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ABSTRACT 

A novel ocean tide loading model is developed which allows the eartl-J. to be 

self-gravitating, compressible, layered, anisotropic, viscoelastic and rotating, with solid 

inner core and fluid outer core. 

The deformation equations of the earth are developed, following the analytical 

mechanics approach. The standard-linear-solid-type rheology, as well as the 

grain-boundary relaxation model for the dissipation mechanism within the earth are adopted 

in this study. The thermodynamic state of the earth is accounted for, through its absolute 

temperature, Gibbs free activation energy, viscosity and Q proflles. 

For the numerical integration of the equations of deformation, the following models 

are considered: a) PREM for the elasticity parameters of the earth, appropriately modified 

at tidal frequencies, using dispersion relations, b) SL8 model for the Q profile of the earth, 

c) viscosity profile with the following viscosities: 2.5x 1022 poise for the lower mantle, 

1022 poise for the transition zone and 1017 poise for the LVZ, d) SAMMIS ET. AL., [1977] 

model for the Gibbs free activation energy proflle (for the transition zone and lower 

mantle), with an adiabatic temperature gradient of 0. 3 K I km. The value of 12 5 kCal/Mole 

for the LVZ is considered, and e) STACEY's [1977] thermal model for the temperature 

proflle of the earth. 

Complex load numbers h' n• k' n and l'n, are calculated and the results are the 

following: 

a) The rotation of the earth has an effect on the load numbers that can be as much as I. 8%, 

3.1% and 3.3% respectively, depending on the degree of expansion. There 'is a weak 

latitude dependence of the load numbers for ns4; when latitude varies from o· to ±45", its 

effect is of the order of 0.4%. 
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b) The effect of anisotropy in the upper mantle can be as much as 1.9%, 2.3% and 2.5% 

respectively, depending on the degree of expansion. 

c) At semidiurnal periods, the load numbers on a viscoelastic earth are about 0.2% larger 

than their corresponding values on an elastic earth. At fortnightly periods, viscoelastic 

h' 100 , k' 100 and 1'100 are larger than their corresponding elastic values by 0.5%, 1.5% and 

1.3%, respectively. For other values of n, the effect of viscosity is smaller. 

Complex Green's functions are deternrined for displacements, gravity and tilt; they 

are given in the same form as those of FARRELL [ 1972], for easy implementation with 

existing software. The predictive power of the model is tested against accurately deternrined 

M2 gravity tide residuals at 10, globally distributed, tidal stations. It is shown that the 

difference between observed residual gravity and predicted load gravity tide amplitudes is 

reduced for all tested stations by as much as 63%, when compared to predictions on an 

elastic, isotropic and nonrotati.ng earth. There is also an improvement in the phases of the 

predicted load gravity tide. 

All the novel features of this research are included in the new version of the 

LOADSDP software package [PAGIATAKI~ 1982]. LOADSDP software can be used to 

evaluate displacements, gravity perturbations and tilt at arbitrary locations on the surface of 

the earth with an accuracy better than 1%. 
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INTRODUCTION 

1.1 The Ocean Tide Loading Effect 

As the ocean tide waters move about, they periodically load and unload the earth, 

causing displacement, tilt and gravity changes. These changes are the most pronounced 

directly underneath the load, i.e., on the ocean floor. However, the effect is of considerable 

magnitude even in the middle of the continents. As an example, the amplitude of the vertical 

displacement in the middle of North American continent can reach 1. 7 em t [PAGIATAKI& 

1982]. At coastal stations the effect becomes even more sizable. 

One of the phenomena that can be observed by terrestrial means is the relative tilt+ of 

the earth's smface due to direct attraction of the moon and the sun (body tide). These 

observations are significantly affected by the ocean tide loading. Sometimes; ocean tide 

loading tilt can be larger than the body tide tilt, especially at stations very close to the shore, 

an example being the University of New Brunswick Earth Tides Station• [PAGIATAKIS 

ANDVANfcEK, 1985]. 

t Thi3 is the combined effect of the six leading constituents M 2• S 2• K 1, 01, N 2 and P 1 using Schwidersld's 
ocean tide model {SCHWIDERSKI, 19 78 ]. 

+ Relative to the undisturbed surface of the earth. 

t For instance, the amplitude of the M2 tilt inN-S direction is 12.290 marcsec due to body tide and 20.130 
marcsec due to ocean loading (calculated on an elastic earth). 
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To increase the accuracy of satellite positioning and very long baseline interferometry 

(VLBI) techniques to subcentimetre level, a good knowledge of the loading deformations 

is indispensable. Furthermore, with the advent of the superconducting gravimeter, it is 

possible to studyt the interior of the earth, using surface observations, provided that other 

effects such as the ocean loading can be eliminated. 

Ocean tide loading effects have been studied by many researchers in the past. 

However, certain of the earth's attributes, such as, viscoelasticity, anisotropy, 

nonhomogeneity and rotation have been neglected for various reasons. In the present 

study, we take into account all the aforementioned effects using the approach of analytical 

mechanics. However, before we present the details of the context and the contributions of 

this research, an outline of the existing studies of the ocean loading is in order. 

At the beginning of this century, a systematic difference between the values of the 

diminishingfactort estimated along N-S and E-W directions, was discovered. The analyses 

of the early observations of the tidal tilt showed that the diminishing factor in E-W direction 

was systematically larger. 

Hecker in 1907 appears to be the first who tried to explain this disagreement. He 

attributed it to indirect effects due to the complex influence exerted by the mass of 

water moving in the nearby seas. D' Abbadie in France and Darwin in England in the late 

1800's mentioned a possible influence of the ocean tides on the direction of the vertical 

[MELCHIOR, 1983]. DARWIN [ 1882] attempted to evaluate this effect. 

Serious srudies of the indirect effect, called here ocean tide loading, were initiated 

by SUCHTERAND CAPUTO [ 1960}, JOBERT [ 1960] and CAPUTO [ 1961 J. They considered 

surface loading, in contrast to KAULA [ 1963], who considered internal mass loading. In all 

the above studies, simple earth density models were assumed. 

t In combination with other geophysical methods. 

i The diminishing factor is defined as [MELCHIOR, 1983]: y - 1 + k - h, where h and k are the first and the 
second Love numbers. Love numbers are defined in the the next section. 
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LONGMAN [ 1962] initiated a study in order to evaluate the total gravitational effect of 

an arbitrary configuration of the ocean tides upon a gravimeter observation. He considered 

a symmetrical, gravitating and elastic earth, where the Lame coefficients and density were 

some functions of depth. He used the equations of the free oscillations of the earth derived 

byPEKERISANDJAROSCH [1958] and by ALTERMANET. AL. [1959]. LONGMAN[1963J 

calculated load defOimation coefficients [see MUNK AND MACDONALD, 1960] up to 

degree n=40. 

FARREll [1972] considered a homogeneous self-gravitating sphere. He formulated 

the problem much the same way as LONGMAN [ 1962] did and estimated load numbers up 

to degree n = 10000 for different earth models. Farrell's work is very important; it has been 

the standard for various investigators [e.g. ZSCHAU, 1976; CH!ARUITINI AND 

LNIERATO& 1978; GOAD, 1979; MELCHIORET. AL .• 1981; PAGIATAKI~ 1982]. 

BEAUMONT AND lAMBERT [1972] used the finite element method on an 

axisymmetric hemispherical medium to calculate the ocean tide loading effect. They also 

considered a lateral change in the crust structure, pointing out that the transition from 

oceanic to continental structure has no effect on tilts. Their results show that beyond 200 

km from the point load the tilts are :insCnsitive to crustal structure. 

PERTSEV AND IVANOV A [1976] determined load numbers up to degree n = 70000 

and calculated the effect of the world ocean tides on the trans United States tidal gravity 

profile. 

ZSCHAU [ 1977, 197 8] calculated phase shifts of the ocean tide loading effects due to 

low viscosity layers in the interior of the earth. He considered that the earth is a Maxwell 

fluid and he used the correspondence principle t to evaluate this response. He found that, 

t The Fourier (or Laplace) transfonn of the equations of motion (and their associated boundary conditions) of a 
linear viscoelastic body i3 of the same form as that of linear elastic body, the only difference being that the 
elasticity parameters are now complex quantities and they are functiom of the transform variable. Therefore, 
any solution of the elastic equations offers a corresponding solution for a linear viscoelastic body through the 
inverse transform. This is known as the correspondence principle [see for instance, PELTIER, 1982}. 
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loading effects on a viscoelastic earth show phase shifts with respect to an elastic earth of 

the order of a few degrees. 

MOLODENSKIJ AND KRAMER [1980] calculated derivatives of the Love numbers 

with respect to the elastic modulus of the real earth in order to estimate influences on earth 

tides by large-scale horizontal inhomogeneities in the mantle. They concluded that these 

influences can induce about 0.5% change :in the 5 factor. Thus, 5 factor must be estimated 

with an accuracy better than 0.2% in order to carry some information on mantle 

inhomogeneities. Phases must be accurate to 0.1 o to 0.2°. 

SASAO AND W AHR [ 19 81] modelled the response of an elastic, rotating, elliptical and 

oceanless earth with a fluid outer core to a given load distribution on its surface. They 

showed that the earth's response to diurnal surface loading must be affected by the free 

corenutationeigenmodet. WAHRAND SASAO [1981] gave a procedure to determine this 

resonant effect of the diurnal tides in the open ocean, on body tide. 

1.2 Load Deformation Coefficients 

Ocean loading effects can be evaluated by convolution of the ocean tidal amplitude 

with appropriate Green's functionst. These Green's functions reflect the response of the 

earth to loading and depend, among other variables t, on the properties of the earth. The 

properties of the earth enter into the Green's functions through some dimensionless 

t Consider an elliptic rotating earth with fluid core. "When an external torque is applied to the earth, its rotation 
axis tips and the mantle pushes agaimt the elliptical bulge of the core. Since the core rotates with the earth, it 
resists this deformation by an opposite torque. The result is a periodic, relative rotation between the core and 
the mantle. This is known as free core nutation (FCN) and has an eigenfrequency of about I + 1/460 cycles/day 
[WAHR, 1982] Apparently, FCN affects only the diumal tides. For theoretical discussions of the FCN see 

.TEFPREYS AND VICENTE, [1957a, b]; MOLODENSKJJ, [1961]; TOOMRE, [1974]; SHEN AND 
MANSINHA [1976]. 

:1: See for imtance PAGIATAKJS,[/982]. 

t They depend on the extent of load, as well as on time. For time dependent load numbers see PELTIER,{J982]. 
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quantities called load deformation coefficientst, introduced by MUNK AND 

MACDONAlD [ 1960]. A defmition of these coefficients, using geometrical quantities of the 

defonnation [see for example PAGIATAKI~ 1982], is as follows: Let ulnm denote the 

vertical displacement of the earth's surface due to the load, uarun the displacement of the 

gravity equipotential surface induced by the attraction of the load masses and ui run the 

vertical displacement of the surface of the earth due to the disturbed density field. Then 

h' =u1 /ua n run run• 

k' = ui /ua n run run• (1.1) 

where vlrun and va run are the horizontal components of the deformation. For this study, it 

is convenient to use physical quantities to define the load deformation coefficients. These 

alternativedefi.nitionst are as follows [e.g. WAHR, 1982] 

h' = gul fcpl n nm nm• 

(1.2) 

1' = g vl f<Pl n nm run• 

where <IJlrun is the potential of the load, <Prun is the total gravitational potential 

(gravitational plus loading) and g is gravity. The load deformation coefficients do not 

depend on m and they are essentially independent of tidal frequency t. 

t Also known as load Love numbers or Love numbers. 

t This can be done by using the definitions ( 1.1) and Brons fonnula ua nm = ~ nm / g from physical geodesy. 

t We will see in the following chapters that this is only true for a purely elastic earth. However, for a 
viscoelastic earth the load deformation coefficients depend strongly on frequency, that· is a viscoelastic 
medium is dispersive. 
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1.3 Context of This Study 

The primary objective of this research is to study the response of a more realistic 

earth, than used so far, to external forces and in particular to ocean tide loading. For the 

study of this response, many attributes of the earth must be taken into account, when 

developing the equations of deformation. One of the most important attributes in this study 

is the rheology of the earth. There is strong observational evidence that the rheology of the 

earth is not purely elastic and that tidal energy is dissipated in the earth. In order to 

understand the rheology of the earth, the concepts of stress and strain, as well as their 

relationship through a constitutive law are of primary importance. More specifically, of all 

the linear viscoelastic models, the standard linear viscoelastic model is examined in more 

detail, as this model is assumed to describe more realistically the response of the earth to 

tidal forces. In close relation to the standard linear viscoelastic model, the grain-boundary 

relaxation model is presented, which describes the dissipation mechanism within the earth. 

Moreover, the thermodynamical state of the earth modifies its rheology and it is taken into 

account. All the above concepts, along with the most recent models of the earth that are 

used to solve the equations of deformation of the earth are presented in Chapter 2. 

In Chapter 3, the basic concepts of Lagrangean mechanics that are used to derive the 

equations of deformation are presented. We emphasise that our interest is the determination 

of the deformations of the earth; these deformations are considered as dependent variables 

of position and time, as opposed to the classical equations of motion that consider the_ 

position a dependent variable of time. Consequently, the Lagrangean equations of motion 

in this study acquire a different character; they are second order partial differential equations 

in the displacements (deformations) and thus, they are called "equations of deformation. u 

Furthermore, we present the concepts of ntangentn and "cotangent bundle spacesn, in 

which the equations of deformation are developed. Although, we do not take full advantage 
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of this exposition in this study, we indicate its importance in future research on the 

deformations of the earth. 

In Chapter 4, the equations of deformation are developed, following the Lagrangean 

mechanics approach, as described in Chapter 3. The equations are three partial differential 

equations of second order in the displacements. 

In Chapter 5, the equations of deformation are transformed into 6linear ordinary 

differential equations (ODEs) ofili'St order. Subsequently, the equations are transformed 

into 12 ODEs of fll'St order, by considering that the deformations on a viscoelastic earth are 

complex variables. 

In Chapter 6, the equations of deformation are solved using the finite difference 

method of numerical integration. Load deformation coefficients are obtained, and 

subsequently, Green's functions are developed for the evaluation of the effect of the ocean 

tide loading on deformation, gravity and tilt observations. 

Finally, in Chapter 7, the main conclusions of this research are presented, along with 

recommendations for future research. 

1.4 Contributions of This Study 

In this research, a number of important contributions are made, which can be 

summarized as follows: 

1) The equations of deformation of the earth are developed from basic principles of 

physics, following the analytical mechanics approach (Lagrangean mechanics). The 

development of the equations is presented within the context of modern developments of 

mathematical physics. 

2) We consider the earth to be layered, self-gravitating, compressible, anisotropic, rotating 
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and viscoelastic under dynamict surface loading. No other study has included aU these 

features. 

3) We assume that the earth is anisotropic (more specifically, laterally isotropict) in the 

uppermost layers. We indicate that a more general anisotropy can be easily incorporated 

into the equations of deformation, as long as an earth model is available for the equations' 

solution. At present, only the Parametric Reference Earth Model (PREM) by DZIEWONSKI 

AND ANDERSON [ 19 81] allows for lateral (transverse) isotropy in the upper mantle. 

4) It is known that the earth's rotation introduces problems in the expansion of the 

equations of motion into spherical harmonics [WAHR, 198la). We have found a partial 

solution to these problems, a simple method of expanding the equations into sectorial 

spherical harmonics (semidiurnaltides), when the properties of the earth possess rotational 

symmetry. 

5) To allow for imperfections in elasticity, we consider that the earth has a 

standard-linear-solid-type rheology. We also accept that the dissipation mechanism is 

described by the grain-boundary relaxation model and we account for the thermodynamic 

state of the interior of the earth. We draw important new conclusions about the sensitivity 

of the load numbers to the viscosity, the quality factor Q and the thermodynamic proffie of 

the earth. Finally, we stress the possibility of studying the interior of the earth from surface 

observations of the loading effects. No other study has included the above features. 

6) We check the stability of the solution of the equations of motion using simple criteria 

and we indicate the prospects of a thorough stability investigation, using Lyapunov's 

stability theory. 

t By "'dynamic"' we mean that the frequency of the applied load is present in the equations as it is common 
practice in the equations of free oscillations of the earth. Some investigators have considered static 
deformations by simply Te'jectin8 the dynamic terms fe·8· LONGMAN, 1 962; 196.3]. This leads to a number 
of inconsistencies and 'paradoxes' {see DAHLEN, 1974;CHINNERY, 1975]. 

~ When a material possesses one axis of symmetry in the sense that aJJ directions perpendicular to this axis are 
equivalent, it is said to be laterally (transversely) lirotropic. The term "'transverse isotropy" was introduced by 

Voigt in 1886 and it is bein8 used as such, in seismology and crystal physics. We adopt the term 'lateral 
isotropy"' in this study, however. 
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7) We evaluate new Green's functions for the load effects, which take into account the 

novel model developed in this study. More importantly, we give these Green's functions in 

exactly the same form as in FARRELL [1972]. This is advantageous to the many users of 

Farrell's Green's functions, as no serious modification in the existing software will be 

needed to account for the novel model developed in this study. Since the load numbers on a 

viscoelastic earth are complex, we calculate their imaginary part, as well. These "phase 

shift Green's functions• show that viscoelasticity in the earth introduces phase shifts of the 

order of a few degrees. 

8) We giveanewversionofthe LOADSDPsoftwarepackage [PAGIATAKI~ 1982] for the 

evaluation of the loading effects that includes all the new features of this research. 

Moreover, we test the predictive power of the model against accurately observed gravity 

residuals at different tidal stations and we conclude that the present model is very 

promising, indeed. LOADSDP· software can be used to calculate displacements, gravity 

perturbations and tilt at arbitrary locations on the surface of the earth and it is available 

from the Department of Surveying Engineering, upon request. 



.RHEOLOGY AND PROFILE OF THE EARTH 

The knowledge or the relation or stress to strain through a constitutive law is essential 

in modelling the response of the earth to external forces. Nowadays, it is believed that the 

response of the earth to external forces, of periods from a few minutes to thousands of 

years, is not perfectly elastic. This "'imperfect" behaviour "'deteriorates"' to a purely viscous 

behaviour, as the period of the deformation increases. 

Studies of the imperfect elastic response of the earth at seismic frequencies have 

shown, that even at these high frequencies, the behaviour of the earth departs slightly from 

perfect elasticity [PEL TIER, ET. AL. 1981]. The inelastic behaviour of the earth is extremely 

complicated. Among others, it depends on its chemical constitution, phase transformations 

and thermodynamical state. 

In order to study the response of the earth to ocean tide loading, the earth's interior 

structure must be known to a certain extent. Of particular importance in the development of 

an ocean tide loading model, is the structure of the crust and the upper mantle of the earth. 

In addition, the capabilities of each layer to support positive and negative loads must be 

taken into account. The rheological properties of the crust and the upper mantle can be 

estimated from modelling observations of loads, such as, glaciation and deglaciation 

[CATHLES, 1975], volcanic seamounts [McNUTI AND MENARD, 1978, RUNDLE, 1982] 

and topographic rises at ocean trenches [MELOSH, 197 8]. 

10 
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The viscoelastic behaviour of the earth can be described by the amount of energy 

dissipated within the earth when it is subjected to stress. This amount of dissipated energy 

can be expressed as a function of the "quality factor" Q and depends on the dissipation 

mechanism within the earth. 

In this chapter, we introduce the concepts of stress and strain in the solid earth, as 

well as, their changes in time. We elaborate on the profile of the earth from three points of 

view: anelasticity, rheology and thermodynamical state. 

2.1 Stress and Strain 

Stress is defined as force per unit area. It is transmitted through a material by 

interatomicforcefields [TIJRCOTTE AND SCHUBERT, 1982]. Stresses, thataretransmitted 

perpendicular to a surface of interest, are known as normal stresses; those, that are 

transmitted parallel to a· surface of interest, are called shear stresses. 

When dealing with deformations . of a solid, stress must be defmed in three 

dimensions. Since stress changes with position, even when the accompanied displa~ments 

are infinitesimal, it is necessary to recognise three triplets (on the three faces of an 

infinitesimal cube), leading to nine components of stress; these nine components are the 

independent elements of the symmetric stress tensor. In Figure 2.1a the nine 

components of stress on the faces of a finite element are shown. The firSt subscript of a 

component of stress denotes the direction of the normal to the surface, on which the force 

acts and the second subscript denotes the direction of the force. 

Tensile stress is a normal force per unit area tending to extend the fmlte element. 

Compressive stress is normal force per unit area tending to contract the finite element. 

Conventionally, tensile stress is positive and compressive stress is negative. 



.;, 

I 
I 

12. 

.·"f' 
"'33 

Shear 
Stress ( +) 
/"' 

mmiiiii!iiii 

(b) 
'. / 

---+ H orrnal 
Stress ( +) 

Fig. 2. 1. TI1e finite element e.nd r.he stress con~;entLons 



13 

Shear stress is considered to be positive when it tends to rotate the fmite element clockwise. 

The above conventions are illustrated in Figure 2.1 b. 

Strain is defined as the measure of differential deformation. The nine possible 

strains (corresponcling to the nine components of stress) form a second rank tensor called 

strain tensor [EIRICH, 1956]. Normal strain is defined as the ratio of the change in 

length of a solid to the original length. Shear strain is defined as one-half of the decrease in 

a right angle in a solid when it is deformed. In the sequel, unless otherwise indicated, the 

summation convention applies, when an index is repeated twice. 

The state of stress and straW. in a solid can be described completely by the stress and 

strain tensors, respectively. If 'Gj is the stress tensor at a point, then it can be shown 

[BULLEN, 1975] that the trace of 'Gj is independent of the orientation of the coorclinate 

axest. Hence, 'Gj ~/3 (whether referred to the principal axes or not) is equal to the mean of 

the three principal stresses (normal stresses). It is conventional to denote this mean by -p. 

Therefore, 

p = - 1ijl>lj/3, i, j = 1, 2, 3. (2.1) 

Quantity pis called pressure, or hydrostatic stress. 

The deviatoric stress tensor Tij is defmed as [BULLEN, 197 5] 

(2.2) 

Deviatoric s1ress does not include the hydrostatic pressure induced by the neighbouring 

mass elements. Its trace is equal to zero. 

t This i3 called 'invariance in coordinate transfonnation.' 
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Dilatation is defined as 

e = e .. "'-· = 1race(e .. ) 
q~ . q ' i, j = 1, 2, 3, (2.3) 

where eij is the strain tensor. Compression is defined as negative dilatation. Similar to 

deviatoric stress tensor, the deviatoric strain tensor can be defined as 

P .. = e .. - Lekk"'-·/3 = e .. - Sfi:-/3 ~ lJ Ujl lJ lJ' i, j, k = 1, 2, 3. (2.4) 
k 

Changes in stress in any material are accompanied, in general, by changes in 

deformation. A first step in deformation theory is to arrive empirically at a suitable set of 

model relations connecting 'Iii and eij. The relation between stress and strain tensors is 

referred to as the constitutive Jaw. The constitutive law depends on the rheology, on the 

thermodynamical conditions of the material at hand and on the time scale over which the 

stress is applied [PELTIER. 1974]. 

For a perfect (ideal) elastic material, Hooke's law defines the constitutive relation. 

For pure uniaxial deformation (deformation of a linear element), we can write [NOWICK 

AND BERRY, 1972) 

T=Ee, (2.5) 

where E is the Young modulus and T and e are the uniaxial stress and strain 

respectively. The reciprocal J of E is called modulus of compliance. 

Incompressibility or bulk modulus of a solid is denoted by k; it is defined as 

the ratio of pressure to compression. When the mode of deformation is pure hydrostatic 

deformation, Young modulus E in (2.5) changes to bulk modulus k. Compressibility is the 

reciprocal of incompressibility. The order of magnitude of k discriminates between gasses 
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and liquids'!' [BULLEN, 1975]. 

Rigidity or shear modulus of a solid is the measure of the strain produced by 

an assigned deviatoric stress and it is denoted by J.l. When the mode of deformation is pure 

shear deformation, Young's modulus in (2.5) changes to shear modulus J.l. The order of 

magnitude of J.1 discriminates between fluids and solids. For fluids, J.l is negligibly small 

(zero for ideal fluids). For most metals and rocks under normal conditions, J.l is of the 

order of 109 to 1011 Nm-2. A perfectly elastic material is called solid when J.1 is not 

negligible (when J.l> 1 Q9 Nm -2 ). A material is called fluid, when the evidence shows that J.1 

does not exceed 109 Nm-2. 

Dynamic viscosity, or simply viscosity of a fluid is a measure of its resistance 

to deformation. Viscosity arises from cohesion of molecules and from the transfer of 

momentum, as molecules diffuse from one position to another [OBERT, 1960]. Viscosity is 

denoted by 11 and has units ofML-IT-1 (in CGS units, 1 poise=lgcm-tsec-l):t. A perfect, 

or ideal fluid, has zero viscosity. It is called Pascal nuid, or in viscid nuid. Therefore, 

neither shear stress, nor internal friction can be transmitted in a Pascal fluid. 

A simple, true, or Newtonian nuid has a coefficient of viscosity independent of 

the shear stress or rate of deformation. Hence, for a Newtonian fluid, the rate of strain is 

directly proportional to the applied stress. This constant of proportionality is the reciprocal 

of viscosity of the fluid. 

1' Experimental values for incompressibility of gases can be obtained by several ways, most of which are 
indirr:ct. The incompressibility of gases depends strongly on the way the compression takes place (e.g. 
isothermally or isendropically) and its value is usually close to unity. For liquids, incompressibility 
approaches infinity. 

~ From "'kinetic theory" that explains various phenomena due to kinetic motion and elastic collisions of atoms 
and molecules, viscosity i3 given by: 1J - Apc..L A i3 a coefficient depending on the forces between molecules, 
p is density, cis the mean speed of the molecules and A is the mean free path of the molecules. Mean free path 
is the average distance traversed by a molecule between collisions. 
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Very often in dynamics, the terms effective viscosity and kinematic viscosity 

are used. Effective viscosity lleff is the ratio of stress to the rate of strain 

(2.6) 

and has units of ML-lT-1 (same as the dynamic viscosity). Kinematic viscosity llkin is the 

ratio of viscosity to density [11JRCOTTE AND SCHUBERT, 1982] 

'1kin = nfp. (2.7) 

Kinematic viscosity has units of L2T-l (in CGS units, 1 stoke=lcm2sec-I) and expresses 

how momentum diffuses. 

2.2 Linear Elastic Constitutive Law 

The constitutive relation for a perfectly elastic and isotropic t material (Hookean solid) 

can be written as [BULLEN, 197 5] 

(2.8) 

where 'Gj and eij are the stress and strain tensors respectively, k and JJ are the incom­

pressibility and rigidity respectively. The term in parentheses of (2.8) is called the flrst 

Lame parameter "A, thus, 

"A= k- 2J,J/3. (2.9) 

Parameters "A and JJ are known as Lame parameters. 

t Isotropic material is the material whose rheological properties are the same in any direction. 
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Young's modulus E and Poisson's ratio v constitute an alternative pair of (position 

dependent) coefficients to A. and J.1 in expressing the stress-strain relations of a perfectly 

elastic and isotropic material. Coefficients E and v are commonly interpreted by means of 

the deformation of a homogeneous cylindrical wire, subjected to uniform normal stresses at 

the ends. If e 1, e2 and e3 are the principal strains produced ( e 1 is longitudinal and e2 and e3 

arelateralwithe2 = e3), then (according to Hooke's law): 

(2.10) 

For perfectly elastic and isotropic material we can write [BULLEN, 197 5] 

E= 9k~(3k+J.l) = J.1(3i\+2J.l)l(i\+J.t), v=i\/{2(i\+J.1)}=(3k·2J.l)/(6k+2J.l). (2.11) 

Relations (2.9) and (2.11) establish the equivalence of the pairs {E, v}, {i\, J.l} and {k,J.l}. 

For metals, v varies between 0.3 and 0.4. For polycrystalline metals vis about 0.25. The 

value of v increases as J.tlk decreases and is 0.5 fot perfect fluid. 

There are three implicit conditions in equations (2. 8) and (2.11) that define perfect 

(ideal) elasticity. These are [NOWICK AND BERRY, 1972}: 

1) The strain response at each level of applied stress (or vice versa) has a unique 

equilibrium value. 

2) The equilibrium response is achieved instantaneously. 

3) The response is linear. 

The above three conditions may be lifted in various combinations to give different 

behaviour. Of these combinations, two are of importance in this study. When condition (2) 

above is lifted, the behaviour is called an elastic When conditions ( 1) and (2) are lifted, 

the behaviour is called linear viscoelastic. Thus, linear viscoelasticity includes 

anelasticity as a special case. Since the absence of condition (1) implies a hysteresis loop, 
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viscoelastic behaviour is characterised by dissipation (attenuation) of a fraction of the 

defonnation energy. 1bis subject is presented in more detail in section 2.4. 

2.3 Linear Viscoelastic Constitutive Relations 

Let us consider a linear viscoelastic material to which a stress is applied. In response 

to this stress, the material deforms and due to its viscous component, some time is required 

before it reaches an equilibrium. Similarly, u a strain change is imposed on the material, 

stress will not be transmitted through the material instantaneously. In both cases, the 

viscoelastic material does not "adjust" itself instantaneously to the changes of its state. We 

say then, that the material exhibits relaxation In the sequel, we examine separately the 

above two cases considering, for simplicity that, either stress, or strain are applied 

abruptly. 

When stress T0 is applied abruptly and held constant, strain changes as a function of 

time. This yielding of the viscoelastic material is called creep or transient 

anelasticitj( Therefore, creep is a special case of relaxation; it is called strain 

relaxation For one dimensional case, the ratio of strain (as a function of time), to the 

applied constant stress is called creep function, or creep compliance [NOWICK AND 

BERRY, 1972]. Thus, the creep compliance is equal to: 

J(t) = e(t) I T0 • (2.12) 

For elastic material, there is no creep; strain is observed instantaneously and J(t) is 

constant. As we watch the creep process progress, before the material reaches an 

equilibrium state and there is still time left for the creep process to continue, we say that the 

material has not yet relaxed. The measure of its deformation is described through the 

unrelaxed creep function lu. As time progresses and the material approaches the 

relaxed state, J tends to become constant, i.e. it approaches the relaxed compliance JR. 
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Ju:: lim J(t), 
t-o 

JR ::Jim J(t). 
t- 00 
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Let us assume that after some time has elapsed, not necessarily sufficient for the material to 

reach equilibrium, the stress is abruptly removed. Then, there will be a time-dependent 

decay of the strain in addition to the inunediate elastic response. This phenomenon is called 

elastic aftereffect, or creep recovery. Creep and elastic aftereffect are illustrated 

in Fig. 2.2 (after NOWICK AND BERRY, 1972]. 

Let us suppose now, that a linear viscoelastic material is at rest (no external stresses 

applied), when an abrupt change in its strain is imposed. Apart from its inunediate response 

due to the elastic component, there will be a time dependent change of stress in the material. 

This change of stress (as a function of time) is called stress relaxation and it is 

described by the stress relaxation function M(t). M(t) is the reciprocal of J(t)t. 

Similar to the creep function, 

Mu = lim M(t), 
t-o 

MR =lim M(t). 
t- 00 

(2.14) 

The time required for a viscoelastic :material to reach the relaxed state when it is either at 

constant stress, or at constant strain, is called relaxation time. Relaxation time depends 

s1rongly on the chemical composition of the material as well as on its thermodynamic state. 

In Table 2.1, some of the most common rheological models are shown along with 

their corresponding constitutive relations [FLUGGE, 1975; PELTIER, ET. AL., 1981]. In 

these relations, 'Gj andeij are the stress and strain tensors respectively, A. and Jl are the 

t Do not confuse M with Young's modulus E. M, as it is indicated, is a function of time, whereas E is not. 
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F~. 2.2. Creep and elastic af1Ereffect for (a) ideal elastic solid, (b)cinelastic solid and 

(c) linear vi::lcoelastic solid [af1Er NOWICK AND BERRY, 1972]. 
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ANALOGUE CONSTITUTIVE LAW 

Hookean Solid 

':X,v. 
T·· = 2Jle·· + ).e .. 'fJ .. ~ lJ lJ 11 lJ 

Viscous Fluid 
"1. 

T·· = 2ne·· :] 1J IJ 

Maxwell Solid 
"1. -r .. = Jl/n tr·· -T··5--t3) + 2Jle·· + A.e .. 'fJ .. 
~ lJ lJ 11 IJ IJ 11 lJ 

Kelvin-Voigt Solid 

¢ Tij = 2JJ 1eij + A.eii5ij + 2neu 

Standard Linear Solid 

'A;J.ll. 1-ij + ( JJ 1+ JJ 2)/n (Tij -Tii5ij/3) = 

~ 2JJ 1eij + A.eii5ij + 2JJ 1JJin (eij -eii5ij/3) 
"rl 

Burgers Body 
;:ij + ( llt + ll2)/n + lltllll(Tij- Tii5i/3) 

~} 1-lz.. T\ 

~~ + J.ltJ.l2/(f1Il12)(Tij- Tii'fJij/3) = 

2JJleij + :Ae~i5ij + 2JltJJ2Irh (eij -euBI/3) "rl.z 

Table 2.1. Linear viscoelastic models and their constitutive law [After FLOGGE, 1975, 

PELTIER, ]IT. AL., 1981]. 
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Lame parameters and 11 is viscosity. Dots indicate time differentiation. The dashpot 

analogue of a Newtonian fluid is characterised by a steady state creep behaviour. Spring 

and dashpot in series (Maxwell solid) is characterised by an instantaneous elastic response 

and a long term steady state creep. Spring and dashpot in parallel (KelVin-Voigt solid) have 

transient anelastic response (creep). Other combinations of springs and dash pots exhibit 

more complicated responses. 

2.4 Hysteresis 

Theory of elasticity can account for solids, which have the capacity to store all the 

mechanical energy supplied by external forces [CHRISTENSEN, 1971]. On the other hand, 

Newtonian viscous fluids are characterised by their property to dissipate all the energy 

supplied by external forces and thus, have no capacity to store energy. Viscoelastic solids 

fall between the elastic solids and viscous fluids. They are described by their property to 

dissipate a fraction of the mechanical energy supplied by any external forces, while most of 

the energy is stored in the fonn of elastic or strain energy. 

Let us assume that a certain viscoelastic material is deformed under a slowly varying 

periodic load and exhibits linear viscoelasticity. An application of a tensile load will cause 

the material to extend. On a stress-strain graph, the behaviour of the material is described 

by curve #1 (Fig. 2.3). When unloading the material, its stress will be higher than the 

stress during loading, for the same magnitude of strain (curve #2). Finally, when a full 

cycle of loading is completed, the behaviour of the viscoelastic material under periodic 

stress is depicted by the closed line (loop). This behaviour of the material is included in the 

class of hysteresis phenomena The closed line on the stress-strain diagram is called a 

hysteresis loop [LOVE, 1927]. 
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Fig. 2. 3. For long period sinusoidal stress (similar 1D eart.h tides), the slope of the 

major axis of the hysteresis loop (ellipse for linear viscoelastic bodies) 

is very clOse 1D t.he slope defirted by t.he relaxed mod ulu.s of compliance 

[after IvliJ:fSTER, 1980] 
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Elliptical hysteresis loops indicate linear viscoelastic behaviourt [BRENNAN, 1981]. The 

area inside the loop is proportional to the amount of energy dissipated during one cycle of 

loading and it is related to the phase difference between stress and strain [MINSTER, 19 80]. 

2.5 Q Profile of the Earth 

It has been established experimentally, that the earth's crust and mantle exhibit 

viscoelastic behaviour. Evidence for this behaviour is abundant, both from phenomena 

with short characteristic periods, such as dispersion of body wave velocities, spatial 

attenuation of surface waves as well as from longer period processes, such as postglacial 

rebound, crustal bending and polar wander [PELTIER ET. AL, 1981]. 'This viscoelastic 

behaviour of the earth is possibly due to relaxation phenomena with mechanisms 

accounting for slippage of grain boundaries (dislocation), partial melting of the material, 

phase transformations and thermoelasticity [LELIW A-KOPYSTYNSKI AND TEISSEYRE, 

1984]. 

Quality factor Q expresses the amount of energy that is irreversibly lost by 

dissipation during a complete cycle of stress. Its reciprocal is defmed as [LAMBECK, 1980] 

Q-1 = 1/(2rr).6.E/E, (2.15) 

where E is the maximum value of the elastic energy (peak elastic energy) stored during a 

complete cycle of straining and .6.E is the amount of energy dissipated during a complete 

cycle of straining. 

Other definitions for Q are more convenient to use. For example, an alternative 

defmition to (2.15) is [LAMBECK, 1980] 

t There are cases in which the hysteresi3 loop i3 cU3ped. This indicates that the material exhibits non-linear 
behaviour; its comtitutive law is not a linear differential equation anymore. Since we are only interested in 
linear viscoelastic constitutive relatiom, cusped hysteresis loops are not of concern in this study. 



25 

Ql = l/(2rr)~E/(2(E)), (2.16) 

where (E) is the average elastic energy stored. Another useful definition is 

Q-1 = 1/(2rr)~T/f, (2.17) 

where T is the peak kinetic energy and aT is the change of T over a complete cycle of 

straining. For low attenuation (Q>lOO), however, the above definitions are essentially 

equivalent [DZIEWONS~ 1979; JORDAN, 1980]. 

Energy dissipation within the earth can occur during pure compression, or pure 

shear, or both. Therefore, the necessity for the definition of two quality factors arises. 

Dissipation in pure compression, or bulk dissipation, is described by a speciflc quality 

factor~. Dissipation in pure shear, or shear dissipation, is described by a speciflc 

quality factor QJ.l." Quality factor Q and speciflc quality factors Qk and Qf.l are related 

through the following formula [JORDAN, 1980]: 

(2.18) 

where (Ek) and (E~ are the average elastic energies in compression and shear respectively 

stored in the earth during a complete cycle of straining and (E) is the average total energy 

stored in the earth during a complete cycle of straining. Losses in pure compression within 

the earth are usually small compared to losses in shear. Bulk dissipation can be actually 

neglected in the solid regions of the earth [JORDAN, 1980]. 

The frequency dependence of Q in the earth is an exceedingly controversial subject. 

There is some observational evidence, that Q depends on frequency. However, there is not 

enough evidence of how Q might depend on frequency [MINSTER. 1980]. LAMBECK's 

[ 1977] estimated values of Q at tidal periods, as well as, SAILOR AND OZIEWONSK!s 

[1978] Q values for free oscillation periods are consistent with a weakly frequency-
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dependent Q. This weak dependence of Q on frequency is valid for periods between 14 

months (for the Chandler wobble), to 54 minutes (for the spheroidal free oscillation mode). 

The above weak dependence of Q on frequency is also consistent with the w0.2 (where w is 

the angular velocity of the applied stress) dependence, proposed by JEFFREYS [1970]. 

However, within a limited frequency band, it is safe to consider constancy in Q. 

ANDERSON AND HART [1978b] constructed a model Q, as a function of depth, 

compatible with the normal mode data set (including overtones) and with teleseismic body 

and surface wave observations. The above model is consistent with a frequency 

independent Qt. The construction of the depth proflle of Q was based on standard linear 

solid type rheology. It is commonly known as "Q model SLB " [Fig. 2.4]. 

A more recent depth proflle of Q is found in the earth model, known as PREM and 

given by DZIEWONSKI AND ANDERSON [ 1981]. This model was obtained by inversion of 

a large set of observational data, allowing for anisotropy and dissipation. This model is 

discussed in section 2.6. 

In this study, we make the hypothesis that the earth exhibits standard-linear-type 

rheology at tidal frequencies and that the quality factor Q at all depths is independent of 

frequency within the tidal band. We must stress here that the above is only an assumption, 

which has been shown to be satisfactory at least within the seismic band [DZIEWONSKI 

ANDANDERSON, 1981]. 

t However, this frequency independence ofQ is not required. 
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2. 6 Rheological Profile of the Earth 

The division of the earth into crust, mantle and core by two major seismic 

discontinuities at the depths of about 35 km (Mohorovicic discontinuity) and about 2900 

km, has been very well known for many decades [LELIWA-KOPYSTYNSKI AND 

TEISSEYRE, 1984]. Nevertheless, their exact character is still uncertain [MAXWEll, 19 84]. 

Other minor seismic discontinuities have been recognised at various depths. These 

discontinuities further refme the layering of the earth. 

In the middle of this century, the study of seismic wave propagation reached a stage, 

that pennitted various investigators to develop more realistic earth models. These series of 

earth models, later referred to as the A-type models, included distributions of earth's 

density, incompressibility, rigidity, pressure, gravity, as well as other derived variables 

(such as Young's modulus and Poisson's ratio), as functions of depth. Improvements of 

these models were obtained in the early 1960's and these models are known as A' and A" 

earth models [BULLEN, 1975]. The basic assumptions made in constructing the A-type 

models are: 

1) The density of the earth just below the Mohorovicic discontinuity is 3. 32 gcm-3. 

2) The velocities of compressional (p) and shear (s) seismic waves are known. 

3) The Adams-Williamson t condition holds true in some deep regions of the earth. 

BULLEN [ 1946] noticed that for the A-type models, there exists a remarkable feature 

in the behaviour of incompressibility k, in the vicinity of the core-mantle boundary. The 

changes of k, as well as the changes of the ratio dk/dp (where p is pressure) were small and 

smooth, despite the drastic changes in density and rigidity. The above behaviour was 

verified by laboratory experiments for a wide class of materials under pressure up to 101 o 

Nm-2:t. 

t The Adams-Williamson condition is one of the equations of state in the earth [BULLEN, 1975]. It is given by 
dp/dz=pg/¢, where pis density, z is depth, g is gravity and¢ is the seismic parameter depending on the 
seismic wave velocities. 

t This is one order of magnitude 1= than the pressure at the core-mantle boundary. 



29 

BULLEN [1946] formulated the incompressibility-pressure (k-p) hypothesis as 

follows: 

«Throughout the earth's lower mantle (below 1000 km depth) and core, irrespective of 

variations of composition as may occur inside this entire region, k varies continuously and 

smoothly with P.» Observational evidences for the reliability of the k-p hypothesis were 

supplied later [BULLEN, 1975]. 

The k-p hypothesis was the main feature for the construction of the second generation 

of earth models, known as B-type models. The flrst difference between A- and B-type 

models is that the inner core of the B-type models is modelled to be solid. The second 

difference is that B-type models have a larger density gradient in the lower mantle than 

A-type models. The most serious difference is that B-type models exhibit considerably 

larger density in the upper mantle than A-type [BuLLEN, 197 5]. Revised estimates of the 

moments of inertia of the earth, revised seismic wave velocities as well as continuity of 

incompressibility and the ratio dk/d.P in the lower mantle and core contributed to the 

improvementoftheB-typemodelsbyBUll.EN AND HADDON{l967a; 1968]. 

HB 1 earth model was the flrst model constructed by taking into account ·free 

oscillation data [BuLLEN AND HADDON, 1967b] and thus it marks a specific stage in the 

evolution of the earth models. There have been subsequent earth models too, based on free 

oscillation data and overtone periods of the free oscillations of the earth. A good description 

oftheseis giveninLELIWA-KOPYSTYNSKI ANDTEISSEYRE [1984]. 

DZIEWONSKI ET. AL, [1975] constructed three parametric earth models (PEM) in 

which radial variations of the density and seismic velocities are represented by piecewise 

continuous analytical functions (algebraic polynomials of order not higher than three) of the 

normalised radial distance from the centre of the earth. These three models are: 
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I) Oceanic parametric earth model (PEM-0), 

l) Continental parametric earth model (PEM-C), 

3) Average parametric earth model (PEM-A). 

The data used for the construction of these models consisted of observations of 

eigenperiods of 1064 normal modes, 246 travel times of body waves for five different 

phases and regional surface-wave dispersion data, extending to periods as short as 20 

seconds. The agreement of the model with seismic wave velocities, free oscillation data and 

with the Adams-Williamson condition below 670 km depth, is better than 0.2% 

[DZIEWONSKI ET. AL, 1975}. Models PEM-0 and PEM-C reflect the properties of the 

oceanic and continental upper mantles respectively. PEM-A represents the average earth. 

PEM-A was obtained by using weighted means of PEM-0 and PEM-C with weights 2/3 

and 1/3, respectively. All three models are identical below the depth of 420 km. 

More recent models have been developed, allowing for attenuation and anisotropy in 

the earth. DZIEWONSKI AND ANDERSON [1981], following the guidelines established by 

the Standard Earth Model (SEM) Committeei, composed of members from the 

International Association of Geodesy (lAG) and the International Association of 

Seismology and Physics of the Earth's Interior (IASPEI), presented a new parametric earth 

model, called the Preliminary Reference Earth Model {PREM). For the construction 

of this model, a large data set of about 1000 nonnal mode periods, 500 travel time 

observations, 100 nonnal mode Q values, mass and moments of inertia of the earth was 

inverted. The introduction of lateral isotropy for the outer 220 km of the mantle improved 

the agreement among the different data sets. In addition, the assumption of the frequency 

independence of Q was incorporated, giving satisfactory results [DZIEWONSKI AND 

ANDERSON, 1981]. PREM can be described as follows (see also Fig. 2.5): 

t Working group of International Union of Geodesy and Geophysics (IUGG). 
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1) Crust is the outer shell of the earth that extends to a depth of 24.4 km. 

2) The region above the low velocity zone, also known as seismic Nlid", extends from 

24.4 km to 80 km depth. The crust and the seismic "lid" constitute what is known as 

seismic lithosphere t. 

3)Low Velocity Zone (LVZ) is the weakest zone of the earth and sometimes it is 

equated with the asthenosphere. It extends from 80 km to 220 km depth and is 

characterised by lateral isotropy. 

4) Transition zone is the deepest part of the upper mantle and is characterised by phase 

transformationS!:. It can be considered as a fairly homogeneous and isotropic layer 

[LEUWA-KOPYSTYNSKI AND TEISSEYRE, 1984]. It extends from 220 km to 670 km 

depth. 

S) Lower mantle is considered to be in a solid state with some discontinuities. Uttle is 

known about the nature of these discontinuities and their extension on a global or 

regional scale. Lower mantle extends from 670 km to 2891 km depth. 

6) Outer core is characterised by its liquid state and extends from 2891 km to 5149. 5km 

depth. 

7) bmer core is in a solid state. Although this is still a subject of research, it appears to 

be consistent with observational data [BOLT AND UHRHAMMER, 1981; BoLT, 

1987]. 

t The lithosphere, as any other layer of the earth, can be defined from different points of view. For imtam;:e, 
lithosphere can be defined by its elastic or flexural characteristics, or by its thermal state, or by its chemical 
and mineralogical comtitution. Thus, we have "elastic lithosphere", "thermal lithosphere .. and "cht;mical 
lithosphere" , respectively. Seismic lithosphere is the lithosphere detennined from seismic observatiom. 

:t In general, phase tranaformatiom refer to the changes of the state of the matter, such as 
melting, solidification, condenaation, evaporation, etc. Phase trall8formatiom are related to the 
thermodynamical state of the matter. 
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2. 7 Thermodynamics and Profile of the Earth 

In order to understand the dissipation mechanism within the earth, some basic 

concepts from the theory of thermodynamics must be presented. More specifically, the 

notions "adiabatic process" and "equations of state" are of primary importance in this 

work. 

Adiabatic process is a process during which the state of matter changes without 

exchange of heat with the surroundings. It is found from experience, that the work 

required to change the state of a thermally insulated (adiabatic) system depends only on the 

initial and final states of the system and not on the path of the change of the state. 

The equation of state of a system interrelates different thermodynamic properties. 

It can be written as 

f(P, V, T, m, Universal Constants)= 0, . (2.19) 

where P is the pressure, V is the volume, T is the absolute temperature and m is the mass 

of the system. In some instances, it is necessary to include properties other than those 

included in (2.19) to describe completely the state of the system [LEE AND SEARS, 1963]. 

The equation, which expresses the internal energy of a system as a function of any 

pair of its thermodynamic properties, is called the energy equation of the system. The 

equation of state and the energy equation together determine completely all the 

thermodynamic properties of a system. 

Isothermal process is a constant temperature process and it follows Boyle's law 

PV = constant. Thermodynamic cycle is a sequence of processes, that eventually 

returns any system to its original state. The thermodynamic cycle is the concept applicable 

to a closed system. Reversible process is an ideal process, that can be stopped at any 

stage and reversed, so that the system and surroundings are exactly restored to their initial 

states. During a reversible process, the system must pass through the same states on the 
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reversed path, as were initially visited on the forward path. An irreversible process is a 

real process; it cannot be reversed so as to follow exactly the forward path because a 

fraction of the energy of the system is transformed into heat. 

2.8 Dissipation Mechanism within the Earth· 

· The dominance of dissipation in shear over bulk dissipation can be explained by a 

grain-boundary relaxation model. This model was developed by ZENER [ 1941] and it was 

based on the evidence of viscous sliding of adjacent crystals. Although this theory was 

developed already in 1941, still there is no satisfactory quantitative theory of the 

phenomenon. In fact, even qualitative concepts are still in doubt [NO WICK AND BERRY, 

1972]. 

Before we describe the model of the grain-boundary relaxation process, the 

introduction of the definition of Gibbs free activation energy is in order. Gibbs free 

activation energy is the excess energy over the ground state, which must be acquired 

by an atomic or molecular system, in order that a particular process may occur [VAN 

NOSTRAND'S SCIENTIFIC ENCYCLOPEDIA, 1976]. 

The mechanism of the grain-boundary relaxation model considers spherical elastic 

grains that are bound together with viscous material. The application of a shear stress 

causes the grains to slide over other grains. During sliding, there is a shear stress 

build-up, opposing the applied stress. When the stress is removed, the deformation 

generates a reverse shear stress and produces an elastic aftereffect The grain-boundary 

relaxation model resembles the behaviour of the standard linear solid. The elastic 

aftereffect is governed by the dynamic viscosity of the material that holds the grains 

together, which m tum depends strongly on the temperature and pressure [O'CONNELL, 

1977]. 
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In the interior of the earth (below about 150 km), temperatures are higher than 

one-half of melting temperature. In this regime, known as high temperature 

backgroun4 the relaxation process is believed to be thennally activated and the 

relaxation time can be estimated from an Arrhenius equation 

(2.20) 

where r0 is a characteristic time related to atomic jump frequencyt, a• is Gibbs free 

activation energyt, k is Boltzmann's constant and Tis absolute temperature. 

We consider SAMMIS ET. AL [1977] model for a• for an adiabatic temperature 

gradient of 0. 3 K/km that agrees with Stacey's thermal model [STACEY, 1977] used in the 

estimation ofT in (2.20). However, we apply a correction to a• model of • 45 kcal/mole 

throughout the mantle•, so as to be consistent with ANDERSON's [ 1967] calculations of 

the activation volume and the values of viscosity for the lower mantle, namely 1022 poise, a 

value derived also from postglacial rebound data. 

t r0 = hI (kT), where his Planck's constant (6.63 x Jo-34joule sec), k is Boltzmann's constant (1.38xJo-23 

joule/K) and Tis the absolute temperature. 

t a• depends on the intemal energy of the matter, its entropy, pressure and absolute temperature. 

t Actually, a• model of SAMMIS ET. AL. [1977] was used by the same authors to evaluate the viscosity and 

activation volume in the mantle. Their calculations gave unusually high values for both. They concluded, that 
if a correction of about . 45 kcal/mole was applied to a•, viscosity profile as well as activation volume agree 

with Anderson's calculationa. However, as we shall see in chapter 6 of this work, our calculation of load 
numbers is more or less insensitive to this correction. 



LAGRANGEAN MECHANICS 

The response of the earth to ocean tide loading is described by som~, ~quations of 

motion, hereafter called the equations of deformation . The study of this response is 

complicated, even when the earth is considered elastic, homogeneous and isotropic. 

Furthermore, if we wish to consider a more realistic earth, the development as well as the 

solution and interpretation of the equations of deformation will become extremely difficult, 

if not impossible. In such complicated cases, the Lagrangean approach appears to be the 

most suitable for the development of mathematical models. 

Lagrangean mechanics is a powerful tool for the study of the behaviour of 

complicated mechanical systems. No matter how complex the system is, it may be 

represented by a single scalar function: the Lagrangean. In addition, the application of 

Hamilton's principle of least action to the Lagrangean function leads to an invariant set of 

differential equations, known as Lagrangean equations of motion. Lagrangean equations of 

motion are second order partial differential equations; the position of the mechanical system 

is the dependent variable and time is the independent variable. 

In this research we are interested in the determination of the deformations of the earth; 

these deformations are considered as dependent variables of position and time, as opposed 

to the classical equations of motion that consider the position as dependent variable of time. 

Consequently, the Lagrangean equations of motion in this study acquire a different 

character; they become second order partial differential equations (PDEs) in the 

36 



37 

displacements (deformations) and thus, they are called "equations of defonnation." In this 

Chapter, we present Lagrangean equations of motion in their classical form, for a 

mechanical system of n particles; the equations of motion in a 3-D space are 3n second 

order PDEs in the positions, the time being the independent variable. Subsequently, we 

show that the equations of deformation of the earth, have. the same form of the equations of 

motion, the substantial difference being that the dependent variables are the displacements 

(deformations) and the independent variables are the position and the time. Therefore, we 

arrive at three PDEs of second order, although the earth is considered as a continuous 

body, consisting of an infinite number of particles. 

We present the concepts of "tangent" and "cotangent bundle spaces", in which the 

equations of deformation are developed. Although, we do not take full advantage of this 

exposition in this study, we indicate its importance in future research on the deformations 

of the earth. 

3.1 Definitions 

The subject matter of the present research is the study of the response of the earth to 

external loads. The study of such a response becomes possible by assuming that the earth 

is totally continuous. The earth's molecular structure is to be disregarded and the earth 

pictured as a body without gaps or emptY spaces; the earth is viewed macroscopically in the 

sense that its smallest characteristic unit (part) is much larger than the size of an atom or a 

molecule. This is an excellent approximation when the study of a body, such as the earth, 

under the influence of external forces, is of interest [ERINGEN, 1967]. The study of a 

continuous medium, also known as continuum, can be accomplished by applying the 

classical laws of mechanics and a realistic constitutive law. 

Bodies are described by their configurations, also known as manifolds. A manifold 

is a higher-dimensional analogue of a smooth curve or surface [POSTON AND STEW ART, 
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197 8]; it can be regarded as a real vector space ~ that has the following properties (as any 

real vector space) [KREYSZIG, 1978; ODEN, 1979): 

a) It consists of elements, called vectors. 

b) The operation of" addition" betweenvectors is defmed, following the usual rules of 

arithmetic. 

c) The operation of "multiplication" between a vector and a real number is defmed, 

following the usual rules of arithmetic. 

The above properties of S mean that if Et, ~ E ~ and At, A2 E ~. ( ~ is the set of real 

numbers), then Edefmed by: E =At E1 +At~ is also a member of the real vector space, 

i.e., EE~. 

In order to realise geometrically the configuration (configuration manifold) of a 

body, i.e., to be able to determine, either its size, or the size of its deformation, the concept 

of the real vector space is not adequate; the size of any vector in ~·cannot be determined, 

simply because the way of measuring it is not known. Thus, the necessity of the definition 

of a more appropriate space arises. This new space, called metric space, has all the 

•ingredients# of ~ with the addition of a metric. In general, a metric in a space is a 

generalisation of the familiar concept of distance between two points. The introduction of a 

metric in S is equivalent to the introduction of a coordinate system in which the 

configuration of the body is to be determined. Many different ways of measuring distances 

(metrics) can be considered; yet, every one of them must satisfy certain conditions. If we 

denote the metric space by ~ and a distance function d: ~ x ~ = m, that associates (maps) 

pairs of elements of~ with real numbers in~. then the distance function (metric) must 

satisfy the following four conditions [ODEN, 1979]: 
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a) d{x, y) ~ 0, V x, y E ~. 

b) d{x, y) = 0, ifandonlyifx = y. 

c) d(x, y) = d{y, X), V X, y E }'t. 

d) d{x, y) s d(x, z) + d{z, y), V x, y, z E ~. 

The application of the theory of continuum mechanics t to the study of the response 

of a physical body to external forces, requires some fundamental postulates to be made. 

Denoting with p the body under investigation, these fundamental postulates are as follows 

[FREDERICK AND CHANQ 1965; TRUESDELL, 1966]: 

a) Theconfigurationmanifo1dof p is assumed to be smooth, i.e., it has a unique tangent 

plane at each point, 

b) p is divisible into a flnite number of elements, 

c) p is embedded in a metric space ~ of fmite dimensions. 

According to the above postulates, the quantitative description of the configuration of a 

continuum p can be accomplished in a metric space, hereafter called the configuration 

space ~ of p. The configuration space is spanned by n quantities q 1, Cl2• %, ... ,q n 

known as generalised coordinates [NEIMARK AND FUFAEV, 1972]. Generalised 

coordinates, as the name implies, are not necessarily Euclidean coordinates; they can be of 

different entity. For example, potential, strain, gravity, temperature, pressure, or any other 

quantity that is needed to defme the configuration of a continuum, can be considered as a 

generalised coordinate. Yet, according to postulate (c) above, the number of generalised 

coordinates is always fmite. 

t As presented in Chapter 2 of the present study. 
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The external forces that influence a continuum can be of different character. Forces 

originating from contacts with other bodies, gravitation, thennal changes, chemical 

reactions and environmental changes are the most common. In the present study we 

consider forces of mechanical origin, i.e., the firSt two categories. Continua that are 

influenced by the above forces will be called mechanical systems. 

3.2 Holonomic and Nonholonomic Mechanical Systems 

The position, the motion, as well as the equilibrium state of a mechanical system may 

be required to satisfy a number of conditions and restrictions. It is conventional to say that 

constraints are imposed on the system. These constraints may be either geometrical 

constraints, or kinematical constraints, when they represent restrictions on the 

geometrical position or on the motion of the system, respectively. However, geometrical 

and kinematical constraints are not independent. Geometrical constraints are essentially 

kinematical constraints. This happens because geometrical constraints can be differentiated 

with respect to time to give kinematical constraints. The opposite is not always valid; 

kinematical constraints may not be integrable with respect to time to impose geometrical 

constraints. 

A mechanical system with non-integrable kinematical constraints is called a 

nonholonomic system [NEIMARK AND FUFAEV, 1972]. When set in motion, a non­

holonornic system follows a geometrical path (trajectory) that is not restricted by any 

non-integrable kinematical constraint; the motion of the system may violate the kinematical 

constraints. In contrast, if the kinematical constraints are integrable with respect to time, the 

motion of the system will not violate the kinematical constraints. Such a system is called 

holonomic. 

When the dimension of the configuration space is nand the number of non-integrable 

(nonholonornic) constraints ism, then the degrees of freedom of the system are n-m. 
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For a holonomic system the degrees of freedom are n. When a mechanical system is 

holonomic and, in addition, time t appears explicitly in the equations of motion, then the 

system is called rheonomic or nonautonomous . When time t does not appear 

explicitly in the equations of motion, then the system is called scleronomic, or 

autonomous [SANTILU 197 8]. We must stress here that the generalised coordinates are 

dependent variables, whereas timet is an independent variable. 

3.3 Tangent Space and Tangent Bundle Space 

The set of all tangent vectors at a point x of ann-dimensional configuration manifold 

M, fonns ann-dimensional tangent space Tx [ARNOLD, 1978]. Tangent space is a 

metric space. 

The union of the tangent spaces to M at all points, is a smooth (differentiable) 

manifold, the dimension of which is twice the dimension of M. This manifold is called the 

tangent bundle space ofM and is denoted by TM. Tx and TM are both metric spaces. 

3.4 Cotangent Space and Cotangent Bundle Space 

The set of all linear transformations f, such that f: Tx:= m, forms a new metric space 

that is called the cotangent space; it is denoted by T*x. In order to visualise such a 

linear transformation, we consider a velocity vector that is tangent to the configuration 

manifold M. Similarly, the momentum vector is also tangent toM at the same point; the 

velocity vector and the momentum vector are simultaneously tangent, i.e., they are 

cotangent to M, at the same point. However, velocity and momentum are different entities; 

momentum can be obtained from velocity by scaling it with mass. Therefore, velocity 

belongs to Tx and momentum belongs to T*x. 
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The union of cotangent spaces to M at all of its points is called the cotangent 

bundle space of M, it is denoted by T*M and has twice as many dimensions as the 

cotangent space [ARNOLD, 197 8]. Tangent bundle and cotangent bundle spaces are dual t. 

3.5 Lagrangean and Hamiltonian Mechanics 

Lagrangean mechanics describes the motion of a mechanical system in the 

configuration space [ARNOLD, 1978]. For a holonomic system of n degrees of 

freedom, the Lagrangean equations of motion are formulated on the configuration 

manifold, also called Lagrangean configuration manifold, and consist of n 

second-orderparti.aldifferentialequations (PDEs), which are generally non-linear in the 

generalised coordinates qk. In general, to solve such a system of equations is extremely 

difficult, if not impossible. Yet, even if an analytical solution existed, we would be faced 

with two problems: 

a) Having analytical expressions only for the generalised coordinates would not help us 

visualise geometrically the motion of the system. We need to have analytical 

expressions for the velocity or the momentum. 

b) In complicated mechanical systems it is imperative that we study the stability of the 

motion of the system. However, certain reliable and advanced stability theories, such 

as Lyapunov's stability theory, are only applicable to systems of linear, first order 

ordinary differential equations. 

To overcome the above problems we must transform the equations of motion into 

first-order coupled ordinary differential equations (ODEs). This can be achieved by 

augmenting the state vector of the second-order PDEs by the generalised velocities. Then, 

then non -linear second-order PDEs, which are valid in the configuration space, are 

t In the case of a metric space, the set of all bounded linear functionals on it comtitutes a second metric space, 
which is called the dual space [ODEN, 19 79]. 
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transfonned into 2n frrst-order ODEs in the tangent bundle space of 2n dimensions. 

However, this transformation is not unique. We can augment the state vector by the 

generalised momenta Pk instead of generalised velocities. Since Pk. is cotangent to 

generalised velocity, the Lagrangean equations of motion are transformed into 2n flrst order 

simultaneous ODEs in the cotangent bundle space. These equations are known as 

Hamilton,s canonical equations of motion [D'SOUZA AND GARG, 1984]. State 

variables qk, Pk are called canonically conjugate variables [SANTILU 197 8]. 

Since the tangent bundle space and the cotangent bundle space are the dual of each 

other, we can begin with the Lagrangean equations of motion in the tangent bundle space 

and arrive at Hamilton's canonical equations of motion in the cotangent bundle space by the 

Legendre transformation [ARNOLD, 1978]. Thus, Lagrangean and Hamiltonian 

formulations are equivalent. 

The cotangent bundle space spanned by the generalised coor<linates ~ and the 

generalised momenta Pk is called phase space [NEIMARK AND FUFAEV, 1972]. When 

the state of a system is required as a function of time, the equations of motion can be 

represented in a (2n+ 1-m) dimensional space called the state space [D'SOUZA AND 

GARG, 1984], or extended phase space [ARNOLD, 1978]. The above transformations 

are shown schematically with the use of a commutative diagram in Figure 3.1 

Hamilton's equations are equivalent to Lagrangean equations, when the former are 

the Legendre transform of the latter. The converse is also true: Hamilton's equations in 

phase space, unlike Lagrangean equations in configuration space, are not invariant to 

all possible transformations. Only canonical transfonnati.ons preserve the form of 

Hamilton's equations in phase space. Canonical transformations of phase space are 

desirable because they can simplify Hamilton's equations further. However, carrying out 
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such transformationst is not an easy task. 

Any arbitrary infmitesimal changes 5<b. in the generalised coordinates of a 

mechanical system that introduce small variations in the tangent space, compatible with the 

constraints of the system, are called virtual displacements [NEIMARK AND FUFAEV, 

1972]. Virtual displacements are not true displacements of the system under consideration 

because they arise from the displacement of the coordinate system used. Therefore, there is 

no time intrinsically associated with them. 

We are now in a position to present Hamilton's principle from which the equations of 

motion of a mechanical system can be derived. Let us suppose that external forces act on a 

mechanical system. As a result of this action, the system will be set into motion. Yet, of all 

possible paths, only one is followed for which no virtual displacements will be present. In 

other words, the available energy to the system is being spent in the most efficient way 

with no unnecessary displacements (virtual displacements). Thus we can say, that the 

integral of the virtual work in time over a path (trajectory) is equal to zero. 

If T is the kinetic energy of a mechanical system and W is the work done by external 

forces acting on the system, then the virtual work in the interval [tvt2] will be zero. 

~(T+W)dt = 0. 
tl 

(3.1) 

The above equation expresses Hamilton~s principle in its most general form. In the 

special case of conservative external forces, i.e., forces that produce work independent of 

the path followed and dependent only on the end points, Hamilton's principle becomes 

t These transformations can be achieved with the use of a generating function, which is a solution to the 
Hamilton-Jacobi equation. Although Hamilton-Jacobi equation is a first order partial differential equation, 
most of the time it is unsolvable. 
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(3.2) 

where L = T - V is the Lagrangean of the system and V = • W is the potential energy 

[MEIROVITC& 1-967]. 

3.6 Lagrangean Equations of Motion for Nonconservative Hole­

nomic Systems 

The Lagrangean equations of motion, for a rheonomic mechanical system with n 

degrees offreedom are [for detailed derivation see Appendix I]: 

OT/oCJk • d[oT/oqJ/dt = Qk, k = 1, 2, ... , n (3.3) 

where Qk are generalised forces acting on the system. Equations (3.3) were derived 

without assuming the character of the generalised forces Qk. Generalised forces~ can be, 

either conservative, or nonconservative, or both. Furthermore, we can say that among the 

various kinds of forces acting on a particle of the system, it is possible to recognise a 

special type of friction force F arising from the motion of the particle in a viscous medium. 

This nonconservative force is assumed to be proportional to some power of velocity 

[MEIROVITC& 1967]. Therefore, we can write that 

k = 1, 2, ... , n, (3.4) 

where ~c and ~nc are conservative and nonconservative (other than F) generalised 

forces, respectively. For the conservative forces Qk c we can write 

k = 1, 2, ... , n, (3.5) 
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where <I> is a potential. If D is a function that gives the amount of energy per unit time 

(units: ML2T-3) dissipated in the mechanical system, then 

F = -anJa(u_, k = 1, 2, ... , n. (3.6) 

Function D is called the dissipation function and it is treated in detail in the next Chapter. 

Introducing equations (3.4), (3.5) and (3.6) into (3.3), yields 

Qcnc are forces stemming neither from a potential field, nor from friction. In addition, 

forces introduced by T and <I> are conservative. Since V is not a function of the generalised 

velocities (by definition V depends only on the position of the system, i.e., it depends only 

on the generalised coordinates), then 

k = 1, 2, ... , n. (3.8) 

Thus, equation (3.7) becomes 

Equation (3. 9) is the most general form of the Lagrangean equations of motion of any 

holonomic mechanical system, which exhibits dissipation properties, defmed in an 

n-dimensional configuration space, when excited by external nonconservative forces. For 

continuous systems that consist of an infmite number of particles, the number of degrees of 

freedom becomes inflilite and the number of equations (3. 9) becomes infmite. 
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For the study of the response of the earth to ocean tide loading, the earth is 

considered to be continuous. However, we are interested in the deformation of the earth, 

rather than its motion in time. Therefore, the generalised coordinates are defonnations and 

not positions. There are only three generalised coordinates that correspond to the three 

deformations, along the radial, N-S and E-W directions; they are dependent variables on 

position and time. Thus, the equations of deformation are substantially different in 

character from the equations of motion, although they are of the same form. Considering 

three generalised coordinates to represent the three displacements in a Cartesian coordinate 

system Oxyz, the equations of deformation can be written analogously to (3.9), as [see also 

BATH, 1968; p. 302, 303) 

k = 1, 2, 3, (3.1 0) 

where, for instance, oqk(x) = oqy,_/ox. The aggregate of the third, fourth and fifth tenns of 

the above equation denote the divergence of a generalised force field£ 't, and we can write 

o[oUo~J/ot- auaqk + div(I.) + antacik = - a<I>ta'lk + ~nc, 

k = 1, 2, 3. (3.11) 

Equations (3 .11) are used in Chapter 4 to derive the equations of deformation of the earth. 

't The nature of the generalised force field E is not immediately obvious. In the case of the study of the response 
of a deformable earth to external forces, the generalised coordinates are displacements and E becomes a strain 
field arising from the resistance of the earth to the deformation, i.e., E expresses some internal (to the earth) 
constraints, which depend upon the rheology of the earth. When we assume no deformations of the earth (or of 
any physical body), i.e., when we are interested in its motion in space, the divergence of E will vanish 
identically and the equations of deformation will become equations of motion. 



THE EQUATIONS OF DEFORMATION IN THE LAGRANGEAN 

CONFIGURATION MANIFOLD 

The equations of deformation are developed in the lagrange an configuration manifold, 

following the analytical approach (lagrangean mechanics). An elementary volume element 

is followed in its motion, therefore, its position, velocity and acceleration are written as 

functions of lime. In order to make the derivations of the equations of deformation easier, 

we consider energy densities per unit volume, rather than energies. The rheology of the 

earth is considered to be that of the standard linear viscoelastic solid. Moreover, the earth 

is regarded to be rotating, stratified, inhomogeneous, anisotropic, compressible, 

self-gravitating and rotating. Fmally, ocean loading deformations are considered to be 

adiabatic, i.e., during a cycle of loading there is no heat transfer within the earth. This a 

valid assumption since ocean tide loading is a fast phenomenon when compared to 

convection, which may be the primary source for the thermal changes in the earth 

[O'CONNEll AND HAGER, 1980; PELTIER, 1980]. It is certain however, that in the 

seismic band an adiabatic thermal state is consistent with the observations [DAVIS, 197 4]. 

In this chapter, it is shown that the response of the earth to a surface load can be 

described by three second order partial differential equations on a three dimensional 

configuration manifold. The state vector consists of three generalised coordinates, namely 

the vertical and horizontal displacements and the total loading potential. Furthermore, it is 

shown that the earth-load system is a holonomic and autonomoust. 

t Recall that a holonomic system is described by integrable equations of motion and by integrable 
constraints (boundary conditions). A system is autonomous when time does not appear explicitly in the 
equations of motion. 
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For a nonrotating earth, expansions of the solution of the equations of motion into a 

series of spherical harmonics have been applied succesfully for the study of the free 

oscillations of the earth [ALTE~\1AN ET. AL, 1959] and the response of the earth to 

surface loading [LONGMAN, 1962; 1963]. Moreover, normal mode expansions have been 

applied to the seismic excitation of a nonrotati.ng earth, to investigate the properties of the 

earth [SAITO, 1967; GILBERT, 1970]. In all the above cases, the solution of the equations 

of motion can be expressed as a sum of linear decoupled normal modest. 

Rotation in the equations of motion introduces Coriolis forces that couple the 

coefficients of the normal modes severely, i.e., any normal mode is a function of every 

other mode [DAHLEN AND SMITH, 1975]. WAHR [1979; 1981a; 1981b] developed an 

expansion formalism for a rotating earth which decouples completely the normal modes. 

For the study of the effects of anisotropy, rotation and viscoelasticity on the response 

of the earth to ocean tide loading, we choose semidiurnal periods for simplicity reasons 

and we show that under the assumption of rotational symmetry in the properties of the 

earth, the equations of deformation on a rotating earth can be expanded completely into 

series of spherical harmonics, without applying the expansion ofWAHR [1981a, 1981b]. 

Furthermore, for the study of the diurnal loading, the results from the semidiurnalloading 

can be extended into the diurnal band, allowing for corrections to be made, due to 

free-core nutation eigenfrequency, as presented by WAHR AND SASAO [1981]. For the 

study of the long periodt ocean loading, we neglect the rotation of the earth altogether, 

under the assumption that long period ·oceanic loading is far from the rotational 

eigenmodes of the earth and thus it is practically unaffected by rotation. 

t NDecoupled normal modesN means that the coefficients of the normal modes are functions of the same (n,m) 
values of the spherical harmonic expansion of degree nand order m. 

t Fortnightly, semiannual and annual periods. 
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4.1 Response of a ·Real Earth· to Ocean Tide Loading 

The presence of inhomogeneities and anisotropy in the earth, as well as the earth's 

departure from perfect elasticity introduce complications in the evaluation of its response to 

sutface loading. This is particularly evident when ocean tide loading deformations are 

evaluated at points very close to the shore [P AGIA T AKIS AND V ANfCEK. 19 85]. 

As it has been demonstrated in section 2.5, the global response of the earth departs 

from being elastic; this fact will be considered in the development of the equations of 

deformation. The flrst step will be to establish the constitutive law that governs the 

response. We could possibly consider the constitutive law as non-linear, which would 

complicate further the study. Fortunately, there is evidence which suggests that, for low 

strain amplitudes, the viscoelastic behaviour of the earth can be described by a linear 

constitutive law [BREJ.'l'NAN, 1981; BRENNAN AND SMYUE, 1981]. This evidence comes 

from laboratory experiments, as well as from observations of the real earth. Laboratory 

experiments are performed, in general, at a considerably lower temperature than that of the 

earth's mantle. However, low temperature and pressure experiments performed by 

BRENNAN [1981], indicate that stress-strain hysteresis loops produced for a number of 

different materials, which have been stressed with periods between 5 sec and 8. 5 min and 

up to a strain amplitude of IQ-6 (1 ~strain), have an elliptical shape. This suggests that the 

response can be described by linear viscoelastic constitutive relations. 

BERCKHEMER ET. AL., [1979] reportedlineartransientcreepexperiments onmantle 

peridotite at a temperature of 1250°C for strain levels up to 5x 10-s. AGNEW [1981] 

analysed 5.7 years of strain tide records from Pifion Flat, California, in order to detect 

non-linearities of rock behaviour at tidal frequencies and strain levels. This analysis shows 

that the observations do not give any definite indication of the presence of non-linearity. 
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In the absence of such evidence there is no reason to reject the simpler hypothesis: the 

deformation of rock at small strains is considered to be linear [AGNEW, 1981]. 

The spatial wavelength of the hannonic load plays an important role in the evaluation 

of the loading deformation. For a very short wavelength't, the lithosphere appears 

effectively infinite horizontally, and can be considered as a half-space, i.e., the 

deformation takes place in the lithosphere alone. However, a very long wavelength load 

cannot be supported by the lithosphere alone. Consequently, the lower substrata exert 

reactive forces to support the load. It appears, therefore, that the stratification of the earth 

plays a significant role for a long wavelength load. 

4.2 The Lagrangean Density Function 

The lagrangean density function (lagrangean function per unit volume) for a 

point of the earth that is loaded by ocean tide waters can be written as [see Chapter 3 of 

this study] 

L=T-V (4.1) 

where T is the kinetic energy density and V is the potential energy density 

at the point of interest. Equation ( 4.1) holds true for a perfectly elastic earth. 

4.2.1 Kinetic Energy Density 

Let us consider a compressible volume element in the earth, of mass m, defmed by its 

position vector r with respect to the conventional terrestrial system:!:. If the volume element 

undergoes deformations induced by a periodic load, its density will also change 

periodically, when mass conservation is assumed. If p 0 is the density of the element at 

't Compared to the thickness of the lithosphere. 

:1: Conventional terrestrial system is the system whose origin is at the centre of mass of the earth, the z-axis 
points to the Conventional International Origin (C/0), the xz-plane contains the mean Greenwich Observa­
tory and they-axis is selected to make the system right-handed [V ANfCEKANDKRAKIWSKY, 1986]. 
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equilibrium, its density p, at timet, will be given by 

p(t) = Po+ 5p(t). (4.2) 

Since the cubic dilatation e expresses the relative change of the density of the volume 

element, under the assumption of mass conservation, we can write that [EWING ET. AL., 

1957] 

E> =- 5p I Po· 

Combining (4.2) and (4.3)we obtain 

P = Po(l- 0). 

(4.3) 

(4.4) 

It is known from classical mechanics that the kinetic energy T of a mass m moving with 

velocity v is given by 

T=mvv/2. (4.5) 

The volume element under consideration has a translational velocity as well as rotational 

velocity, since it rotates with the earth. Thus, 

v=d+Qxd (4.6) 

where d is the displacement vector and n is the angular velocity of the earth. Combining 

(4.4), (4.5) and (4.6) the kinetic energy density can be written as 

T "' l/2po(l - E>)( d. + n X d)2 (4.7) 
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4.2.2 Elastic Potential Energy Density 

Tidal work is mainly stored as elastic potential energy. The stored elastic energy 

density Vs can be written as [JEFFREYS, 1961} 

(4.8) 

where cijk.l is a tensorofrankfourwhichdepends·on the elasticity parameters of the earth 

and eij is the strain tensor. Equation ( 4. 8) is known as strain energy function [LOVE, 

1927]. Since Cijk.l is a tensor of rank four in 3~D space, it has 34 = 81 independent 

elements. However, we can reduce the number of its independent elements, by imposing 

certain restrictions. For example, we can impose symmetryt in Cijkl in the sense that 

Cijk.l remains unalterable when we interchange i and j or k and 1 ; the number of 

independent elements is then reduced to 36. Furthennore, we can accept that the tidal 

deformations are adiabatic, and cijkl becomes symmetric in the pair (i, j)' interchanged 

with the pair (k, 1). This assumption reduces the number of independent elements to 21 

[BULLEN, 1975]. 

The form of Cijkl tensor depends on the various symmetries in the properties of the 

earth. When examining the response of the earth to applied stresses, there exist various 

degrees of geometrical symmetries in the internal structure that can be introduced, which 

allow elastic properties in particular directions to become identical. When such symmetries 

are introduced, the number of independent elements of Cijkl can be reduced to less than 

21. The so called triclinic structure, which involves 21 independent elements, is the 

most general, whereas the isotropic structure involves only two independent elements 

[WASLEY, 1973; JURETSCHKE, 1974]. Of particular interest in this study is the lateral 

(transverse) isotropy for which the symmetry axis is the vertical (radial). Using 

Love's notation [LOVE, 1927; p. 160], the strain energy function (potential energy 

density) can be written as 

t These restrictio113 are related to the symmetries in the properties of the material . 
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Ys = (1/2){ A(e88 + e . .v)2 + Cerl + 2F(e88 + e ,v)e" + L(e ..\,.2 +ere2) 

+N(e 9i- 4eeeeA»}, (4.9) 

where A, C, F, L and N are elastic modulit. A and C can be deternrined from 

measurements of the velocity of compressional waves propagating horizontally, as well as 

vertically. We have [DZIEWONSKI AND ANDERSON, 1981] 

A = pvph2• C = pv 2 pv • (4.10) 

Similarly, Nand L are functions of the shear wave velocity and F is a function of both, 

compressional and shear velocities: 

F = q(A ~ 2L), (4.11) 

where p is density, vsh, vsv are the shear wave velocities in the horizontal and vertical 

directions respectively and 17 is a dimensionless parametert [ANDERSON, 1961]. 

Numerical values for the above parameters can be obtained from the PREM. For the 

isotropic regions of the earth, we have [BULLEN AND BOLT, 1985] 

A = C = A+ 2~, L = N = ~. F = A. (4.12) 

4.2. 3 Buoyant Potential Energy Density 

The earth can be regarded as being hydrostatically prestressed, where the hydrostatic 

pressure is induced by self-gravitation. The effect of self-gravitation on the deformation of 

the earth, that is induced by external forces (ocean tides) can be taken into account very 

easily if the earth is considered as fluid. Nonetheless, this assumption will hold equally 

well for a solid earth if the deformations are very small and they do not affect the 

t Do not confuse elasticity parameter L with the Lag:rangean function. 

t Note that for the dimensionless parameter 17 we use italic style to distinguish it from viscosity. 
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continuity. Consequently, elements of the earth in the disturbed state will be surrounded 

by different density material from that of the undisturbed state. Tiris will result in a 

buoya11.t or Archimedes force, which will tend to restore the deformation to the 

equilibrium state. If the earth is allowed to be stratified and its density p increases with 

increasing depth, we can write that 

dp/dr < 0, (4.13) 

where r is the radial distance from the earth's centre of mass. During the application of a 

point surface load, the earth material will experience displacement This buoyant force 

densityperunitvo1umecan be written as [TOLSTOY, 1973] 

(4.14) 

where g is gravity and ..::lp is the difference in density between the surrounding and 

displaced elements. If the element moves in the radial direction by u, then 

..::lp = p(r) - p(r+u). (4.15) 

Here, u is positive upwards. If the vertical displacement u is small, we can assume that ..::lp 

is a linear function of r, 

ap = -u dp/dr. 

Combining (4.14) and (4.16), we obtain 

Fb= gudp/dr 

and the corresponding potential energy density will be 

(4.16) 

(4.17) 

(4.18) 
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In the above derivations, g was considered positive downwards and F b positive 

upwards. The negative sign in (4.18) shows that V1 is positive when it results in an uplift 

(after unloading), as it intuitively should. 

In the above, we considered an incompressible stratified earth. In the case of a 

compressible stratified earth, though, there is an additional term arising from the 

compression of the material itself, induced by the displacement field. In other words, the 

element of density Po in the undisturbed state is compressed by the surrounding material, 

when displaced downwards. This results in a change in its density, when conservation of 

mass is assumed. If 5 p is the density variation, the force density will be 

Fg = -g(p • P0), (4.19) 

where pis the density of the element in the compressed state. Combining (4.3) and 

(4.19), yields 

Fg = gp0 0 (4.20) 

and the potential energy density will be 

(4.21) 

Finally, the total potential energy density of gravitational origin can be written as 

(4.22) 

4.2.4 The Lagrange an Density Function 

The elastic potential energy density given by ( 4. 9) must be corrected for the buoyant 

potential energy density. Therefore, combining (4.1), (4.9) and (4.22) yields 

L =T-V= 1/2po(l - 0)( d + n X d)2 - cijld eijek.l/2 + gu(u/2 dp/dr + PoE>), (4.23) 
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where u is the component of the displacement along the vertical. The above Lagrangean 

density function holds true for a conservative, stratified, compressible and rotating earth 

under the influence of self-gravitation. The first term of L, i.e., the kinetic energy density, 

gives rise to inertial and Coriolis forces, relative to the conventional terrestrial system. In 

general, the inertial forces are very small compared to the elastic forces at tidal frequencies. 

This is· because the tidal frequencies are much lower than the free oscillation 

eigenfrequencies. However, in the derivation of the equations of deformation, both inertial 

and Coriolis forces are considered under the simplifying assumption that their component 

arising from the incremental changes in the density field (indirect effect) are negligibly 

small. As a consequence, dilatation becomes negligibly small and the Lagrangean density 

function can be written as 

4.2.5 The Forcing Terms 

At this point, it is necessary to make a distinction between free and forced motion. In 

the case of free motion (i.e., free oscillations), after the disturbing force (e.g. earthquake) 

is removed, the earth regains its original shape by the action of elastic restoring forces, as 

well as from forces arising from the disturbed density field (indirect effect). Problems of 

this type are described by homogeneous second order partial differential equations in the 

displacements; non-zero solutions exist only for certain values of the forcing frequency 

(eigenfrequencies), i.e., we have an eigenvalue problem. For a forced motion, such as 

tidal deformation, the motion of the earth is described by nonhomogeneous partial 

differential equations of second order, the right-hand-side being the forcing term. For 

these types of problems we must consider a forcing term of pertinent frequency to solve 

for the displacements. 
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The deformation of the earth's surface due to ocean tide loading arises from the direct 

pressure of the tidal waters on the ocean floor, from the direct attraction of the ocean 

waters (Newtonian), as well as from the attraction of the indirect deformation (indirect 

effect). Since the direct pressure of the tidal waters will be taken into account in the 

boundary conditions (see section 4.5.3), the forcing terms account only for the direct 

attraction of the tidal waters and the indirect effect. Thus, 

pT =Po V<f>, 

<f> = <f>P + cps' 

(4.25) 

(4.26) 

where, <f> is the total ocean tide deformation potential, <f>P is the primary tidal potential due 

to the direct attraction and <f>S is the secondary tidal potential due to the deformation. 



60 

4.3 The Dissipation Function for a Standard Linear Solid (SLS) 

Following the notation found in [NO WICK AND BERRY, 1972; LAPWOOD AND 

USAMI, 1981], we can write the constitutive relation for the SLS as follows: 

(4.27) 

where Ju and JR are defmed by (2.13) and T0 is the relaxation time given by 

(4.28) 

Dividing (4.27) by T0 and rearranging, we obtain 

(4.29) 

For the derivation of the dissipation function, we assume incompressibilityt, i.e., E>=O. 

Then, (4.29) becomes 

(4.30) 

Equation ( 4. 30) is a linear ordinary differential equation of flrst order in ei.i and has a 

solution given by [REKTORYS, 1969; p.744] 

Considering that the applied stress is periodic, witli angular velocity w then 

-r.. = -r;, coswt 
,J 'J,O ' 

=r .. = • w -r,, sinwt, ,J 'J,O 

(4.31) 

(4.32) 

t WUANDPELTIER [ 1982] and WOLF [ 1985] have shown that the effect of compressibility on the relaxation 
of Maxwell continua is ill3ignificant and can be neglected. We assume here that the same holds true for SLS. 
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where T·· is the strain amplitude (at t = 0). Substituting (4.32) into (4.31) yields 
""lJ,O 

Carrying out the integration [BOIS, 1961], ( 4. 3 3) reduces to 

J 1 and J 2 are compliances given by 

Jl = (JR + riw2Ju)(1 + riw2)-l, 

J2 = Tow(JR- Ju)(l + To2w2)-l. 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

Quantities J1 and J2 are known as the real and imaginary parts of the complex 

compliance of the general linear solid [FLDGGF, 1975]. Equations (4.35) and (4.36) are 

oftencalled Debye equations [NOWICK AND BERRY, 1972]. In equation (4.34), the 

first term, being a function of J 1, describes purely elastic behaviour and the second, being a 

function of J 2, describes viscoelastic behaviour. 

The work done by the stresses can be written as [FLOGGE, 197 5] 

(4.37) 

where the summation convention applies for the repeated indices. Differentiating (4.34) 

with respect to time and considering (4.32), (4.37) becomes 

W= L { -J1w'G.i,o2[sinwtcoswtdt +J2w1ij,o2fcos2wtdt}, 
i,j 

(4.38) 

where the implied summation in (4.38) was interchanged with the integration. Integration 

of (4.38) in the interval [0, 2n'/w]t reveals that the flrst integral becomes zero. 

t What we are interested in here is the average energy (stored or dissipated) during a cycle of straining and not 
the energy as a function of time. The reason is that avemge stored and dissipated energies are used in the 
definition of quality factor Q (see Chapter 2 of this work). Most importantly, using average energy over a 
cycle of stmining, M! r1void the problem of having. time dependent coefficient:; in the equr1tions of 
deformation. 
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Themtegration of the second term of (4.38)m themterval [0, 2rr/oo) gives 

w· ... ru2 ~ ""·· 2 L ,1,0 • 
i,j 

(4.39) 

which is the amount of dissipated energy in a full cycle of straining and has units of 

ML·2T-2. Further observation of (4.39) reveals that W' is a function of frequency, 

proportional to -r0 w(l+-riw2)-1. Any function having this property is called a Debye 

peak (NOWICK AND BERRY, 1972]. 

For the evalution of the dissipation tenns of the equations of deformation, (4.39) is 

not useful. We need to express W' as a function of the strain rate. The average dissipated 

energy D per unit time can be obtained from (4.39) by dividing W' by 2rr/w, 

D = 1/2J2w L ~j,o2• 
i,j 

(4.40) 

where D has units of ML-2T-3 and expresses the amount of the average dissipated energy 

densityperunittime. Substituting (4.32) into (4.30) and solving for ~j.o• we obtain 

Setting t = Ot, we obtain 

and ( 4.40) becomes 

D = 1/2(J2w/JR2)r, (eij-ro + eij )2, 
i,j 

t Equation ( 4. 41) is valid for any t. For convenience we choose t=O. 

(4.41) 

(4.42) 

(4.43) 
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In (4.43) we need to evaluate the complex compliance J2• Since J2 reflects the 

relaxation process, it is a function of the thermodynamic state of the earth, as well as, 

function of the quality factor Q. Let us start with the equation [ANDERSON AND Ht\.RT, 

1978a] 

(4.44) 

which relates a frequency dependent Q and relaxation time T0 • Here, Ceo and C0 are the 

high and low frequency elastic wave velocities. We can see that (4.44) is valid for a 

standard linear solid [cf: (4.35) and (4.36)], i.e., Q·l(w) is a Debye peak. We accept the 

simple hypothesis of a grain-boundary relaxation model [NOWICK AND BERRY, 1972] 

for which the ratio Cool C0 can be estimated from [ZENER, 1941] t 

Ceo/C0 ={ {(35-20v)/(14+ lOv)}, (4.45) 

where vis the Poisson's ratio. Combining (4.36) and (4.44) we obtain 

(4.46) 

where AJ = JR - lu:t:. From (4.28) we have 

AJ = T0 IT) (4.47) 

and the calculation of J 2 reduces to the calculation of relaxation time, provided that depth 

profiles of Q, TJ and v are available and Coo I C0 known. Relaxation time can be calculated 

from the Arrhenius equation (2.23) 

t Zener's theory assumes spherical elastic grains; under this assumption, eqn. (4.45) holds true. However, 
O'CONNELL AND BUD JANSKY [ 19 7 4 J assume more realistic grain geometries, such as dodehahedrons for the 
evaluation of the ratio Ceo/ C0 • 

:f: LV is known as relaxation strength. 
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4.4 The Equations of Deformation 

It is convenient to derive the equations of deformation in a spherical coordinate 

system (r, e, .A ), where 8 = rr/2-</J is the colatitude of the point of interest and .A the east 

longitude. The strain tensor eij can be written as a function of spherical coordinates and 

displacements u, v, w along the vertical, meridian and parallel respectively. These relations 

are[LoVE, 1927, p. 56; BEN-MENAHEM AND SINGH, 1981] 

e00 = r- l(o 9v + u), e ,u = r-1 [(1/sin 8)o ,.w + u + vcote ], 

(4.48) 

In the above equations, a.¥ denotes "partial derivative of¥ with respect to •. , Furthermore, 

the divergence of the generalised force density filed .E in spherical coordinates is given by 

[COURANT AND HILBERT, 1970; VOL 1, p. 224]. 

(4.49) 

where £ 1, I 2, I 3 are the contravariant components of .E. Considering that u, v and ware 

the dependent variables (generalised coordinates) and t, r, 8 and A. are the independent 

variables, we obtain from (3.11) and ( 4.49) the equations of deformation 
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otfol/ouJ-ouL+o Jol/ouJ+ oe[ol/ou8J+ a Afol/ouA ]+2/r[ol/ouJ+[ol/oueJcote+oD/ou 

= Pii~ 

ot[o.UaYJ-ovL+o Jo.Uav J+ oJ.ollov BJ+ a 11[o.Uov;. ]+2/r[o.Uov J+[ollav 8Jcote+oD!aY 

= r-tpootfP 

(4.50) 

The next step is to evaluate the individual tenns of (4.50), taking into account the 

Lagrangeanl., given by ( 4.23) and the dissipation function D given by ( 4.43). In the above 

equations (4.50) the first two tenns give the inertial and Coriolis force densities. We start 

with the evaluation of these tenns using vector notation: 

= at[P0 ( d + ax d)]- p0 ( d +ax d) x a 

= Po( d. + a X d)- Po( - a X d- a X a X d) 

= p0d + 20x d (4.51) 

The first term in (4.51) is the inertial force density and the second tennis the Coriolis force 

density. The components of Fi+c along the vertical, north-south and east-west directions, 

respectively, are [LAPWOOD AND USAMI, 1981] 

P0 U- 2!lp0 sin8w, 

Fi+c = P0 .;; - 20.p0 COS 8 w, 
P0 W + 20.p0 [cos 8v + sin8u]. 

(4.52) 
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Evaluating the restofthetenns of the equations of deformation (4.50) we obtain 

auL=- au Ys +gudrp+gp0 E> + 2gp0 ur- 1 =-a Vjae00 dueoo 

-a v;ae).). aue).). + gudzP +gpoe + 2gpour- 1 

= -r-1 [2(A- N)(e 00 + eAA)+2FeJ + gudzP0 +gp0 8 + 2gp0 ur- 1 

avL = - av Ys = - [ a VJae M ave M+a VJaere ave re] 

= -r-1 { cot8 [A(e00 + e,u )+Ferr- 2Ne00 ] + Lere} 

awL =- aw Ys =- [a VjaeeA a~eA+a VjaerA awerA.J 

= -r-1 [N e8;. cote +L erA.J 

a;. [al/auA.) =-a A [a Vjaer;. aer,~.!auA.) 

=-a A [L er).(2rsin 8 )-I] = -1/(rsin 8) a;. er;. 

a8 [al/av8 ] = -a 8 [avjae00 ae00 /8v8 -gp0 u] 

=- (1/r) a e [A (e00 + e .u )+Fe rr· 2N e t.;.- gp0 u] 

(4.53) 
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a A(al/Bw A)=- a A (a Vja eu aeAA/Ow A- gp0 U] 

=- (rsin8)·laA[A(e00 + eAA)+ Ferr- 2N e68 - gp0 u) 

For the derivation of the dissipation terms we have that (because of no bulk 

dissipation) 

antati=(aDJa~)(oe00Jali> + (oD!oe;.~(ae;uloti> = o 

Furthermore, 

(4.54) 

(4.55) 

Once again, if we consider that only the shear stresses contribute to the dissipation, the 

fl.rst term in (4.55) will be zero. Therefore, 

(4.56) 

Similarly, 

(4.57) 

If we consider only spheroidal deformation (deformation that has a component in the radial 

direction), the radial component of the curl of the displacement (V x d) vanishes, 

[ALTERMAN ET. AL, 1959]. This is equivalent to ee;. = ee;. = 0 [BEN-MENAHEMAND 

SINGH, 1981; eqn. A.l24] and(4.57), after differentiation, becomes 

(4.58) 
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Neglecting the small tenn 2gp0 ur-1 the equations of deformation become 

p;u- 20p0 sin8w- Poarcp + Poorf.gu] -gpo8 

+ (2/r){ (A-N-F)(e88 + e ..u) + (F-C)E>} -a rfCerr + F(eee + e ..u )] 

- (Ur)[atFre + sin- 1 ea ..l erA + e.rtPJt8] = 0, 

p~v- 2np0 cos 8w- r 1 p0 a (/1> 

-a ALere 1- (1/r)a 8 [A(eee + e AA) +FelT- 2Ne AA - gpoul 

- N(rsin 8)-ta A e8A (4.59) 

• (N/r)[2cot8 (eee- eu)]- (3Ur) ere • J2wTJ(JR2r)(T0 ere +ere)= 0, 

p0w + 2np0 [cos ev + sin8u]- (rsin8)-1p0 a Act>- aALerA)- (N/r)atFeA 

• (1/rsin 8)a A [A(e88 +eA.-\) + Ferr- 2Ne88 - gp0 u]- (3Ur) erA 

- (2N/r)e8A cot8 • J2wTJ(JR2r) (T0 erA +erA)= 0. 

Introducing the total loading potential <P, we can see that by virtue of secondary 

potential<P' being unknown, 4» is unknown and must be transferred to the left-hand-side of 

the equations of deformation. Thus, the equations of deformation become homogeneous. 

However, as we will see in detail in the next chapter, this does not imply that we are faced 

with an eigenvalue problem as we should not be. 

Equations ( 4. 59) are three simultaneous, partial differential equations of second order 

in the dependent variables u, v, wand 4». In order to be able to solve the above system, we 

need one additional equation. Tilis fourth equation is Poisson's equation given by 

[LONGMAN, 1962] 

(4.60) 
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For an elastic earth, the last tenns in the second and third equations of deformation (4.59) 

become zero. Taking also into account (4.12), the equations of deformation of an elastic, 

isotropic and nonrotating earth reduce to 

P0U- PiJlfJS- gp0 8 + Poarf.gu)- aA,AE> + 2~err]- (~/r)a~re 

- (~/rsin 8)a A erA - (~/r) [(4e rr· 2e 88 - 2e ,u) + ere cote] = p0 a }PP, 

Po v'- (pJr)a rf/>5 - a Jlere- (1/r)a e [- gp0 U + AE> + 2~e00 ] 

- JJ(rsin B)· ta A eel\ 

- (JJ/r)[2cot~e88 . eAA) + 3ere] = rlpoaA<PP, 

PoW - (pJrsin8)a ;..cf>s - ar~er}.- (JJ/r)aeeeJ. 

- (rsin B)·la ll [- gp0 u + AE> + 2JJe,u] 

- (3wr) erA- (2~/r)eell cote = (rsine)· 1p0 a .-\<f>P, 

(4.61) 

which in the absence of the forcing tenns reduce to the equations of free oscillations of the 

earth as given by ALTERMAN EI. AL., [1959]. This gives us a check on the basic 

formulation of the loading deformations. 
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4.5 Boundary Conditions 

4.5.1 Continuity of the Total Loading Potential 

For the formulation of the boundary conditions for the totalload.i?g potential, we 

follow LONGMAN [1962] and PEKERIS [1978]. The primary loading potential ~runP of 

degree nand order m, generated by a surface harmonic distribution <Jrun, of the tidal 

waters, can be written as [LAMB, 1945, p. 305; PEKERIS, 1978] 

e~runp = 4rrGR (2n + 1)-1 (R/r)n+1 <Jrun, 

icprunp = 4rrGR (2n + 1)-1 (r {R)n O'run, 

(4.62) 

(4.63) 

where R is the radius of the earth in the undisturbed state. Pre-superscripts He" and Hi" 

denote the external and internal potential respectively, with respect to the surface. The 

primary potential is harmonic everywhere, outside and inside the surface of the earth, thus, 

(4.64) 

where V is the Hamilton nabla operator. The secondary loading potential <Prun s satisfies 

Poisson's equation inside the earth, thus 

(4.65) 

where Drun is the radial displacement of degree n and order m, due to load. Taking into 

accountthat<Prun=~runP+~runs and equation (4.64), (4.65) bec6mes 

(4.66) 

At any internal boundary in the deformed state ( r = c + u), the total loading potential, as 

well as its derivatives with respect to r must be continuous: 
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r=c+urun 

r=c+urun 

(4.67) 

(4.68) 

where the pre-superscripts "-" and "+" denote inside and outside the boundary surface 

respectively. 

When the earth is at the deformed state, its surface will be at r = R + urun. However, 

the value of gravity inside the surface r = R is equal to the value of gravity outside r = R + 

11nm· i.e., it is equal to the value of gravity in the air, plus an increment arising: a) from the 

presence of the material heaped up over the surface r = R, and b) from the presence of the 

surface harmonic distribution of the tidal waters. Thus, 

(4.69) 

or by rearranging: 

r = R, (4.70) 

Purthennore, the total loading potential outside r = R + urun is a harmonic function. 

Therefore, 

V2<t» = 0 
run ' 

(4.71) 

Equation (4.71) is satisfied when [PEKERIS, 1978] 

(4.72) 

Since differentiation of (4.72) with respect tor gives 

r = R, (4.73) 

equation ( 4. 70) becomes 
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(4.74) 

Since we must have continuity of the total loading potential at the surface r = R, t.IJ.en icp run 

= ecl»run, andequation(4.74) becomes 

r = R, (4.75) 

Equation ( 4. 7 5)is one of the boundary conditions of the equations of deformation. 

4.5.2 Continuity of the Total Loading Potential at Internal Boundaries 

We can use (4.70) to express the continuity of the total loading potential at any 

internal boundary, the only difference being in the absence of a run. Thus, 

(4.76) 

where ·p 0 is the density inside the boundary and + p0 the density outside the boundary. 

4.5.3 State of Stress at the Deformed Surface 

At the deformed surface of the earth the pressure of the tidal waters - g0 <Jrun, 

introduces only a normal stress, which is equal to the pressure term of the frrst of the 

equations of deformation. Therefore, 

(4.77) 

Equation (4.77) is a first order approximation since g0 <Jnm is applied at the deformed 

surfacer = R+u and not at r = R. 
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All the tangential stresses vanish identically at r = Rt. This is a valid approximation 

when the loading mass is water. Therefore, the pressure terms of the second and third 

equations of deformation become zero. Thus, 

r = R. (4.78) 

We must note here that boundary conditions (4.76) and (4.77) are non-homogeneous 

equations in the sense that they contain the known function crrun of the tidal water 

distribution, i.e. they depend on the forcing term. 

4.6 Expansion of the Equations of Deformation into Spherical 

Harmonics 

The independent variables in the equations of deformation (4.59) are: timet, angular 

velocity of deformation wand the spherical coordinates (r, 8, .A). Variable w can be flxed to 

2 cycles/day, 1 cycle/day, or lower angular velocities, when the response of the earth to 

these frequencies is desired. The solution of the equations of deformation will be attempted 

by the method of separation of variables. 

Assuming that the displacements llnm· v run and wnm of degree n and order m, as well 

as the total loading potential <Prun, can be expanded into the series of spherical harmonics 

y run< e, .A}, we can write for spheroidal deformations: 

't This is an excellent approximation when co118idering ocean tides in the open ocean. However, MERRIAJ\1 
[1986] showed that tangential stresses caused by ocean tide loading of the continental slope, can generate 
strain tides of the order of a few percent of the total tidal strain. This is comparable in JTI3gnitude to 
perturbatiom from local topography, cavity and structural effects. 
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11nm = Urun(r,t) Y run< 8, i\), 

vrun = V run (r,t) a eY run( e, i\), 

Wrun = V run (r,t) sin-1 8 a ;.Yrun( 8, i\), 

<~>run = 'I' run (r,t) y run< e, i\), 

(4.79) 

and P run are the associated Legendre polynomials of degree n and order m, given by 

VANICEK AND KRAKIWSKY, [1986] 

(1 - cos2 8)ml2 
Prun (cos8) = ---- ---- (cos2 e- l)n, 

d(cose)n+m 
(4.81) 

In the sequel, we drop indices (n, m) from Urun, V run• 'I' run and E>run for simplicity. 

Substituting (4.79) into the last of the equations (4.48), we obtain for dilatation E> 

E> = arUYrun +(1/r)oe{VaeYnml + (2/r)U Y run+ V(rsin2 8)- 1o;. 2Yrun +(r- 1cot8)VoeYrun, 

(4.82) 
or, byrearranging 

Considering the equation of Laplace for spherical hannonics [HEISKANEN AND MORITZ, 

1979, p. 20] 

(4.84) 

equation ( 4. 83) can be written as 
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E> = [o p+ (2/r)U- (V/r)n(n+ l)]Y nm• (4.85) 

or, 

E> = X(r, t)Ynm, 

X(r, t) = op+ (2/r)U- (V/r)n(n+l). (4.86) 

For the surface distribution of mass we have [LONGMAN, 1962] 

(4.87) 

which is a point load with unit mass, expanded into a series of spherical hannonics. For 

any mass m, we have simply that 

(4.88) 

For our calculations it is convenient to take mas the mass of the earth, i.e., 

(4.89) 

and ( 4. 88) becomes 

(4.90) 

For the rotational terms, if we consider that we have only sectorial tides 

(semidiurnal), i.e., n = m, we have [BEN-MENAHEM AND SINGH, 1981, p.980, eqn. 

0.126] 

P nn(cos 8) = (2n- 1)! sinn 8. (4.91) 

Differentiating (4.91)withrespectto 8 we obtain 
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d8 Pnn(cos8) = (2n-l)! nsinn-1 8 cos8 

= n(2n -1)! sinn 8cot8 

= n cot8Pnn(cos 8) 

and from ( 4. 80) we obtain 

Furthermore, by differentiating (4.80)withrespectto .il. we get 

(4.92) 

(4.93) 

or considering rotational symmetry of 90° for the properties of the earth we can write 

m.il. = 90° +m.il. (4.95) 

and (4.94) becomes 

a -\Yrun( 8,.il.) =- m Ynm ( 8, .il.). (4.96) 

Relations (4.93) and (4.94) can be used in the expansion of the equations into spherical 

hannonics. 

The remaining tenns of the equations of deformation can be transformed similarly 

[Appendix II], and the equations of deformation reduce to 

.. . 
Po U + 2nDpo V + Po a J.go U] - PogoX - Po a r'I! 

+ 2r-1 {[A-N- F][2r-1U- n(n+l)r-IV] + [F- C]aru} 

+ Lr-1 [rlU- r-IV + ar V]n(n+ 1) 

-a r {car U + F[2r-1U- n(n+ l)r-IVJ} = 0 
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.. . 
Po V + Ul.po V • r-1 Po 'I'+ r- 1 Po&,U 

- r-1{A[2r-1U -n(n+l)r1V] + Foru} 

- 2Nr-1 [r-1V- r1U)- or { L[r1U- r1V +or VJ} 

- 3Lrl[r1U- r 1V +or V] 

- J2ulTJ(JR2r){ Ta [r-1'\J- r-1V + arvl + [r1U- r-1V + arvl} = 0 (4.97) 

.. . . 
sin -1 (;) p0 V- 2!lp0 sin -1 (;) [cos2 ev + n-lsin2 e U] 

- (rsin(;))-1p0 '¥ + (rsin(;))- 1 P0 g0 U 

- (rsin(;))-1 { A[2rlU- n(n+l)rlV) +For U} 

- 2N (rsin e)-1 [rlV- r1U)- or { L(r1U- r1V +or V]} 

- 3L (rsin(;))- 1 [r1U- r 1V + iJrV] 

- J2wTaf(JR2rsine){ T0 [r-1U- r- 1V + iJrVl 

+ [rlU- r-IV +or Vl} = 0 

Multiplying the third equation of ( 4. 97) by - sin(;) and adding it to the second equation, we 

obtain . . 
(cos2 (;) + l)V + n-lsin2 (;) U = 0, 

or . . 
V =- n-1 sin2 (;) (cos2 (;) + 1)-1 U. (4.98) 

Substituting (4.98) into the first of (4.97), we obtain the new set of deformation equations 
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.. . 
p0 U- 20p0 sin28 (cos28 + 1)-1 U + P0 0jg0 U]- PogoX- Poor'¥ 

+ 2r-l {[A-N- F](2r-lU- n(n+ l)r-lV] + [F- C]orU} 

+ Lrl [rlU- rlV + ar V]n(n+l) 

-ar { caru + F[2rlU- n(n+l)rlVJ} = 0, 

.. . 
PoV + 2npoV • r-lpo 'I'+ r-lpogoU 

• r-t{A[2rlU -n(n+l)r-lV] + Faru} 

- 2Nr-l [r-lV- r-lU]- ar { L[r-tU- r-lV + ar VJ} 

- 3Lr-l[rlU- r-lV + ar V] 

- JzwTof(JR2r){ To [r-lU- r-lV + arv] + [r-lU- r-lV + arv1}= 0, 

Similarly, boundary conditions ( 4. 7 5), ( 4. 77) and ( 4. 78) reduce respectively to 

ar'V +R- 1(n+l)'V = 4rrG[p0 U + (2n+l)g0 jR/(4rrG)], r= R, 

Co)J + F[2r-1U- r-ln(n+l)V] =- (2n+l) g0 2jR/(4rrG), r= R, 

r= R. 

(4.99) 

(4.100) 

We note that the equations of defonnation (4.99) are three partial differential 

equations of second order. They describe the defonnation of earth under hannonic surface 

loads, on a three dimensional configuration manifold, with a state vector consisting of the 

generalised coordinates U, V and 'I'. The constraints applied to the system, namely the 

boundary conditions ( 4.1 00), are integrable partial differential equations offrrst order in the 

generalised coordinates and thus, they are purely geometrical constraints. This implies that 

the system is holonomic. In addition, since time does not appear explicitly in either the 

equations, or in the constraints, the system is autonomous. 



THE EQUATIONS OF DEFORMATION IN THE TANGENT 

BUNDLE SPACE 

The presence of dissipation introduces delay in the displacements and to the 

secondary loading potential. Therefore it is expedient to consider the state variables 

(generalised coordinates) spanning the 3-D Lagrangean configuration manifold to be 

complex. This expands the real dimension of the configuration manifold to six. We 

transform the equations of deformation and the boundary conditions from the 6-D 

Lagrangean configuration manifold into a 12-D tangent bundle space, using appropriate 

substitutions for the complex generalised coordinates. The equations of deformation in this 

12-D tangent bundle space are 12 simultaneous linear ordinary differential equations offlrst 

order (ODEs). Furthermore, we normalise all the variables in order to make the solution 

more stable numerically. 

5.1 Reduction of the PDEs of Second Order to ODEs of First 

Order 

Since the ocean load is periodic and the response of the earth is assumed linear, the 

resulting load displacements will be periodic of the same angular velocity and we can write: 

U(r, t) = [U 1 (r) - iU2(r) ]exp(i wt), 

V(r, t) = [V1(r)- iV2(r)]exp(iwt) 

19 

(5.1) 

(5.2) 
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and the complex total periodic loading potential 

(5.3) 

Taking the first and second time derivatives of (5.1) and (5.2) we obtain 

U = w [iU 1 + U2] exp(i wt), (5.4) 

(5.5) 

(5.6) 

(5.7) 

It should be remembered, that the components of the state vector, namely U 1, U2, V 1, V 2, 

'I' 1, 'I' 2 are functions of the degree of expansion n, i.e., for each value of n, there 

corresponds a different solution. However, for simplicity, we have dropped the subscript 

n. Substituting (5.1) - (5.7) into the equations of deformation (4.99) and omitting the 

common factor exp(i wt), we obtain 

- w2p0 (U1 -iU2)- 2!lwp0 sin28 (cos28 + 1)~l(iU 1 + U2) + p0 or[go(U1 -iU2)] 

- p0 g0 {or(U1 -iU2) + 2r-l(U 1 -iU2)- n(n+l)r-l(V1 -iV2)} 

- p0 o r('l' 1 -i'l' 2) + 2r- 1 {[A-N- F][2r-1(U 1 -iU2)- n(n+ 1)r-1(V 1 -iV 2)] 

+ [F- C]o r(U1-iU2)} +Lr "1 [r- 1(U 1-iU2) -r- 1(V1-iV 2)+o r(V 1-iV 2)]n(n+ 1) 

-or { Cor(U1 -iU2) + F[2r-1(U1 -iU2)- n(n+l)r- 1(V1 -iV2)]} = 0 

• W2Po(Vl -iV2) + 2!lwpo(iV1+ V2) -r-1Po( '1'1 -i'¥2) + r-lpogo(Ul -iU2) 

- r-1 { A[2r- 1(U 1 -iU2)- n(n+ l)r- 1(V1 -iV 2)] + Fo r(U 1 -iU2)} 

- 2Nr "1[r-1(V1 -iV2)- r- 1(U 1 -iU2)] 

(5.8) 
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-or{L[r-l(U1 -iU2)-r- 1(V1 -iV2)+or<Yt·iV2)1} 

- 3Lr -1 [r-l(U 1 -iU2) -r-1(V1 -iV2) + oAV 1 -iV2)] 

- J2urrJ(JR2r) { WTa [r-1 {iUI + U2)- r- 1(iV 1 + v 2) + ar(iV 1 + v 2)] 

+ [r-1 (U1 -iU2)-r-1(V1 -iV2)+or<V1 -iV2)1} =0 

ol('¥1 -i'¥2) + 2r-1oA'1' 1 -i'¥2) -n(n+l)r-2('1'1 -i'¥2) 

= 4rrG{p0 [ojU 1 -iU2) +2r-1(U1 -iU2) -n(n+l) r- 1(V1 -iV2)] 

+ (Ul -iU2)0rPo} 

Equating separately the real and imaginary parts of (5.8) to zero, we obtain the following 

six equations for the six unknowns u 1• u2, v 1• v 2• 'I' 1 and'¥ 2: 

- w2p0 U 1 -2nwp0 sin2 e(cos2 e + l)-1U 2 + p00r~Ud 

- Pogo[orU1+ 2r-1U 1 -n(n+l)r-IVtl 

- Poor'¥ 1+ 2r-1 {[A-N- F][2r-1Ut -n(n+l)r-1Vt1 + [F- C]orU1} 

+ Lr 1 [r- 1U 1-r-1V1+o r V tJn(n+ 1)- or {Co rU1+F[2r-1U 1-n(n+ l)r-lVtJ} =0, 

- W2PoYt + 2.0wpoV2- r-1Po '1'1 + r-lpogoUt 

- r-1 {A[2r-1U1 - n(n+l)r-lVtJ + ForVJ -2Nrt[r-IV1 - r-lUtJ 

-or {L[r-1U 1 - r- 1V1+ orV 1 1}- 3Lrl [r- 1U 1 - r- 1V1 + orV 1 ] 

- J2wTJ(JR2r) { WTa [r-1U2- r- 1V2 +a r v 2] + [r- 1U 1- r- 1V1 +a r v d } = 0, 

(5.9) 
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oo2p0 U2 - 20.oop0 sin2 8 (cos2 8 + l)-1U 1 - Poa r[goU2] 

+ Pogo[arU2+ 2r1U2 - n(n+l)r- 1V2] 

+ Poar'¥2- 2r1 {[A-N- F][2r1U2 - n(n+l)r1V2] + [F- C]oruJ 

- Lr -t (r-1U2-r-IV2+ar V 2]n(n+l)+ar { CarU2+ F[2r-1U2- n(n+l)r-1V21} = 0, 

oo2Po V2 + 2!loopo Yt + r-1Po '¥2- r-lpogoU2 

+ r-1 {A[2r1U2 - n(n+l)r1V2] + Faru2}+ 2Nrl [r1V2 - rlU2] 

+ ar{L[r1U2 - r 1V2+ arv2J}+ 3Lr1 [r-1U2 - r 1V2 + arV2 ] 

- J2ootJ(JR2r) { OOTo [r- 1U 1 - r- 1Vl +a r v tl- [r1U2- r 1V2 +a r v 2] } = 0, 

At this point we transform the equations of deformation in the tangent bundle space, 

following a procedure similar to LONGMAN's [1963]. We introduce the following 

substitutions: 

} Radial displacement 

Y3 =V1, } Tangential displacement 
Y3• = V2, 

Y4 = L[r-IUl- r-IVl + orVtJ, 
(5.10) 

} Shear stress 
Y/ = L(r-1U2- r-1V2 + arv2], 

Ys='¥1, } Total loading potential 
Ys • = '¥2, 



Y6 =or '¥1- 4rrGpoU1. 

y6 • =or '¥2 - 4xGp0 U2, 
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} Gravityperturbation 

where the asterisk denotes imaginary part. Elimination of the original unknowns results in: 

o rY 1 = C-1y2 - F C-1 [2r-1 y 1 - n(n+ 1)r-1 y3], 

o rY 1 • = C-1y2 • - F C-1 [2r-1 y 1 • - n(n+ 1)r-1 y3 • ], 

OrY3 = -r-1 Yt + r- 1 Y3 + L-l Y4, 

OrY3 • = -r-1 Yt• + r-l Y3 • + L- 1 Y4 • , 

OrYs = 4rrGPoYt + Y6· 

OrYs • = 4TrGPoY1• + Y6·· 

Substituting (5.1 0) and (5.11) into the equations of deformation (5.9), we obtain 

o rYz = { -4p0 g0 r- p0 r2w2 +4C-1 [(A- N)C- p2]} r-2y 1 

+ 2C-l(F. C) r-ly2 + n(n+ 1) { p0 g0 r - 2C-l [(A - N)C- p2]} r-2y3 

+n(n+1)r-1y4 - p0 y6 -2!lwp0 sin28(cos28 + 1)-ly1•, 

ary2 • = {- 4p0 g0 r -p0 r2w2 + 4C-1 [(A- N)C- p21} r-2y 1 • 

+ 2C-l(F- C) r-Iy2 • + n(n+ 1) { p0 g0 r - 2C-1 [(A- N)C- p2]} r-2y3 • 

+n(n+l)r-1y4•- p0 y6 • +20wp0 sin28(cos28 + l)-ly1, 

(5.11) 

ory4 = { p0 g0 r + 2C-l [ p2- (A- N)CJ} r:2y1 - FC-lr-ty2 (5.12) 

+ { -p0 r2w2+ n(n+ l)C-1 [AC- p2]. 2N} r-2y3 - [3 + J2wTJ(UR2)]r-ly4 

• Por-lys + 20wPoY3 • • J2w2TJ(UR2) r-ly 4 •' 
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a rY / = { Pogor + 2C-1 [ p2. (A- N)Cl} r·2y 1• - FC-1 r·1y2 •+ 

+ { -p0 r2w2+ n(n+ l)C-1 [AC- f2]- 2N} r2y/- [3 + J2wTJ(UR2)]r 1y/ 

- Por 1Ys •- 2!lwPoY3 + J2w2Tof(UR2) rly4, 

Equations (5.11) and (5.12) form a system of 12 ODEs of flrst order in Yi and Yi •. 

Substituting (5.10) and (5.11) into (4.100), the boundary conditions at the surface of the 

earth ( r = R) become 

y2 =- (2n +l)g0 2JRI(4rrG), 

Yz • = 0, 

Y4 = 0, 

Y6 + (n + l)ys!R = (2n + l)goiR• 

y 6 • + (n + 1) y 5 • !R = 0. 

5.2 Normalisation of the Equations of Deformation 

(5.13) 

It is necessary to normalise the variables of the equations of deformation in order to 

make the numerical solution more stable. We normalise the elastic moduli A, C, L, N, F, 

viscosity T), density p0 , gravity g0 and complex compliance J2 with their corresponding 

values at the centre, or at the surface of the earth or at the core-mantle boundary. The 

procedure followed here is similar to LONGl\1AN's [ 1963]: 
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where superscripts ncn and nmll denote values at the centre and at the core-mantle 

boundary, respectively. Likewise, we normalise Yi andyi • as follows: 

Zt = YtiR, Z2 = Y2IFc, Z3 = Y3/R, 

z4 =yiFc, Zs = Ys/[R 8ojR], ~ = Y6/ 8ojR· 

• ./R Zt = Yt ' • •IF z2 =y2 c, • ./R ZJ = Y3 ' 

• •IF z4 =y4 c, Zs • = Ys •/[R 8oiR ], 
. ., 

~ = Y6 goiR· 

We also defme the following dimensionless and constant quantities: 

a = g0 2(R)/(4rrFcG), 

13 = 4rrGpo cR/goiR• 

Y = Po cgoiR RfFc, 

5 = PocR2Q21Fc, 

e = J2mQ2T0 m2f(fcJRm2). 

(5.15) 

(5.16) 

Upon substitution of the above normalised variables into the equations of deformation 

(5.11) and (5.12), we obtain: 

or' z 1 =- 2F'C'-1r•-l z1 + C'-lz2 + F'C'-ln(n+l)r'-1 z3, 

a r' z2 = { -4ypo'8o' r' - f>po' r' 2 w' 2 + 4C'-l [(A' - N')C' - p•2]} r' -2 Zt 

+ 2C'-1(F'- C')r'-1 z2 

+n(n+l){yp0 'g 0 'r' - 2C'-I[(A'- N')C'- p•2J}r•-2z3 

+ n(n+ 1) r' ·1 z4 - yp0 ' z6 - 2f>w' p0 'sin 2 8 (cos2 8 + 1)·lz1•, 
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or,z4 ={yp0 'g 0 'I' + 2C'-1[F'2. (A'- N')C'l}r'-2z1- F'C'- 1r'-lz2 

+ { -l>p0 ' r' 2w• 2+ n(n+ 1 )C'-1 [A'C' - F'2] - 2N'} r' -2z3 

- [3+J 2' w' T0 '/(L'J R' 2) ]r' -1z4 - YPo' r' -1z5 + 25w' P0 'Z3 • 

- E1 'w'2T '2/(L'J '2)r'-1z • 2 o R 4 • 

or' z6 =- n(n+l)~p0' r'-1z3 + n(n+l)r'-2z5 - 2r'-1z6 . 

or' z2 • = - { 4yp0 'g 0 ' r' + 5p0 ' r' 2 w' 2 - 4C'-l[(A' - N')C' - F' 21} r' -2z1 • 

+ 2C'-l(F' - C')r'-1 z2 • 

+ n(n+ 1) { yp0 'g 0 ' r' - 2C'-1 [(A' - N')C' - p•2l} r' -2 z3 • 

Or• z3 • = -r'- 1z1* + r'-1z3 • + L'-1 z4 • , 

or' Z4 • = { YP0 'g 0 ' r' + 2C'- 1 [ F 2 - (A' - N')C'J} r' -2 z 1 •- F'C'-1 r' -1z2 • 

+ {- 5p0 ' r' 2w• 2+ n(n+ l)C'-1 [A'C' - F'2] - 2N'} r' -2 z3 • 

- [3+J 2' w' T0 '/(L'J R' 2)Jr'- 1 z4 •- yp0 ' r'- 1 z/- 25w' P0 'z3 

+ E12' w' 2Ta' 2f(L'JR' 2) r •-lz4, 

(5.17) 
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.;:) • A. ' • • v r' Zs = 1-'Po z 1 + z6 . 

Equations (5.17) are 12 linear simultaneous ODEs of first order with variable coefficients 

in 12state variables, namely zi, ~ • (i = 1, ... , 6), that span the 12-D tangent bundle space. 

The boundary conditions at the surface of the earth become 

z2 =- (2n + l)a, 

z6 + (n+ l)z5 = (2n + 1), 

• - 0 z2 - ' 

• -0 z4 - ' 

(5.18) 
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5.3 Equations of Deformation for the Liquid Outer Core 

In this section, we derive the equations of motion of the liquid outer core, since the 

equations (5.17) are valid only for the solid regions of the earth. The procedure we follow 

here is standard and can be found, for instance, in W AHR [ 1982]. 

In the liquid outer core, the shear wave vanishes and its velocity can be set to zero. 

From (4.10) and (4.11) we have 

N=L=O (5.19) 

Furthermore, shear stresses, as well as their derivatives with respect to r' are everywhere 

zero. Thus, we have [cf: eqn. 5.10] 

(5.20) 

(5.21) 

Because of (5.19), (5.20) and (5.21), the third and ninth of (5.17) become meaningless 

due to the undetermined terms zil: and z4 • /L'. In addition, ( 5.21) reduces the fourth and 

1Oth of ( 5 .17) to algebraic equations. In symbolic form we have 

(5.22) 

(5.23) 

where 8:ijkl arecoefficientst. Equations (5.22) and (5.23) are then used to eliminate z3 and 

z3 • from the equations of deformation. Thus, for the liquid outer core, the equations of 

deformation reduce to eight simultaneous ODEs offrrst order and two algebraic equations: 

t The first two subscripts denote the equation and the second two the dependent variable. For instance, a 100 7 
is the coefficient of the 7th dependent variable (z 1 '')in the 1oth equation. 
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a r' Z2 = { -4yp0 'g 0 ' r' - 5p0 ' r' 2 w' 2} r' -2 Zt+ n(n+ 1) { YP0 'g 0 ' r'} r' -2 Z3 

-YPo' z6 -25w'p0 'sin 28(cos2e + 1)- 1z1*, 

a r' z2 • = - { 4yp0 'g 0 ' r' + 5p0 ' r' 2 w' 2} r' -2z1 • + n(n+ 1>{ yp0 'g 0 ' r' } r' -2 z3 • 

- YPa' z6 • + 25w' Po'sin 2 e (cos2 e + 1)- 1z1, 

z3 = [5p0 ' r' 2w' 2']- 1r' 2 { [yp0 'g 0 ' r']r'-2z 1- F'C'- 1r'- 1z2 - yp0 ' r'- 1z5 

- 25w' p0 'z 3 •}, 

z3 • = [5po' r'2w•2•]-tr•2{ [YPo'go' r']r'-2z! •- F'C'-lr•-lz2 • 

+ yp0 ' r' -lz5 • + 25w' P0 'z 3}. 

(5.24) 



SOLUTION OF THE EQUATIONS OF DEFORMATION 

In this chapter, we develop a theoretical procedure to solve the equations in the 

tangent bundle space. We then apply this procedure to solve the equations numerically, 

using the finite difference method of numerical integration. 

6.1 General Considerations 

The existence of different regions in the earth, namely the solid inner core, the liquid 

outer core, the mantle and the crust complicate the integration of the equations of 

deformation. Fortunately, only the low degree load deformation penetrates the earth down 

to the inner core and thus the effort to obtain a solution reduces drastically. 

At the centre of the earth (r' = 0), the equations of deformation are undefmed. So 

long as we impose regularity of the solution at the origin, we can start the integration from 

a sphere with arbitrarily small radius, considering that all the material inside this sphere has 

been removed. This is only a simplifying assumption, as at this arbitrarily small sphere we 

need specify boundary conditions and we are free to impose any physically meaningfull 

conditions, whether the material has been removed or not. At this internal free surface, we 

have neither normal, nor tangential stress applied, since we deal only with loads at the 

earth's surface. Therefore, at the surface of the internal cavity we can impose boundary 

conditions similar to those at the earth's surface, the only clifference being the absence of 

the forcing terms. The nonhomogeneous boundary conditions (5.13), which hold true at 

90 
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the surface of the earth, become homogeneous at the free internal surface. If the radius of 

the internal cavity is "a", then after normalization of ( 5 .13) we obtain: 

z2 = o, 

z4 = 0, 

zti + (n+ l)(R/a)z5 = 0, 

zti • + (n+l)(R/a)z5 • = 0. 

(6.1) 

In the third and sixth boundary conditions above, the term Ria may become arbitrarily large 

when the radius of the internal cavity becomes arbitrarily small. Care must be exercised 

when selecting nan for the numerical integration of the equations of deformation. We will 

discuss this issue in section 6.3. 

The procedure of solving the complete system of the 12 ODE's for a viscoelastic 

nonhomogeneous and rotating earth is similar to the procedure of solving the six 

simultaneous ODEs for a purely elastic and nonrotating earth. We start with the solution of 

the equations of deformation on a purely elastic, anisotropic and nonrotating earth, and then 

we generalise it for a viscoelastic and rotating earth. 

6.2 Solution for a Purely Elastic, Anisotropic and Nonrotating 

Earth 

For a purely elastic, anisotropic and nonrotating earth we have six simultaneous 

ODEs of first order with three boundary conditions at the internal cavity, namely 

z2 = z4 = z6 + (n + l)(R/a)z5 = 0, r'= R/a (6.2) 
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and three surface boundary conditions: 

z2 = - (2n + l)a, z4 = 0, z6 + (n+ 1)z5 = (2n + 1), r' = 1. (6.3) 

As we recall, the equations of deformation are drastically different for the liquid outer core, 

therefore, a one-step integration can not be perfonned. Instead, we integrate the equations 

in steps as followst: 

At the surface of the internal cavity, the three boundary conditions require that there 

are only three (6 ODEs- 3 boundary conditions) independent (free) solutions. If fj (r') 

g1{r} and hir) (i = 1, ... ,6) are the three independent sets of (partial) solutions for Zj, 

then, any linear combination of those will be the general solution of the system. Therefore, 

for the solid inner core the solution of the equations has the fonn 

zir) = A .t;{r) + B ~{r') + C h1{r'), i = 1, 2, ... , 6, fortheinnercore (6.4) 

where A, B, Care arbitrary constants. 

At the inner core - outer core boundary (b1), there is an additional condition, namely, 

z4 = 0, which indicates the absence of any tangential stressest. This boundary condition is 

used to eliminate one of the arbitrary constants, for instance C at this boundary, i.e., 

constants A and B will be functions of C 

For the numerical solution of the deformation equations in the fluid outer core, we 

proceed as follows: At boundary b 1, we have two independent solutions from the 

integration of the equations in the inner core, and continuity of z 1, z2 , z5 and z6 (equivalent 

t Although the method of solving similar equations is vezy well known to the geophysical community, in our 
opinion it is vezy poorly explained in the literature. The procedure presented here was developed by the author, 
with assistance generously provided by Prof. Dr. R.D. Small, from the Department of Mathematics md 
Statistics at the University of New Brunswick. 

t For the purpose of tidal stuclies in general, this is an excellent approximation. However, for the stucf.v of the 
deep interior of the earth using various geophysical methods, it is believed that the solid-fluid boundaries 
between inner core-outer core and outer core-lower mantle are not smooth and tangential stresses may exist. 
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to two boundary conditions). We do not impose any continuity of z3 to allow for slippage 

between inner and outer cores. 

If we call xi(r) andYJ(r) (i = 1, 2, 5, 6), the two partial solutions of the four ODEs 

in the outer core, then the general solution will be a linear combination of those. In 

actuality, the constants will be functions of A and B. Thus, we can write 

Zi(r) = D(A, B)xi(rJ + E(A, B) Yi(r), i = 1, 2, 5, 6, fortheoutercore (6.5) 

At the outer core-lower mantle boundary (b2) we have the two independent solutions from 

the integration in the outer core as well as the continuity of z1, z2, z4 , z5 , and z6. For the 

solid mantle and crust, z3 is again defmed. Therefore, the two solutions at b2 must be 

combined with a third, that of z3• Therefore, if Pi (r), qi (r) and si (r) are the three 

independent solutions for the mantle and core, a general solution will be 

i = 1, 2, ... , 6, r'>b2, (6.6) 

where F is a new arbitrary constant, introduced to account for z3• This solution also holds 

true at the surface of the earth, where the three boundary conditions will be used to 

detennine the three constants D (A, B), E (A, B) and F. From D and E, arbitrary 

constants A and B, and subsequently C, can be detennined, to provide us with the 

general solution of the deformation equations, valid throughout the earth. 

6.3 Numerical Integration 

For the numerical integration of the equations, the following steps are followed, 

based on the theoretical treatment above: 

a) At the inner cavity we set [cf: eqn. (6.4)]: 

z1 = A , z3 = B, z5 = C. (6.7) 
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The three independent solutions can then be obtained by setting, for example: 

A=l,B=O, C=O, 

A= 0, B= 1, C= 0, 

A= 0, B = 0, C = 1. 

(6.8) 

These three solutionst, along with the three boundary conditions at the internal cavity 

provide six initial values for the six unknown functions ~; they must be propagated 

upwards, till we reach boundary b 1• 

b) At boundary b 1, the additional condition z4 = 0 reduces the independent solutions to 

two by setting, for example: 

A = 1, B = 0, C = 1, 
} (6.9) 

A=O,B=l, C=l. 

The above "conditions" (6.9) show that there are only two linear combinations of the three 

independent solutions at b 1, that give z4 = 0. 

c) The two independent solutions found at b 1 are propagated in the fluid outer core till we 

reach boundary b2• At this boundary we ensure continuity for z 1, z2, z4 , z5 and z6 . At 

this point, a third solution is introduced, to account for z3• We set z3 = F and thus, we have 

three independent solutions at b2, namely 

A=l,B=O, F=O, 

A=O,B=l, F=O, 

A=O,B=O, F=l. 

(6.1 0) 

t In reality, instead of setting A, B, C equal to unity, we found that fornumerical stability, we had to set these 
arbitrary constants equal to 1 o-4. 
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The first two cases are the solutions coming from the outer core with z3 == 0. For the third 

solution all Z; are zero except for z3, which takes an arbitrary value. 

d) All three solutions determined in step (c) above are propagated upwards to the surface. 

At the surface, the three boundary conditions are used to determine constants A. B, F and 

subsequently C Thus, a unique general solution to the deformation equations is obtained. 

The solution of the 12 simultaneous ODEs of first order is similar to the solution of the 6 

ODEs described above, the only difference being the number of boundary conditions and 

the number of independent solutions. More specifically, the number of boundary 

conditions, as well as the number of independent solutions for the determination of the 

initial values are doubled, and thus, the effort for the determination of a numerical solution 

increases dramatically. Moreover, for the ocean tide loading case, there exists an infinite 

number of solutions, each corresponding to different values of wave number n. 

Fortunately, for n>300, the solution is a slowly varying function of nand we need only a 

few solutions, e.g., for n = 500, 800, 1000, 2000, 5000 and 10000; for intermediate 

values of n, a linear interpolation can be used. More importantly, forn> 10000, the solution 

converges to a constant value and thus, no solutions need to be calculated for n> 10000. 

Most importantly, from our experience from the numerical integration of the equations of 

deformation, only the low degree surface loads (up to n == 1 0) introduce deformations of 

significant magnitude below the core-mantle boundary. For n> 10, the integration of the 

deformation equations can start in the solid m~tle; the radius of the internal cavity can be 

larger than that of the core-mantle boundary and thus, the boundary value problem can be 

solved on the computer in one step. 
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6.4 The Earth Models 

The coefficients of the equations of deformation are functions of the elasticity parameters 

of the earth, namely A, C, N, Land F, as well as functions of viscosity 11. density p0 , 

gravity g, Gibbs free activation energy o• and absolute temperature T. All the above 

parameters are functions of the normalised radius and different models had to be combined 

to obtain them. 

6.4.1 The PREM 

PREM gives density and seismic wave velocities as piecewise continuous polynomials 

in the normalised radius. Gravity is given at discrete points and a least squares fit of 

piecewise continuous polynomialst in the normalised radius is performed. 

All the parameters of the PREM are valid for a reference period of 1 sec. To use these 

parameters at tidal periods, a transformation was performed according to the formulre 

[KANAMORI AND ANDERSON, 1977] 

vpiT = vplt { 1 • E lnT/(rrQ)}, 

Vs h = Vs It { 1 -lnT /(rrQ)}, 

(6.11) 

(6.12) 

where v piT and v siT are the compressional and shear wave velocities, respectively, for period T 

(in seconds), vplt and V8 11 are the velocities at reference period of 1 sec, Q is the quality factor 

and 

(6.9) 

t Of degree no greater than four. 
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6.4.2 Q Model SL8 

For values of Q, model SL8 was used. For the different regions in the earth t, an average Q 

was taken as representative value. The inner and outer cores as well as the lithosphere* were 

considered perfectly elastic and thus Q-. 00• 

6.4.3 Viscosity Model 

To our knowledge, there is no complete model available for viscosity within the earth. 

Therefore, we considered various different studies to evaluate viscosity in the mantle. 

According to these stUdies we have the following values (piecewise constant prof:tle): 

a) For the lower mantle the value of2.5x 1022 poise was taken [YUEN ET. AL., 1982]. 

b) For the transition zone the value of 1022 poise was taken [YUEN A.l~D SABADINl 1984]. 

c) For the L VZ the value of 1 Ol7 poise was taken [VETTER AND MEISSNER, 1977; VETTER, 

1978]. 

One may argue whether the above values. of viscosity, which have been estimated from long 

periodic phenomena, are valid at tidal periods. It is true that in the past decade or so, inferences 

about the viscosity of the mantle have been made almost exclusively from studies of the 

post-glacial rebound, assuming Maxwell rheology. However, the resolution of these 

techniques is inadequate to detect rapid changes in viscosity with depth [SAMMIS, ET. AL., 

1977]; these rapid changes are required by the convection hypothesis (PELTIER, 1982]. It 

appears therefore, that the post-glacial rebound data constrain the value of the average viscosity 

in the mantle to be 0(1022 poise). VETTER [1978], calculated viscosity proflles for the 

asthenosphere using the so called "temperature method." He assumed creep rates from plate 

t Consistent with PRENJ 

t Crust and seismic "'lid. "' 
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tectonic movements, a typical value being e=2x w~15 sec~l, which corresponds to a 

uniform motion of the plates of 2 cmy" l. For the different models of the asthenosphere he 

used (from the viewpoint of composition and thickness), he found that viscosity 

differences of about 1.5 orders of magnitude between the continental and the oceanic 

asthenospheres are typical. In addition, viscosity in the asthenosphere, at regions away 

from subduction zones can be 0(1017 poise), a value also obtained by PELTIER Ef. AL. 

[1981], by fitting a single relaxation time SLS to the Q's of the low order fundamental 

normal modes of the free oscillations. In support to this short term viscosity is 

YAMASHITAs [1979] work. Yamashita, using an SLS rheology with viscosity 0(1017-18 

poise) was able to explain post-seismic deformations in terms of aftershock occurences. 

Other studies have been carried out to infer about the viscosity of the mantle. In general, 

we can say that the post-glacial rebound data yield a viscosity for the mantle, which is 

0(1022 poise); this value is the average viscosity of the mantle that is required by the 

convection hypothesis [PELTIER, ET. AL., 1981]. Viscosity estimates obtained by SABADINI 

ET. AL. [1982] and YUEN ET. AL., [1982] show that values 0(1022-23 poise) fit the polar 

wandering and the rotational data satisfactorily. 

YUEN AND FLEITOUT [ 19 84] examined the causes of the convective instabilities below 

the oceanic lithosphere. Assuming temperature and pressure dependent viscosity, they 

anived at viscosities 0( 1022 poise) for the upper mantle and at viscosities 0( 1020 poise) for 

theLVZ. 

The analyses of a data set (for instance from post-glacial rebound) using different 

methods and assumptions give values of viscosity that they may be different even by two 

orders of magnitude. Furthermore, the analyses of different data sets covering a wide range 

of characteristic time scales (from post-glacial rebound to convection) show that the 

differences in the values of viscosity are below the accuracy estimates. This may suggest 

that at the moment we are unable to infer about the dependence of viscosity upon 
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frequency at long characteristic time scales. The work of YAMASHITA[ 1979] and PEL TIER 

ET. AL. [1981}, show that in the seismic band, an SLS rheology suggests extrernly low 

values for viscosity in the mantle 0(1017-18 poise), which agree well with VETIER's 

[197 8] values for the viscosity of the asthenosphere, calculated at long characteristic time 

scales. It may well be that the low values of viscosity obtained by YAi\1ASHITA[ 1979] and 

PELTIER ET. AL. [1981] reflect the presence of a low viscosity asthenosphere rather than a 

low viscosity mantle, i.e., attenuation of seismic waves occurs primarily in the 

asthenosphere. If this is true, then the viscosity in the earth may be weakly dependent upon 

frequency and it may be safe to assume the same values of viscosity for the entire spectrum 

of time scales from seismic deformations to convection. We will see later that this argument 

is also supported by the present study. 

6.4.4 G• Model 

Many independent studies have been carried out in the past to determine Gibbs free 

activation energy G •. The most representative value of G • in the L VZ appears to be 125 

kCal/Mole [KOHLSTEDT AND GOETZE, 197 4; WEERTMAN AND WEERTMAN, 197 5]. For 

the transition zone and lower mantle, G • increases almost linearly with depth. For these 

regions we consider the model given by SAMMIS ET. AL., { 1977], for an adiabatic 

temperature of 0. 3 K I km, consistent with the thermal model of STACEY I 1977]. 

6.4.5 Thermal Model 

We consider here Stacey's thermal model [STACEY, 1977]. We applied a least squares 

fit to the discrete values of temperature to obtain piecewise continuous polynomials in the 

normalised radius. 
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6.5 Computational Results 

For the numerical integration of the equations of deformation we apply the fmite 

clifference method. We use subprogram DVCPR of the International Mathematical and 

Statistical Library (IMSL) on the I.B.M. 3090-180 VF main frame computer. The fmite 

clifference method algorithm, used by DVCPR, is described by LENTINI AL~D PEREYRA, 

[1975]. We used DVCPR to solve differential systems with known analytical solutions 

prior to using it for the solution of the deformation equations and we found that the 

accuracy estimates of DVCPR are indeed pessimistic. For the solution of the equations of 

deformation we used variable step-size in order to achieve uniform accuracies throughout 

the integration interval (from the centre of the earth to the surface). The accuracies of the 

fmal results were of the order of 10-6 or better. 

6.5.1 Load Deformation Coefficients 

The load deformation coefficients h' n• k' n and 1' n can be obtained directly from the 

solution of the equations of deformation (5.17). This can be shown easily by simple 

considerations. For instance, having considered that the loading mass is equal to the mass 

of the earth, and combining (4.62) and (4.88) the loading potential is 

<f>lrun={GM/ R} y run· (6.10) 

For gravity g we have 

g = GM/R2 . (6.11) 

Substituting (6.10) and (6.11) into the frrst of (1.2) and taking into account the frrst of 

(4.79) we obtain 

h'n = Unm/R, (6.12) 

which shows that the frrst load number is equal to the nonnalised vertical displacement, 

i.e., it is equal to z1 (cf: eqn. 5.16). Similarly, fn is thenonnalised tangential displacement 
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and it is equal to z3 • In addition, the radial displacement of an equipotential surface due to 

terrain displacementandindirecteffectisunme = (1 + k'n) <Plnm!g [PAGIATAKI~ 1982] 

and Unm e=<fJnm/g, (<Pnm is gravitational+ loading potential). Combining the above formulre 

with the second of (1.2) we obtain that z5 = 1 + k' n· Summarising all the above, we have 

k' =z5 -1 
n ' 

(6.13) 

We solved the equations of deformation starting with the solution of the equations on 

a purely elastic, isotropic and nonrota.ting eartht, for different degrees of harmonic 

expansion. Then, we added, one at a time, anisotropy, rotation and dissipation and we 

re-solved the equations to detennine the effects of the above components on the load 

deformation coefficients. The results we obtained are as follows: 

a) The load numbers on a purely elastic, isotropic and nonrotating earth were compared 

with those of FARRELL [1972}. We found minor differences (1-3%), for n<800. For 

n> 1000, the differences were of the order of several percent. These differences are 

attributed to the different earth models used for the solution of the equations. The more 

detailed PREM tends to increase the magnitude of the load numbers of higher degree. 

b) The real part of the viscoelastic load numbers evaluated in this study was compared with 

ZSCHAU's [1978] load numbers. Even for the low degree h' load number (n<IO), 

Zschau's values are significantly smaller than ours of the order of 4%; Zschau's values are 

also smaller than Farrell's load numbers by_ about 2.5%. This disagreement between 

Farrell's and Zschau's load numbers is not what one might have expected. Both 

researchers used the same earth model and it would be reasonable to expect that Zschau's 

t Compressibj]jty and self-gravitation were considered in all cases. 
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load numbers would be larger than Farrell's, since the former are viscoelastic. 

c) The effect of anisotropy on h' n• k' n and l'n , in the upper 220 km is shown in Fig. 6.1 

and can be as high as (in absolute value) 1.9%, 2.3% and 2.5%, respectively. 

d) The effect of rotation onh'n• k'n and 1~ is shown in Fig. 6.2. It can be as large as (in 

absolute value) 1.8%, 3.1% and 3.3%, respectively. We found a weak latitude 

dependence of the load numbers for n:::;;4. This effect amounts to a maximum of 0.4%, 

whenlatitudevariesfrom0° to ±45°. 

e) The dissipation of tidal energy in the earth results in an increase in the absolute value of 

the load numbers. Since the effect of dissipation is frequency dependent, we calculated load 

numbers at different frequencies. For semidiurnal tides and all degrees of expansion, the 

load numbers were systematically larger than on an elastic earth. Yet, this effect never 

exceeded 0.2%. However, load numbers calculated at longer periods can be significantly 

higher than on an elastic earth. For instance, for n= 100 at fortnightly period we found that 

h', k' and 1' were larger than their corresponding values on an elastic earth, by 0. 5%, 1. 5% 

and 1.3%, respectively. 

f) On a dissipating earth, it is the imaginary part, rather than the real part of the load 

numbers, that is more sensitive to Gibbs free activation energy o•, viscosity 11 and quality 

factor Q. More specifically, the imaginary part of the load numbers of 80<n<120 are 

sensitive to G*, 11 and Q values in the LVZ. As an example, for n= 100, a change of G* by 

5kca1/mole (one sigma), affects the imaginary load numbers by almost two orders of 

magnitude; this is equivalent to a phase shift of the order of tens of degrees. A change of 11 

by one order of magnitude affects the load numbers by one order of magnitude. A change 

of Q by 10, affects the load numbers by only 1 Oo/o. In all cases, the real part was practically 

unaffected. It is interesting to note that changes of viscosities by almost two orders of 

magnitude in the lower mantle did not affect the imaginary part of the load numbers, 

indicating that tidal load dissipation occurs primarily in the L VZ. Complex load numbers on 
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a viscoelastic, anisotropic and rotating earth are given in Appendix III. 

f) As a by-product of the integration of the equations of deformation, we obtained load 

numbers as functions of depth. We selected to ploth'n andnl 'n versus depth for n = 20, 

100,200 and 500 (Fig. 6.3). We found that after a depth of about 1.2 times the wavelength 

of the deformation, the load numbers approach zero, asymptotically. As a rough 

rule-of-thumb we can say that load deformations penetrate the earth to a depth, which is 

twice the wavelength of the load. For n >500, we can see that the deformation takes place 

only in the lithosphere and the discontinuities of density and elastic parameters of the earth 

at the depths of 15 km and 24.4 km (Mohorovicic discontinuity) are reflected strongly in 

the load numbers, which is intuitively pleasing. 

6.5.2 Green's Functions 

For the evaluation of the effect of ocean tide loading on geodetic quantities of interest, 

such as, deformations, gravity and tilt, the usual procedure of convolution of appropriate 

Green's functions with an ocean tide model can be followed. For this reason, we evaluated 

Green's functions for radial and horizontal displacements, gravity and tilt (Fig. 6.4 - Fig. 

6.7), following FARRELL's [19721 proceduret. Since Farrell's Green's functions are the 

most widely used nowadays, we decided to tabulate our Green's functions (real part) in 

Farrell's form so as to be easily adaptable into existing software. The imaginary part of the 

Green's functions is given in the form of phase shift (lag or advance) with respect to the 

total load effect (Fig. 6. 8). Their numerical values are tabulated in Appendix III. 

On a purely elastic earth, the effect of load on any geodetic quantity of interest 

decreases as the point of load gets further away from the point of interest; Green's 

functions become smaller (in magnitude) as tjJ increases. This is not necessarily true on a 

t We did not use the disc factor artifice however, for two reasons. Firstly because it was introduced by Farrell to 
speed up the convergence, a factor ve.cy important for the computers of the early 1970's. Secondly, the disk 
factor has been proven to be not exactly correct [see for instance FRANCIS AND DEHANT, 198 7] because it 
requires the use of Euler's transformation; this transformation introduces errors for small, as well for large ¢. 
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viscoelastic earth. More specifically, our Green's functions grow larger (in magnitude) as 

ljr increases from approximately 0.5° to 1 o. On the contrary, when ljr> 1°, they decrease as 

ljJ increases. This is explained as follows: As ljJ becomes larger than 0.5°, the defonnation 

enters deeper in the earth and when ljJa 1°, it is the LVZ that supports, almost entirely, the 

load. Since L VZ is significantly weaker than the lithosphere, the load effect becomes more 

pronounced forljra 1°, thanforljrs0.5°, where the load is practically supported only by the 

stronger lithosphere. The peripheral bulge that is present in the viscoelastic Green's 

functions vanishes almost entirely when viscoelasticity is omitted. To support this 

argument we also calculated tilt Green's functions (where the peripheral bulge is more 

pronounced) using Zschau's load numbers. It was pleasing to realise that the peripheral 

bulge was present as opposed to Farrell's Green's functions where the bulge was flattened 

out. It it worth noting that both researchers used the same earth model. In our case, the 

peripheral bulge is further enhanced by the more detailed earth model we used (PREM). 

The above arguments agree also with PEL TIER [ 197 4]. 

Comparisons of the real part of the Green's functions obtained in this study, with 

FARRELL's [1972], show that there is a difference of a few percent for 0.3°<ljJ<l.5°; our 

values appear to be larger due to the presence of dissipation. When ljJ> 1. 5o, they become 

almost identical. 

6.6 Applications 

The software for loading calculations, developed in PAGIATAKI~ [1982], has been 

modified to account for the developments of the present study. The validity and predictive 

power of our model is tested against accurately determined M2 gravity tide residuals at 10, 

globally distributed observational sites (Fig. 6. 9, Table, 6.1 ). We calculate load gravity tide 

using: a) FARRELL's [1972] Green's functions on an elastic earth, and b) the complex 

Green's functions developed in this study. The following important conclusions are drawn: 
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M2 LOAD GRAVITY TIDE 

ELASTIC PRESENT OBSERVED IMPROVEMENT 
STATION EARTH STUDY RESIDUALS Amplitude Phase 

LaJollat 2.047 (-84.5) 2.070 (-84.4) 3.640 (-81.0) +1.0 +0.1 

Pifton Flatt 0.983 (-74.2) 0.994 (-73.9) 1.490 (-74.0) +2.0 +0.1 

Alice Springs+ 0.511 (-48.8) 0.523 (-48.4) 0.530 (-48.0) +63.0 +0.4 

Canberra+ 3.463 (-39.3) 3.475 (-39.4) 3.570 (-41.0) +11.0 +0.1 

Bruxenes• 1.548 (59.9) 1.576 (60.3) 1.760 (61.4) +13.0 +0.3 

Brugge• 2.029 (69.4) 2.045 (70.4) 2.690 (72.0) +2.0 +1.0 

Walferdang~ 1.237 (57.0) 1.259 (56.9) 1.630 (55.0) +6.0 +0.1 

Potsdam• 0.957 (43.2) 0.974 (43.7) 0.990 (44.6) +52.0 +0.5 

Mizusawa+ 1.873 (44.3) 1.867 (44.6) 1.820 (46.0) +11.0 +0.3 

Kiev• 0.385 (10.8) 0.391 (13.2) 1.060 (12.5) +1.0 +1.0 

Table 6.1. M2 Load gravity tide. All the amplitudes are in !JGals and the phases are in degrees. 

Predictions on an elastic earth have been obtained by using FARRELL's [1972] Green's 

functions and SCHWIDERSK!s [ 197 8] M2 ocean tide model. The last two columns show the 

improvements in amplitudes (in %) and phases (in degrees) the present model introduced. 

Amplitude improvements are ratios of the difference between predictions using Farrell's 

Green's functions and the present model over the remaining discrepancy between Elastic 

predictions and observed gravity residuals. 

t Warburtonet. a/., (1975), 
+ Melchior, (1983 ), 
• Francis and Dehant (19 77), 
+ Hosoyama (1977). 
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a) The difference between observed residual gravity and predicted load gravity tide 

amplitudes is reduced for all tested stations by as much as 63%, when compared to 

predictions on an elastic, isotropic and nonrotating earth. 

b) The phases of the predicted load gravity tide are closer to the observed phases by 0.4· 

(in average) when compared to predictions on an elastic, isotropic and nonrotating earth. 

Improvements in the phases using the present model can be as high as 1 •. 

c) The average of the phase differences between observed gravity residuals and predicted 

load gravity tide is 1.2 • as opposed to 1.6 • on an elastic, isotropic and nonrotating earth. 

d) The above results improve further if we exclude stations, such as La Jolla, Pifion Flat 

and Kiev, which are influenced by local tides not included in the Schwiderski's model used 

in the present study. It is the ocean tide model, rather than the loading model that imposes 

limitations in the accuracy of the predicted load tide at stations close to the shore. 



CONCLUSIONS AND RECOMMENDATIONS 

The main objective of the present research was to develop a mathematical model that 

would describe the earth's response to harmonic surface loading with particular emphasis 

to ocean tide loading. The three main issues in the development of the model were: a) 

consideration of viscoelastic rheology, b) anisotropy and c) earth's rotation. Other factors, 

such as, layered earth with solid inner core and fluid outer core, self-gravitation and 

compressibility were also considered in the model. 

7.1 The Equations of Deformation 

The equations of deformation, which describe the response of the earth to surface 

loading, were derived initially in a 6-D Lagrangean configuration manifold; the state vector 

consisted of the complex vertical and horizontal displacements and the complex loading 

potential. The equations were second order partial differential equations in the state 

variables. Furthermore, in order to facilitate their solution, we transformed the equations 

into 12 frrst order linear simultaneous ordinary differential equations with variable 

coefficients, valid in a 12-D tangent bundle space. The new 12-D state vector consisted of 

six complex variables namely, horizontal and vertical displacements, loading potential, 

normal and shear stresses and gravity disturbance (due to loading). 

Perhaps, the most challenging problem that we had to solve was the determination of 

the dissipation function. We postulated that the rheology of the earth can be described by a 

116 
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standard linear solid (SLS). Standard-linear-solid-type rheology is characterised by 

transient anelasticity, appropriate at tidai frequencies and strain levels. In addition, we 

found that the dissipation function depends on the imaginary part of the complex 

compliance of the SLS which, in turn, depends on the dissipation mechanism within the 

earth. Furthermore, we postulated that the dissipation mechanism in the mantle can be 

described by a grain-boundary relaxation model; due to the high temperature background, 

the dissipation is primarily a thermally activated process. Finally, the dissipation function 

was derived, depending on viscosity, quality factor Q, Gibbs free activation energy and 

absolute temperature, quantities available from existing literature. 

The inclusion of rotation of the earth in the equations of deformation complicated their 

expansion into spherical harmonics. However, by considering rotational symmetry in the 

properties of the earth and sectorial tides (semidiurnal), we succeeded in expanding the 

equations into spherical harmonics. 

To our knowledge, the only available information about the anisotropy in the earth, 

(in global scale), is contained in the PREM. More specifically, PREM allows only for 

transverse isotropy in the upper 220 km of the mantle; that is what we considered in our 

model. However, when more complicated types of anisotropy become available, they can 

be accounted for easily by extending our present model. 

While developing the equations of deformation, we also demonstrated that it is easy 

to account for different dissipation mechanisms. Once a specific rheological model and 

dissipation mechanism are accepted to represent the earth, the dissipation function, and 

subsequently the dissipation terms in the equations, can be derived and they can replace the 

corresponding terms in the equations in the tangent bundle space. 

7.2 Solution of the Equations of Deformation 

The solution of the equations was obtained numerically using the finite difference 
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method of numerical integration. We considered the most recent earth models available in 

the literature for the distribution of density, elasticity parameters as well as 

thermodynamical state of the earth. Some of the above parameters, being valid only at 

seismic frequencies, were transformed to tidal frequencies, using dispersion relations. 

In order to study the effects of anisotropy, earth rotation and dissipation of ocean 

loading tidal energy, on the load deformation coefficients, we solved the system of 

equations many times and for different degrees of harmonic expansion ofload, adding to 

the equations the above features, one at a time. We found that, if the load effects need be 

evaluated with an accuracy of 1 o/o or better, anisotropy, earth's rotation and dissipation 

must be considered. More specifically, 

a) Anisotropy affects the load numbers by as much as 2.5%, 

b) Earth rotation affects the semidiurnalload numbers by as much as 3. 3%, 

c) At semidiurnal frequencies, load numbers on a dissipative earth are slightly larger 

(about 0.2% maximum) in magnitude than their corresponding values on an elastic 

earth. However, our calculations showed that at longer periods, e.g., fortnightly tides, 

this effect can be as high as 1.5%. When solving for fortnightly tides, we disregarded 

the rotation of the earth. 

7.3 Green's Functions 

We evaluated complex Green's functions for vertical and horizontal displacements, for 

gravity and for tilt. We found that loads applied at about 100 km from the point of interest, 

introduce phase shifts in the calculation of the above quantities of the order of several 

degrees. For instance, at the U.N.B. earth tides station, which is located about 80 km from 

the Bay of Fundy, we found a phase shift of 1.08° for the N~S tilt and 3.65° for the E~W 

tilt, when compared to the purely elastic case. The combined effects of anisotropy, earth 

rotation and dissipation affected the N-S amplitude by 4.7% and the E-W amplitude by 
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5.2%. The above predictions explain the residual tilt in both directions better than the 

corresponding predictions on an elastic, isotropic and nonrotati.ng earth. However, there is 

still some unexplained difference between observed residual tilt and predicted load tilt. 

The validity and predictive power of our model was tested against accurately 

determined M2 gravity tide residuals at 10, globally distributed tidal stations. We showed 

that for all tested stations the present model is in better agreement with observed residual 

gravity both, in amplitude and phase, when compared to predictions on an elastic, isotropic 

and nonrotating earth. 

For points more than approximately 300 km from the shore, phase shifts become very 

small and perhaps smaller than the observational accuracies. However, the amplitudes may 

be affected by a few percent due to anisotropy and earth rotation. The accuracy of the 

calculated load effects using the present model is be lived to be better than 1%. 

7.4 Recommendations 

The present research opens new directions in the study of the response of the earth to 

external forces in conjuction with studies of the interior of the earth. Some of the prospects 

of this research can be summarised as follows: 

a) Loading calculations are very sensitive to the elasticity and thermodynamic properties of 

the earth and especially those of the L VZ. Due to the imperfect elastic behaviour of the 

earth, phase shifts of the order of a few degrees are introduced in the calculations of the 

loading effects. We believe that the accuracy of ~e observed phases of tilt tide is at least 

one order of magnitude better than the phase shifts introduced by the imperfect elasticity in 

the earth; this makes loading observations a very effective tool for the determination of the 

properties of the interior of the earth. The present model can be used in conjuction with 

observations of the ocean loading effect to provide us with further constraints on the 
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properties of the earth. 

b) We recommend that the stability of the solution of the equations of deformation must be 

studied in a rigorous fashion, using Lyapunov's stability theory. This will provide us with 

a better understanding of the loading deformations. 

c) With a versatile formulation such as the one developed in this research, other plausible 

dissipation mechanisms within the earth can be evaluated. 

d) The boundary value problem, we have dealt with here, is well defmed. It may be 

important to obtain an analytical solution, so as more insight into the mechanism of the 

loading deformations is gained. It may be even necessary to transform the equations into 

the phase space and study the stability of the solution using methods of catastrophe theory. 

e) The present model has been tested against observed gravity residuals at different tidal 

stations, in global scale. However, it is known that ocean tide loading deformations of the 

crust affect VLBI and satellite laser ranging observations. We strongly believe that the 

present model is a powerful tool in the analysis of such observations. 
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APPENDIX I 

Lagrangean Equations of Motion for Nonconservative Holonomie 

Systems 

For the derivation of Lagrangean equations of motion, we consider that the 

mechanical system under investigation is rheonomic with n degrees of freedom. The 

position vectors ri of its particles with respect to a coordinate system are dependent 

variables and can be written in an n-dimensional configuration space as follows 

[MEIROVITC& 1967] 

(l.l) 

and the velocities as 

(1.2) 

The kinetic energy of the system can be written as 

N 

T = (1/2) Lmi~i-~i• (13) 

where II1i are the masses of the particles (N in total) having position vectors ri. Substituting 

(!.2) into (!.3) yields 

131!-
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N 

T = (1/2} Lmd (01'/o~)(or/oqg)~~ + 2(or/ot}(ar/o~}qr + (or/ot}(ar/ot)}, 
i-1 

r, s = 1, 2, ... , n (1.4} 

where the summation convention applies to repeated indices r, s. Introducing virtual 

displacements &lk. the variation of kinetic energy can be written as 

l>T = (oT/oq05()k + (oT/oqk)~. k = 1, 2, ... , n (1.5} 

Integrating (1.5} with respect to time in the time interval [t1,t2] and interchanging the 

implied summation with the integration yields 

(1.6} 

In the second integral of the right-hand-side, variation 5 can be interchanged with 

differentiation d/dt. Therefore, 

(1.7} 

Integrating by parts, (I. 7} becomes 
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Since the virtual displacement 5Qk is supposed to vanish at t1 and t2, the term in the first 

square brackets of (1.8) vanishes. Tnerefore, (1.8) becomes 

(1.9) 

By interchanging variation and integration in the left-hand-side of (I. 9) and rearranging the 

right-hand-sideweobtain 

(1.10) 

If we consider n generalised forces Qk acting on the mechanical system, their virtual work 

can be written as 

5W = Qk~· k = 1, 2, ... , n. (I.ll) 

By substituting (1.1 0) and (1.11) into (I. 9) yields 

I, /{ oT/oCJk- d[oT/o~ + ~} 5Clkdt = o. (1.12) 

k-1 tl 

Since the virtual displacements 5'lk are arbitrary, equation (1.12) holds true only when the 

tenn in braces is zero. Therefore, 

(1.13) 
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Equations (1.13) were derived without assuming the character of the generalised forces Qk· 

Generalised forces~ can be conservative, nonconservative or both. Furthermore, one can 

say that among the various kinds of forces acting on a particle of the system, it is possible 

to recognise a special type of friction force F arising from the motion of the particle in a 

viscous medium. Tiris nonconservative force is assumed to be proportional to some power 

of velocity [MEIROVITca 196 7J. Therefore, we can write that 

k = 1, 2, ... , n, (1.14) 

where Qk c and Qknc are conservative, non-conservative (other than F) generalised forces. 

For the conservative force Qk c we can write 

k = 1, 2, ... , n, (1.15) 

where <I> is a potential. If Dis a function that gives the amount of energy per unit time 

(units: ML2T-3) dissipated in the mechanical system, then 

k = 1, 2, ... , n. (1.16) 

Function Dis called the dissipation function. Introducing equations (1.14), (1.15) and 

(1.16) into (1.13), yields 

d[aT/aCJk]/dt- aTta'lk +aDtaqk + a<t>ta~ = Qknc, k = 1, 2, ... , n. (1.17) 

~nc are forces steming neither from a potential field, nor from friction. In addition, forces 

introduced by T and <I> are conservative. Since V is not a function of the generalised 

velocities, then 

k = 1, 2, ... , n. (1.18) 

Thus, equation (1.17) becomes 



APPENDIX II 

Expansion of the Equations of Deformation into Spherical 

Harmonics 

The individual tenns of the equations of deformation can be written as functions of 

sphericalhannonics Y nm( e, A.) as follows 

eoo+e ..v. = (1/r)[a e v + 2u +sin-1 ea ;\w + vcot8] = 

or, 

(l/r){a 8 [Va8 Ynrn] + sin-1 ea A [V sin-1 ea A Ynm] + 2UYnrn+ coteV a8 Ynm} = 

(l/r){Va8 2Ynm +Vsin-28aiYnm +2UYnm+Vcot8a 8 Ynm} = 

(2U/r)Ynm+ (V/r) { a8 2Ynm + sin-2 ea A2ynm + cotea8 Ynm} = 

(2U/r)Ynm·(V/r)n(n+l)Ynm = 

[(2U/.l)- (V/1) n(n+ l)]Ynm , 

e00 +e ..v. = Z(r, t)Y nm, 

Z(r, t)= (2U/r)- (V/r) n(n+ 1). (11.1) 

In addition, we have 

err= aru = arUYnm. (11.2) 

Similarly for the rest of the terms of the first equation of deformation we have 

· U r (a e ere + a Ae rA + ere cot (J ] = 

-Ur{ a e [a rv- v/r+ 1/rat}l] +sin -1 ea A [(rsin 9)-Ia Au+ a "fN- w/r] 

+ [arv- v/r+ 1/rat}l]cot8} = 

1'38 
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-Ur2{ae [rarv- v + aeu] + sin-1 ea A [sin-1 ea Au+ raJN- w] 

+ [rarv-v +aetJ]cote} = 

-Ur2{rarvar}Ynm- va;ynm + VorJYnm + sin-2 eva /Ynm 

+ rsin-2 earva A2Ynm- sin-2 eva /Ynm· rcotOO rVoeYnm- coteVoeYnm 

+ coteUaeYnm} = 

- Ur2{[U- v + rarv]ae2Ynm + sin-2e [ u- v + rarv ]a A2Ynm 

+cote [ U- V + rarv ]aeYnm} = 

-Ur2( U- V + rarv ]n(n+l)Ynm. 

Furthermore, considering (II.l) and (II.2) we obtain 

(2/r)[(A- N- F)(e 00 + e AA) + (F- C)eJ = 

= 2/r [(A-N- F)Z + (F- C)arUlYnm. 

For the second equation of deformation we have 

ar£LenJ = ar£L(arv- v/r+ rl aeU)] = 

ar£L( arvae Ynm- Vrtae Ynm+ Urta 8 Ynm] = 

ar£(Ur)(U- V + rarv)ae Ynm] = 

ar£(Ur)(U- V + rarV)] ae Ynm 

(II.4) 

(U.S) 

(II.6) 

(II.7) 
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(l/r)o 8 [A(eee+ eu) +Fe"]= 

(1/r)o 8 [AZYrun + ForUYrun] = 

(1/r)[AZ + ForVloe Yrun 

eu = (1/r)(sin-1 80 ;..W + U + cot8v] = 

(1/r)[sin-1 ea ;.(Vsin-18iJ A y run>+ UY run+ cot8(VoeYrun )] = 

(1/r)[sin-28ViJ;,.2Yrun + UYrun + Vcot8o8Yrun] = 

(1/r}[V(sin-2 ea iYrun + cot8oeYrun) + UY runl = 

(1/r)[V(-oiYrun -n(n+l)Yrun) +UYrunl = 

- (l/r)[ViJe2Yrun + Vn(n+l)Yrun- UYrunl 

Differentiating (II. 9) with respect to 8 we obtain 

oee.v. = - (l/r)[ViJe3Yrun + n(n+l)VoeYrun- UoeYrunl = 

- (l/r)[ViJ83Yrun + [n(n+l)V- U]o 8Yrun1 

eee- eAA = (1/r)(iJ e V- sin-1 80 A W- cot8v] = 

(1/r)[oe(VoeYrun)- sin-1 ea A ( Vsin- 1 ea ;..Yrun)- cot8(VoeYnm)l = 

(1/r)[VoiYnm- Vsin·2o iYrun- Vcot8o 8Yrun1 = 

(V/r)[oiYrun- (sin-2o iYnm- cot8o 8Yrun)J = 

(V/r)[oiYrun- (-oiYnm -n(n+l)Yrun)J = 

(V/r)[2iJ 82Yrun + n(n+ l)Y nml 

(U.S) 

(Il.9) 

(11.10) 

(II.ll) 
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ee;. = (1/r)(oeW- cot8w+ sin-1 8o ..\V] = 

(1/r)[a8 ( Vsin.- 1 ea llYrun) -cote( Vsin.-1 ea i\Yrun) + sin-1 ea il (VaeYrun)] = 

(1/r)[Vae(sin.-1 ea ..\Yrun) - VcotfJsin.- 1 ea llynm + Vsin- 1 ea lliYnmJ = 

(V/r)((- cos ea ..\Yrun)sin-2 8 - cot8sin-1 8o ..\Ynm = 

(V/r)[- cotGsin-1 e a ;.Ynm- cotesin-1 eo ;.Ynm = 

- (2V /rsin e )cote a;. Y run 

Differentiating (II.12) with respect to ..t we obtain 

o ;.ee). =- (2V/rsin. 8)coteo iYnm 

Considering (II.1 0), (II.11) and (II.12) we have 

(N/r)[2a 8 e ).;. - sin-1 e a ).e8). - 2cote (e 00 - e ;.). )] = 

(N/r) [-(2V/r)o 83Yrun -(l!r)[2n(n+ 1)V- 2U]o 8Yrun 

- sin-18(2V/rsin G)(o (/3 ;.2Yrun· cote a iYrun) 

- 2cote (V/r}[2oiYrun + n(n+ 1)Y runl] = 

(N/r) [-(2V/r)a 83Yrun -(1/r)(2n(n+1)V- 2U)a 8Yrun 

- (2V/rsin2 8)a(/J ;.2Yrun + (2V/rsin.2 8)coteo ;.2Yrun 

-(2V/r)cote [o 82Ynm- coteo 8Ynm- sin-2eo..\Yrun1] = 

(N/r) [-(2V/r)o 83Yrun -(1/r)(2n(n+l)V- 2U)o 8Yrun 

- (2V/rsin.28)o(/3 iYnm + (2V/rsin.2 8)cot8<3 iYnm 

-(2V/r)cot8 oiYnm + (2V/r)cot2Go 8Yrun 

+ (2V/rsin2 G)cotea iYnm) 

(II.12) 

(II.13) 
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(N/r) [-(2V/r) a8 [-cotea8Ynm- sin-2a ..\Ynrn·n(n+ l)Y nrnl 

-(1/r)[2n(n+l)V- 2U]o 8Ynrn- (2V/rsin2 8)oj) }Ynrn 

+ (2V/rsin2 8)cot8o iYnm- (2VIr)cot8 ar}Ynm+ (2VIr)cot2 ea8Ynm 

+ (2V/rsin2 8)cotea iYnrn]= 

(Nir) (-(2VIr)sin-2a 8Ynrn + (2VIr) cot8a 82Ynm 

+ (2V I r) [sin 2 e a ff3 ..\2y nrn- 2sin e cos e a iY nrnlsin -4 8 

+ (2VIr)n(n+l)a8 Y nrn· (1/r)[2n(n+l)V- 2U]a 8Ynrn 

- (2V I .zsin 2 8 )a ff3 iY nrn + (2V I ISin 2 8 )cote a ,?Y nrn-

-(2V/r)coteaJYnrn+(2V/r)cot2 8a 8Y nrn +(2V/rsin2 8)cot8a iY run]= 

- (Nir) [rlV- rlU]]aeYnrn (11.14) 

Furthermore, 

(II.15) 

For the third equation we have 

pJ(rsin fJ)a A <tJ = pof(rsin fJ)a A 'PYnm = Pof(rsin 8)'¥a A Y nm (Il.l7) 

(3Ur) erA= (3Ur)[(rsinfJ)- 1 o Au+ O)N- w/.zj = 

(3Ur)[(rsin 8)-1 ua A y nm +a rva A y nrn - Vl(rsin 8)a A y nrn 1 = 

3U(r2sin 8 )[U- v + ro rVlo A y nrn (1!.18) 
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(\[Ler . .d = ar(L[(rsin8)- 1 Ua;. Yrun + arva;. Yrun ~ V/(rsine)a;. Yrun] = 

ar (U(r2sin8)[U- V + rarv]]a;. Yrun (1!.19) 

(rsin8)-1a;. [A(e00 + eM)+ Ferr- gp0 u] = 

(rsin e )-1 [AZ + FarU- gp0 U]a;. Y run (ll.20) 



APPENDIX III 

A. Load Deformation Coefficients 

n h' 100 H' n I' 100 n L' nk.' 100 n K' 

1 -0.295 0.003 0.143 0.022 0.000 0.000 

2 -1.007 0.003 0.063 0.044 -0.618 0.011 

3 -1.065 0.004 0.203 0.064 -0.596 0.016 

4 -1.069 0.005 0.221 0.095 -0.544 0.018 

5 -1.103 0.006 0.217 0.140 -0.533 0.025 

6 -1.164 0.006 0.214 0.176 -0.555 0.032 

7 -1.238 0.007 0.221 0.210 -0.590 0.039 

8 -1.313 0.007 0.230 . 0.244 -0.631 0.050 

9 -1.388 0.008 0.243 0.285 -0.684 0.062 

10 -1.460 0.008 0.255 0.327 -0.737 0.071 

12 -1.600 0.009 0.291 0.397 -0.802 0.095 

14 -1.726 0.010 0.327 0.492 -0.878 0.126 

16 -1.845 0.012 0.365 0.559 -0.951 0.151 

18 -1.952 0.013 0.404 0.606 -1.018 0.172 

20 -2.048 0.014 0.443 0.629 -1.080 0.191 

25 -2.252 0.016 0.534 0.764 -1.209 0.261 

30 -2.411 0.041 0.612 0.760 -1.307 0.297 

40 -2.633 0.127 0.730 0.841 -1.434 0.437 

50 -2.777 0.223 0.809 0.751 -1.502 0.528 

60 -2.880 0.319 0.864 0.622 -1.539 0.601 

70 -2.958 0.395 0.901 0.469 -1.557 0.640 

14.4-
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80 -3.021 0.448 0.925 0.321 -1.565 0.652 

90 -3.077 0.480 0.941 0.191 -1.567 0.640 

100 -3.127 0.488 0.951 0.082 -1.567 0.616 

120 -3.221 0.465 0.959 -0.067 -1.564 0.533 

140 -3.312 0.406 0.959 -0.134 -1.564 0.434 

160 -3.403 0.335 0.955 -0.162 -1.570 0.339 

180 -3.496 0.265 0.951 -0.155 -1.582 0.257 

200 -3.590 0.204 0.948 -0.135 -1.599 0.191 

250 -3.829 0.096 0.950 -0.076 -1.662 0.084 

300 -4.069 0.042 0.970 -0.035 -1.745 0.034 

350 -4.320 0.017 1.005 -0.015 -1.840 0.013 

400 -4.526 0.005 1.054 -0.003 -1.939 0.004 

800 -5.263 0.001 1.616 .. 0.001 -2.675 0.001 

1000 -5.600 0.000 1.714 0.000 -2.812 0.000 

2000 -6.186 0.000 1.873 0.000 -3.059 0.000 

3000 -6.262 0.000 1.892 0.000 -3.092 0.000 

5000 -6.274 0.000 1.894 0.000 -3.097 0.000 

10000 -6.274 0.000 1.894 0.000 -3.097 0.000 



146 

B. Green's Functions (Applied Load: 1 kg) 

til uxto12(RIIJ) &0 vx 10 12(Rtjl) &0 gBxto18(RtiJ) ao t,E" 1 Q 12rT;>,It\2 ~0 
·-.a. V"'t'l ... 

0.0001 -42.603 0.00 -12.875 0.00 -98.875 0.00 42.628 0.00 

0.001 -42.377 0.00 -12.875 0.00 -98.361 0.00 42.628 0.00 

0.01 -40.132 -0.01 -12.836 0.00 -93.260 0.00 42.601 0.00 

0.02 -37.704 -0.01 -12.719 0.00 -87.757 -0.01 42.445 0.00 

0.03 -35AOO -0.01 -12.535 0.00 -82.552 -0.01 42.074 0.00 

0.04 -33.258 -0.02 -12.298 0.00 -77.732 -0.01 41.459 0.00 

0.06 -29.522 -0.05 -11.693 0.00 -69.374 -0.03 39.585 0.00 

0.08 -26.523 -0.08 -10.976 0.00 -62.674 -0.04 37.091 0.00 

0.10 -24.206 -0.12 -10.225 0.00 -57.490 -0.05 34.158 0.00 

0.15 -20.745 -0.21 -8.554 0.00 -49.808 -0.10 27.775 -0.01 

0.20 -19.273 -0.30 -7.291 0.00 -46.668 -0.12 22.234 -0.03 

0.25 -18.557 -0.35 -6.305 -0.03 -45.043 -0.13 22.645 -0.06 

0.30 -17.583 -0.45 -5.669 -0.06 -41.839 -0.18 23.936 0.00 

0.35 -16.517 -0.52 -5.404 -0.07 -38.048 -0.22 23.435 -0.18 

0.40 -15.649 -0.60 -5.437 -0.07 -34.798 -0.24 21.298 -0.25 

0.45 -15.083 -0.62 -5.654 -0.06 -32.615 -0.24 18.737 -0.41 

0.50 -14.799 -0.66 -5.926 -0.06 -31.531 -0.24 16.305 -0.57 

0.55 -14.736 -0.64 -6.154 -0.03 -31.335 -0.21 14.364 -0.83 

0.60 -14.806 -0.63 -6.288 0.00 -31.690 -0.18 13.580 -0.98 

0.80 -14.642 -0.49 -6.177 0.47 -31.763 -0.02 17.499 -1.00 
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1.0 -13.811 -0.31 -6.061 1.07 -29.756 0.17 17.670 -1.14 

1.2 -12.922 -0.11 -5.808 1.80 -27.805 0.31 18.548 -0.97 

1.4 -12.022 0.09 -5.545 2.60 -25.799 0.49 17.329 -0.75 

1.6 -11.310 0.25 -5.257 3.36 -24.374 0.59 16.269 -0.44 

1.8 -10.695 0.37 -4.967 3.99 -23.169 0.62 15.681 -0.11 

2.0 -10.112 0.43 -4.690 4.61 -22.005 0.62 15.604 0.16 

2.5 -8.708 0.45 -4.071 5.53 -19.033 0.53 14.408 0.61 

3.0 -7.699 0.37 -3.542 6.00 -16.953 0.36 12.609 0.83 

4.0 -6.190 0.17 -2.747 6.03 -13.671 0.03 10.181 0.71 

5.0 -5.243 0.00 -2.207 5.71 -11.534 -0.19 8.422 0.38 

6.0 -4.634 -0.08 -1.849 5.26 -10.081 -0.25 7.015 0.10 

7.0 -4.225 -0.17 -1.610 4.92 -9.045 -0.28 5.945 -0.12 

8.0 -3.949 -0.09 -1.457 4.45 -8.309 -0.26 5.149 -0.21 

9.0 -3.751 -0.10 -1.360 4.24 -7.747 -0.23 4.601 -0.31 

10.0 -3.602 -0.10 -1.304 3.86 -7.308 -0.20 4.170 -0.43 

12.0 -3.383 0.00 -1.273 2.55 -6.667 -0.16 3.796 -0.28 

14.0 -3.189 0.00 -1.276 1.41 -6.136 -0.06 3.591 -0.10 

16.0 -3.013 0.00 -1.287 0.84 -5.714 0.00 3.424 0.31 

18.0 -2.831 0.00 -1.300 1.11 -5.314 0.00 3.403 0.32 

20.0 -2.642 0.00 -1.306 1.38 -4.946 0.00 3.369 0.11 

25.0 -2.114 0.00 -1.286 0.28 -4.018 0.00 3.440 -0.21 

30.0 -1.518 0.00 -1.229 1.17 -3.059 0.00 3.415 0.11 

35.0 -0.892 0.00 G 1.120 1.08 -2.266 0.00 3.226 0.11 
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40.0 -0.267 0.00 -1.012 0.00 -1.468 0.00 2.926 -0.13 

50.0 0.894 0.00 -0.758 0.95 -0.456 0.00 1.936 0.00 

60.0 1.720 0.00 -0.594 0.61 0.159 0.00 0.422 0.85 

70.0 2.135 0.00 -0.552 0.65 0.512 0.00 -1.156 0.00 

80.0 2.098 0.00 -0.666 1.08 0.181 0.00 -2.985 0.00 

90.0 1.667 0.00 -0.936 0.38 -0.427 0.00 -3.684 0.10 

100.0 0.955 0.00 ·-1.255 0.29 -0.890 0.00 -4.087 0.18 

110.0 0.016 0.00 -1.557 0.00 -1.528 0.00 -4.377 0.08 

120.0 -1.056 0.00 -1.809 0.00 -2.215 0.00 -3.955 0.09 

130.0 -2.184 0.00 -1.932 0.00 -2.768 0.00 -3.531 0.10 

140.0 -3.320 0.00 -1.887 0.00 -3.272 0.00 -3.090 0.12 

150.0 -4.390 0.00 -1.684 0.00 -3.749 0.00 -2.407 0.15 

160.0 -5.319 0.00 -1.312 0.00 -4.133 0.00 -1.399 0.26 

170.0 -6.045 0.00 -0.745 0.00 -4.412 0.00 -0.556 0.00 

180.0 -6.535 0.00 0.000 0.00 -4.660 0.00 0.000 0.00 

u =radial displacement, v =tangential displacement, gE = "Elastic" gravity, tE = "Elastic" 

tilt, R = radius of the earth, taken as 6. 371 x 106m and ljT = distance from load in radians. 

& 0 is phase shift (degrees) with respect to the total elastic displacement. 




