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ABSTRACT

A novel ocean tide loading model is developed which allows the earth to be
self-gravitating, compressible, layered, anisotropic, viscoelastic and rotating, with solid
inner core and fluid outer core.

The deformation equations of the earth are developed, following the analytical
mechanics approach. The standard-linear-solid-type rheology, as well as the
grain-boundary relaxation model for the dissipation mechanism within the earth are adopted
in this study. The thermodynamic state of the earth is accounted for, through its absolute
temperature, Gibbs free activation energy, viscosity and Q profiles.

For the numerical integration of the equations of deformation, the following models
are considered: a) PREM for the elasticity parameters of the earth, appropriately modified
at tidal frequencies, using dispersion relations, b) SL8 model for the Q profile of the earth,
c) viscosity profile with the following viscosities: 2.5x1022 poise for the lower mantle,
1022 poise for the transition zone and 1017 poise for the LVZ, d) SAMMIS ET. AL., [1977]
model for the Gibbs free activation energy profile (for the transition zone and lower
mantle), with an adiabatic temperature gradient of 0.3 K /km. The value of 125 kCal/Mole
for the LVZ is considered, and e) STACEY’s [1977] thermal model for the temperature
profile of the earth.
and I’

» are calculated and the results are the

Complex load numbers h';, k',
following:

a) The rotation of the earth has an effect on the load numbers that can be as much as 1.8%,
3.1% and 3.3% respectively, depending on the degree of expansion. There'is a weak
latitude dependence of the load numbers for n=4; when latitude varies from 0° to +45°, its

effect is of the order of 0.4%.



b) The effect of anisotropy in the upper mantle can be as much as 1.9%, 2.3% and 2.5%
respectively, depending on the degree of expansion.

c) At semidiurnal periods, the load numbers on a viscoelastic earth are about 0.2% larger
than their corresponding values on an elastic earth. At fortnightly periods, viscoelastic
h’ 90, K'jgoand I’;oq are larger than their corresponding elastic values by 0.5%, 1.5% and
1.3%, respectively. For other values of n, the effect of viscosity is smaller.

Complex Green’s functions are determined for displacements, gravity and tilt; they
are given in the same form as those of FARRELL [1972], for easy implementation with
existing software. The predictive power of the model is tested against accurately determined
M, gravity tide residuals at 10, globally distributed, tidal stations. It is shown that the
difference between observed residual gravity and predicted load gravity tide amplitudes is
reduced for all tested stations by as much as 63%, when compared to predictions on an
elastic, isotropic and nonrotating earth. There is also an improvement in the phases of the
predicted load gravity tide.

All the novel features of this research are included in the new version of the
LOADSDP software package [PAGIATAKIS 1982]. LOADSDP software can be used to
evaluate displacements, gravity perturbations and tilt at arbitrary locations on the surface of

the earth with an accuracy better than 1%.
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INTRODUCTION

1.1 The Ocean Tide Loading Effect
As the ocean tide waters move about, they periodically load and unload the earth,

causing displacement, tilt and gravity changes. These changes are the most pronounced
directly underneath the load, i.e., on the ocean floor. However, the effect is of considerable
magnitude even in the middle of the continents. As an example, the amplitude of the vertical
displacement in the middle of North American continent can reach 1.7 cm? [PAGIATAKIS
1982]. At coastal stations the effect becomes even more sizable.

One of the phenomena that can be observed by terrestrial means is the relative tilt} of
the earth’s surface due to direct attraction of the moon and the sun (body tide). These
observations are significantly affected by the ocean tide loading. Sometimes, ocean tide
loading tilt can be larger than the body tide tilt, especially at stations very close to the shore,
an example being the University of New Brunswick Earth Tides Station? [PAGIATAKIS
AND VANICEK, 1985].

Y This is the combined effect of the six leading constituents M, Sz, K 1, O}, N3 and P using Schwiderski’s
ocean tide model {[SCHWIDERSKI, 1978].
1 Relative to the undisturbed surface of the earth.

¢ For instance, the amplitude of the M, tilt in N-S direction is 12.290 marcsec due to body tide and 20.130
marcsec due to ocean loading (calculated on an elastic earth) .



To increase the accuracy of satellite positioning and very long baseline interferometry
(VLBI) techniques to subcentimetre level, a good knowledge of the loading deformations
is indispensable. Furthermore, with the advent of the superconducting gravimeter, it is
possible to study? the interior of the earth, using surface observations, provided that other
effects such as the ocean loading can be eliminated.

Ocean tide loading effects have been studied by many researchers in the past.
However, certain of the earth’s attributes, such as, viscoelasticity, anisotropy,
nonhomogeneity and rotation have been neglected for various reasons. In the present
study, we take into account all the aforementioned effects using the approach of analytical
mechanics. However, before we present the details of the context and the contributions of
this research, an outline of the existing studies of the ocean loading is in order.

At the beginning of this century, a systematic difference between the values of the
diminishingfactor? estimated along N-S and E-W directions, was discovered. The analyses
of the early observations of the tidal tilt showed that the diminishing factor in E-W direction
was systematically larger.

Hecker in 1907 appears to be the first who tried to explain this disagreement. He
attributed it to indirect effects due to the complex influence exerted by the mass of
water moving in the nearby seas. D’ Abbadie in France and Darwin in England in the late
1800’s mentioned a possible influence of the ocean tides on the direction of the vertical
[MELCHIOR, 1983]. DARWIN[1882] attempted to evaluate this effect.

Serious studies of the indirect effect, called here ocean tide loading, were initiated
by SLICHTERAND CAPUTO [1960], JOBERT [1960] and CAPUTO [1961]. They cqnsidered
surface loading, in contrast to KAULA [1963], who considered internal mass loading. In all

the above studies, simple earth density models were assumed.

Y In combination with other geophysical methods.

1 The diminishing factor is defined as [MELCHIOR, 1983]:y = 1 + k - h, where h and k are the first and the
second Love numbers. Love numbers are defined in the the next section.



LONGMAN [1962] initiated a study in order to evaluate the total gravitational effect of
an arbitrary configuration of the ocean tides upon a gravimeter observation. He considered
a symmetrical, gravitating and elastic earth, where the Lamé coefficients and density were
some functions of depth. He used the equations of the free oscillations of the earth derived
by PEKERIS AND JAROSCH [1958] and by ALTERMAN ET. AL., [1959]. LONGMAN [1963]
calculated load deformation coefficients [see MUNK AND MACDONALD, 1960] up to
degree n=40.

FARRELL [1972] considered a homogeneous self-gravitating sphere. He formulated
the problem much the same way as LONGMAN[1962] did and estimated load numbers up
to degree n = 10000 for different earth models. Farrell’s work is very important; it has been
the standard for various investigators [e.g. ZSCHAU, 1976; CHIARUTTINI AND
LIVIERATOS 1978; GOAD, 1979; MELCHIORET. AL., 1981; PAGIATAKIS 1982].

BEAUMONT AND LAMBERT [1972] used the finite element method on an
axisymmetric hemispherical medium to calculate the ocean tide loading effect. They also
considered a lateral change in the crust structure, pointing out that the transition from
oceanic to continental structure has no effect on tilts. Their results show that beyond 200
km from the point load the tilts are insensitive to crustal structure.

PERTSEV AND IVANOVA [1976] determined load numbers up to degree n = 70000
and calculated the effect of the world ocean tides on the trans United States tidal gravity
profile.

ZSCHAU [1977, 1978] calculated phase shifts of the ocean tide loading effects due to
low viscosity layers in the interior of the earth. He considered that the earth is a Maxwell

fluid and he used the correspondence principle? to evaluate this response. He found that,

Y The Fourier (or Laplace) transform of the equations of motion (and their associated boundary conditions) of a
linear viscoelastic body is of the same form as that of linear elastic body, the only difference being that the
elasticity parameters are now complex quantities and they are functions of the transform variable. Therefore,
any solution of the elastic equations offers a corresponding solution for a linear viscoelastic body through the
inverse transform. This is known as the correspondence principle [see for instance, PELTIER, 1982].



loading effects on a viscoelastic earth show phase shifts with respect to an elastic earth of
the order of a few degrees.

MOLODENSKIJ AND KRAMER [1980] calculated derivatives of the Love numbers
with respect to the elastic modulus of the real earth in order to estimate influences on earth
tides by large-scale horizontal inhomogeneities in the mantle. They concluded that these
influences can induce about 0.5% change in the 8 factor. Thus, & factor must be estimated
with an accuracy better than 0.2% in order to carry some information on mantle
inhomogeneities. Phases must be accurate to 0.1° to 0.2°.

SASAO AND WAHR [1981] modelled the response of an elastic, rotating, elliptical and
oceanless earth with a fluid outer core to a given load distribution on its surface. They
showed that the earth’s response to diurnal surface loading must be affected by the free
core nutation eigenmodet. WAHR AND SASAO [1981] gave a procedure to determine this

resonant effect of the diurnal tides in the open ocean, on body tide.

1.2 Load Deformation Coefficients

Ocean loading effects can be evaluated by convolution of the ocean tidal amplitude
with appropriate Green’s functions. These Green’s functions reflect the response of the
earth to loading and depend, among other variables#, on the properties of the earth. The

properties of the earth enter into the Green's functions through some dimensionless

Y Consider an elliptic rotating earth with fluid core. When an external torque is applied to the earth, its rotation
axis tips and the mantle pushes against the elliptical bulge of the core. Since the core rotates with the earth, it
resists this deformation by an opposite torque. The result is a periodic, relative rotation between the core and
the mantle. This is known as free core nutation (FCN) and has an eigenfrequency of about I + 1/460 cycles/day
[WAHR, 1982]. Apparently, FCN affects only the diurnal tides. For theoretical discussions of the FCN see
JEFFREYS AND VICENTE, [1957a, b], MOLODENSKIJ, [1961]; TOOMRE, [1974]; SHEN AND
MANSINHA [1976].

¥ See for instance PAGIATAKIS, [1982)].

¢ They depend on the extent of load, as well as on time. For time dependent load numbers see PELTIER, [1982].



quantities called load deformation coefficients', introduced by MUNK AND
MACDONALD[1960]. A definition of these coefficients, using geometrical quantities of the
deformation [see for example PAGIATAKIS 1982], is as follows: Let u/, denote the
vertical displacement of the earth’s surface due to the load, u?, the displacement of the
gravity equipotential surface induced by the attraction of the load masses and ui_ the
vertical displacement of the surface of the earth due to the disturbed density field. Then

h’n = uInm/uanm’
K =u /v, (1.1)

I'y=vl_ /v,

where v/, and v2_ are the horizontal components of the deformation. For this study, it
is convenient to use physical quantities to define the load deformation coefficients. These

alternative definitions?* are as follows [e.g. WAHR, 1982]

N, =guin/ ®hm,
K, =®_ /& -1, (1.2)

1’1‘\ = g vlnm/q)]nm’

where &!  is the potential of the load, ®,, is the total gravitational potential
(gravitational plus loading) and g is gravity. The load deformation coefficients do not

depend onm and they are essentially independent of tidal frequency #.

¥ Also known as load Love numbers or Love numbers.
¥ This can be done by using the definitions (1. 1) and Bruns formula uanm = ‘D]nm / g from physical geodesy.

We will see in the following chapters that this is only true for a purely elastic earth. However, for a
viscoelastic earth the load deformation coefficients depend strongly on frequency, that is a viscoelastic
medium is dispersive.



1.3 Context of This Study
The primary objective of this research is to study the response of a more realistic

earth, than used so far, to external forces and in particular to ocean tide loading. For the
study of this response, many attributes of the earth must be taken into account, when
developing the equations of deformation. One of the most important attributes in this study
is the rheology of the earth. There is strong observational evidence that the rheology of the
earth is not purely elastic and that tidal energy is dissipated in the earth. In order to
understand the rheology of the earth, the concepts of stress and strain, as well as their
relationship through a constitutive law are of primary importance. More specifically, of all
the linear viscoelastic models, the standard linear viscoelastic model is examined in more
detail, as this model is assumed to describe more realistically the response of the earth to
tidal forces. In close relation to the standard linear viscoelastic model, the grain-boundary
relaxation model is presented, which describes the dissipation mechanism within the earth.
Moreover, the thermodynamical state of the earth modifies its rheology and it is taken into
account. All the above concepts, along with the most recent models of the earth that are
used to solve the equations of deformation of the earth are presented in Chapter 2.

In Chapter 3, the basic concepts of Lagrangean mechanics that are used to derive the
equations of deformation are presented. We efnphasise that our interest is the determination
of the deformations of the earth; these deformations are considered as dependent variables
of position and time, as opposed to the classical equations of motion that consider the
position a dependent variable of time. Consequently, the Lagrangean equations of motion
in this study acquire a differentcharacter; they are second order partial differential equations
in the displacements (deformations) and thus, they are called “equations of deformation.”
Furthermore, we present the concepts of “tangent” and “cotangent bundle spaces”, in

which the equations of deformation are developed. Although, we do not take full advantage



of this exposition in this study, we indicate its importance in future research on the
deformations of the earth.

In Chapter 4, the equations of deformation are developed, following the Lagrangean
mechanics approach, as described in Chapter 3. The equations are three partial differential
equations of second order in the displacements.

In Chapter 5, the equations of deformation are transformed into 6 linear ordinary
differential equations (ODEs) of first order. Subsequently, the equations are transformed
into 12 ODE:s of first order, by considering that the deformations on a viscoelastic earth are
complex variables.

In Chapter 6, the equations of deformation are solved using the finite difference
method of numerical integration. Load deformation coefficients are obtained, and
subsequently, Green’s functions are developed for the evaluation of the effect of the ocean
tide loading on deformation, gravity and tilt observations.

Finally, in Chapter 7, the main conclusions of this research are presented, along with

recommendations for future research.

1.4 Contributions of This Study

In this research, a number' of important contributions are made, which can be
summarized as follows:
1) The equations of deformation of the earth are developed from basic principles of
physics, following the analytical mechanics approach (Lagrangean mechanics). The
development of the equations is presented within the context of modern developments of
mathematical physics.

2) We consider the earth to be layered, self-gravitating, compressible, anisotropic, rotating



and viscoelastic under dynamic' surface loading. No other study has included all these
features.

3) We assume that the earth is anisotropic (more specifically, laterally isotropic?) in the
uppermost layers. We indicate that a more general anisotropy can be easily incorporated
into the equations of deformation, as long as an earth model is available for the equations’
solution. At present, only the Parametric Reference Earth Model (PREM) by DZIEWONSKI
AND ANDERSON [1981] allows for lateral (transverse) isotropy in the upper mantle.

4) It is known that the earth’s rotation introduces problems in the expansion of the
equations of ‘moﬁon into spherical harmonics [WAHR, 1981a]. We have found a partial
solution to these problems, a simple method of expanding the equations into sectorial
spherical harmonics (semidiurnal tides), when the properties of the earth possess rotational
symmetry.

5) To allow for imperfections in elasticity, we consider that the earth has a
standard-linear-solid-type rheology. We also accept that the dissipation mechanism is
described by the grain-boundary relaxation model and we account for the thermodynamic
state of the interior of the earth. We draw important new conclusions about the sensitivity
of the load numbers to the viscosity, the quality factor Q and the thermodynamic profile of
the earth. Finally, we stress the possibility of studying the interior of the earth from surface
observations of the loading effects. No other study has included the above features.

6) We check the stability of the solution of the equations of motion using simple criteria
and we indicate the prospects of a thorough stability investigation, using Lyapunov’s

stability theory.

t By “dynamic” we mean that the frequency of the applied load is present in the equations as it is common
practice in the equations of free oscillations of the earth. Some [nvestigators have considered static
deformations by simply rejecting the dynamic terms [e.g. LONGMAN, 1962; 1963]. This leads to a number
of inconsistencies and “paradoxes” [see DAHLEN, 1974; CHINNERY, 1975].

¥ When a material possesses one axis of symmetry in the sense that all directions perpendicular to this axis are
equivalent, it is said to be laterally (transversely) isotropic. The term *transverse isotropy” was introduced by
Voigt in 1886 and it is being used as such, in seismology and crystal physics. We adopt the term “lateral
isotropy” in this study, however.



7) We evaluate new Green’s functions for the load effects, which take into account the
novel model developed in this study. More importantly, we give these Green’s functions in
exactly the same form as in FARRELL [1972]. This is advantageous to the many users of
Farrell’'s Green’s functions, as no serious modification in the existing software wiil be
needed to account for the novel model developed in this study. Since the load numbers on a
viscoelastic earth are complex, we calculate their imaginary part, as well. These "phase
shift Green’s functions” show that viscoelasticity in the earth introduces phase shifts of the
order of a few degrees.

8) We give a new version of the LOADSDP software package [PAGIATAKIS 1982] for the
evaluation of the loading effects that includes all the new features of this research.
Moreover, we test the predictive power of the model against accurately observed gravity
residuals at different tidal stations and we conclude that the present médel is very
promising, indeed. LOADSDP: software can be used to calculate displacements, gravity
perturbations and tilt at arbitrary locations on the surface of the earth and it is available

from the Department of Surveying Engineering, upon request.
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RHEOLOGY AND PROFILE OF THE EARTH

The knowledge of the relation of stress to strain through a constitutive law is essental
in modelling the response of the earth to external forces. Nowadays, it is believed that the
response of the earth to external forces, of periods from a few minutes to thousands of
years, is not perfectly elastic. This “imperfect” behaviour “deteriorates” to a purely viscous
behaviour, as the period of the deformation increases.

Studies of the imperfect elastic response of the earth at seismic frequencies have
shown, that even at these high frequencies, the behaviour of the earth departs slightly from
perfectelasticity [PELTIER, ET. AL., 1981]. The inelastic behaviour of the earth is extremely
complicated. Among others, it depends on its chemical constitution, phase u'ansformau'éns
and thermodynamical state. |

In order to study the response of the earth to ocean tide loading, the earth’s interior
structure must be known to a certain extent. Of particular importance in the development of
an ocean tide loading model, is the structure of the crust and the upper mantle of the earth.
In addition, the capabilities of each layer to support positive and negative loads must be
taken into account. The rheological properties of the crust and the upper mantle can be
estimated from modelling observations of loads, such as, glaciation and deglaciation
[CATHLES, 1975], volcaﬁic seamounts [McNUTT AND MENARD, 1978, RUNDLE, 1982]

and topographic rises at ocean trenches [MELOSH, 1978].

io
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The viscoelastic behaviour of the earth can be described by the amount of energy
dissipated within the earth when it is subjected to stress. This amount of dissipated energy
can be expressed as a function of the “quality factor” Q and depends on the dissipation
mechanism within the earth.

In this chapter, we introduce the concepts of stress and strain in the solid earth, as
well as, their changes in time. We elaborate on the profile of the earth from three points of

view: anelasticity, rheology and thermodynamical state.

2.1 Stress and Strain

Stress is defined as force per unit area. It is transmitted through a material by
interatomic force fields [TURCOTTE AND SCHUBERT, 1982]. Stresses, that are transmitted
perpendicular to a surface of interest, are known as mormal stresses; those, that are
transmitted parallel to a surface of interest, are called shear stresses.

When dealing with deformations of a solid, stress must be defined in three
dimensions. Since stress changes with position, even when the accompanied displacements
are infinitesimal, it is necessary to recognise three triplets (on the three faces of an
infinitesimal cube), leading to nine components of stress; these nine components are the
independent elements of the symmetric stress femsor. In Figure 2.1a the nine
components of stress on the faces of a finite element are shown. The first subscript of a
component of stress denotes the direction of the normal to the surface, on which the force
acts and the second subscript denotes the direction of the force.

Tensile stress is a normal force per unit area tending to extend the finite element.
Compressive stress is normal force per unit area tending to contract the finite element.

Conventionally, tensile stress is positive and compressive stress is negative.
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Shear stress is considered to be positive when it tends to rotate the finite element clockwise.
The above conventions are illustrated in Figure 2.1b.

Strain is defined as the measure of differential deformation. The nine possible
strains (corresponding to the nine components of stress) form a second rank tensor called
strain tensor [EIRICH, 1956]. Normal strain is defined as the ratic of the change in
length of a solid to the original length. Shear strain is defined as one-haif of the decrease in
a right angle in a solid when it is deformed. In the sequel, unless otherwise indicated, the
summation convention applies, when an index is repeated twice.

The state of stress and strain in a solid can be described completely by the stress and
strain tensors, respectively. If 7; is the stress tensor at a point, then it can be shown
[BULLEN, 1975] that the trace of ; is independent of the orientation of the coordinate
axes'. Hence, T;8;;/3 (whether referred to the principal axes or not) is equal to the mean of
the three principal stresses (normal stresses). It is conventional to denote this mean by -p.

Therefore,
p = - 5;8;/3, i,j=1,2,3. @20

Quantity pis called pressure, or hydrostatic stress.
The deviatoric stress tensor Tj; is defined as [BULLEN, 1975]

Ty= ;- thkkaijlg' =t +pd; i,j,k=1,2,3. (2.2)

Deviatoric stress does not include the hydrostatic pressure induced by the neighbouring

mass elements. Its trace is equal to zero.

t This is called “invariance in coordinate transformation.”
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Dilatation is defined as
© = ¢;§; =trace(e;), 1,j=1,2,3, 2.3)

where e;; is the strain tensor. Compression is defined as negative dilatation. Similar to

deviatoric stress tensor, the deviatoric strain tensor can be defined as

B, =e;- vendy/3=e;- 08,3 ij k=123 2.4)
k

Changes in stress in any material are accompanied, in general, by changes in
deformation. A first step in deformation theory is to arrive empirically at a suitable set of
model relations connecting t; and e;. The relation between stress and strain tensors is
referred to as the constitutive law. The constitutive law depends on the rheology, on the
thermodynamical conditions of the material at hand and on the time scale over which the
stress is applied [PELTIER, 1974].

For a perfect (ideal) elastic material, Hooke’s law defines the constitutive relation.
For pure uniaxial deformation (deformation of a linear element), we can write [NOWICK
AND BERRY, 1972]

7= Ee, 2.5

where E is the Young modulus and t and e are the uniaxial stress and strain
respectively. The reciprocal J of E is called modulus of compliance.
Incompressibility or bulk modulus of a solid is denoted by k; it is defined as
the ratio of pressure to compression. When the mode of deformation is pure hydrostatic
deformation, Young modulus E in (2.5) changes to bulk modulus k. Compressibility is the

reciprocal of incompressibility. The order of magnitude of k discriminates between gasses
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and liquids? [BULLEN, 1975].

Rigidity or shear modulus of a solid is the measure of the strain produced by
an assigned deviatoric stress and it is denoted by p. When the mode of deformation is pure
shear deformation, Young’s modulus in (2.5) changes to shear modulus uy. The order of
magnitude of p discriminates between fluids and solids. For fluids, p is negligibly small
(zero for ideal fluids). For most metals and rocks under normal conditions, u is of the
order of 109 to 10! Nm-2. A perfectly elastic material is called solid when u is not
negligible (when u>107 Nm-2 ). A material is called fluid, when the evidence shows that u
does not exceed 10° Nm-2.

Dynamic viscosity , or simply viscosity of a fluid is a measure of its resistance
to deformation. Viscosity arises from cohesion of molecules and from the transfer of
momentum, as molecules diffuse from one position to another [OBERT, 1960]. Viscosity is
denoted by n and has units of ML-1T-! (in CGS units, 1 poise=1gcm-!sec-1)*. A perfect,
or ideal fluid, has zero viscosity. It is called Pascal fluid, or inviscid fluid. Therefore,
neither shear stress, nor internal friction can be transmitted in a Pascal fluid.

A simple, true, or Newtonian fluid has a coefficient of viscosity independent of
the shear stress or rate of deformation. Hence, for a Newtonian fluid, the rate of strain is
directly proportional to the applied stress. This constant of proportionality is the reciprocal
of viscosity of the fluid.

t Experimental values for incompressibility of gases can be obtained by several ways, most of which are
indirect. The incompressibility of gases depends strongly on the way the compression takes place (e.g.

isothermally or isendropically) and its value is usually close to unity. For liquids, incompressibility
approaches infinity.

1 From *kinetic theory” that explains various phenomena due to kinetic motion and elastic collisions of atoms
and molecules, viscosity is given by: 1 =ApcA. A is a coefficient depending on the forces between molecules,
p is density, c is the mean speed of the molecules and A is the mean free path of the molecules. Mean free path
is the average distance traversed by a molecule between collisions.
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Very often in dynamics, the terms effective viscosity and kinematic viscosity

are used. Effective viscosity n.g is the ratio of stress to the rate of strain
Metr = /€ (2.6)

and has units of ML-!T-! (same as the dynamic viscosity). Kinematic viscosity ny;,, is the

ratio of viscosity to density [TURCOTTE AND SCHUBERT, 1982]
nkin = n/D- (2»7)
Kinematic viscosity has units of L2T-! (in CGS units, 1 stoke=1cm2sec-!) and expresses

how momentum diffuses.

2.2 Linear Elastic Constitutive Law
The constitutive relation for a perfectly elastic and isotropic’ material (Hookean solid)

can be written as [BULLEN, 1975]

T; = (k- 2u/3)08; + 2pe;,  1,j=1,2,3, 2.8)

where T and e; are the stress and strain tensors respectively, k and u are the incom-
pressibility and rigidity respectively. The term in parentheses of (2.8) is called the first
Lamé parameter A, thus,

A=k -2p/3. 2.9)
Parameters A and u are knoWn as Lamé parametlers.

i Isotropic material is the material whose rheological properties are the same in any direction.
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Young’s modulus E and Poisson’s ratio v constitute an alternative pair of (position
dependent) coefficients to A and p in expressing the stress-strain relations of a perfectly
elastic and isotropic material. Coefficients E and v are commonly interpreted by means of
the deformation of a homogeneous cylindrical wire, subjected to uniform normal stresses at
the ends. If e, e, and e are the principal strains produced (e, is longitudinal and e, and e,

arelateral with e = e3), then (according to Hooke’s law):
E= Tllel, VT = 62/31. (2.10)
For perfectly elastic and isotropic material we can write [BULLEN, 1975]

E = 9kp/(3k+u) = uBA+2u)/(A+y), v=A7{2(A+u)}=k-2p)/(6k+2y). (2.11)

Relations (2.9) and (2.11) establish the equivalence of the pairs {E, v}, {A, u} and {k,u}.
For metals, v varies between 0.3 and 0.4. For polycrystalline metals v is about 0.25. The
valueof v increases as p/k decreases and is 0.5 for perfect fluid.

There are three implicit conditions in equations (2.8) and (2.11) that define perfect
(ideal) elasticity. These are [NOWICK AND BERRY, 1972]:

1) The strain response at each level of applied stress (ér vice versa) has a unique

equilibrium value.

2) The equilibrium response is achieved instantaneously.

3) The response is linear.
The above three conditions may be lifted in various combinations to give different
behaviour. Of these combinations, two are of importance in this study. When condition (2)
above is lifted, the behaviour is called aneiastic When conditions (1) and (2) are lifted,
the behaviour is called linear viscoelastic. Thus, linear viscoelasticity includes

anelasticity as a special case. Since the absence of condition (1) implies a hysteresis loop,
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viscoelastic behaviour is characterised by dissipation {(attenuation) of a fraction of the

deformation energy. This subject is presented in more detail in section 2.4.

2.3 Linear Viscoelastic Constitutive Relations

Let us consider a linear viscoelastic material to which a stress is applied. In response
to this stress, the material deforms and due to its viscous component, some time is required
before it reaches an equilibrium. Similarly, if a strain change is imposed on the material,
stress will not be transmitted through the material instantaneously. In both cases, the
viscoelastic material does not “adjust” itself instantaneously to the changes of its state. We
say then, that the material exhibits relaxation In the sequel, we examine separately the
above two cases considering, for simplicity that, either stress, or strain are applied
abruptly.

When stress 1, is applied abruptly and held constant, strain changes as a function of
time. This yielding of the viscoelastic material is called creep or transient
anelasticityy Therefore, creep is a special case of relaxation; it is called strain
relaxation For one dimensional case, the ratio of strain (as a function of time), to the
applied constant stress is called creep function, or creep compliance [NOWICK AND

BERRY, 1972]. Thus, the creep compliance is equal to:

It =et) / 7, (2.12)

For elastic material, there is no creep; strain is observed instantaneously and J(t) is
constant. As we watch the creep process progress, before the material reaches an
equilibrium state and there is still time left for the creep process to continue, we say that the
material has not yet relaxed. The measure of its deformation is described through the
unrelaxed creep function Jy. As time progresses and the material approaches the

relaxed state, J tends to become constant, i.e. it approaches the relaxed compliance J;.
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In summary,

Ji; =1im J(t),
U t-»o()

~~
N2
—-
(72}
~’

JR =hm.](t).
t—- o0

Let us assume that after some time has elapsed, not necessarily sufficient for the material to
reach equilibrium, the stress is abruptly removed. Then, there will be a time-dependent
decay of the strain in addition to the immediate elastic response. This phenomenon is called
elastic aftereffect, or creep recovery. Creep and elastic aftereffect are illustrated
in Fig. 2.2 [after NOWICK AND BERRY, 1972].

Let us suppose now, that a linear viscoelastic material is at rest (no €xternal stresses
applied), when an abrupt change in its strain is imposed. Apart from its immediate response
due to the elastic component, there will be a time dependent change of stress in the material.
This change of stress (as a function of time) is called stress relaxation and it is
described by the stress relaxation function M(t). M(t) is the reciprocal of J(t)!.

Similar to the creep function,
= lim M(t),
My Jm | ®
Mg = lim M(). (2.14)
t—- o0

The time required for a viscoelastic material to reach the relaxed state when it is either at
constant stress, or at constant strain, is called relaxation time. Relaxation time depends
strongly on the chemical composition of the material as well as on its thermodynamic state.
In Table 2.1, some of the most common rheological models are shown along with
their corresponding constitutive relations [FLUGGE, 1975; PELTIER, ET. AL., 1981]. In

these relations, T; and e; are the stress and strain tensors respectively, A and p are the

T Do not confuse M with Young’s modulus E. M, as it is indicated, is a function of time, whereas E is not.
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ANALOGUE CONSTITUTIVE LAW

Hookean Solid

A, =
ANAAA Tij = 2l.leij + }\eiiéij

Viscous Fluid

n .
'] Ty = 2ney

'J

Maxwell Solid

2 B ﬂ Ty = W/m (1 - T50y/3) + 2mey + Aeydy

Kelvin-Voigt Solid
2R

—] Ty = 2056 + Aedy + 2ne;
ul
Standard Linear Solid
| . .
2ulei.i + 7‘eii5ij + 211,/ (eij '%5“/3)
?‘ .
Burgers Body 3 _
T Ty + (Hi+tu/n + py/ng (T - 1;8;/3)
A 4
b | }— ) *'..“1“2/('11 n2)(‘rij - Tu§1]/3) =
‘n'z zuleij + )\eiiélj + 2“1“2/“2 (eij -el'iﬁij/:;)

Table 2.1. Linear viscoelastic models and their constitutive law [After FLUGGE, 1975,

PELTIER, ET. AL., 1981].
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Lamé parameters and n is viscosity. Dots indicate time differentiation. The dashpot
analogue of a Newtonian fluid is characterised by a steady state creep behaviour. Spring
and dashpot in series (Maxwell solid) is characterised by an instantaneous elastic response
and a long term steady state creep. Spring and dashpot in parallel (Keivin-Voigt solid) have
u'g;nsient anelastic response (creep). Other combinations of springs and dashpots exhibit

more complicated responses.

2.4 Hysteresis
Theory of elasticity can account for solids, which have the capacity to store all the

mechanical energy supplied by external forces [CHRISTENSEN, 1971]. On the other hand,
Newtonian viscous fluids are characterised by their property to dissipate all the energy
supplied by external forces and thus, have no capacity to store energy. Viscoelastic solids
fall between the elastic solids and viscous fluids. They are described by their property to
dissipate a fraction of the mechanical energy supplied by any external forces, while most of
the energy is stored in the form of elastic or strain energy.

Let us assume that a certain viscoelastic material is deformed under a slowly varym,g
periodic load and exhibits linear viscoelasticity. An application of a tensile load will cause
the material to extend. On a stress-strain graph, the behaviour of the material is described
by curve #1 (Fig. 2.3). When unloading the material, its stress will be higher than the
stress during loading, for the same magnitude of strain (curve #2). Finally, when a full
cycle of loading is completed, the behaviour of the viscoelastic material under periodic
stress is depicted by the closed line (loop). This behaviour of the material is included in the
class of hysteresis pbemémena The closed line on the stress-strain diagram is called a

hysteresis loop [LOVE, 1927].
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Elliptical hysteresis loops indicate linear viscoelastic behaviour’ [BRENNAN, 1981]. The
area inside the loop is proportional to the amount of energy dissipated during one cycle of

loading and it is related to the phase difference between stress and strain [MINSTER, 1980].

2.5 Q Profile of the Earth
It has been established experimentally, that the earth’s crust and mantle exhibit

viscoelastic behaviour. Evidence for this behaviour is abundant, both from phenomena
withv short characteristic periods, such as dispersion of body wave velocities, spatial
attenuation of surface waves as well as from longer period processes, such as postglacial
rebound, crustal bending and polar wander [PELTIER ET. AL., 1981]. This viscoelastic
behaviour of the earth is possibly due to relaxation phenomena with mechanisms
accounting for slippage of grain boundaries (dislocation), partial melting of the material,
phase transformations and thermoelasticity [LELIWA-KOPYSTYNSKI AND TEISSEYRE,
1984].

Quality factor Q expresses the amount of energy that is irreversibly lost by

dissipation during a complete cycle of stress. Its reciprocal is defined as [LAMBECK, 1980]

Q'!=1/2mAEE, (2.15)

where E is the maximum value of the elastic energy (peak elastic energy) stored during a
complete cycle of straining and AE is the amount of energy dissipated during a complete
cycle of straining.

Other definitions for Q are more éonvenient to use. For example, an alternative

definition to (2.15) is [LAMBECK, 1980]

Y There are cases in which the hysteresis loop is cusped. This indicates that the material exhibits non-linear
behaviour; its constitutive law is not a linear differential equation anymore. Since we are only interested in
linear viscoelastic constitutive relations, cusped Rysteresis loops are not of concern in this study.



Q!=VQmAE/(XE), (2.16)
where (B) is the average elastic energy stored. Another useful definition is

Q! = l/2mAT/T, (2.17)

where T is the peak kinetic energy and AT is the chahge of T over a complete cycle of
straining. For low attenuation (Q>100), hoWever, the above definitions are essentially
equivalent [DZIEWONSK], 1979; JORDAN, 1980].

Energy dissipation within the earth can occur during pure compression, or pure
shear, or both. Therefore, the necessity for the definition of two quality factors arises.
Dissipation in pure compression, or bulk dissipation, is described by a specific quality
factor Q,. Dissipation in pure shear, or shear dissipation, is described by a specific
quality factor Q. Quality factor Q and specific quality factors Q, and Q, are related
through the following formula [JORDAN, 1980]:

Q1= BB Q! + EYIE)Q, Y, (2.18)

where (E;) and (E,) are the average elastic energies in compression and shear respectively
stored in the earth during a complete cycle of straining and (E) is the average total energy
stored in the earth during a complete cycle of straining. Losses in pure compression within
the earth are usually small compared to losses in shear. Bulk dissipation can be actually
neglected in the solid regions of the earth [JORDAN, 1980].

The frequency dependence of Q in the earth is an exceedingly controversial subject.
There is some observational evidence, that Q depends on frequency. However, there is not
enough evidence of how Q might depend on frequency [MINSTER, 1980]. LAMBECK’s
[1977] estimated values of Q at tidal periods, as well as, SAILOR AND DZIEWONSKIs

[1978] Q values for free oscillation periods are consistent with a weakly frequency-
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dependent Q. This weak dependence of Q on frequency is valid for periods between 14
months (for the Chandler wobble), to 54 minutes (for the spheroidal free oscillation mode).
The above weak dependence of Q on frequency is also consistent with the w0-2 (where w is
the angular velocity of the applied stress) dependence, proposed by JEFFREYS [1970].
However, within a limited frequency band, it is safe to consider constancy in Q.

ANDERSON AND HART [1978b] constructed a model Q, as a function of depth,
compatible with the normal mode data set (including overtones) and with teleseismic body
and surface wave observations. The above model is consistent with a frequency
independent Q. The construction of the depth profile of Q was based on standard linear
solid type rheology. It is commonly known as ”Q model SL8 " [Fig. 2.4].

A more recent depth profile of Q is found in the earth model, known as PREM and
given by DZIEWONSKI AND ANDERSON [1981]. This model was obtained by inversion of
a large set of observational data, allowing for anisotropy and dissipation. This model is
discussed in section 2.6.

In this study, we make the hypothesis that the earth exhibits standard-linear-type
rheology at tidal frequencies and that the quality factor Q at all depths is independent of
frequency within the tidal band. We must stress here that the above is only an assumption,
which has been shown to be satisfactory at least within the seismic band [DZIEWONSKI

AND ANDERSON, 1981].

Y However, this frequency independence of Q is not required.
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2.6 Rheological Profile of the Earth

The division of the earth into crust, mantle and core by two major seismic
discontinuities at the depths of about 35 km (Mohorovicic discontinuity) and about 2900
km, has been very well known for many decades [LELIWA-KOPYSTYNSKI AND
TEISSEYRE, 1984]. Nevertheless, their exact character is still uncertain [MAXWELL, 1984].
Other minor seismic discontinuities have been recognised at various depths. These
discontinuities further refine the layering of the earth.

In the middle of this century, the study of seismic wave propagation reached a stage,
that permitted various investigators to develop more realistic earth models. These series of
earth models, later referred to as the A-type models, included distributions of earth’s
density, incompressibility, rigidity, pressure, gravity, as well as other derived variables
(such as Young’s modulus and Poisson’s ratio), as functions of depth. Improvements of
these models were obtained in the early 1960’s and these models are known as A’ and A”
earth models [BULLEN, 1975]. The basic assumptions made in constructing the A-type
models are:

1) The density of the earth just below the Mohorovicic discontinuity is 3.32 gem-3.
2) The velocities of compressional (p) and shear (s) seismic waves are known .
3) The Adams-Williamson' condition holds true in some deep regions of the earth.

BULLEN [1946] noticed that for the A-type models, there exists a remarkable feature
in the behaviour of incompressibility k, in the vicinity of the core-mantle boundary. The
changes of k, as well as the changes of the ratio dk/dp (where p is pressure) were small and
smooth, despite the drastic changes in density and rigidity. The above behaviour was
verified by laboratory experiments for a wide class of materials under pressure up to 1010

Nm-2%,

1 The Adams-Williamson condition is one of the equations of state in the earth [BULLEN, 1975]. It is given by
dp/dz=pg/p, where p is density, z is depth, g is gravity and ¢ is the seismic parameter depending on the
selsmic wave velocities.

¥ This is one order of magnitude less than the pressure at the core-mantle boundary.
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BULLEN [1946] formulated the incompressibility-pressure (k-p) hypothesis as
follows:

«Throughout the earth’s lower mantle (below 1000 km depth) and core, irrespective of
variations of composition as may occur inside this entire region, k varies continuously and
smoothly with P» Observational evidences for the reliability of the k-p hypothesis were
supplied later [BULLEN, 1975].

The k-p hypothesis was the main feature for the construction of the second generation
of earth models, known as B-type models. The first difference between A- and B-type
models is that the inner core of the B-type models is modelled to be solid. The second
difference is that B-type models have a larger density gradient in the lower mantle than
A-type models. The most serious difference is that B-type models exhibit considerably
larger density in the upper mantle than A-type [BULLEN, 1975]. Revised estimates of the
moments of inertia of the earth, revised seismic wave velocities as well as continuity of
incompressibility and the ratio dk/dP in the lower mantle and core contributed to the
improvement of the B-type models by BULLEN AND HADDON[1967a; 1968].

HB, earth model was the first model constructed by taking into account free
oscillation data [BULLEN AND HADDON, 1967b] and thus it marks a specific stage in the
evolution of the earth models. There have been subsequent earth models too, based on free
oscillation data and overtone periods of the free oscillations of the earth. A good description
of these is given in LELIWA-KOPYSTYNSKI AND TEISSEYRE [1984].

DZIEWONSKI ET. AL, [1975] constructed three parametric earth models (PEM) in
which radial variations of the density and seismic velocities are represented by piecewise
continuous analytical functions (algebraic polynomials of order not higher than three) of the
normalised radial distance from the centre of the earth. These three models are:
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1) Oceanic parametric earth model (PEM-O),

2) Continental parametric earth model (PEM-C),

3) Average parametric earth medel (PEM-A).

The data used for the construction of these models consisted of observations of
eigenperiods of 1064 normal modes, 246 travel times of body waves for five different
phases and regional surface-wave dispersion data, extending to periods as short as 20
seconds. The agreement of the model with seismic wave velocities, free oscillation data and
with the Adams-Williamson condition below 670 km depth, is better than 0.2%
[DZIEWONSKI ET. AL., 1975]. Models PEM-O and PEM-C reflect the properties of the
oceanic and continental upper mantles respectively. PEM-A represents the average earth.
PEM-A was obtained by using weighted means of PEM-O and PEM-C with weights 2/3
and 1/3, respectively. All three models are identical below the depth of 420 km.

More recent models have been developed, allowing for attenuation and anisotropy in
the earth. DZIEWONSKI AND ANDERSON [1981], following the guidelines established by
the Standard Earth Model (SEM) Committee?, composed of members from the
International Association of Geodesy (IAG) and the International Association of
Seismology and Physics of the Earth’s Interior (IASPEI), presented a new parametric earth
model, called the Preliminary Reference Earth Model (PREM). For the construction
of this model, a large data set of about 1000 normal mode periods, 500 travel time
observations, 100 normal mode Q values, mass and moments of inertia of the earth was
inverted. The introduction of lateral isotropy for the outer 220 km of the mantle improved
the agreement among the different data sets. In addition, the assumption of the frequency
independence of Q was incorporated, giving satisfactory results [DZIEWONSKI AND

ANDERSON, 1981]. PREM can be described as follows (see also Fig. 2.5):

t Working group of International Union of Geodesy and Geophysics (IUGG).
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1) Crust is the outer shell of the earth that extends to a depth of 24.4 km.

2) The region above the low velocity zone, also known as seismic “lid”, extends from
24.4 km to 80 km depth. The crust and the seismic “lid” constitute what is known as
seismic lithosphere?.

3)Low Velocity Zone (LVZ) is the weakest zone of the earth and sometimes it is
equated with the asthenosphere. It extends from 80 km to 220 km depth and is
characterised by lateral isotropy.

4) Transition zone is the deepest part of the upper mantle and is characterised by phase
transformationst. It can be considered as a fairly homogeneous and isotropic layer
[LELIWA-KOPYSTYNSKI AND TEISSEYRE, 1984]. It extends from 220 km to 670 km
depth.

5) Lower mantle is considered to be in a solid state with some discontinuities. Little is
known about the nature of these discontinuities and their extension on a global or
regional scale. Lower mantle extends from 670 km to 2891 km depth.

6) Outercore is characterised by its liquid state and extends from 2891 km to 5149.5km
depth.

7) Inner core is in a solid state. Although this is still a subject of research, it appears to
be consistent with observational data [BOLT AND UHRHAMMER, 1981; BOLT,

1987].

Y The lithosphere, as any other layer of the earth, can be defined from different points of view. For instance,
Lithosphere can be defined by its elastic or flexural characteristics, or by its thermal state, or by its chemical
and mineralogical constitution. Thus, we have “elastic lithosphere”, “thermal lithosphere” and “chemical
lithosphere” , respectively. Seismic lithosphere is the lithosphere determined from seismic observations.

t In general, phase transformations refer to the changes of the state of the matter, such as
melting, solidification, condensation, evaporation, etc. Phase transformations are related to the
thermodynamical state of the matter.
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2.7 Thermodynamics and Profile of the Earth

In order to understand the dissipation mechanism within the earth, some basic
concepts from the theory of thermodynamics must be presented. More specifically, the
notions “adiabatic process” and “equations of state” are of primary importance in this
work.

Adiabatic process is a process during which the state of matter changes without
exchange of heat with the surroundings. It is found from experience, that the work
required to change the state of a thermally insulated (adiabatic) system depends only on the
initial and final states of the system and not on the path of the change of the state.

The equation of state of asystem interrelates different thermodynamic properties.
It can be written as

f(P, V, T, m, Universal Constants) = 0, (2.19)

where P is the pressure, V is the volume, T is the absolute temperature and m is the mass
of the system. In some instances, it is necessary to include properties other than those
included in (2.19) to describe completely the state of the system [LEE AND SEARS, 1963].

The equation, which expresses the internal energy of a system as a function of any
pair of its thermodynamic properties, is called the energy equation of the system. The
equation of state and the energy equation together determine completely all the
thermodynamic properties of a system.

Isothermal process is a constant temperature process and it follows Boyle’s law
PV = constant. Thermodynamic cycle is a sequence of processes, that eventually
returns any system to its original state. The thermodynamic cycle is the concept applicable
to a closed system. Reversible process is an ideal process, that can be stopped at any
stage and reversed, so that the system and surroundings are exactly restored to their initial

states. During a reversible process, the system must pass through the same states on the
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reversed path, as were initially visited on the forward path. An irreversible process is a
real process; it cannot be reversed so as to follow exactly the forward path because a

fraction of the energy of the system is transformed into heat.

2.8 Dissipation Mechanism within the Earth

" The dominance of dissipation in shear over bulk dissipation can be explained by a
grain-boundary relaxation model. This model was developed by ZENER [1941] and it was
based on the evidence of viscous sliding of adjacent crystals. Although this theory was
developed already in 1941, still there is no satisfactory quantitative theory of the
phenomenon. In fact, even qualitative concepts are still in doubt [NOWICK AND BERRY,
1972].

Before we describe the model of the grain-boundary relaxation process, the
introduction of the definition of Gibbs free activation energy is in order. Gibbs free
activation energy is the excess energy over the ground state, which must be acquired
by an atomic or molecular system, in order that a particular process may occur [VAN
NOSTRAND’S SCIENTIFIC ENCYCLOPEDIA, 1976].

The mechanism of the grain-boundary relaxation model considers spherical elastic
grains that are bound together with viscous material. The application of a shear stress
causes the grains to slide over other grains. During sliding, there is a shear stress
build-up, opposing the applied stress. When the stress is removed, the deformation
generates a reverse shear stress and produces an elastic aftereffect. The grain-boundary
relaxation model resembles the behaviour of the standard linear solid. The elastic
aftereffect is governed by the dynamic viscosity of the material that holds the grains
together, which in turn depends strongly on the temperature and pressure [O’CONNELL,
1977].
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In the interior of the earth (below about 150 km), temperatures are higher than
one-half of melting temperature. In this regime, known as high temperature
background the relaxation process is believed to be thermally activated and the

relaxation time can be estimated from an Arrhenius equation
T, = T, exp{G" / (K1)}, | (2.20)

where T, is a characteristic time related to atomic jump frequency’, G* is Gibbs free
activation energy?, k is Boltzmann’s constant and T is absolute temperature.

We consider SAMMIS ET. AL. [1977] model for G for an adiabatic temperature
gradient of 0.3 K/km that agrees with Stacey’s thermal model [STACEY, 1977] used in the
estimation of T in (2.20). However, we apply a correction to G* model of - 45 kcal/mole
throughout the mantle#, so as to be consistent with ANDERSON’s [1967] calculations of
the activation volume and the values of viscosity for the lower mantle, namely 1022 poise, a

value derived also from postglacial rebound data.

Y 1,=h/ (KT), where h is Planck’s constant (6.63 x 10"3%joule sec), k is Boltzmann’s constant (1.38x1023
joule/K) and T is the absolute temperature.

i g depends on the internal energy of the matter, its entropy, pressure and absolute temperature.

Actually, G* model of SAMMIS ET. AL. [1977] was used by the same authors to evaluate the viscosity and
activation volume in the mantle, Their calculations gave unusually high values for both. They concluded, that
if a correction of about - 45 kcal/mole was applied to G ° viscosity profile as well as activation volume agree
with Anderson’s calculations. However, as we shall see in chapter 6 of this work, our calculation of load
numbers is more or less insensitive to this correction.
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LAGRANGEAN MECHANICS

The response of the earth to ocean tide loading is described by some equations of
motion, hereafter called the equations of deformation . The study of this response is
complicated, even when the earth is considered elastic, homogeneous and isotropic.
Furthermore, if we wish to consider a more realistic earth, the development as well as the
solution and interpretation of the equations of deformation will become extremely difficult,
if not impossible. In such complicated cases, the Lagrangean approach appears to be the
most suitable for the development of mathematical models.

Lagrangean mechanics is a powerful tool for the study of the behaviour of
complicated mechanical systems. No matter how complex the system is, it may be
represented by a single scalar function: the Lagrangean. In addition, the application of
Hamilton’s principle of least action to the Lagrangean function leads to an invariant set of
differential equations, known as Lagrangean equations of motion. Lagrangean equations of
motion are second order partial differential equations; the position of the mechanical system
isthedependent variable and time is the independent variable.

In this research we are interested in the determination of the deformations of the earth;
these deformations are considered as dependent variables of position and time, as opposed
to the classical equations of motion that consider the position as dependent variable of time.
Consequently, the Lagrangean equations of motion in this study acquire a different

character; they become second order partial differential equations (PDEs) in the
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displacements (deformations) and thus, they are called “equations of deformation.” In this
Chapter, we present Mgrméean equations of motion in their classical form, for a
mechanical system of n particles; the equations of motion in a 3-D space are 3n second
order PDEs in the positions, the time being the independent variable. Subsequently, we
show that the equations of deformation of the earth, have the same form of the equations of
motion, the substantial difference being that the dependent variables are the displacements
(deformations) and the independent variables are the position and the time. Therefore, we
arrive at three PDEs of second order, although the earth is considered as a continuous
body, consisting of an infinite number of particles.

We present the concepts of “tangent” and “cotangent bundle spaces”, in whichvthe
equations of deformation are developed. Although, we do not take full advantage of this
exposition in this study, we indicate its importance in future research on the deformations

of the earth.

3.1 Definitions

The subject matter of the present research is the study of the response of the earth to
external loads. The study of such a response becomes possible by assuming that the ;earth
is totally continuous. The earth’s molecular structure is to be disregarded and the earth
pictured as a body without gaps or empty spaces; the earth is viewed macroscopically in the
sense that its smallest characteristic unit (part) is much larger than the size of an atom or a
molecule. This is an excellent approximation when the study of a body, such as the earth,
under the influence of external forces, is of interest [ERINGEN, 1967]. The study of a
continuous medium, also known as continuum can be accomplished by applying the
classical laws of mechanics and a realistic constitutive law.

Bodies are described by their configurations, also known as manifolds. A manifold

is a higher-dimensional analogue of a smooth curve or surface [POSTON AND STEWART,
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1978); it can be regarded as a real vector space J that has the following properties (as any

real vector space) [KREYSZIG, 1978; ODEN, 1979]:

a) It consists of elements, called vectors.

b) The operation of “addition” between vectors is defined, following the usual rules of
arithmetic.

c) The operation of “multiplication” between a vector and a real number is defined,

following the usual rules of arithmetic.

The above properties of J mean that if €;, £,€J and A, A, €R, (3 is the set of real
numbers), then € defined by: € = A| € + A &, is also a member of the real vector space,
ie., €E€J.

In order to realise geometrically the configuration (configuration manifold) of a
body, i.e., to be able to determine, either its size, or the size of its deformation, the concept
of the real vector space is not adequate; the size of any vector in J cannot be determined,
simply because the way of measuring it is not known. Thus, the necessity of the definition
of a more appropriate space arises. This new space, called metric space, has all the
“ingredients” of J with the addition of a metric. In general, a metric in a space is a
generalisation of the familiar concept of distance between two points. The introduction of a
metric in § is equivalent to the introduction of a coordinate system in which the
configuration of the body is to be determined. Many different ways of measuring distances
(metrics) can be considered; yet, every one of them must satisfy certain conditions. If we
denote the metric space by R and a distance function d:X xX = &, that associates (maps)
pairs of elements of X with real numbers in &, then the distance function (metric) must

satisfy the following four conditions [ODEN, 1979]:
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a) dx,y)=z0, Vx,y € R,

b) d(x,y) =0, ifandonlyifx =Y.

c) dx,y)=d(y,x), VX, ¥y € X.

d) dx,y)sdx,z)+d(z, y), Vx,y,z € R.

The application of the theory of continuum mechanics’ to the study of the response
of a physical body to external forces, requires some fundamental postulates to be made.
Denoting with p the body under investigation, these fundamental postulates are as follows
[FREDERICK AND CHANG, 1965; TRUESDELL, 1966]:

a) The configuration manifold of p is assumed to be smooth, i.e., it has a unique tangent
plane at each point,
b) p isdivisible into a finite number of elements,

c) p isembedded in a metric space R of finite dimensions.

According to the above postulates, the quantitative description of the configuration of a
continuum P can be accomplished in a metric space, hereafter called the configuration
space X of p. The configuration space is spanned by n quantities q;, q,, 43,.--,9 5
known as generalised coordinates [NEIMARK AND FUFAEV, 1972]. Generalised
coordinates, as the name implies, are not necessarily Euclidean coordinates; they can be of
different entity. For example, potential, strain, gravity, temperature, pressure, or any other
quantity that is needed to define the configuration of a continuum, can be considered as a
generalised coordinate. Yet, according to postulate (c) above, the number of generalised

coordinates is always finite.

1 As presented in Chapter 2 of the present study.
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The external forces that influence a continuum can be of different character. Forces
originating from contacts with other bodies, gravitation, thermal changes, chemical
reactions and environmental changes are the most common. In the present study we
consider forces of mechanical origin, i.e., the first two categories. Continua that are

influenced by the above forces will be called mechanical systems.

3.2 Holonomic and Nonholonomic Mechanical Systems

The position, the motion, as well as the equilibrium state of a mechanical system may
be required to satisfy a number of conditions and restrictions. It is conventional to say that
constraints are imposed on the system. These constraints may be either geometrical
constraints, or kinematical constraints, when they represent restrictions on the
geometrical position or on the motion of the system, respectively. However, geometrical
and kinematical constraints are not independent. Geometrical constraints are essentially
kinematical constraints. This happens because geometrical constraints can be differentiated
with respect to time to give kinematical constraints. The opposite is not always valid;
kinematical constraints may not be integrable with respect to time to impose geometrical
wME.

A mechanical system with non-integrable kinematical constraints is called a
nonholonomic system [NEIMARK AND FUFAEV, 1972]. When set in motion, a non-
holonomic system follows a geometrical path (trajectory) that is not restricted by any
non-integrable kinematical constraint; the motion of the system may violate the kinematical
constraints. In contrast, if the kinematical constraints are integrable with respect to time, the
motion of the system will not violate the kinematical constraints. Such a system is called
holonomic.

When the dimension of the configuration space is n and the number of non-integrable

(nonholonomic) constraints is m, then the degrees of freedom of the system are n-m.
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For a holonomic system the degrees of freedom are n. When a mechanical system is
holonomic and, in addition, time t appears explicitly in the equations of motion, then the
system is called rheonomic or nonautonomous. When time t does not appear
explicitly in the equations of motion, then the system is called scleromomic, or
autonomous [SANTILL] 1978]. We must stress here that the generalised coordinates are

dependent variables, whereas time tis an independent variable.

3.3 Tangent Space and Tangent Bundle Space
The set of all tangent vectors at a point x of an n-dimensional configuration manifold

M, forms an n-dimensional tangent space Tx [ARNOLD, 1978]. Tangent space is a
metric space.

The union of the tangent spaces to M at all points, is a smooth (differentiable)
manifold, the dimension of Which is twice the dimension of M. This manifold is called the

tangent bundle space of M and.is denoted by TM. Tx and TM are both metric spaces.

3.4 Cotangent Space and Cotangent Bundle Space

The set of all linear transformations f, such that f: Tx= R, forms a new metric space
that is called the cotangent space ; it is denoted by T x. In order to visualise such a
linear transformation, we consider a velocity vector that is tangent to the configuration
manifold M. Similarly, the momentum vector is also tangent to M at the same point; the
velocity vector and the momentum vector are simultaneously tangent, i.e., they are
cotangent to M, at the same point. However, velocity and momentum are different entities;
momentum can be obtained from velocity by scaling it with mass. Therefore, velocity

belongs to Tx and momentum belongs to T*x.
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The union of cotangent spaces to M at all of its points is called the cotangent
bundle space of M, it is denoted by T*M and has twice as many dimensions as the

cotangentspace [ARNOLD, 1978]. Tangent bundle and cotangent bundle spaces are dualt.

3.5 Lagrangean and Hamiltonian Mechanics

Lagrangean mechanics describes the motion of a mechanical system in the
configuration space [ARNOLD, 1978]. For a holonomic system of n degrees of
freedom, the Lagrangean equations of motion are formulated on the configuration
manifold, also called Lagrangean configuration manifold, and consist of n
second-order partial differential equations (PDEs), which are generally non-linear in the
generalised coordinates q;. In general, to solve such a system of equations is extremely
difficult, if not impossible. Yet, even if an analytical solution existed, we would be faced

with two problems:

a) Having analytical expressions only for the generalised coordinates would not help us
visualise geometrically the motion of the system. We need to have analytical
expressions for the velocity or the momentum.

b) In complicated mechanical systems it is imperative that we study the stability of the
motion of the system. However, certain reliable and advanced stability theories, such
as Lyapunov’s stability theory, are only applicable to systems of linear, first order
ordinary differential equations.

To overcome the above problems we must transform the equations of motion into
first-order coupled ordinary differential equations (ODEs). This can be achieved by
augmenting the state vector of the second-order PDEs by the generalised velocities. Then,

the n non-linear second-order PDEs, which are valid in the configuration space, are

T In the case of a metric space, the set of all bounded linear functionals on it constitutes a second metric space,
which is called the dual space [ODEN, 1979].
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transformed into 2n first-order ODEs in the tangent bundle space of 2n dimensions.
However, this transformation is not unique. We can augment the state vector by the
generalised momenta p, instead of generalised velocities. Since p, is cotangent to
generalised velocity, the Lagrangean equations of motion are transformed into 2n firstorder
simultaneous ODEs in the cotangent bundle space. These equations are known as
Hamilton’s canonical equations of motion [D’SOUZA AND GARG, 1984]. State
variables q,, py are called canonically conjugate variables [SANTILL] 1978].

Since the tangent bundle space and the cotangent bundle space are the dual of each
other, we can begin with the Lagrangean equations of motion in the tangent bundle space
and arrive at Hamilton’s canonical equations of motion in the cotangent bundle space by the
Legendre transformation [ARNOLD, 1978]. Thus, Lagrangean and Hamiltonian
formulations are equivalent.

The cotangent bundle space spanned by the generalised coordinates q, and the
generalised momenta p, is called phase space [NEIMARK AND FUFAEV, 1972]. When
the state of a system is required as a function of time, the equations of motion can be
represented in a (2n+1-m) dimensional space called the state space [D’SOUZA AND
GARG, 1984], or extended phase space [ARNOLD, 1978]. The above transformations
are shown schematically with the use of a commutative diagram in Figure 3.1

Hamilton’s equations are equivalent to Lagrangean equations, when the former are
the Legendre transform of the latter. The converse is also true: Hamilton’s equations in
phase space, unlike Lagrangean equations in configuration space, are not invariant to
all possible transformations. Only canonical transformations preserve the form of
Hamilton’s equations in phase space. Canonical transformations of phase space are

desirable because they can simplify Hamilton’s equations further. However, carrying out
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such transformations’ is not an easy task.

Any arbitrary infinitesimal changes 3q;, in the generalised coordinates of a
mechanical system that introduce small variations in the tangent space, compatible with the
constraints of the system, are called virtual displacements [NEIMARK AND FUFAEV,
1972]. Virtual displacements are not true displacements of the system under consideration
because they arise from the displacement of the coordinate system used. Therefore, there is
no time intrinsically associated with them.

We are now in a position to present Hamilton’s principle from which the equations of
motion of a mechanical system can be derived. Let us suppose that external forces acton a
mechanical system. As a result of this action, the system will be set into motion. Yet, of all
possible paths, only one is followed for which no virtual displacements will be preserit. In
other words, the available energy to the system is being spent in the most efficient way
with no unnecessary displacements (virtual displacements). Thus we can say, that the
integral of the virtual work in time over a path (trajectory) is equal to zero.

If T is the kinetic energy of a mechanical system and W is the work done by external

forces acting on the system, then the virtual work in the interval [t,t,] will be zero.

t
EGHN)dt = 0. 3.1

t
The above equation expresses Hamilton’s principle in its most general form. In the
special case of conservative external forces, i.e., forces that produce work independent of

the path followed and dependent only on the end points, Hamilton’s principle becomes

Y These transformations can be achieved with the use of a generating function, which is a solution to the
Hamilton-Jacobi equation. Although Hamilton-Jacobi equation is a first order partial differential equation,
most of the time it is unsolvable.
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t2
6J-Ldt =Q, 3.2)

t
where L = T - V is the Lagrangean of the system and V = -W is the potential energy
[MEIROVITCH, 1967]. '

3.6 Lagrangean Equations of Motion for Nonconservative Holo-
omic t
The Lagrangean equations of motion, for a rheonomic mechanical system with n

degrees of freedom are [for detailed derivation see AppendixI]:

0T/oq - d[0T/oq)/dt= Qy, k=1,2,.,n (3.3)

where Q, are generalised forces acting on the system. Equations (3.3) were derived
without assuming the character of the generalised forces Q. Generalised forces Q can be,
either conservative, or nonconservative, or both. Furthermore, we can say that among the
varicus kinds of forces acting on a particle of the system, it is possible to recognise a
special type of friction force F arising from the motion of the particle in a viscous medium.
This nonconservative force is assumed to be proportional to some power of velocity

[MEIROVITCH 1967]. Therefore, we can write that

Q=+ Q™ +F, k=12,.,n, (3.4)

where Qi ° and Q" are conservative and nonconservative (other than F) generalised

forces, respectively. For the conservative forces Qi€ we can write

Q¢ = - 0D/oqy, k=12.,n, (39
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where @ is a potential. If D is a function that gives the amount of energy per unit time

(units: ML2T-3) dissipated in the mechanical system, then
F=-0D/0q, k=1,2,.,n (3.6)

Function D is called the dissipation function and it is treated in detail in the next Chapter.

Introducing equations (3.4), (3.5) and (3.6) into (3.3), yields

d[0T/0q )/dt - T/0q + 0D/dqy = - 0D/Oq + Q°, k=1, 2,..., n. (3.7)

Q¢ are forces stemming neither from a potential field, nor from friction. In addition,
forces introduced by T and P are conservative. Since V is not a function of the generalised
velocities (by definition V depends only on the position of the system, i.e., it depends only
on the generalised coordinates), then

’

6T/6<':1k=61_/0£1k, k=1,2,..,n (3.8)
Thus, equation (3.7) becomes

d[0L/oq }/dt - OL/Oqy +0D/dqy = - P/oq + Qe, k=1,2,..n (3.9

Equation (3.9) is the most general form of the Lagrangean equations of motion of any
holonomic mechanical system, which exhibits dissipation properties, defined in an
n-dimensional configuration space, when excited by external nonconservative forces. For
continuous systems that consist of an infinite number of particles, the number of degrees of

freedom becomes infinite and the number of equations (3.9) becomes infinite.
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For the study' of the response of the earth to ocean tide loading, the earth is
considered to be continuous. However, we are interested in the deformation of the earth,
rather than its motion in time. Therefore, the generalised coordinates are deformations and
not positions. There are only three generalised coordinates that correspond to the three
deformations, along the radial, N-S and E-W directions; they are dependent variables on
position and time. Thus, the equations of deformation are substantially different in
character from the equations of motion, although they are of the same form. Considering
three generalised coordinates to represent the three displacements in a Cartesian coordinate
system Oxyz, the equations of deformation can be written analogously to (3.9), as [see also

BATH, 1968; p. 302, 303]

0[0L/0y )/0t-0L/0qy +O[OL/Oqy ) 1/Ox+O[OL/OG, ) )/Oy+0[0L/dqy ) //0z+OD/Bq =
- 0D/0qgy + Qi l¢, q =9 (X, ¥, z, 1), k=1,23, (3.10)

where, for instance, 0qy, = 0q;/0x. The aggregate of the third, fourth and fifth terms of

the above equation denote the divergence of a generalised force field £, and we can write

3[0L/0G, )/dt - AL/Oq, + div(E) +0D/dq, = - dD/dqy + QRS
k=1,2,3. 3.11)

Equations (3.11) are used in Chapter 4 to derive the equations of deformation of the earth.

T The nature of the generalised force field X is not immediately obvious. In the case of the study of the response
of a deformable earth to external forces, the generalised coordinates are displacements and X becomes a strain
field arising from the resistance of the earth to the deformation, i.e., X expresses some internal (to the earth)
constraints, which depend upon the rheology of the earth. When we assume no deformations of the earth (or of
any physical body), i.e., when we are interested in its motion in space, the divergence of E will vanish
identically and the equations of deformation will become equations of motion.
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THE EQUATIONS OF DEFORMATION IN THE LAGRANGEAN
CONFIGURATION MANIFOLD

The equations of deformation are developed in the lagrangean configuration manifold,
following the analytical approach (lagrangean mechanics). An elementary volume element
is followed in its motion, therefore, its position, velocity and acceleration are written as
functions of time. In order to make the derivations of the equations of deformation easier,
we consider energy densities per unit volume, rather than energies. The rheology of the
earth is considered to be that of the standard linear viscoelastic solid. Moreover, the earth
is regarded to be rotating, stratified, inhomogeneous, anisotropic, compressible,
self-gravitating and rotating. Finally, ocean loading deformations are considered to be
adiabatic, i.e., during a cycle of loading there is no heat transfer within the earth. This a
valid assumption since ocean tide loading is a fast phenomenon when comparedu to
convection, which may be the primary source for the thermal changes in the earth
[O’CONNELL AND HAGER, 1980; PELTIER, 1980]. It is certain however, that in the
seismic band an adiabatic thermal state is consistent with the observations [DAVIS, 1974].

In this chapter, it is shown that the response of the earth to a surface load can be
described by three second order partial differential equations on a three dimensional
configuration manifold. The state vector consists of three generalised coordinates, namely
the vertical and horizontal displacements and the total loading potential. Furthermore, it is

shown that the earth-load system is a holonomic and autonomousf.

T Recall that a holonomic system Is described by integrable equations of motion and by integrable
constraints (boundary conditions). A system is autonomous when time does not appear explicitly in the
equations of motion.

49
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For a nonrotating earth, expansions of the soiution of the equations of motion into a
series of spherical harmonics have been applied succesfully for the study of the free
oscillations of the earth [ALTERMAN ET. AL., 1959] and the response of the earth to
surface loading [LONGMAN, 1962; 1963]. Moreover, normal mode expansions have been
applied to the seismic excitation of a nonrotating earth, to investigate the properties of the
earth [SAITO, 1967; GILBERT, 1970]. In all the above cases, the solution of the equations
of motion can be expressed as a sum of linear decoupled normal modes?.

Rotation in the equations of motion introduces Coriolis forces that couple the
coefficients of the normal modes severely, i.e., any normal mode is a function of every
other mode [DAHLEN AND SMITH, 1975]. WAHR [1979; 1981a; 1981b] developed an
expansion formalism for a rotating earth which decouples completely the normal modes.

For the study of the effects of anisotropy, rotation and viscoelasticity on the response
of the earth to ocean tide loading, we choose semidiurnal periods for simplicity reasons
and we show that under the assumption of rotational symmetry in the properties of the
earth, the equations of deformation on a rotating earth can be expanded completely into
series of spherical harmonics, without applying the expansion of WAHR [1981a, 1981b].
Furthermore, for the study of the diurnal loading, the results from the semidiurnal loading
can be extended into the diurnal band, allowing for corrections o be made, due to
free-core nutation eigenfrequency, as presented by WAHR AND SASAO [1981]. For the
study of the long period* ocean loading, we neglect the rotation of the earth altogether,
under the assumption that long period oceanic loading is far from the rotational

eigenmodes of the earth and thusitis practically unaffected by rotation.

T “Decoupled normal modes” means that the coefficients of the normal modes are functions of the same (n,m)
values of the spherical harmonic expansion of degree n and order m.

¥ Fortnightly, semiannual and annual periods.
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4.1 Response of a "Real Earth” to Ocean Tide Loading

The presence of inhomogeneities and anisotropy in the earth, as well as the earth’s
departure from perfect elasticity introduce complications in the evaluation of its response to
surface loading. This is particularly evident when ocean tide loading deformations are
evaluated at points very close to the shore [PAGIATAKIS AND VANfCEK, 1985].

As it has been demonstrated in section 2.5, the global response of the earth departs
from being elastic; this fact will be considered in the development of the equations of
deformation. The first step will be to establish the constitutive law that governs the
response. We could possibly consider the constitutive law as non-linear, which would
complicate further the study. Fortunately, there is evidence which suggests that, for low
strain amplitudes, the viscoelastic behaviour of the earth can be described by a linear
constitutive law [BRENNAN, 1981; BRENNAN AND SMYLIE, 1981]. This evidence comes
from laboratory experiments, as well as from observations of the real earth. Laboratory
experiments are performed, in general, ata considerably lower temperature than that of the
earth’s mantle. However, low temperature and pressure experiments performed by
BRENNAN [1981], indicate that stress-strain hysteresis loops produced for a number of
different materials, which have been stressed with periods between 5 sec and 8.5 min and
up to a strain amplitude of 10-6 (1 ustrain), have an elliptical shape. This suggests that the
response can be described by linear viscoelastic constitutive relations.

BERCKHEMER ET. AL., [1979] reported linear transient creep experiments on mantle
peridotite at a temperature of 1250°C for strain levels up to 5x10-5. AGNEW [1981]
analysed 5.7 years of strain tide records from Pifion Flat, California, in order to detect
non-linearities of rock behaviour at tidal frequencies and strain levels. This analysis shows

that the observations do not give any definite indication of the presence of non-linearity.
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In the absence of such evidence there is no reason to reject the simpler hypothesis: the
deformation of rock at small strains is considered to be linear [AGNEW, 1981].

The spatial wavelength of the harmonic load plays an important role in the evaluation
of the loading deformation. For a very short wavelengtht, the lithosphere appears
effectively infinite horizontally, and can be considered as a ha]f-space, ie., the
deformation takes place in the lithosphere alone. However, a very long wavelength load
cannot be supported by the lithosphere alone. Consequently, the lower substrata exert
reactive forces to support the load. It appears, therefore, that the stratification of the earth

plays a significant role for a long wavelength load.

4.2 The Lagrangean Density Function

The lagrangean density function (lagrangean function per unit volume) for a
point of the earth that is loaded by ocean tide waters can be written as [see Chapter 3 of
this study]

L=T-V (4.1)

where T is the kinetic energy density and V is the potential energy density
at the point of interest. Equation (4.1) holds true for a perfectly elastic earth.

4.2.1 Kinetic Energy Density

Let us consider a compressible volume element in the earth, of mass m, defined by its
position vector r with respect to the conventional terrestrial system?. If the volume element
undergoes deformations induced by a periodic load, its density will also change

periodically, when mass conservation is assumed. If p, is the density of the element at

Y Compared to the thickness of the lithosphere.

¥ Conventional terrestrial system is the system whose origin is at the centre of mass of the earth, the z-axis
points to the Conventional International Crigin (CIO), the xz-plane contains the mean Greenwich Observa-
tory and the y-axis is selected to make the system right-handed [ VANICEK AND KRAKIWSK Y, 1986].
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equilibrium, its density p, at time t, will be given by

p(t) = po + Bp(1). (4.2)

Since the cubic dilatation © expresses the relative change of the density of the volume
element, under the assumption of mass conservation, we can write that [EWING ET. AL.,

1957

©=-8p/ p,. 4.3)
Combining (4.2) and (4.3) we obtain

P =py(l-0). (4.4)

It is known from classical mechanics that the kinetic energy T of a mass m moving with
velocity v is given by

T=mvv/2. (4.5)

The volume element under consideration has a translational velocity aswell as rotational |

velocity, since it rotates with the earth. Thus,
v=d+Qxd (4.6)
where d is the displacement vector and Qs the angular velocity of the earth. Combining
(4.4), (4.5) and (4.6) the kinetic energy density can be written as

T = 1/2p(1 - ©)(d + Q x d)? 4.7
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4.2.2 Elastic Potential Energy Density
Tidal work is mainly stored as elastic potential energy. The stored elastic energy

 density V, can be written as [JEFFREYS, 1961]

Vs = Cyueyen / 2, 4.8)

where C;; is a tensor of rank four which depends on the elasticity parameters of the earth
and e;; is the strain tensor. Equation (4.8) is known as strain energy function [LOVE,
1927]. Since Cyy, is a tensor of rank four in 3-D space, it has 34 = 81 independent
elements. However, we can reduce the number of its independent elements, by imposing
certain restrictions. For example, we can impose symmetry? in Cyy, in the sense that
Ciju Temains unalterable when we interchange i and j or k and 1 ; the number of
independent elements is then reduced to 36. Furthermore, we can accept that the tidal
deformations are adiabatic, and Cy;; becomes symmetric in the pair (i, j), interchanged
with the pair (k, 1). This assumption reduces the number of independent elements to 21
[BULLEN, 1975].

The form of Cy,; tensor depends on the various symmetries in the properties of the
earth. When examining the response of the earth to applied stresses, there exist various
degrees of geometrical symmetries in the internal structure that can be introduced, which
allow elastic properties in particular directions to becoine identical. When such symmetries
are introduced, the number of independent elements of C;;;,) can be reduced to less than
21. The so called triclinic structure, which involves 21 independent elements, is the
most general, whereas the isotropic structure involves only two independent elements
[WASLEY, 1973; JURETSCHKE, 1974]. Of particular interest in this study is the Iateral
(transverse) isotropy for which the symmetry axis is the vertical (radial). Using
Love’s notation [LOVE, 1927; p. 160], the strain energy function (potential energy

density) can be written as

T These restrictions are related to the symumetries in the properties of the material .
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V.= (1/2){A(ege + €02 + Ce 2 + 2F(egg + € )€ .+ L(e 2 +e )
+N(39A2' 46996/\))}, (49)

where A, C, F, L and N are elastic moduli*. A and C can be determined from
measurements of the velocity of compressional waves propagating horizontally, as well as

vertically. We have [DZIEWONSKI AND ANDERSON, 1981]
A=pvy?, C=pv,2 (4.10)

Similarly, N and L are functions of the shear wave velocity and F is a function of both,

compressional and shear velocities:

N=pvy2 L=pv,2 F=n(A-2L), (4.11)

where p is density, vy, , v, are the shear wave velocities in the horizontal and vertical
directions respectively and n is a dimensionless parameter! [ANDERSON, 1961].
Numerical values for the above parameters can be obtained from the PREM. For the

isotropic regions of the earth, we have [BULLEN AND BOLT, 1985]

A=C=2A+2y, L=N=p, F=A (4.12)

4.2.3 Buoyant Potential Enefgy Density
The earth can be regarded as being hydrostatically prestressed, where the hydrostatic

pressure is induced by self-gravitation. The effect of self-gravitation on the deformation of
the earth, that is induced by external forces (ocean tides) can be taken into account very
easily if the earth is considered as fluid. Nonetheless, this assumption will hold equally
well for a solid earth if the deformations are very small and they do not affect the

T Do not confuse elasticity parameter L with the Lagrangean function.

¥ Note that for the dimensionless parameter 1} we use italic style to distinguish it from viscosity.
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continuity. Consequently, elements of the earth in the disturbed state will be surrounded
by different density material from that of the undisturbed state. This will result in a
buoyant or Archimedes force, which will tend to restore the deformation to the
equilibrium state. If the earth is allowed to be stratified and its density p increases with
increasing depth, we can write that

dp/dr < 0, (4.13)

where r is the radial distance from the earth’s centre of mass. During the application of a
point surface load, the earth material will experience displacement. This buoyant force

density per unit volume can be written as [TOLSTOY, 1973]

F,= - gAp, (4.14)

where g is gravity and Ap is the difference in density between the surrounding and

displaced elements. If the element moves in the radial direction by u, then

Ap = p(r) - p(r+u). (4.15)

Here, u is positive upwards. If the vertical displacement u is small, we can assume that Ap

is a linear function of r,

Ap = -udp/dr. (4.16)
Combining (4.14) and (4.16), we obtain

F,= gudp/dr 4.17)
and the corresponding potential energy density will be

V,=-Fyu/2 or, V,=-1/2gu2dp/dr. (4.18)



In the above derivations, g was considered positive downwards and Fj positive
upwards. The negative sign in (4.18) shows that V, is positive when it results in an uplift
(after unloading), as itintuitively should.

In the above, we considered an incompressible stratified earth. In the case of a
compressible stratified earth, though, there is an additional term arising from the
compression of the material itself, induced by the displacement field. In other words, the
element of density p, in the undisturbed state is compressed by the surrounding material,
when displaced downwards. This results in a change in its density, when conservation of

mass is assumed. If dp is the density variation, the force density will be

Fg=-g(p-po) 4.19)

where p is the density of the element in the compressed state. Combining (4.3) and
(4.19), yields
F, =gp,0® (4.20)

and the potential energy density will be

V,=-Fu=-gup,®. (4.21)

Finally, the total potential energy density of gravitational origin can be written as

Vg =V,+V, = - gu(u/2dp/dr + p,©). (4.22)

4.2.4 Thel agrangean Density Function

The elastic potential energy density given by (4.9) must be corrected for the buoyant
potential energy density. Therefore, combining (4.1), (4.9) and (4.22) yields

L=T-V=1/2p,(1 - ©)(d + Q= d)2 - Cyyy e;e /2 + gu(u/2dp/dr + p,®), (4.23)
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where u is the component of the displacement along the vertical. The above Lagrangean
density function holds true for a conservative, stratified, compressible and rotating earth
under the influence of self-gravitation. The first term of L, i.e., the kinetic energy density,
gives rise to inertial and Coriolis forces, relative to the conventional terrestrial system. In
general, the inertial forces are very small compared to the elastic forces at tidal frequencies.
This is' because the tidal frequencies are much lower than the free oscillation
eigenfrequencies. However, in the derivation of the equations of deformation, both inertial
and Coriolis forces are considered under the simplifying assumption that their component
arising from the incremental changes in the density field (indirect effect) are negligibly
small. As a consequence, dilatation becomes negligibly small and the Lagrangean density

function can be written as

L=T-V =1/2p,(d + Qx d)2 - Cy, ;¢ / 2+ gu(w/2dp/dr + p,®).  (4.24)

4.2.5 The Forcing Terms
At this point, it is necessary to make a distinction between free and forced motion. In

the case of free motion (i.e., free oscillations), after the disturbing force (e.g. earthquake)
is removed, the earth regains its original shape by the action of elastic restoring forces, as
well as from forces arising from the disturbed density field (indirect effect). Problems of
this type are described by homogeneous second order partial differential equations in the
displacements; non-zero solutions exist only for certain values of the forcing frequency
(eigenfrequencies), i.e., we have an eigenvalue problem. For a forced motion, such as
tidal deformation, the motion of the éarth is described by nonhomogeneous partial
differential equations of second order, the right-hand-side being the forcing term. For
these types of problems we must consider a forcing term of pertinent frequency to solve

for the displacements.
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The deformation of the earth’s surface due to ocean tide loading arises from the direct
pressure of the tidal waters on the ocean floor, from the direct attraction of the ocean
waters (Newtonian), as well as from the attraction of the indirect deformation (indirect
effect). Since the direct pressure of the tidal waters will be taken into account in the
boundary conditions (see section 4.5.3), the forcing terms account only for the direct

attraction of the tidal waters and the indirect effect. Thus,

FT=p VO, (4.25)
@ = P + s, (4.26)

where, ® is the total ocean tide deformation potential, &P is the primary tidal potential due

to the directattraction and ®s is the secondary tidal potential due to the deformation.
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4.3 The Dissipation Function for a Standard Linear Solid (SLS)
Following the notation found in [NOWICK AND BERRY, 1972; LAPWOOD AND

UsAM]I, 1981], we can write the constitutive relation for the SLS as follows:

ey + Toby + AyTe®8y = Jp; + T Iy, 4.27)
where J;; and J are defined by (2.13) and 1, is the relaxation time given by

1o = nldr - I (4.28)
Dividing (4.27) by 1;and rearranging , we obtain

&; = Ur/To)T; + Tyt - AJy@8; - (Utp)e;. (4.29)

For the derivation of the dissipation function, we assume incompressibility?, i.e., ©®=0.

Then, (4.29) becomes
&; = O/t T+ luT; - (U/nodey;, (4.30)

Equation (4.30) is a linear ordinary differential equation of first order in €; and has a
solution given by [REKTORYS, 1969; p.744]

€; = {J- [Or/to)w; + Jyt;lexp(fdti,) dt} exp(-fdtir,). 4.31)

Considering that the applied stress is periodic, with angular velocity wthen

'l'ﬁ = ‘l’ij.oCOS(.Ot,

T; = - @ T ,sint, 4.32)

T WUANDPELTIER [1982] and WOLF [1985] have shown that the effect of compressibility on the relaxation
of Maxwell continua is insignificant and can be neglected. We assume here that the same holds true for SLS.
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where T; , is the strain amplitude (at t = 0). Substituting (4.32) into (4.31) yields
e; = {J.[(JR/TO)'tij ocoswt - Jyw; osinwt] exp(fdtry) dt} exp(-fdur,). (4.33)
Carrying outthe integration [BOIS, 1961], (4.33) reduces to
e; = T, (J coswt + I sinwt). (4.34)

J, and J, are compliances given by
J, = (g + 2w + 12w2) L, (4.35)

JZ = Tow(JR - Ju)(l + Tozu)z)'l. (4.36)

Quantities J, and J, are known as the real and imaginary parts of the complex
compliance of the general linear solid [FLUGGE, 1975]. Equations (4.35) and (4.36) are
oftencalled Debye equations [NOWICK AND BERRY, 1972]. In equation (4.34), the
first term, being a function of J,, describes purely elastic behaviour and the second, being a
function of J,, describes viscoelastic behaviour.

The work done by the stresses can be written as [FLUGGE, 1975]
W = J‘ e; T;dt, (4.37)

where the summation convention applies for the repeated indices. Differentiating (4.34)

with respect to time and considering (4.32), (4.37) becomes
W= Z { - Jlmtij,ozfsin“’t coswtdt + JZwtij,ozfcoszwtdt} , (4.38)
i,j

where the implied summation in (4.38) was interchanged with the integration. Integration

of (4.38) in the interval [0, 27/w]T reveals that the first integral becomes zero.

Y What we are interested in here is the average energy (stored or dissipated) during a cycle of straining and not
the energy as a function of time. The reason is that average stored and dissipated energies are used in the
definition of quality factor Q (see Chapter 2 of this work). Most importantly, using average energy over a
cycle of straining, we avoid the problem of having. time dependent coefficients in the equations of
deformation.
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The integration of the second term of (4.38) in the interval [0, 2x/w] gives
wem, Lo @39
i

which is the amount of dissipated energy in a full cycle of straining and has units of
ML-2T-2, Further observation of (4.39) reveals that W’ is a function of frequency,
proportional to T w(1+T,2w?)-!. Any function having this property is called a Debye
peak [NOWICK AND BERRY, 1972].

For the evalution of the dissipation terms of the equations of deformation, (4.39) is
not useful. We need to express W’ as a function of the strain rate. The average dissipated

energy D per unit time can be obtained from (4.39) by dividing W’ by 27t/c,

D=1/2050 9, 5.2 (4.40)

Lj
where D has units of ML-2T-3 and expresses the amount of the average dissipated energy

density per unit time. Substituting (4.32) into (4.30) and solving for T,0, We obtain
tij,o = (élj + eijlfo)/(JR/ TO coswt - JUu)Sinth) (4.41)

Setting t = 0, we obtain

o = (€5To + €5 )/r (4.42)
and (4.40) becomes
D= 1/2(J2(0/JR2)Z (éijTO + eij )2, (4.43)
ij

t Equation (4.41) is valid for any t. For convenience we choose t=0.



63

In (4.43) we need to evaluate the complex compliance J,. Since I, reflects the
relaxation process, it is a function of the thermodynamic state of the earth, as well as,
function of the quality factor Q. Let us start with the equation [ANDERSON AND HART,
1978a)

QUw) = {Cu/ C, - 1}wry(1 + 152w ! (4.44)

which relates a frequency dependent Q and relaxation time 1,. Here, Cxand C, are the
high and low frequency elastic wave velocities. We can see that (4.44) is valid for a
standard linear solid [cf: (4.35) and (4.36)], i.e., Q-1(w) is a Debye peak. We accept the
simple hypothesis of a grain-boundary relaxation model [NOWICK AND BERRY, 1972]

for which the ratio C,/ C, can be estimated from [ZENER, 1941}t

Cw/ C, =¥ {(35-20v)/ (14 + 10v)}, (4.45)
where v is the Poisson’s ratio. Combining (4.36) and (4.44) we obtain

J,=A1/Q{Cx/C,-1}}, (4.46)
where AJ = Ji - Ji;*. From (4.28) we have

Al =14/7 (4.47)

and the calculation of J, reduces to the calculation of relaxation time, provided that depth
profiles of Q, n and v are available and C.,/ C, known. Relaxation time can be calculated

from the Arrhenius equation (2.23)

t Zeners theory assumes spherical elastic grains; under this assumption, eqn. (4.45) holds true. However,
O’CONNELL AND BUDIANSKY [1974] assume more realistic grain geometries, such as dodehahedrons for the
evaluation of the ratio Coo/ C,,.

Y AJ is known as relaxation strength.
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4.4 The Equations of Deformation

It is convenient to derive the equations of deformation in a spherical coordinate
system (r; 6, A), where 0= 1/2-¢ is the colatitude of the point of interést and A theeast
longitude. The strain tensor e;; can be written as a function of spherical coordinates and
displacements u, v, w along the vertical, meridian and parallel respectively. These relations

are [LOVE, 1927, p. 56; BEN-MENAHEM AND SINGH 1981]

e,.=0d,u, ego= I 1@gv+1u), e,,=r1[(1/sin)d,w+u+vcotd], |
€ga=C€r9=TI ! [0gw - wecotb + (1/sin )0 ,v],

ey=e,= (Ursin@)du+d,w-r-lw, y (4.48)

eg=€g=0,v-rlv+r-1oa,

O=e tegtey=0u+r-1dg+2u+(1/5sind)d,w + veot].

In the above equations, 0.¥ denotes "partial derivative of ¥ with respect to ..” Furthermore,
the divergence of the generalised force density filed X in spherical coordinates is given by

[COURANT AND HILBERT, 1970; VOL 1, p. 224].

divE=05 1+ 0,52+ 0,X 3+ 25 1/r +X 2cot, (4.49)

where X /, X 2 ¥ 3 are the contravariant components of X . Considering that u, v and w are
the dependent variables (generalised coordinates) and t, r, & and A are the independent

variables, we obtain from (3.11) and (4.49) the equations of deformation
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0,[0L/00]-0,L+0 [0 L/du J+ 0 {0 L/dugl+ 8 ,[0L/0u, |+2/r[0 L/ou)+[0 L/duglcot 6+0D/ou
= p0 @

0,[0L/0v]-0, L+0 JOLIOV ]+ 3 [0 L/dv g+ 0 JOL/dv , 1+2/r [0 L/ov ]+[0 L/dv gcot 6+0D/dv
= I--l poae(p

0,[0 L/ow]1-0,,L+0 [0 L/ow 1+0 4{0 L/ow g +0 [0 LIOW ] +2/r [0 L/ow }+[0 L/ow glcot &
+0D/ow = (rsin0)!p 0 P, (4.50)
The next step is to evaluate the individual terms of (4.50), taking into account the
Lagrangeanl, given by (4.23) and the dissipation function D given by (4.43). In the above

equations (4.50) the first two terms give the inertial and Coriolis force densities. We start

with the evaluation of these terms using vector notation:

F..=0J[0L/od] - 0L /od
= dilpo(d + @ xd)]- po(d + Q= d) x Q
=p(d+Qxd)-p(-Qxd-Qx Qxd)

= pd+20xd (4.51)

The first term in (4.51) is the inertial force density and the second term is the Coriolis force
density. The components of F;,_along the vertical, north-south and east-west directions,

respectively, are [LAPWOOD AND USAMI, 1981]

p,U - 2Qp sin 6w,
Fp .= {p,V-2Qp,cos 8w, (4.52)

pW + 2Qp, [cos 8 v + sin 8u].
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Evaluating the rest of the terms of the equations of deformation (4.50) we obtain
d,L=-0,V.+gud, p+gp,© +2gp ur-! = - 0 V/Oey3 0,05
- 0VJ0e,, 0 e 0+ gud,p +8p,© + 2gpour-!

=.r-1 [2(A - N)(ego+ €4, )+2Fe,] + gud,p, +gp,© + 2gp,ur-!

aVL= - aV ‘/S= - [aVJaeAAaveAA"'a VJaeleav ere]
= -r-1 {cot8 [A(egg + 0 )*Fe,- 2Negg ] + Le g }

Oyl =-0,V;=-[0Vydeg, 0,41+0 VJOe;) 0y €]

=-r-1[Negycotd+L e
8 [0L/du] = -0,{0 Vfde - gpou] = - 0 [Ce +F (egg+ 1)) + po0[8u] + gud,p,
0gl0L/0ug] = - 04[0 V/Oe 4 Oey/0ug = - (Lir) dge

a,\ [aUaUA] = -6,1 [6 VJaeM Oe,,\/au,\]
=-0,[Le (2rsin6)!] =-L/Arsin8) d, e,

0 J0L/ov)] = - 3|0 V,/Oe, e y/ov] = -0, [Ley]

0g[0L/Ovy] = -0y [0 V/Oegg Jegg/OVe- 8P5UI

= - (1/1') ae[A (eee"'e/\/\)"' Fen.' 2N e/\A' gpou]

OAIOUOVA] = - 0/1[(3 VJa ea/‘aee/l/av/\] = - (N/I‘Sine)a/\ea/\

y (4.53)
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ar[auanl =- ar[a Vs/aer/\ aer/l/awxl =- ar[L er)t]

0g[0L/0Wy] = - 04[0VJO gy Oegy [OW 4] = - (N/T) Ogegy

00L/ow )] =-0,[0V{de,, dey, /0w ;- gp,u]

= - (rsin8)-19,[A (egg+ €11 )+ Fe - 2N ey - gp,u]

For the derivation of the dissipation terms we have that (because of no bulk
dissipation) |
0D/0u=(0D/d€yq )(O€ go /) + (OD/0e 4,)(3e 5, /0u) = 0 (4.54)

Furthermore,
0D/0v=(0D/de, ; )(0e ., /0V) + (0D/de x)(de o /V) (4.55)

Once again, if we consider that only the shear stresses contribute to the dissipation, the

first term in (4.55) will be zero. Therefore,

OD/OV = - J,wT/UR2r) (T, €0 *+ €)- (4.56)
Similarly,
0D/dw=(0D/deg, )(0€ g, /OW) + (ID/de (e .y [OW) (4.57)

If we consider only spheroidal deformation (deformation that has a componentin the radial
direction), the radial component of the curl of the displacement (Vx d) vanishes,
[ALTERMAN ET. AL., 1959]. This is equivalent to eg) = €4, = 0 [BEN-MENAHEM AND

SINGH, 1981; eqn. A.124] and (4.57), after differentiation, becomes

OD/OW = - J,wT/(JR2r) (T €, *+ €.1)- {4.58)
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Neglecting the small term 2gp ur-! the equations of deformation become

poU - 2Qp sin 8w - p 3D + p.0d,[su] -gp,© 3
+ (r){(A-N-F)(egg + €33) + (F-O)O} - 9, [Ce .+ Flegg + €x1)]
- (WUnPgee+sint ea;e,,\ +egLot6] =0,

PV - 2Qp,cos 6w - r-1p 9D
-0,[Leg]- (1/r)dg [Aege + €41) + Fe - 2Ne ;- gpou]
- N(rsin 8)-10, e, ) (4.59)
- (N/1)[2¢0t8 (egg - €22)] - BLIT) €9 - Jo0T/OR?r)(To €9 +€9) = O,

PoW +2Qp,[cos OV + sinOu] - (rsin)1p,0,® -0 Le,,) - (N/1)d¢eg;

- (Ursin 6)0 , [A(eg + €22) *+ Fe- 2Negg - gpoul - BL/r) ey

- 2N/r)eg, cotf - J,wt/(JR2r) (T,€, *+€,) = 0.

Introducing the total loading potential d, we can see that by virtue of secondary
potential®s being unknown, P is unknown and must be transferred to the left-hand-side of
the equations of deformation. Thus, the equations of deformation become homogeneous.
However, as we will see in detail in the next chapter, this does not imply that we are faced
with an eigenvalue problem as we should not be.

EBquations (4.59) are three simultaneous, partial differential equations of second order
in the dependent variables u, v, w and &. In order to be able to solve the above system, we
need one additional equation. This fourth equation is Poisson’s equation given by

[LONGMAN, 1962]

A® = 47G[p,® + ud, p,]. (4.60)
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For an elastic earth, the last terms in the second and third equations of deformation (4.59)
become zero. Taking also into account (4.12), the equations of deformation of an elastic,

isotropic and nonrotating earth reduce to

poii - poard)s - gpoe + poar[gu] - ar[;‘e + Zuerr] - (U/f)aeere
- (W/rsin6)d ye,, - (W/r)[(de,- 2e99- 26 ,,) + € gcOtB] = p 0 TP,

PoV - (P/1)0gDs - O peg- (1/r)dg[- gpou + 1O + 2pegy ]
- u(rsin 6)10 e, (4.61)

- (u/r)[2cot&egg - €,,) + 33{0] = r-1p,0,0°,

PoW - (P /Tsin 80 & - 0, pie,, - (Wr)dgey,
- (rsin 9)4(3/1 [. 8P U + AQ + 2“8,1,\]

- (3u/r) e ;- (2u/r)eg, cotd = (rsiné)lp 0 P, /

which in the absence of the forcing terms reduce to the equations of free oscillations of the
earth as given by ALTERMAN ET. AL., [1959]. This gives us a check on the basic

formulation of the loading deformations.
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4.5 Boundary Conditions

4.5.1 Continuity of the Total Loading Potential
For the formulation of the boundary conditions for the total loading potential, we

follow LONGMAN [1962] and PEKERIS [1978]. The primary loading potential ® P of
degree n and order m, generated by a surface harmonic distribution 0,,, of the tidal

waters, can be written as [LAMB, 1945, p. 305; PEKERIS, 1978]

e P =47GR (20 + 1) (R/r)™1o_, (4.62)
i P =47GR (2n + 1)1 (r /R0, (4.63)

where R is the radius of the earth in the undisturbed state. Pre-superscripts “e” and "i”
denote the external and internal potential respectively, with respect to the surface. The

primary potential is harmonic everywhere, outside and inside the surface of the earth, thus,
V2@, P=0 r#*R (4.64)

where V is the Hamilton nabla operator. The secondary loading potential ®, s satisfies

Poisson’s equation inside the earth, thlis
V2i® 5= 41G(p,Opm + Upmd, Po), (4.65)

where u,, is the radial displacement of degree n and order m, due to load. Taking into

accountthat® =& P+® s and equation (4.64), (4.65) becomes
V2i@ = 4nG(p,Opm + Upmd  Po)- (4.66)

At any internal boundary in the deformed state (r = ¢ + u), the total loading potential, as

well as its derivatives with respect to r must be continuous:
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D=0 r=c+ug, (4.67)

hmo
0, Py =90, Dy, r=c+uy, (4.68)
where the pre-superscripts “-” and “+” denote inside and outside the boundary surface
respectively.
When the earth is at the deformed state, its surface will be at r = R + u ;.. However,
the value of gravity inside the surface r = R is equal to the value of gravity outsider = R +
u, ., i.e., itis equal to the value of gravity in the air, plus an increment arising: a) from the
presence of the material heaped up over the surface r = R, and b) from the presence of the
surface harmonic distribution of the tidal waters. Thus,
0,i®,  =0.°®  +4nGpou,, +4nGo,,, r =R, (4.69)
or by rearranging:

0P, -9,°P, . =4nG(poUnm + Tpm) r =R, (4.70)

Furthermore, the total loading potential outside r = R + u,, is a harmonic function.

Therefore,

V2@, . =0, r>R+u,,. 4.71)
Equation (4.71) is satisfied when [PEKERIS, 1978]

e® =4aGR 2n + 1)1 (R/r)»*l g . (4.72)
Since differentiation of (4.72) with respect to r gives

0,°®,, = - R'l(n+1)ed, r=R, 4.73)

equation (4.70) becomes



72

0@, + Rlm+1)® = 4nG(puy, + Opp)s T =R, 4.74)

Since we must have continuity of the total loading potential at the surface r = R, then i®__

= ed_, and equation (4.74) becomes
0,9, + R+, = 47G(p u,, + 0,)s r=R, 4.75)

Equation (4.75) is one of the boundary conditions of the equations of deformation.

4.5.2 Continuity of the Total L.oading Potential at Internal Boundaries
We can use (4.70) to express the continuity of the total loading potential at any

internal boundary, the only difference being in the absence of ,,,,. Thus,

0 Py - 0, Py = 4TG( P = *Po)nms (4.76)
where -p,, is the density inside the boundary and *p, the density outside the boundary.

4.5.3 State of Stress at the Deformed Surface

At the deformed surface of the earth the pressure of the tidal waters - g,0..,
introduces only a normal stress, which is equal to the pressure term of the first of the

equations of deformation. Therefore,
Ce+ Feggte ) = - 8o0am- “4.77)

Equation (4.77) is a first order approximation since g,0,,, is applied at the deformed

surface r = R+u andnotatr = R.
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All the tangential stresses vanish identically at r = RT. This is a valid approximation
when the loading mass is water. Therefore, the pressure terms of the second and third

equations of deformation become zero. Thus,

eg=€~ 0, r=R (4.78)

We must note here that boundary conditions (4.76) and (4.77) are non-homogeneous
equations in the sense that they contain the known function 0, of the tidal water

distribution, i.e. they depend on the forcing term.

4.6 Expansion of the Equations of Deformation into Spherical

Harmonics

The independent variables in the equations of deformation (4.59) are: time t, angular
velocity of deformation w and the spherical coordinates (r; 6, A). Variable w can be fixed to
2 cycles/day, 1 cycle/day, or lower angular velocities, when the response of the earth to
these frequencies is desired. The solution of the equations of deformation will be attempted
by the method of separation of variables.

Assuming that the displacements u,,,, v, and w,, of degree n and order m, as well
as the total loading potential @, can be expanded into the series of spherical harmonics

Y, m(6, A), we can write for spheroidal deformations:

1 This is an excellent approximation when considering ocean tides in the open ocean. However, MERRIAM
[1986] showed that tangential stresses caused by ocean tide loading of the continental slope, can generate
strain tides of the order of a few percent of the total tidal strain. This is comparable in magnitude to
perturbations from local topography, cavity and structural effects.
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U =Un(@) Yon(6 4,

Vam = Vam (51 05Y3n(6, ), (4.79)

W = Vi (51 sin'18 0,Y,,.(6,4),

D = Yo (1) Yim(6,2),
where,

Y,.(6, 3 = (A cosm A+ B, sinm )P, (cos 8), (4.80)
and P, are the associated Legendre polynomials of degree n and order m, given by
VANICEK AND KRAKIWSKY, [1986]

(1-cos2@)m2  dnm

Pym (cos@) = (cos2 8- 1), (4.81)
n! 2n d(cos g)n+m

In the sequel, we drop indices (n, m) from U, V., ¥Y.m and ©_ for simplicity.

Substituting (4.79) into the last of the equations (4.48), we obtain for dilatation ®

0 =0, UY, +1/r)d VoY, ml + RIr)U Y, + V(rsinZ 619, 2Y, +(r-1cot8)VosY,,
(4.82)
or, byrearranging

@=0,UY, + r)UY,, + (VDB RY ym+ sin 26 8,2Y, +cotd 3,¥,,].  (4.83)

Considering the equation of Laplace for spherical harmonics [HEISKANEN AND MORITZ,
1979, p. 20]

0P Yy + COLOIGY,  + (sin26) 0,2Y,, + n(@+1)Y,, =0, | (4.84)

equation (4.83) can be written as
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© = [0, U+ (2/r)U- (V/r)nm+D]Y, . (4.85)
or,

0 =X(r, Y)Y,

X(r, t) =0 U+ (2/r)U- (V/r)n(n+1). (4.86)

For the surface distribution of mass we have [LONGMAN, 1962]
Opm= Cn+1)(4nRA 1Y 1, (4.87)

which is a point load with unit mass, expanded into a series of spherical harmonics. For

any mass m, we have simply that

Opm= M2n+1)(47RA)1 Y . (4.88)
For our calculations it is convenient to take m as the mass of the earth, i.e.,

m=R%g |z /G (4.89)
and (4.88) becomes

0..= {g,|r /(47G) } 2n+ 1YY, . (4.90)

rFor the rotational terms, if we consider that we have only sectorial tides
(semidiurnal), i.e., n = m, we have [BEN-MENAHEM AND SINGH, 1981, p.980, eqn.
D.126] '
P n(cos8) = (2n - 1)! sinn 8. 4.91)

Differentiating (4.91) with respect to 6 we obtain
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dy P (cos 8) = (2n- 1)! nsin™! 8 cosé
=n(2n -1)! sin" 8cotd
=ncot6P,,(cos 8) (4.92)

and from (4.80) we obtain

0¥y, =ncotoyY . (4.93)
Furthermore, by differentiating (4.80) with respectto A we get

0,Yym(6,2) =-m (A sinma - B, cosmA)P  (cosb), (4.94)

or considering rotational symmetry of 90° for the properties of the earth we can write

mA =90° +mA (4.95)
and (4.94) becomes
0,Y, (6,0 =-mY, (6 ). (4.96)

Relations (4.93) and (4.94) can be used in the expansion of the equations into spherical
harmonics.
The remaining terms of the equations of deformation can be transformed similarly

[Appendix II], and the equations of deformation reduce to

poﬁ + ZnQpOV + p018,U] - pogoX - PO, ¥
+2r-H{[A-N-F]RrU - n@+1)r-1V] + [F- Clo, U}
+Lr-lr-1U- r-'V+9,_ Vin@n+1)
-9,.{Co,U + FRr-1U-n@+1r-1v]} =0
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po\.) + Zon\} -r-lp W+ rlp g U
- r-'{ARr1U - n(n+1)r-1V] + Fo, U}
- ONr [tV - r-1U]- 8, {L[r-'U - r-1V +4,V]}
-3Lr!['U-rv+9,.V]
- Lwt(x2r) {1, [r-lfJ SVt d,V] +[rU- 1V +9,V]} =0} (4.97)

sin-16p,V - 2Qp, sin-16 [cos26V +n-lsin26 U]
- (rsin ) 1p, ¥ + (r5in6)! p,g,U
- (rsin 8) 1 { A2r-1U - n(n+1)r-1V] + Fo, U }
- 2N (rsin 0) ! [r-1V - r-1U] - 8, {L[r-'U - -1V +3,V]}
-3L (rsin8)! [r-'U - -1V +4,V]
- Jywty(g2rsin8) {1, [r'U - r1V +3,V]
+[rU-r1v+a,Vl} =0

02Y¥ +2r'10, ¥ - r2n(m+1)¥ = 4nG(p X + Ud, p,) )

Multiplying the third equation of (4.97) by - sin 6 and adding it to the second equation, we
obtain
(cos26 + 1)V + n-lsin26 U =0,

or . .
V=-n!sin26 (cos26 +1)-! U. (4.98)

Substituting (4.98) into the first of (4.97), we obtain the new set of deformation equations
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poU - 20p, sin2 6 (c0s28 + 1)1 U + pyd [g,U] - pogoX - 00, ¥
+2r-1{[A-N-F]Rr1U - n+1)r-1V} + [F - CJo, U}
+Lr!r-'U-r-'V+9, Vinn+l)
-0, {Ca,U + F2r-1U - n(+1)r-1V]} =0,

PV +2Qp,V - I71p, ¥ + 171 pog,U 1 (4.99)
- r-t{ARr'U - n@+1)r-1V] + Fo, U}
- ONr [V - r-1U]- 0, {L[r-1U - -1V + 3,V]}
-3Lr ! r-U- -1V +9,V]
- Lwtydg2n{, [r1U- 1V + G,V] +[rU-rtv+a,V]}=o,

02W¥ +2r-10,¥ - r2n(n+1) ¥ = 4nG(p X + Ud,p,).
Similarly, boundary conditions (4.75), (4.77) and (4.78) reduce respectively to

0, ¥ +R-I(n+1)¥ = 4nG[p U + (2n+1)g |r/(47G)], r=R,
CoU + F2r-\U - r-in(@+1)V] = - @n+1) g2 |g /47G), r=R, } (4.100)
r'u-rv+4, v =0, r=R.

We note that the equations of deformation (4.99) are three partial differential
equations of second order. They describe the deformation of earth under harmonic surface
loads, on a three dimensional configuration manifold, with a state vector consisting of the
generalised coordinates U, V and ¥. The constraints applied to the system, namely the
boundary conditions (4.100), are integrable partial differential equations of first orderin the
generalised coordinates and thus, they are purely geometrical constraints. This implies that
the system is holonomic. In addition, since time does not appear explicitly in either the

equations, or in the constraints, the system is autonomous.



S

e s e e e e sl el s i e e e e e o o e B e e e ==

THE EQUATIONS OF DEFORMATION IN THE TANGENT
BUNDLE SPACE

The presence of dissipation introduces delay in the displacements and to the
secondary loading potential. Therefore it is expedient to consider the state variables
(generalised coordinates) spanning the 3-D Lagrangean configuration manifold to be
complex. This expands the real dimension of the configuration manifold to six. We
transform the equations of deformation and the boundary conditions from the 6-D
Lagrangean configuration manifold into a 12-D tangent bundle space, using appropriate
substitutions for the complex generalised coordinates. The equations of deformation in this
12-Dtangentbundle space are 12 simultaneous linear ordinary differential equations of first
order (ODEs). Furthermore, we normalise all the variables in order to make the solution

more stable numerically.

5.1 Reduction of the PDEs of Second Order to ODEs of First
Order

Since the ocean load is periodic and the response of the earth is assumed linear, the

resulting load displacements will be periodic of the same angular velocity and we can write:

U(z t) = [U,(r) - 1Uy(r)Jexp(i ), (5.1)
V(@ 1) = [V4(r) - 1V5(r)Jexp(i wt) (5.2)

79
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and the complex total periodic loading potential
W(5 9 = [¥,(r) - 1 W,(r)lexp( wh). (5.3)

Taking the first and second time derivatives of (5.1) and (5.2) we obtain

U= w [iU;+ U,] exp(i wt), (5.4
U =- w? [U}-iU,] exp(i wt), (5.5)
V=uw [iV+ V,] exp(i wt), (5.6)
V =- w? [V,-iV,] exp(i wt). (5.7)

It should be remembered, that the components of the state vector, namely U, Uz, Vi, V,,
¥,, ¥, are functions of the degree of expansion n, i.e., for each value of n, there
corresponds a different solution. However, for simplicity, we have dropped the subscript
n. Substituting (5.1) - (5.7) into the equations of deformation (4.99) and omitting the

common factor exp(7 wt), we obtain

- w2p (U, -iU,) - 2Qup,sin26 (cos26 + 1)-1(iU,+ U,) + p 0, [g, (U, -iU,)]
- PoBo{0, (U, -iU,) + 2r-1(U, -iU,) - n(n+1)r-1(V, -iV,)}
- 0 (¥, -iW,) +2r- 1 {[A - N-F]Rr-!(U, -iUy,) - n(n+1)r-1(V, -iV,)]
+ [F-Clo,(U,-iUy }+Lr “Ur-1(U -1 Uy) -r-1(V,-iV,)*+d (Vi V,) In(n+1)
-9,.{Ca.(U, -iU,) + F2r-\(U, -iUy) - n(a+1)r-1(V, -iVy)]} =0
(5.8)
- w2p (V) -1Vy) + 2Qup (iV + V) -r-lp (¥, -1¥,) + r-ip g, (U, -iUy)
- r-H{ARr (U, -iU,) - n(n+1)r-1(V, -iV,)] + F3, (U, -iUy }
- 2Nr -}V, -iV)) - 11U -iUy)]
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-0, {LIr\(U, -iU,) -r-1(V, -iV,) + 0,(V, -iV,)]}

-3Lr "L [l (U, -1U,) -1V, -1V,) +0,(V -iV))]

- Lwt/Ur2r) {wty [r1 (U, + Uy - 11V, + V) +0,(V, + V)]
+ [r1 (U, -iUy) - 11V, -iV,) + 0,(V, -1V ]} =0

O2(W, -iW,) +2r-10 (¥, -i¥,) -n(+1)r-2(¥, -i¥,)
= 4nG{p,[0,U, -iU,) +2r-1(U, -iU,) - n(n+1) r-1(V, -iV)]
+ (U, -iUp0,p, }

Equating separately the real and imaginary parts of (5.8) to zero, we obtain the following

six equations for the six unknowns Uy, U,, V{, V,, ¥ and ¥:

- w?p U - 2Qup,sin2 6 (cos2 6 + 1)U, + p,0,.[g, U]
" PoBol0, Ui+ 2r-1U; - n(n+1)r-1V|]
- 0,0, %+ 2r-1{[A -N - FIRr-1U, - n(n+1)r-1v,] + [F - CJ0, U, }
+ Lr-r-1U;-r-1V, 40,V In@+1) - 0, {3, U, +F[2r-1U, -n(+1)r-1V,] } =0,

- w2p, V| +2Qup,V, - rlp, ¥, + rlp g Uy
-r-Y{AR2r-U; - n(a+1)r-1V,]1 + Fo,U, } - 2Nr-![r-1V, - r-1U,]
-0 {LIr U, - rtv+ 0,V 1}-3Lr !t [0 - 11V, + 0,V ]
- LwtyGr2r){wt, 11U, - r-1V, +0,V,] + [r1U, - r-1V, + a,.vil}=o,

02 W +2r-10, ¥ -n(n+1)r-2 ¥ =4nG { p, [0,U,+2r U -n(+1)r-1V,]+U,d,p, }
(5.9)
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w2p U, - 2Qup,sin2 6 (cos? 6 + 1)-1U; - p,0,[g,U,]
+ Pogol0, Ust 211U, - nin+ Dr-1Vo]
+ py0, ¥, 2r-{[A - N - FIRr-1U, - n(n+1)r-1V,] + [F - C10, U, }
-Lr - r-1U,-r-'V,+0 .V, ]n(n+1)+0, {CarU2+ F[2r-'0,- n(n+1)r'1V2]} =0,

w?p,Vy + 2Qup,V + r-lp, W, - r'1p,g,Us
+ r-H{ARr1U, - n(+1)r-1V,] + Fo, U, } + 2Nr-! [r1V, - 171U,
+0, {L[r'U, - r-1Vy+ 3,V,] } + 3Lr1 [r-1U, - -1V, + 3.V, ]
- LwtyUg2r){wt, [r1U; - -1V, +0,V,]- [r1U, - 11V, +3,V,] } =0,

02W,+2r-10, ¥ ,-n(n+1)r-2 W,=4nG { p [0 U,+2r 1U,- n(+1)r-1V,]+U,d o, } .
J
At this point we transform the equations of deformation in the tangent bundle space,
following a procedure similar to LONGMANs [1963]. We introduce the following
substitutions:

y1=Up,
Radial displacement

[ —

yi'=Uy,

y2 = C@I.Ul + F[ZI"lUl - n(n"'l)I"lVl],
Normal stress

-y

y,' =Cd,U, + F2r-'U, - n(n+1)r-1V,]

y3=Vy, 1

Tangential displacement
y3"=Vy,

(5.10)

Y4 = L[I"IUI - r_lvl + arV]],

Shear stress
¥a' = LU, - 11V, + 0, V3],
ys =¥y, .

. Total loading potential

ys =¥,
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y6=0r‘l’1-47er°Ul. } .
Gravity perturbation
Y6‘ = ar‘Pz - 47tGp°U2,

where the asterisk denotes imaginary part. Elimination of the original unknowns results in:

0,y,=Cly,-FC12r-ly, - n(n+1)r-ly,],
0,y =Cly," -FC12r-ly,* - n(n+1)r-ly;*],
0,y3=-rly +rly;+Lly,,

0,y; =-rly "+ rly"+Lly,",
0,ys=47Gp.y + Y-

0,ys =4nGpy," +ye'.

\ (5.11)

J

Substituting (5.10) and (5.11) into the equations of deformation (5.9), we obtain

0,v2={-4p.g,r - por2w? +4C-1[(A - N)C - F2] } r-2y,
+2C-1(F - C) r-ly, + nn+1) { p,g,r - 2C-1[(A - N)C - F2] } r-2y,

+n(n+1) r-ly, - p, ye - 2Qup,sin2 8 (cos?2 8 + 1)-ly,*,

3,¥2" ={- 4p,gor -por2w? + 4C1[(A - NYC - F2]} r2y,°
+ 2C'1(F - C) I"-lyz‘ + n(n-!-l){pogor - 2C-1[(A . N)C . Fz]}r'2y3‘

+n(n+1) r-ly,"- p, yg* +2Quwp,sin2 6 (cos26 + 1y ly,

0,y;= { Pogor +2C-1[F2- (A- N)C]}z-»-‘2y1 -FC-lr-ly,
+{-por2w+ n(@+ NCI[AC- F2] - IN}r-2y; - 3 + Twt /(LR D]rly,

- porlys + 2Qupyys” - J,021/(LIg2) rly,”,

(5.12)
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9,¥4s"={ pogor + 2C1[F2- (A-N)Cl} 12y, - FC-lr-ly,"+
+{-por2w+ n@+1)C[AC- F2] - 2N} r2y;" - [3 + Jout/ (LD ly,”
- PoI1ys" - 2Qup,y; + Jhwity/(LIg?) r-ly,,

0,¥¢= - 4nGp n(m+1)r-ly; +na+1)r-2ys- 2r-lys.

0,¥¢" = - 4nGp n(n+1)r-ly;* + nn+1)r-2ys° - 2r-ly,°.

Equations (5.11) and (5.12) form a system of 12 ODEs of first order in y; and y;°.
Substituting (5.10) and (5.11) into (4.100), the boundary conditions at the surface of the
earth (r=R) become

y2 = - (20 +1)g,2|g /(47G),

YZ.=O’
Y4=o!
‘o (5.13)
Yo =0

Y6 + (n + 1)Y5/R = (2n + I)go]R’
V't (m+ 1) ys"/R=0.

5.2 Normalisation of the Equations of Deformation

It is necessary to normalise the variables of the equations of deformation in order to
make the numerical solution more stable. We normalise the elastic moduli A, C, L, N, F,
viscosity n, density p,, gravity g, and complex compliance J, with their corresponding
values at the centre, or at the surface of the earth or at the core-mantle boundary. The

procedure followed here is similar to LONGMANs [1963]:
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A’ = A/FC, C’ = C/FC’ L’ = I_/FC’ N’ = N/PC’ F’ = F/FC’ n’ = n/nm,
po, = po/poc, JZ’ = J2/J2m’ I"= I'/R, go’= gol goIRv ‘.IJ"—" (O/Q (5'14)

where superscripts “c” and “m” denote values at the centre and at the core-mantle

boundary, respectively. Likewise, we normalise y; andy;" as follows:

z; =y /R, zy = yolF°, z3 = y3/R,
2, =y4F,  z5=Ys/RgRRl 2% =Ye/ Bor-
(5.15)
7" =y,"R, 7’ =y,"/F°, 73" =y;"/R,
z," =Yy F, 25" =ys"/[RgR], 25" =6’/ Bolr-
We also define the following dimensionless and constant quantities:
a = g,2(R)/(4F°G), 7
B = 41Gp,R/g,|r,
Y = Po°go|r R/FS, (5.16)
3 = p,°R2Q2(Fe,
€ = J,mQ21,m2/(Felgm2). .

Upon substitution of the above normalised variables into the equations of deformation

(5.11) and (5.12), we obtain:
8,2, = - 2FCir'-lz) + Clzy + FC-in(+1)r' - 73,

0, 2,={-4yp,’g. 1’ - 8p, 2 w2 + 4C-1[(A’ - N)C - F2]} 122,
+ 2CY(F - C)r'-lz,
@+ {yp g, - 2C-1[(A’ - N)C - P2} 122,

+n(n+l) r'-lz,- yp,’ z¢- 20w p,’sin2 0 (cos? 6 + 1)-1z,°,
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0,23=-r"lz;+ r'-lz; + L1z,

0,24 ={ypo’g°’r’ +2C-1[F2- (A - N’)C’]}r"zz,- FC-lr-lz,
+{-5p°’ r’2w?2+ n(n+1)C-1[AC - P?] - 2N’}r’ 224
-3y Wt /(LIR D) Iz, - yp, 1 lzs + 28w p 25"

- el w2ty LI ) rz,”,
61" Zs= ﬁpo’zl + 2.
0, 2Z¢=-nm+1)Bp,’ r’-1z; + n(n+1)r’-2zs - 2r’-lz¢.
0,2, =-2FC-ir-1z,* + C-lz,* + FC-In(n+1)r’-1z;°,

0,2,"= -{4vp,'8, 1" + By 1’2 w2 - 4C1[(A’ - N)C - F2]} 122
+ 2C1(F - C)r’-lz," .
+ n(n+1){yp°’g°'r’ - 2C-1[(A’ - NYC' - F’2]}1"-2 z*

+ n(n+1) 1-’-1 240 _ Ypo’ 260 + 20w’ po)sinze (cosze + 1)_121’
0,23 =-r'lz,"+ r'lzg* + L1z,°
0,:24 = {Ypo’go’r’ + 2C’-l[ F’2. (A’ - N’)C’]}r’-2zl'- F’C"lr"lzz'
+{_ 6po:r’2w:2+ Il(Il+1)C"1[A’C’ _ F,z] R 2N’}I’"2 23‘

_ [3""]2’(0’ Toa/(L,JR’Z)]r’-I 24. ) Ypo» I.».l 25. - 25w poxz3

+ €], w2t /(LI ) 11z,

\ (5.17)




87

0,25 = Bpo'z " + 26"

0,.2¢"=-nm+D)Pp, r’1zy* +nn+l) r'-2z° -2r'-1 z,°.

)

Equations (5.17) are 12 linear simultaneous ODEs of f{irst order with variable coefficients
in 12 state variables, namely z;, z;* (i = 1,..., 6), that span the 12-D tangent bundle space.
The boundary conditions at the surface of the earth become

z,=-(2n + l)aq, b

24 = 0,

Zg + (n+1)z; = (2n +1),
(5.18)
z," =0,

24. = 0,

zg" + (n+1)zs" = 0. J
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5.3 Equations of Deformation for the Liquid Cuter Core

In this section, we derive the equations of motion of the liquid outer core, since the
equations (5.17) are valid only for the solid regions of the earth. The procedure we follow
here is standard and can be found, for instance, in WAHR [1982].

In the liquid outer core, the shear wave vanishes and its velocity can be set to zero.

From (4.10) and (4.11) we have
N=L=0 (5.19)

Furthermore, shear stresses, as well as their derivatives with respect to r’ are everywhere

zero. Thus, we have [cf: eqn. 5.10]

Zy= 24‘ = O, (5.20)
6,: Zy= 6,, 2.4. =0, (5.21)

Because of (5.19), (5.20) and (5.21), the third and ninth of (5.17) become meaningless
due to the undetermined terms z,/L’ and z,°/L’. In addition, (5.21) reduces the fourth and

10th of (5.17) to algebraic equations. In symbolic form we have

* _
3040121 t 3040222 * 3040323 * 3040525 * 2040721 = 0, (5.22)

* . ] . _
2100721 * a100822 * 2100923 * 3101125 * 3100121 = O, (5.23)

where a;;,) are coefficientst. Equations (5.22) and (5.23) are then used to eliminate z; and
z;" from the equations of deformation. Thus, for the liquid outer core, the equations of

deformation reduce to eight simultaneous ODEs of first order and two algebraic equations:

T The first two subscripts denote the equation and the second two the dependent variable. For instance, 21047
is the coefficient of the 7'M dependent variable (z ‘) in the 10%h equation.
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0,2z, =-2FC-ir'-1z, + C-lz, + FC-in(m+1)r’-1 z;,

0, 2,={-4yp, g 1 - 0p, 2 & 2} p2z,+ n(+1){yp, g, I }r’ 22,

- YP, Zg- 20w p,’sin26 (cos28 + 1)lz,°,
01.: Z5= ﬁpc'zl + Zg,
0, 2¢=-nm+1)Bp, r’-1z; + n(n+1)r’-2z5 - 2r’ -1z,

0 ’Zl. = - 2F’C"1I'"1ZI‘ + C,-122‘ + F,C"ln(n"'l)r’-lzf}‘)

r

0,2,°= -{4yp°’g°’r’ +8p,’'r’? w’2}r‘-221‘ + n(n+1){ypo’g°’r’ }r‘-2 z;°

-YP,’ Zg" + 2Bw’ p,y’sin2 6 (cos2 6 + 1)1z,
ar’ ZS‘ = ﬁpo’zl. * 26"
0,24 =-n(n+1)pp, r’ 1z, +nn+l) r’2z;° - 2r’-1z;°*,

z; = Bp, r'2w 2 irr2{ [yp, g, ' 10’ 22,- FC-1r'-12,- yp,' -1z

- 28w p.'z5° },

230 = [5p°,r, 203: 2‘]<1r:2{ [Ypoygogrs]r;_zzlo _ F,C;_lrhlzzt

+yp, 125" + 28w’ p,'Z5 } -

(5.24)
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SOLUTION OF THE EQUATIONS OF DEFORMATION

In this chapter, we develop a theoretical procedure to solve the equations in the
tangent bundle space. We then apply this procedure to solve the equations numerically,

using the finite difference method of numerical integration.

6.1 General Considerations

The existence of different regions in the earth, namely the solid inner core, the liquid
outer core, the mantle and the crust complicate the integration of the equations of
deformation. Fortunately, only the low degree load deformation penetrates the earth down
to the inner core and thus the effort to obtain a solution reduces drastically.

At the centre of the earth (r’ = 0), the equations of deformation are undefined. So
long as we impose regularity of the solution at the origin, we can start the integration from
a sphere with arbitrarily small radius, considering that all the material inside this sphere has
been removed. This is only a simplifying assumption, as at this arbitrarily small sphere we
need specify boundary conditions and we are free to impose any physically meaningfull
conditions, whether the material has been removed or not. At this internal free surface, we
have neither normal, nor tangential stress applied, since we deal only with loads at the
earth’s surface. Therefore, at the surface of the internal cavity we can impose boundary
conditions similar to those at the earth’s surface, the only difference being the absence of

the forcing terms. The nonhomogeneous boundary conditions (5.13), which hold true at

90
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the surface of the earth, become homogeneous at the free internal surface. If the radius of

the internal cavity is “a”, then after normalization of (5.13) we obtain:

)= O,
Zy = O,
26 + (@ D(R/)Zs = 0,
‘=0 » (6.1)
Z, =4,

24‘ = O,

zs* + (n+1)(R/a)zs" = 0.

In the third and sixth boundary conditions above, the term R/a may become arbitrarily large
when the radius of the internal cavity becomes arbitrarily small. Care must be exercised
when selecting “a” for the numerical integration of the equations of deformation. We will
discuss this issue in section 6.3.

The procedure of solving the complete system of the 12 ODE’s for a viscoelastic
nonhomogeneous and rotating earth is similar to the procedure of solving the six
simultaneous ODE:s for a purely elastic and nonrotating earth. We start with the solution of
the equations of deformation on a purely elastic, anisotropic and nonrotating earth, and then

we generalise it for a viscoelastic and rotating earth.

6.2 Solution for a Purely Elastic, Anisotropic and Nonrotating
Earth
For a purely elastic, anisotropic and nonrotating earth we have six simultaneous

ODE:s of first order with three boundary conditions at the internal cavity, namely

2,=24,=2¢+(n+ 1)(Rfa)z; =0, r’'=Ra (6.2)



92

and three surface boundary conditions:

z;=-Q2n+1a, z4=0, zg+(@+D)z;=@2n+l), r=1  (6.3)

As we recall, the equations of deformation are drastically different for the liquid outer core,
therefore, a one-step integration can not be performed. Instead, we integrate the equations
in steps as follows':

At the surface of the internal cavity, the three boundary conditions require that there
are only three (6 ODEs - 3 boundary conditions) independent (free) solutions. If £; (r’)
g{r) and B{r) (i = 1,...,6) are the three independent sets of (partial) solutions for z,
then, any linear combination of those will be the general solution of the system. Therefore,

for the solid inner core the solution of the equations has the form

z{r)=Af{r)+ Bg{r)+ Ch{r), i=12,..,6, for the inner core (6.4)

where A, B, C are arbitrary constants.

At the inner core - outer core boundary (bl), there is an additional condition, namely,
z, = 0, which indicates the absence of any tangential stressest. This boundary condition is
used to eliminate one of the arbitrary constants, for instance C at this boundary, i.e.,
constants A and B will be functions of C.

For the numerical solution of the deformation equations in the fluid outer core, we
proceed as follows: At boundary b;, we have two independent solutions from the

integration of the equations in the inner core, and continuity of z |, z,, z5 and z(equivalent

i Although the method of solving similar equations is very well known to the geophysical community, in our
opinion it is very poorly explained in the literature. The procedure presented here was developed by the author,
with assistance generously provided by Prof. Dr. R.D. Small, from the Department of Mathematics and
Statistics at the University of New Brunswick.

¥ For the purpose of tidal studies in general, this is an excellent approximation. However, for the study of the
deep interior of the earth using various geophysical methods, it is believed that the solid-fluid boundaries
between inner core-outer core and outer core-lower mantle are not smooth and tangential stresses may exist.
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to two boundary conditions). We do not impose any continuity of z; to allow for slippage
between inner and outer cores.

If we call x;(r)and y;(r) (i=1, 2, 5, 6), the two partiai soiutions of the four ODEs
in the outer core, then the general solution will be a linear combination of those. In

actuality, the constants will be functions of A and B. Thus, we can write

z(r) = D(A, B)x;(r) + E(A, B) y;(r), i=1, 2, 5, 6, fortheoutercore (6.5)

Atthe outer core-lower mantle boundary (b,) we have the two independent solutions from
the integration in the outer core as well as the continuity of z,, z,, z4, z5, and z4. For the
solid mantle and crust, z; is again defined. Therefore, the two solutions at b, must be
combined with a third, that of z,. Therefore, if p; (r), g; () and s; () are the three

independent solutions for the mantle and core, a general solution will be
z(r) = D(A, B)p;(r) + E(A, B) q(r) + Fsi(r), i=1,2,.,6, r'>b, (6.6)

where F is a new arbitrary constant, introduced to account for z;. This solution also holds
true at the surface of the earth, where the three boundary conditions will be used to
determine the three constants D (A, B), E(A, B) and F. From D and E arbitrary

constants A and B, and subsequently C, can be determined, to provide us with the

general solution of the deformation equations, valid throughout the earth.

6.3 Numerical Integration

For the numerical integration of the equations, the following steps are followed,
based on the theoretical treatment above:
a) Atthe inner cavity we set [cf: eqn. (6.4)]:

z2,=A, z;=B, z;=C. 6.7)
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The three independent solutions can then be obtained by setting, for example:

A=1,B=0, C=0,
A=0,B=1, C=0, (6.8)
A=0,B=0, C=1.

These three solutions?, along with the three boundary conditions at the internal cavity
provide six initial values for the six unknown functions z;; they must be propagated

upwards, till we reach boundary b,.

b) At boundary b,, the additional condition z, = 0 reduces the independent solutions to
two by setting, for example:

A=1,B=0, C=1,
(6.9)
A=0,B=1, C=1.

The above “conditions” (6.9) show that there are only two linear combinations of the three

independent solutions at b,, that give z,= 0.

c) The two independent solutions found at b, are propagated in the fluid outer core till we
reach boundary b,. At this boundary we ensure continuity for z, z,, z,, Z; and zs. At
this point, a third solution is introduced, to account for z;. We set z; = Fand thus, we have

three independent solutions at b,, namely

A=1,B=0, F=0,
A=0,B=1, F=0, (6.10)
A=0,B=0, F=1.

T In reality, instead of setting A, B, C equal to unity, we found that for numerical stability, we had to set these
arbitrary constants equal to | 04
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The first two cases are the solutions coming from the outer core with z; = 0. For the third

solution all z; are zero except for z,, which takes an arbitrary value.

d) All three solutions determined in step (c) above are propagated upwards to the surface.
Atthe surface, the three boundary conditions are used to determine constants A, B, F and

subsequently C. Thus, aunique general solution to the deformation equations is obtained.

The solution of the 12 simultaneous ODE:s of first order is similar to the solution of the 6
ODEs described above, the only difference being the number of boundary conditions and
the number of independent solutions. More specifically, the number of boundary
conditions, as well as the number of independent solutions for the determination of the
initial values are doubled, and thus, the effort for the determination of a numerical solution
increases dramatically. Moreover, for the ocean tide loading case, there exists an infinite
ﬁumber of solutions, each corresponding to different values of wave number n.
Fortunately, for n>300, the solution is a slowly varying function of n and we need only a
few solutions, e.g., for n = 500, 800, 1000, 2000, 5000 and 10000; for intermediate
values of n, a linear interpolation can be used. More importantly, for n>10000, the solution
converges to a constant value and thus, no solutions need to be calculated for n>10000.
Most importantly, from our experience from the numerical integration of the equations of
deformation, only the low degree surface loads (up to n = 10) introduce deformations of
significant magnitude below the core-mantle boundary. For n>10, the integration of the
deformation equations can start in the solid mantle; the radius of the internal cavity can be
larger than that of the core-mantle boundary and thus, the boundary value problem can be

solved on the computer in one step.
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6.4 The Earth Models

The coefficients of the equations of deformation are functions of the elasticity parameters

of the earth, namely A, C, N, L and F, as well as functions of viscosity n, density p,,
gravity g, Gibbs free activation energy G* and absolute temperature T. All the above
parameters are functions of the normalised radius and different models had to be combined

to obtain them.

6.4.1 The PREM

PREM gives density and seismic wave velocities as piecewise continuous polynomials
in the normalised radius. Gravity is given at discrete points and a least squares fit of
piecewise continuous polynomials? in the nprmalised radius is performed.

All the parameters of the PREM are valid for a reference period of 1 sec. To use these
parameters at tidal periods, a transformation was performed according to the formulae

[KANAMORI AND ANDERSON, 1977]

Vplr = Vpli {1 - E mT/(mQ)}, (6.11)
vs‘T=Vs|1 {1'IHT/(7[Q)}’ (6.12)

where v;|; and vy| are the compressional and shear wave velocities, respectively, for period T
(in seconds), v,|; and v, |, are the velocities at reference period of 1 sec, Q is the quality factor

and

E=4/3 (Vslllvp|1)2~ (6.9)

tor degree no greater than four.
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6.4.2 Model SL.8

For values of Q, model SL8 was used. For the different regions in the earth?, an average Q
was taken as representative value. The inner and outer cores as well as the lithospheret were

considered perfectly elastic and thus Q— ©°.

6.4.3 Viscosity Model
To our knowledge, there is no complete model available for viscosity within the earth.

Therefore, we considered various different studies to evaluate viscosity in the mantle.

According to these studies we have the following values (piecewise constant profile):

a) For the lower mantle the value of 2.5x 1022 poise was taken [YUEN ET. AL., 1982].
b) For the transition zone the value of 1022 poise was taken [YUEN AND SABADIN] 1984].
c) For the LVZ the value of 10!7 poise was taken [VETTER AND MEISSNER, 1977; VETTER,

1978].

One may argue whether the above values of viécosity, which have been estimated from long
periodic phenomena, are valid at tidal periods. It is true thatin the past decade or so, inferences
about the viscosity of the mantle have been made almost exclusively from studies of the
post-glacial rebound, assuming Maxwell rheology. However, the resolution of these
techniques is inadequate to detect rapid changes in viscosity with depth [SAMMIS, ET. AL.,
1977]; these rapid changes are required by the convection hypothesis [PELTIER, 1982]. It
appears therefore, that the post-glacial rebound data constrain the value of the average viscosity

in the mantle to be O(1022 poise). VETTER [1978], calculated viscosity profiles for the

asthenosphere using the so called “temperature method.” He assumed creep rates from plate

t Consistent with PREM

¥ Crust and seismic “lid.”
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tectonic movements, a typical value being e=2x10"15 sec*!, which corresponds to a
uniform motion of the plates of 2 cmy~!. For the differeni modeis of ihe asthenosphere he
used (from the viewpoint of composition and thickness), he found that viscosity
differences of about 1.5 orders of magnitude between the continental and the oceanic
asthenospheres are typical. In addition, viscosity in the asthenosphere, at regions away
from subduction zones can be O(10!7 poise), a value also obtained by PELTIER ET. AL.
[1981], by fitting a single relaxation time SLS to the Q’s of the low order fundamental
normal modes of the free oscillations. In support to this short term viscosity is
YAMASHITASs [1979] work. Yamashita, using an SLS rheology with viscosity O(1017-18
poise) was able to explain post-seismic deformations in terms of aftershock occurences.

Other studies have been carried out to infer about the viscosity of the mantle. In general,
we can say that the post-glacial rebound data yield a viscosity for the mantle, which is
O(1022 poise); this value is the average viscosity of the mantle that is required by the
convection hypothesis [PELTIER, ET. AL., 1981]. Viscosity estimates obtained by SABADINI
ET. AL. [1982] and YUEN ET. AL., [1982] show that values O(1022-23 poise) fit the polar
wandering and the rotational data satisfactorily.

YUEN AND FLEITOUT [1984] examined the causes of the convective instabilities below
the oceanic lithosphere. Assuming temperature and pressure dependent viscosity, they
arrived at viscosities O(1022 poise) for the upper mantle and at viscosities O(102? poise) for
the LVZ.

The analyses of a data set (for instance from post-glacial rebound) using different
methods and assumptions give values of viscosity that they may be different even by two
orders of magnitude. Furthermore, the analyses of different data sets covering a wide range
of characteristic time scales (from post-glacial rebound to convection) show that the
differences in the values of viscosity are below the accuracy estimates. This may suggest

that at the moment we are unable to infer about the dependence of viscosity upon
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frequency at long characteristic time scales. The work of YAMASHITA[1979] and PELTIER
EL. AL. [1981], show that in the seismic band, an SLS rheology suggests extremly low
values for viscosity in the mantle O(10!7-18 poise), which agree well with VETTER’s

[1978] values for the viscosity of the asthenosphere, calculated at long characteristic time
scales. It may well be that the low values of viscosity obtained by YAMASHITA[1979] and
PELTIER ET. AL. [1981] reflect the presence of a low viscosity asthenosphere rather than a
low viscosity mantle, i.e., attenuation of seismic waves occurs primarily in the
asthenosphere. If this is true, then the viscosity in the earth may be weakly dependent upon
frequency and it may be safe to assume the same values of viscosity for the entire spectrum
of time scales from seismic deformations to convection. We will see later that this argument

is also supported by the present study.

6.4.4 G* Model

Many independent studies have been carried out in the past to determine Gibbs free
activation energy G*. The most representative value of G* in the LVZ appears to be 125
kCal/Mole [KOHLSTEDT AND GOETZE, 1974; WEERTMAN AND WEERTMAN, 1975]. For
the transition zone and lower mantle, G* increases almost linearly with depth. For these
regions we consider the model given by SAMMIS ET. AL., [1977], for an adiabatic

temperature of 0.3 K / km, consistent with the thermal model of STACEY [1977].

6.4.5 Thermal Model
We consider here Stacey’s thermal model [STACEY, 1977]. We applied a least squares
fit to the discrete values of temperature to obtain piecewise continuous polynomials in the

normalised radius.
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6.5 Computational Results

For the numerical integration of the equations of deformation we apply the finite
difference method. We use subprogram DVCPR of the International Mathematical and
Statistical Library (IMSL) on the I.B.M. 3090-180 VF main frame computer. The finite
difference method algorithm, used by DVCPR, is described by LENTINI AND PEREYRA,
[1975]. We used DVCPR to solve differential systems with known analytical solutions
prior to using it for the solution of the deformation equations and we found that the
accuracy estimates of DVCPR are indeed pessimistic. For the solution of the equations of
deformation we used variable step-size in order to achieve uniform accuracies throughout
the integration interval (from the centre of the earth to the surface). The accuracies of the

final results were of the order of 10-¢ or better.

6.5.1 Load Deformation Coefficients

The load deformation coefficients h’,, k', and I’; can be obtained directly from the
solution of the equations of deformation (5.17). This can be shown easily by simple
considerations. For insiance, having considered that the loading mass is equal to the mass

of the earth, and combining (4.62) and (4.88) the loading potential is

@/ ={GM/R}Y . (6.10)
For gravity g we have
g =GM/R2. 6.11)

Substituting (6.10) and (6.11) into the first of (1.2) and taking into account the first of
(4.79) we obtain
h,=U,. /R, (6.12)

which shows that the first load number is equal to the normalised vertical displacement,

i.e., itis equal to z, (cf: eqn. 5.16). Similarly, I’, is the normalised tangential displacement
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and it is equal to z;. In addition, the radial displacement of an equipotential surface due to
terrain displacement and indirect effect is u, .2 = (1 + k') ®! /g [PAGIATAKIS 1982]
andu, =@, /8, (O, is gravitational + loading potential). Combining the above formulee

with the second of (1.2) we obtain thatz; =1 + K’,. Summarising all the above, we have

h’n = zl,
K =z-1, (6.13)
l’n =Z3.

We solved the equations of deformation starting with the solution of the equations on
a purely elastic, isotropic and nonrotating earth?, for different degrees of harmonic
expansion. Then, we added, one at a time, anisotropy, rotation and dissipation and we
re-solved the equations to determine the effects of the above components on the load
deformation coefficients. The results we obtained are as follows:
aj The load numbers on a purely elastic, isotropic and nonrotating earth were compared
with those of FARRELL [1972]. We found minor differences (1-3%), for n<800. For
n>1000, the differences were of the order of several percent. These differences are
attributed to the different earth models used for the solution of the equations. The more
detailed PREM tends to increase the magnitude of the load numbers of higher degree.
b) Th¢ real part of the viscoelastic load numbers evaluated in this study was compared with
ZSCHAU's [1978] load numbers. Even for the low degree h’ load number (n<10),
Zschau’s values are significanty smaller than ours of the order of 4%; Zschau’s values are
also smaller than Farrell's load numbers by about 2.5%. This disagreement between
Farrell’s and Zschau’s load numbers is not what one might have expected. Both

researchers used the same earth model and it would be reasonable to expect that Zschau’s

t Compressibility and self-gravitation were considered in all cases.
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load numbers would be larger than Farrell’s, since the former are viscoelastic.

c) The effect of anisotropy onl’,, k', and I, , in the upper 220 km is shown in Fig. 6.1
and can be as high as (in absolute value) 1.9%, 2.3% and 2.5%, respectively.

d) The effect of rotation onh’,, K’;, and I, is shown in Fig. 6.2. It can be as large as (in
absolute value) 1.8%, 3.1% and 3.3%, respectively. We found a weak latitude
dependence of the load numbers for n<4. This effect amounts to a maximum of 0.4%,
‘when latitude varies from 0° to +45°,

¢) The dissipation of tidal energy in the earth results in an increase in the absolute value of
the load numbers. Since the effect of dissipation is frequency dependent, we calculated load
numbers at different frequencies. For semidiurnal tides and all degrees of expansion, the
load numbers were systematically larger than on an elastic earth. Yet, this effect never
exceeded 0.2%. However, load numbers calculated at longer periods can be significantly
higher than on an elastic earth. For instance, for n=100 at fortnightly period we found that
k', X’ and I’were larger than their corresponding values on an elastic earth, by 0.5%, 1.5%
and 1.3%, respectively.

f) On a dissipating earth, it is the imaginary part, rather than the real part of the load
numbers, that is more sensitive to Gibbs free activation energy G*, viscosity nand quality
factor Q. More specifically, the imaginary part of the load numbers of 80<n<120 are
sensitive to G*, n and Q values in the LVZ. As an example, for n=100, a change of G* by
Skcal/mole (one sigma), affects the imaginary load numbers by almost two orders of
magnitude; this is equivalent to a phase shift of the order of tens of degrees. A change of n
by one order of magnitude affects the load numbers by one order of magnitude. A change
of Q by 10, affects the load numbers by only 10%. In all cases, the real part was practically
unaffected. It is interesting to note that changes of viscosities by almost two orders of
magnitude in the lower mantle did not affect the imaginary part of the load numbers,

indicating that tidal load dissipation occurs primarily in the LVZ. Complex load numbers on
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Fig. 6 2. Effectofearth's romu‘oﬂon the load deformation coefficients.
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a viscoelastic, anisotropic and rotating earth are given in Appendix III.

f) As a by-product of the integration of the equations of deformation, we obtained load
numbers as functions of depth. We selected to plot h’, and n/’,, versus depth for n = 20,
100, 200 and 500 (Fig. 6.3). We found that after a depth of about 1.2 times the wavelength
of the deformation, the load numbers approach zero, asymptotically. As a rough
rule-of-thumb we can say that load deformations penetrate the earth to a depth, which is
twice the wavelength of the load. For n >500, we can see that the deformation takes place
only in the lithosphere and the discontinuities of density and elastic parameters of the earth
at the depths of 15 km and 24.4 km (Mohorovicic discontinuity) are reflected strongly in

the load numbers, which is intuitively pleasing.

6.5.2 Green’s Functions

For the evaluation of the effect of ocean tide loading on geodetic quantities of interest,
such as, deformations, gravity and tilt, the usual procedure of convolution of appropriate
Green’s functions with an ocean tide model can be followed. For this reason, we evaluated
Green'’s functions for radial and horizontal displacements, gravity and tilt (Fig. 6.4 - Fig.
6.7), following FARRELL'’s [1972] procedure’. Since Farrell’s Green’s functions are the
most widely used nowadays, we decided to tabulate our Green's functions (real part) in
Farrell’s form so as to be easily adaptable into existing software. The imaginary part of the
Green'’s functions is given in the form of phase shift (lag or advance) with respect to the
total load effect (Fig. 6.8). Their numerical values are tabulated in Appendix III.

On a purely elastic earth, the effect of load on any geodetic quantity of interest
decreases as the point of load gets further away from the point of interest; Green’s

functions become smaller (in magnitude) as | increases. This is not necessarily true on a

T We did not use the disc factor artifice however, for two reasons. Firstly because it was introduced by Farrell to
speed up the convergence, a factor very important for the computers of the early 1970’s. Secondly, the disk
factor has been proven to be not exactly correct [see for instance FRANCIS AND DEHANT, 1987] because it
requires the use of Euler’s transformation; this transformation introduces errors for small, as well for large .
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Fig. 6.3.

Load deformation coefficients versus depth.



RADIAL DISPLACEMENT GREEN'S FUNCTION
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Fig 6.4 Radiel displacerment Green's functon (real part). wis redial displacement, R i3 the mean radins

of the earth and y is the geocentric angle between point of interest and point of load.
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TANGENTIAL DISPLACEMENT GREEN'S FUNCTION
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Fig. 6.5. Tangential displacement Green's function (resl part). R 13 the mean radius of the earth

end y i3 the geocentric angle between point of interest and point of load.
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GRAYITY GREEN'S FUNCTION
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Fig. 6 6. Gravity Green's function (real part). gF is the elastic gravity, R i3 the mean radius of the earth

and y 18 the geocentrlc angle between point of interest and point of load.
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TILT GREEN'S FUNCTION
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Fig. 6.7 Tilt Green's function (resl part). 1% is the elastic tlt R is the mean rsdius of the eerth,

and W is the geocentric angle betsreen point of interestand point of losd.
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viscoelastic earth. More specifically, our Green’s functions grow larger (in magnitude) as
s increases from approximately 0.5° to 1°. On the contrary, when {>1°, they decrease as
{r increases. This is explained as follows: As 1y becomes larger than 0.5°, the deformation
enters deeper in the earth and when y=1°, it is the LVZ that supports<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>