = 1, .... , n+s 

W( j, i) = W(j, i)- U(j, k) W( k, i) 
end do 

end do 
end do 
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