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PREFACE 

An abbreviated version of this technical report appeared as Lindlohr and Wells "GPS 

design using undifferenced carrier beat phase observations" in Manuscripta Geodaetica, 

1985, Vol. 10, No.4, pp. 255-295. 

Special aspects of GPS design are additionally dealt with in Grafarend, Lindlohr and 

Wells [ 1985] and in Wells, Doucet and Lindlohr [1986]. 
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ABSTRACT 

The primary theme of this report is a description of the problems and techniques involved 

in GPS network design. A secondary theme is that the undifferenced carrier beat phase 

observation equation is the most appropriate model to use (e.g., Hatch and Larson [1985]), 

not only for GPS design work but also for final processing of GPS observations in a 

network adjustment. 

The GPS carrier beat phase observation equation proposed by Remondi [1985a] is first 

reviewed in its undifferenced form. It is then shown that this can be used to describe 

virtually any GPS observation type, using simple assumptions about what is known a priori 

and what is not. 

GPS design problems are reviewed. Zero-order design describes the datum definition. 

A three-step approach to first-order design, including redundancy design, configuration 

design, and logistics design, is defined. The redundancy design tool is developed and 

applied for several kinds of GPS solutions. Problems in configuration design are 

introduced, with some suggested approaches to their solution. The basis for logistics design 

is laid. An approach to second-order design is given. 
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GPS DESIGN 

1. INTRODUCTION 

This report discusses some problems involved in GPS network design. The discussion is 

based on the undifferenced form of the GPS carrier beat phase observation equation proposed 

by Remondi [1985a], and used by Hatch and Larson [1985]. In this section we introduce our 

notation and terminology conventions, and give an outline of the report. 

1.1 Notation 

X r = <xr.Yr.zr) T 

XS = (xS,yS,zS)T 

r = IIX8-Xrll 

three-dimensional ground station position vector 

three-dimensional satellite position vector 

Euclidean distance between xs and Xr 

complete GPS Ll carrier beat phase observed quantity 

between-receiver phase differencing operator on f/J 

between-satellite phase differencing operator on f/J 

between -epoch phase differencing operator on f/J 

example : 8 V L1 f/J = the triply differenced linear combination of f/J observed quantities 

obtained by differencing first between receivers, then satellites, and finally epochs. 

a receiver-specific bias in f/J 

f3 satellite-specific bias in f/J 

r satellite/receiver pair-specific bias in l/J 

f GPS Ll carrier frequency (154 * 10.23 MHz) 
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c 

n 

m 

quantum numbers: 

g = 1,2, ... ,G 

r = 1,2, ... ,R 

s = 1,2, ... ,S 

t = 1,2, ... ,T 

p = 1,2, ... ,P 

q = 1,2, ... ,Q 

t8 = 1,2, ... ,rs 

tg = 1 ,2, ... ,T g 

J.l 

v 

A. 

vacuum speed of light (299 792 458 mls) 

number of observations 

maximum number of independent unknowns 

ground station index (usually a subscript) 

receiver index (usually a subscript) 

satellite index (usually a superscript) 

measurement epochs (usually an argument) 

observing session index 

observing campaign index. 

independent satellite coordinate corrections epochs 

independent ground station coordinate corrections epochs 

prior information parameter associated with ts 

prior information parameter associated with tg 

observation-to-parameter covariance scale ratio. 

1.2 Terminology 

• Range means the standard distance between two points in a three-dimensional 

Euclidean space. Since real measurements of distance are affected by various disturbances, 

they are biased with respect to the ideal or Euclidean distance. For this reason we call 

distance observations biased ranges [Ashkenazi et al. 1985; Vanfcek et al. 1985]. GPS 
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GPS DESIGN 

measurements, be they code pseudo-ranges or carrier beat phase measurements, are always 

some kind of biased range, as will be shown later. 

• A carrier beat phase observation is a measurement of the phase of the signal 

which remains when the incoming Doppler-shifted satellite carrier signal is beat (that is the 

difference frequency signal is generated) with the nominally-constant reference frequency 

generated in the receiver [Wells 1985]. This is nothing else than a biased-range observation, 

where the range units are metres, and the unit of the GPS i..1 carrier beat phase observations is 

cycles. Note that one cycle of carrier beat phase has the same distance dependence (i.e., 

wavelength) as the original carrier [Remondi 1984; Wells 1985]. These observations can be 

rescaled from cycles to wavelengths (in metres) by the factor elf, where f is the L1 carrier 

frequency, and c is the velocity of light in a vacuum. The result is a biased range. The biases 

involved in carrier beat phase biased-range observations are a main point of discussion in this 

report. 

• The information in which we are interested (the signal) is modelled by desired 

parameters in our mathematical models. Those effects, which must be taken into account but 

are not of interest in themselves (the biases or noise), are modelled by nuisance 

parameters in our mathematical models. Here our use of the terms "signal" and "noise" are 

in the sense of the axiom that "one man's noise is another man's signal," rather than implying 

any stochastic properties (as in "white noise"). 

• The assumption which introduces three unknown coordinates per receiver per 

observation epoch we will refer to as the kinematic or freely defonning net approach. In 

contrast, the static net approximation which is often used does not distinguish between 

different observation epochs. 
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• Similarly, the assumption which introduces three unknown parameters per satellite 

point per observation epoch is often referred to as the free orbit or geometric approach. 

Since we will be considering kinematic and/or free orbit solutions extensively in this report, 

it is well that we state at the outset why we consider them to be important. The kinematic 

and/or free orbit assumptions represent the purely geometric considerations in GPS campaign 

design, but do not take into account all the nongeometric (physical) information we have about 

orbits and network deformations. It is possible to model this additional nongeometric 

information in the form of constraints of some kind. We consider one method of applying 

such constraints later under the topic of second-order design. 

However, for GPS design, it is very important to consider the kinematic and/or free 

orbit approaches very carefully. If we are able to select a GPS campaign design for which a 

kinematic and/or free orbit solution is possible, then the role of the constraints is merely to 

represent the additional nongeometrical information. In that sense the constraints are optional, 

and we have more freedom to apply them in whichever way we choose. On the other hand, if 

we use a campaign design in which no kinematic and/or free orbit solution is possible, then the 

constraints are no longer optional. They are necessary to keep the normal equations from 

being singular. This may limit the freedom we have in deciding how to apply the constraints. 

1.3 Outline 

This report on GPS network design is structured to reflect the various kinds of designs 

involved in the planning of conventional terrestrial geodetic networks. In the terminology of 

Grafarend et al. [ 1979b], for example, 

• Zero-order design deals with the estimability of, the unknown parameters from 
different types of observations, that is, the datum definition. 
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• First-order design deals with the configuration of the stations relative to each other. 

• Second-order design deal with problems of assigning the proper covariance matrix 
to the observations. 

We first deal with GPS zero-order design (the datum definition problem). 

GPS first-order design occupies the main part of this report. In preparation for 

consideration of GPS first-order design, we first digress to discuss two topics: 

• 

• 

The GPS undifferenced carrier beat phase observation equation, which we will 
use, is introduced and discussed term by term. 

The fundamental differencing theorem is introduced, which describes the 
relationship between our undifferenced equation and various differencing approaches 
which have been described elsewhere. 

We then turn to the three GPS design problems which together we have identified as being 

the equivalent of classical frrst-order design. They are: 

• 

• 

• 

Redundancy design. We investigate minimal network configurations, using only a 
Diophantine equation (an equation having only natural number constants and 
solutions) of the form: 

n ~m, (1-1) 

where n is the number of observations, and m is the maximum number of independent 
unknowns. 

Configuration design. This considers the content of the first-order design 
matrix A, partitioned into the "signal" design matrix At, which contains the geometry 
of the layout of the network points, and the bias design matrix A2, containing the 
influence of various biases. 

Logistics design. The logistics design problem is to select mappings of the 
available receivers onto the stations which will result in a network determination which 
is optimal (or at least acceptable) according to some criterion. 

Our discussion on GPS second-order design considers a strategy for taking into 

account prior information about satellite orbits and coordinates of deforming networks. 
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Finally, a summary of the main aspects of GPS design as well as the resulting conclusions 

are reviewed. 

In Appendix A, the validity of the differencing theorem is explicitly demonstrated. The 

structure of the bias design matrix and corresponding normal equation matrix for the most 

general case of undifferenced observations is depicted in Appendix B. Detailed results for 

GPS redundancy designs for many solution types are listed in tables in Appendix C. The 

source code for the Apple Macintosh Basic programs used to generate the results presented 

here are contained in Appendix D. 
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2. GPS DATUM DEFINITION 

In this section we deal with GPS zero-order design (the datum definition problem), 

paying particular attention to three questions: 

• The datum defect of linear combinations of range measurements. 

• Scale datum defect. 

• Zero-order design for deformation networks. 

A three-dimensional datum (reference system) is defined geometrically by three properties: 

origin (3 components), orientation (3 components), and scale (1 component). 

No single observation type provides complete datum information. Observations which are 

invariant with respect to scale cannot provide datum scale. Observations which are invariant 

with respect to translation cannot provide datum origin. Observations which are invariant with 

respect to rotation cannot provide datum orientation. All geometrical observation types can be 

thought of as linear combinations of either distances or directions. GPS measurements are 

exclusively distances or linear combinations thereof (a possible exception is the direction 

content of measurements made with directional antennas, such as micros trip arrays). Here we 

will deal only with the distance content of GPS measurements. 

2.1 Datum Content of Ranges 

Consider a network of points divided into satellite points s = 1,2, ... ,S and ground points g 

= 1,2, ... ,G. A single range observation (ignoring biases, and expressing all quantities in 

metres) is given by 
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where (a I b) : = aTb denotes the Euclidean inner product between vectors a and b. 

Translating the datum by 't'we have 

Xg =Xg + 't'. 

Then 

p~ = ~(X s - x g 1 x s - i g) 

= ~(X 8 + 't'- X g - 't' 1 xs + 't'- X g - 't} 

= ~(X 8 -Xg I xs -Xg) 

=l g 

that is, ranges are invariant with respect to translation. 

Rotating the datum, we have 

where Ra represents a proper orthogonal transformation (RT R = /). Then 

p~ = ~ (x s - x g 1 x s - x g) 

= -.f(X 8 -Xg)T RT R (X 8 -Xg) 

= ~RT R (xs -Xg,Xs -Xg) 

= ~(X 8 -Xg I xs -Xg) 

= Ps 
g 

that is, ranges are invariant with respect to rotation. 

(2-1) 

(2-2) 

(2-3) 
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Changing the datum scale by 1C, we have 

Then 

p~ ~ (xs - x g 1 x s - x g) 

""(7C(X 8 -Xg) l 7C(X 8 -Xg)) 

that is, ranges are not invariant with respect to scale change. 

GPS DESIGN 

(2-4) 

Therefore, range observations cannot provide datum origin or orientation, but 

only datum scale. The missing origin and orientation components are the datum defect, in this 

case equal to six. In a network determined only from range measurements, these missing 

components must be provided by some constraints on the coordinates. These constraints can 

be in the form of either specified (known) values for some network coordinates, or 

relationships between some network coordinates, or weights on some or all a priori coordinate 

values. Here we will assume that specification of these constraints reduces the number of 

unknown parameters by six. 
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2.2 Datum Content of Linear Combinations of Ranges 

Linear combinations of range observations preserve the same datum information as ranges 

themselves, that is, linear combinations are also invariant with respect to translation and 

rotation but not invariant with respect to scale change, that is, for arbitrary coefficients ~ 

(2-5) 

Since each inner product term is invariant with respect to translation and rotation, then so is 

every linear combination. Since all inner product terms are equally rescaled by the same scale 

change, then so is every linear combination. Hence single, double, triple differences and other 

linear combinations of range observations contain, at most, the datum information contained in 

the ranges themselves. 

2.3 Datum Content of Biased Ranges 

We have so far considered the datum content of range observations which are without 

biases. We have established that even such idealized range observations cannot provide datum 

origin or orientation. The actual observations which we wish to consider are not idealized 

range observations. The remaining question is whether these actual, rather than idealized, 

range observations can provide scale. 

Electromagnetic "range" measurement systems, such as GPS, actually measure either some 

kind of signal time delay (for example, GPS pseudo-range measurements), or some kind of 

signal phase comparison (for example, GPS carrier beat phase measurements). Such 

measurements are in time and phase units, respectively, and have no scale content without 
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external information. Thus such measurements, by themselves, have a datum defect of seven, 

rather than six, for idealized range measurements. 

However, we must consider carefully the question of what kind of "external information" 

might be available and appropriate. 

One kind of external information is prior knowledge about the network coordinates, as 

discussed above. Increasing the number of specified coordinate values from six to seven, or 

otherwise applying constraints to reduce the number of unknowns by seven rather than six, is 

one possibility. Another possibility having to do with coordinates is the scale information 

provided by applying weights to some or all a priori coordinate values, particularly when both 

some satellite and some ground points are weighted. However, we usually have more 

appropriate prior knowledge for determining scale; information dealing more directly with the 

root of the problem, which is propagation. 

The scale defect problem is overcome if we can make certain assumptions about 

propagation. In the case of time delay measurements, scale is provided if the mean 

electromagnetic velocity over the measured path can be assumed to be known; multiplying the 

time delays by the velocity yields ranges. In the case of phase comparison measurements, 

scale is provided if both the mean velocity, and the carrier frequency can be assumed to be 

known; multiplying the phase measurements by the velocity/frequency ratio yields ranges. 

There is usually less concern about the validity of the frequency assumption than there is about 

the velocity assumption. 

A slightly different approdch to the velocity assumption is to scale the measurements into 

biased ranges using a conventional value for the speed of light (the vacuum velocity c). Scale 

is now provided if we can assume that the departures of the actual velocity from the 

conventional value, due to atmospheric effects, are known. External information is used to 

provide knowledge of these departures in the form of atmospheric measurements, models for 
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the vertical profile of tropospheric refraction, and models for the dispersive character of the 

ionosphere. 

The scale defect question can be reposed: Do electromagnetic range measurements, 

together with external information on propagation, provide scale? This is essentially 

a philosophical question. One might answer yes, scale is provided, because propagation 

modelling can be refined to whatever precision is required, although perhaps at great effort and 

expense. On the other hand, one might answer no, scale is not provided, since we must 

specify a propagation model in advance, as part of the problem definition, in which case there 

will always be some limiting precision beyond which the model will fail, and scale, as 

provided by the range measurements plus propagation model, will be undefined. From the 

first point of view, electromagnetic range measurements, together with external information on 

propagation, have a datum defect of six. From the second point of view, they have a datum 

defect of seven. 

Let us discuss an actual GPS example from both points of view. Using single frequency 

GPS phase measurements, Gervaise et al. [ 1985] compensated for ionospheric effects with a 

very simple layer model of the ionosphere, which required only an externally-supplied estimate 

of the mean total electron content. The adjusted GPS network scale uncertainty in this case 

turned out to be 0.5 ppm multiplied by the uncertainty in the external estimate of total electron 

content, expressed in units of 1 x 1017 electronsfm2. Taking the first point of view, should it 

be necessary to meet a certain requirement, the uncertainty in the total electron content estimate 

can in principle be reduced by drawing on more external information about the state of the 

ionosphere or, alternatively, a more sophisticated ionospheric model could be adopted. Taking 

the second view, in this case a particular model was adopted, with particular prior information 

about the ionosphere (the total electron content uncertainty was felt to be about 1 x 1017 

electronsfm2) which yielded a scale uncertainty of about 0.5 ppm. For any requirement 

demanding better than this, scale is not adequately realized. 
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Here we assume that GPS carrier beat phase measurements can be scaled from cycles into 

metres by the ratio elf, and that propagation effects have been sufficiently reduced through 

preprocessing using external propagation information, that scale can be assumed to be 

provided. Hence we will assume for the remainder of this report that our measurements have a 

datum defect of six, rather than seven. 

A very different alternative is to reformulate the problem in terms of ratios of biased-range 

observations [Baarda 1973]. This warrants serious consideration for GPS, but is beyond the 

scope of the present report. 

2.4 Datum Considerations in Deformation Networks 

• 

• 

• 

• 

Datum plays a special role in deformation problems. 

If we make a kinematic or freely deforming network assumption (independent 
coordinates for each receiver for each observation epoch), together with the free-orbit 
assumption (independent coordinates for each satellite for each observation epoch), 
then we have a new datum every observation epoch, and the datum defect is no longer 
6, but 6T, where T is the number of observation epochs. A special case, which has 
the same redundancy design, is when there are six coordinates (three at one station, 
two at a second, and one at a third) which do not freely deform. 

If we take the view that range measurements, together with external information on 
propagation, do not provide scale, then the kinematic free-orbit case has a datum defect 
of 7 for every observation epoch, or a total of 7T. 

If it is appropriate to make the static assumption (the coordinates deform so slowly that 
they can be considered constant over the time span of a short GPS campaign), then the 
deformation trajectory must be determined from GPS campaigns repeated at 
appropriate intervals. In this case, the "signal" is the deformation and depends 
critically on accurately relating the datums involved in each campaign. 

Permanent GPS deformation monitoring networks which may well be established in 
the future, will need a careful and likely complicated datum design, which must 
combine elements of both the kinematic and static approaches. 
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3. THE UNDIFFERENCED GPS OBSERVATION 
EQUATION 

Remondi [1984; 1985a, equation 6], Vanicek et al. [1985]; Hofmann-Wellenhof [1985]; 

Hatch and Larson [1985], and Goad [1985] have proposed a GPS carrier beat phase 

observation equation of rather simple form. Here we choose to express all terms in the 

observation equation in units of cycles of the GPS Ll carrier beat phase. For measurements 

made by code correlation receiver channels, one cycle has a wavelength (elf) of approximately 

19 em. For squaring type receiver channels, the wavelength is half this distance. 

3.1 The Observation Equation 

The observation equation for a single (undifferenced beat) phase observation has the 

following form: 

where the quantum numbers are 

subscripts 
superscripts 
arguments 

r = 1,2, ... ,R 
s = 1,2, ... ,S 
t = 1,2, ... ,T 

denote ground station receivers 
denote satellites 
denote measurement epochs. 

(3-1) 

Note that equation (3-1) is linear in the three bias terms, a, {3, andy: While it is nonlinear in 

the coordinate terms, xs and Xr, this is irrelevant for our discussion of the differencing 

theorem in section 4. 

We now discuss in some detail the information content of each term in this equation, and 

how we may go about modelling it. 
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3. 2 The Observed Quantity ¢ 

cp is the complete GPS L 1 carrier beat phase observed quantity, 

cp = y- e = E(y) (3-2) 

where y is the observation, e is the observational error, and E(y) is the expectation ofy. cp can 

be interpreted as a biased range. We make four assumptions about such observed quantities 

here. 

• 

• 

• 

• 

There are no unresolved problems of data simultaneity (ensuring that the relationship 
between measurement epochs at different receivers is taken into account). 

No satellite rises or sets during the observation period . 

There are no receiver malfunctions, that is, all receivers obtain data from each satellite 
at each epoch. 

The measurements have been preprocessed to remove cycle slips, and (to some extent) 
ionospheric and tropospheric refraction effects. 

Thus during an observation session involving R receivers, S satellites, and T epochs, the 

number of observed quantities cp is 

n =R S T . (3-3) 

3.3 Receiver Position Xr 

Xr is the three-dimensional receiver position vector. Usually this is the unknown of 

primary interest, but may not always be so. An example is the case of a network established to 

track GPS signals in order to determine positions of the GPS satellites. Two basic 
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assumptions about Xr are possible: that it varies with time (the kinematic assumption), or that 

it is invariant in time (the static assumption). We consider both cases here. The static 

assumption actually involves the following two assumptions: 

• 

• 

noise effects (for example, earth tides) are accounted for in modelling and 
preprocessing of the data, and may be ignored; 

signal effects, such as network deformations, are so slow with respect to the time 
span of a GPS observation campaign (hours to days) that the receiver position vectors 
can be considered constant over this observation time span. In this case the trajectory 
of the deformations is determined from repeated network solutions at appropriate time 
intervals. 

In this report we consider the following cases for Xr solutions: 

TABLE 3.1 
RECEIVER POSITION SOLUTION TYPES 

Index 

4 
3 
2 
1 
0 

Solution 

kinematic, or freely deforming net 
linearly deforming net 
static net with one moving station (rover) 
static net 
known net 

3.4 Satellite Position xs 

Number of unknowns 

3RT 
6R 
3 (R -1) + 3 T 
3R 
0 

X8 is the three-dimensional satellite position vector at the time of observation. This can be 

treated as completely known (say, from the broadcast ephemeris); approximately known; or 

completely unknown. The second case (approximately known) can be considered the most 

general situation, of which the other two are limiting cases (the degree of approximation being 
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modelled by the covariance matrix of the a priori satellite parameters). In this case, the 

uncertainties can be modelled in several ways: at one extreme by a few nuisance parameters 

(such as one set of tangential, radial and normal translations per satellite pass); and at the other 

extreme by assuming that the uncertainties take on different and independent values for each 

observation epoch [Tsirnis 1973, Grafarend et al. 1979a]. In this report we consider the 

following XS solutions: 

Index 

3 
2 
1 
0 

TABLE 3.2 
SATELLITE POSITION SOLUTION TYPES 

Solution 

free orbits 
unknown Keplerian corrections 
unknown orbit translations 
known orbits 

Number of unknowns 

3ST 
6S 
3S 
0 

3.5 Nuisance Parameters a, {3, and y 

a are nuisance parameters representing all receiver-specific biases (principally 

instantaneous receiver clock time offset, but including other effects like refraction). These 

parameters are dependent on the receiver index and observation epoch, but are independent of 

the satellite index. 

/3 are nuisance parameters representing all satellite-specific biases (principally instantaneous 

satellite clock errors, but including other effects like refraction). These parameters are 

dependent on the satellite index and observation epoch, but are independent of the receiver 

index. 
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yare nuisance parameters representing all satellite/receiver pair-specific biases (principally 

the initial carrier beat phase integer cycle ambiguity, but including other effects like the 

temporally constant content of refraction). These parameters are dependent on the satellite and 

receiver index, but are independent of the observing epoch (at least within each observing 

session). 

A word about modelling these three bias terms. Here we will consider the most general 

cases, that is, that a takes on a different (and independent) value for each receiver and each 

observation epoch; that f3 takes on a different (and independent) value for each satellite and 

each observation epoch; and that ytakes on a different (and independent) value for each 

satellite/receiver pair, for each observing session. These models involve the fewest 

assumptions about the nature of the bias terms. We will show that, after taking measures to 

avoid rank deficiency in the bias design matrix A2, these most general cases are equivalent to 

various differencing approaches. 

Less general models for these biases are possible, however, and will also be considered. 

For example, some degree of:serial correlation could be introduced into the a or f3 biases (or 

both) by using either deterministic or stochastic methods, or a combination of the two. A 

(perhaps extreme) example of a deterministic serial correlation model is the low order time 

polynomial (for example, quadratic) often used to represent a or /3. An example of a 

stochastic serial correlation model would be the application of weight constraints on the 

deviation of each new value of a or f3 from some function of the previous values. It is 

important to note that these less general models involve more assumptions, are less likely to be 

generally valid, and cannot be reproduced by differencing the observations. However, for 

certain applications, they may be appropriate. Three examples are as follows. 

• For networks of limited extent (say less than 50 km) the pair-specific biases yhave 
little atmospheric refraction contamination, and are almost entirely due to the initial 
integer cycle ambiguity, which can usually be determined accurately in preprocessing, 
and then held fixed to an integer value in fmal processing. 
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• 

• 

If we speculate that a network of GPS reference receivers is some day established with 
very accurate clocks (one interesting possibility is to co-locate such receivers with the 
major master clocks in the world), then the main content of the receiver-specific bias a 
would be known external to GPS measurements, and one of the less general models 
could be used. 

For many applications (those not requiring better than metre-level accuracies, for 
example) less general models for the biases, such as quadratic a and/or f3 models, may 
be acceptable. However, we believe this is not an adequate clock model if relative 
positioning accuracies are desired at the limit (em to mm) of GPS capabilities (see 
Figures 3.1 to 3.3). 

In this paper we will consider the following cases for a, /3, and ysolutions: 

TABLE 3.3· 
NUISANCE PARAMETER SOLUTION TYPES 

Bias type Index Solution Number of unknowns 

receiver-specific (a) 3 free R T 
2 quadratic 3 R 
1 offset R 
0 known 0 

satellite-specific (/3) 3 free s T 
2 quadratic 3 s 
1 offset s 
0 known 0 

pair-specific ( n 1 unknown R s 
0 known 0 

3.6 Atmospheric Refraction 

Atmospheric refraction is the bias which is least satisfactorily handled (by this equation or 

by any other). We really can only nibble at the edges of modelling this bias. Preprocessing 

may take a large bite out of the bias ( as noted above): 
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• for the ionospheric part by using either the dual frequency correction (if the L2 GPS 
frequency is available), or a suitable ionospheric model (also if available); 

• for the troposphere models based on vertical profiles inferred from surface 
measurements of temperature, pressure, and water vapour pressure may remove much 
of the bias, particularly for the dry part of tropospheric refraction. 

What concerns us here about atmospheric refraction is what role the biases a, /3, and ymay 

play. That part of the atmospheric refraction (or unmodelled residual refraction) which is 

receiver-specific (possibly due to local tropospheric anomalies, such as weather fronts, which 

affect the signals at a specific receiver, but coming from all satellites in a very similar way) will 

be indistinguishable from other receiver-specific biases and will be modelled by a. That part 

of the atmospheric refraction (or unmodelled residual refraction) which is satellite-specific 

(possibly due to high altitude ionospheric heterogeneities which affect the signals from a single 

satellite very similarly at all receivers) will be indistinguishable from other satellite-specific 

biases and will be modelled by f3. That part of the atmospheric refraction (or unmodelled 

residual refraction) which represents spatial rather than temporal inhomogeneities, and thus is 

constant in time, will be modelled by y. Note, however, that the refraction content of yis 

unlikely to be great in networks of small size (say, less than 50 or 100 km across), because all 

receivers will be similarly affected (except rarely by very local tropospheric phenomena), and 

any inhomogeneities will be mainly satellite-specific and absorbed by /3. For larger networks, 

the refraction content of ywilllimit our ability to extract integer values for the initial carrier beat 

phase ambiguity. Note that in the first two cases (a and /3), caution must be used in 

introducing serial correlation models which ignore the refraction component of each bias. An 

example is the quadratic polynomial for a or f3 mentioned above, which for some applications 

may be suitable to describe clock performance but is unlikely to be helpful in modelling the 

refraction component. From this point of view, the safest route is to use the most general 

model for a and /3, in which no serial correlation is assumed (different and independent values 

are estimated for each epoch). This is what will be assumed here. 
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3. 7 Actual Observational Time Series 

Figures 3.1 to 3.6 present some time series plots of actual GPS observations. These 

figures give us some insight into the time dependent biases a and /3, and also the time 

dependent part of refraction. They demonstrate that much lower noise levels are achieved on 

the differenced data than on the undifferenced data. 

The data were obtained using two Texas Instruments 4100 GPS receivers, located 58 km 

apart, each tracking the same satellites. The receivers were at stations Metcalfe and Panmure of 

the Ottawa GPS test network [Vanfcek et al., 1985b]. The same one-hour time span (0330-

0430 UT, May 23, 1984) is shown in all cases. 

Figures 3.1 and 3.2 show residual undifferenced phase time series ¢(t) from the two 

receivers. Ionospheric refraction effects have been removed by combining the L1 and L2 

measurements. Third-order time polynomials were fitted independently to each of the raw 

satellite-receiver pair one-hour undifferenced phase observation time series ¢(t). This 

polynomial modelled the following effects: 

• 
• 
• 

ljXS(t) - Xr(t)ll term in equation (3-1 ), 

tropospheric refraction effects, and 

slow variations in receiver and satellite clock noise . 

The remaining variations shown in Figures 3.1 and 3.2 are what is left after the polynomial has 

been removed from the original time series, and represent, mainly the sum of higher frequency 

receiver clock noise, higher frequency satellite clock noise, and measurement noise. The 

figures indicate the following. 

• The peak-to-peak total noise level of this residual undifferenced data is about 60 em for 
the receiver at Metcalfe (Figure 3.1), and about 40 em for the receiver at Panmure 
(Figure 3.2). 
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• The spectral nature of the time series from the two receivers is drastically different. 

• 

• 

• 

The Metcalfe data is smoother (more spectral power at longer periods) than the 
Panmure data. However, such different spectral nature is not typical and is likely due 
to a combination of the following differences which were present in this case: 

» different kinds of cesium clocks were used with each receiver, 

» each receiver was operated by teams from different organizations, which may 
have led to slightly different operating procedures. 

The time series from different satellites, but at the same receiver, are almost perfectly 
correlated, as can be seen by comparing the three plots within each of Figures 3.1 
and 3.2. This correlation is due to receiver-specific effects (a bias), mainly the 
receiver clock error. 

The time series from different receivers, but from the same satellites, are almost 
completely uncorrelated (at least before removing the receiver clock errors), as can be 
seen by comparing plots for the same satellite between Figures 3.1 and 3.2. This 
indicates that satellite-specific effects ({3 bias), mainly satellite clock errors, are not 
significant in comparison to receiver-specific effects. 

From these comparisons we see that the first step to re~uce the noise level should be to 
difference between satellites. We consider the results in Figures 3.3 and 3.4. 

In Figures 3.3 and 3.4 are shown between-satellite differenced phase time series Vl{>(t). In 

Figure 3.3 are shown two plots: the differences at a single receiver, but differencing between 

two pairs of satellites, derived from the time series of Figure 3.1. In Figure 3.4 are shown 

three plots, all of single-frequency between-satellite differenced phase time series V¢(t): the 

top two compare the differences using the same satellite pair, and the same frequency, but at 

two receivers; the bottom two compare the differences using the same satellite pair at the same 

receiver, but at two frequencies, Ll and L2. Note that: 

• 

• 

• 

The top plot in Figure 3.3 is the ionospherically corre~ted time series corresponding to 
the combination of the bottom two plots of Figure 3.4. 

The different spectral nature of the time series between Figures 3.1 and 3.2 does not 
appear between the top two plots of Figure 3.4. This further confirms that these 
differences were receiver-specific in origin. 

Because single-frequency data were used for Figure 3.4, between-satellite differential 
ionospheric effects are included. 
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• For all plots in these two figures, the peak-to-peak noise level has dropped to about 10 
em. This represents the between-satellite differences in satellite clock noise, 
unmodelled higher-order orbit variations, and measurement noise. 

We can extract some information about the dependence of these Vcp(t) time series variations 

on frequency, receivers, and satellites. 

• 

• 

• 

• 

The Vcf>(t) time series from the same satellite pair, and at the same receiver, but using 
different frequencies (the bottom two plots of Figure 3.4), are the most highly 
correlated of the three comparisons, but still not as completely correlated as the plots 
within Figures 3.1 and 3.2. 

The Vcf>(t) time series from the same satellite pair, same frequency, but different 
receivers (the top two plots of Figure 3.4 ), are slightly less correlated. 

The Vcp(t) time series from the same frequency, same receiver, but different satellite 
pairs (the top two plots of Figure 3.3), are almost completely uncorrelated. 

From these comparisons we see that we should consider eliminating both ionospheric 
refraction effects, by combining two-frequency da.ta i{ available, and eliminating 
variations in the differential satellite clock bias ({3l - /Y) by differencing between 
receivers. We consider these in Figures 3.5 and 3.6, respectively. 

In Figure 3.5 are shown the ionospheric refraction corrections &/>(t) which were applied to 

produce the ionospherically corrected undifferenced phase time series Vcp(t) in Figure 3.1. 

Actually only the residuals to a first-order polynomial fit are shown here, so that bias and linear 

trend have been removed. The peak-to-peak variations are satellite-dependent and range 

between 5 and 10 em. 

Figure 3.6 shows between-satellite and receiver double differenced phase residual time 

series ..1 Vcp(t). These are the residuals from an adjustment, rather than from a polynomial fit, 

and so it is appropriate to talk about the rms residual values, rather than peak-to-peak 

variations. The bottom plot in Figure 3.6 is based on ionospherically corrected (two 

frequency) data, and is equivalent to double differencing the top two plots from Figures 3.1 

and 3.2. The top two plots in Figure 3.6 are based on single frequency L1 and L2 data. Each 

of these one-hour plots is extracted from an adjustment of longer five hour observational time 

Chapter 3: The undifferenced GPS observation equation Page 27 



GPS DESIGN 

series. The rms residual values for the complete five hour adjustments, for the L1, L2, and 

combined cases, are 3.75 em, 5.75 em, and 2.5 em, respectively. This L2/L1 ratio is 

expected, since the ionospheric refraction effect on the lower L2 frequency is greater than for 

Ll. 

• 

• 

• 

In summary, for these examples, 

the a bias (receiver clocks) is most significant, with peak-to-peak variations of up to 
60 em (3 cycles at the L1 frequency) 

the {3 bias (satellite clocks) and time varying refraction are about equally significant, 
with combined peak-to-peak variations of up to 10 em (0.5 cycle at the L1 frequency) 

the GPS carrier beat phase rms residual noise, having removed the effects of a and {3 
biases, and of first-order time varying refraction, is 'about 2 em (0.1 cycle at the L1 
frequency). 

It would be dangerous, with our present experience and knowledge of GPS, to assume that 

these conclusions are generally valid beyond the specific cases described. However, they 

provide some sort of base upon which bias models can be constructed. As the most obvious 

example, it is clear that, for the observational time series discussed here, a simple quadratic 

time polynomial model for receiver clocks is not adequate, as shown by the structure of 

Figures 3.1 and 3.2. However, in other circumstances (other clocks, other receivers, other 

operational procedures), or for applications where decimetre noise levels can be tolerated, it 

may be that a low-order polynomial would be adequate. 
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4. THE FUNDAMENTAL DIFFERENCING 
THEOREM 

The observation equation described above is formulated in terms of undifferenced 

observations rather than the multiply differenced observations more commonly used for GPS 

[Bossler et al. 1980; Beutler et al. 1984; Remondi 1984; Goad and Remondi 1984]. It is 

possible to obtain undifferenced-observation normal equations which are identical to those 

obtained from differenced observations. In this section we discuss the fundamental 

differencing theorem which describes the conditions under which this equivalence holds. 

is: 

The fundamental differencing theorem [Grant 1976; Vamcek et al. 1985], stated informally, 

Linear biases can be accounted for either by reducing the number of observations so 
that the biases cancel, or by adding an equal number of unknowns to model the biases. 
Both approaches give identical results, under certain circumstances. 

This theorem is described more formally in Grafarend and Schaffrin [1986], and is proven in 

detail in Schaffrin and Grafarend [1986]. Here we simply develop some conditions on both 

the differencing and on the bias modelling, which we will make use of later. The system of 

observation equations is 

E{tp} =A ~=At~~ +A2 ~2, 

(4-1) 
2 -1 2 

Ccn = Qtn (J = P (J = D{y} 
T T<p <p<p 

where tp = 4>- m is the vector of misclosures, ro is a vector whose terms have the form 

(jlc)(p:)0 , and (p:)0 is an a pdori range computed from appropriate (Xr)0 and (XS)0 • Since we 
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consider (Xr)0 and (X8) 0 to be nonstochastic, the covariance matrix of the observations Ccp is 

equal to the covariance matrix of the observed quantities C cl>· ~~ contains the desired 

parameters, and ~2 the nuisance parameters (biases). Similarly, we refer to A 1 as the parameter 

design matrix, and to A2 as the bias design matrix. Here we consider the parameters to be 

corrections to a priori values for Xr and X8 , and the biases to be a, f3, y. Under these 

circumstances, the bias design is linear, completely characterized by A2. 

The differencing approach requires finding a differencing operator D such that 

so that operating on equation ( 4-1) yields 

D <p =D At~~ , 
-1 T 2 Co =DP D a cp cp cp 

leading to normal equations N ~~ = b, where, if a2 = 1 cp 

(4-2) 

(4-3) 

(4-4) 

Let us define the matrix productDT (D P-1 DT)"l D as the kernel of these normal equations. cp 

The undifferenced observation approach (equation ( 4-1)) leads to the normal equations N* ~ = 
2 

b*, where a = 1 cp 

N*=[ 
T 

Ay~2] A 1PcpAt 

T 
A 2PcpAt A 2PcpA2 

(4-5) 

b*=[ 
T 

:J 
A 1Pcp 

T A 2Pcp 
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Eliminating ~2 we have the normal equations N ~ 1 = b where 

N =if P~ At - Ai P~ A2 (Ai P~ A2t1 Ai P~ At 

= Ai {P~ - Pep A2 (Ai Pep A2t1 Ai Pep} At 

b = Ai Pep qJ - Ai Pep A2 (Ai P~ A2t1 Ai Pep qJ 

= Ai {Pep - Pep A2 (Ai Pep A2t1 Ai Pep} qJ. 

(4-6) 

The kernel of the normal equations in this case is {Pep - P~ A2 (Ai' Pep A2t1 A'i Pep}. Note 

that the two approaches differ only in their kernels. The differencing approach is characterised 

completely by the differencing operator D, and the undifferenced approach by the bias design 

matrix A2• From the above we see that the two approaches result in identical normal equations 

when these two matrices satisfy the following conditions: 

• D annihilates A2, that is D A2 = 0, (a necessary but not sufficient condition). 

• D P-1 DT is regular, that is (D P-1 D Ttl exists, (sufficient but not necessary). ep ep 

• A'i Pep A2 is regular, that is (AI Pep A2)-l exists [Wei 1985], (sufficient but not 

necessary). 

• The normal equation kernels from the two approaches are equal, that is, 

or 

(4-7) 

Chapter 4: The fundamental differencing theorem Page 31 



GPS DESIGN 

Note that only the fourth condition is essential, from which the first condition follows. 

Moreover, the second and third conditions can be relaxed [Schaffrin and Grafarend 1986]. Let 

us now look more closely first at the differencing operator D then at the bias design matrix A2. 

4.1 Differencing Operator D 

If one accepts our model of three bias types a, /3, and r, then there are 15 possible 

differencing operations, although there may be many different D operators which accomplish 

each of these. Using the notation V for between-satellite differencing (which eliminates the a 

bias), L1 for between-receiver differencing (which eliminates the f3 bias), and 8 for between­

epoch differencing (which eliminates the rbias), we have the 15 possibilities: 

TABLE 4.1 
DIFFERENCING OPERATIONS 

Single Differencing Eliminates 
1 t/> ~ Vtf> a 
2 t/> ~ L1tf> f3 
3 t ~ &/> r 

Double ifferencing 
4 t/> ~ Vtf> ~ L1 Vtf> a,f3 
5 t/> ~ Llt/J ~ VLlt/J a,f3 
6 t/> ~ Vtf> ~ 8Vtf> a,r 
7 t/> ~ &/> ~ Votf> a,r 
8 t/> ~ L1tf> ~ 8L1tf> f3,r 
9 t/> ~ &/> ~ L18tf> f3,r 

Triple Differencing 
10 t/> ~ Vtf> ~ L1 Vtf> ~ 8L1 Vtf> a,f3,r 
11 t/> ~ Vtf> ~ 8Vtf> ~ L18Vtf> a,f3,r 
12 t/> ~ L1tf> ~ v L1tf> ~ 8V L1tf> a,f3,r 
13 t/> ~ L1tf> ~ 8L1tf> ~ V8L1tf> a,f3,r 
14 t/> ~ &/> ~ Votf> ~ L1Votf> a,f3,r 
15 t/> ~ &/> ~ L18tf> ~ VL18tf> a,f3,r 
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In the examples we discuss below, these differencing operations are order-independent, 

that is, the same total differencing operator D results from double differences 4 or 5, 6 or 7, 

and 8 or 9. All six triple difference sequences result in the same total differencing operator. 

There are only seven distinct differencing operations: three single differences, three double 

differences, and one triple difference. 

There are many possibilities for selecting the basis against which the differences are taken 

by the differencing operator. Here we consider only three. Using the operation ¢ ~ t1¢ as an 

example, these are: 

• Fixed differencing basis [Remondi 1984] 

t1tfJ:(t) = 1/{(t) - ~ (t) (4-8) 

• Sequential differencing basis [Beutler et al. 1984] 

(4-9) 

• Orthononnalized differencing basis, using the Gram-Schmidt method [Bock et al. 1985a] 

(4-10) 

where in all cases, r = 1,2, ... ,R-1. See Appendix A for examples of differencing bases. 

Assuming that P cp =I, our investigations show that: 

• D, the differencing operator, depends on the choice of basis. 

• D nT, the covariance matrix for the differenced observations, depends on choice of 
basis. For example, the orthononnalized basis results in D D T = I. 

• D T (D D Tr 1 D is invariant under choice of basis. 

• For the orthononnalized basis, DT (DDT t 1 D reduces to DT D. 
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When we investigated the "common mode" linear combination observable suggested by Bock 

et al. [1985a] 

q;;(t) = (~) -~ </J~(t) 
1=1 

we found that when it was added to the differenced observations, DT(D nTyl D =I. In this 

circumstance, equation (4-7) cannot be satisfied for any A2 but the null matrix, so the 

differencing theorem, as we have stated it, cannot be satisfied. The equivalence between our 

undifferenced approach and this version of differencing, that is, including the common mode 

observation, is unresolved at present. 

4.2 Bias Design Matrix A 2 

We start our discussion of A2 by applying the words "equal number of unknowns" in our 

statement of the fundamental differencing theorem. According to this theorem, the number of 

(independent) nuisance parameter unknowns on the right-hand side of the undifferenced 

observation equation must be equal to the number of observations eliminated from the left-hand 

side of the observation equation by the differencing operator D. Let the maximum number of 

independent unknowns (using the undifferenced approach) be m = mt + m2, where mt =rank 

A 1 = the maximum number of independent desired, or non-nuisance, parameters in our model; 

and m2 = rank A2 = the maximum number of independent nuisance parameters in our model. 

Restating the differencing theorem in terms of redundancy Diophantine equations, we have for 

the differenced observations 

(4-11) 

and for the undifferenced observations 
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(4-12) 

As we saw from Table 4.1, there are only seven distinct differencing operations. In Table 4.2 

we list equation ( 4-11 ), and m2 for each of these. 

If one considers ~2 to be nuisance parameter vectors of maximum possible dimension (for 

example, RT +ST +RS in the triple difference case), then Schaffrin and Grafarend [ 1986] have 

shown that the A2 matrix will have the rank defects shown-in Table 4.2. That is, the amount 

by which the number of nuisance parameter unknowns must be reduced, in order to equal the 

number of observations eliminated by differencing, is also just sufficient to make A~ P cp A2 

regular (see also Wei [1985]). The rank defects indicate the number of nuisance parameters 

which must be held fixed in the solution, but do not indicate the structure or meaning of the 

parameters to be held fixed. Let us now consider possible structures. Since the undifferenced 

solutions which are equivalent to single difference solutions have no rank defects, we can 

restrict our attention to those solutions equivalent to double and triple differencing. For each of 

the double difference solutions, there are two simple ways in which the rank defect can be 
' 

exactly satisfied, which means we introduce only the minimum number of conditions 

necessary to overcome the rank defect. Other less symmetrical ways to exactly satisfy the rank 

defect, or to more than satisfy the rank defect, are not considered here. For the triple difference 

solution, there are six simple ways of exactly satisfying the rank defect. Let us consider these 

12 possibilities in Table 4.3, and interpret what each implies in Table 4.4. For the sake of 

completeness, we have added cases 13 and 14 to Table 4.3, which look as simple as the other 

cases. However, they actually eliminate one more nuisance parameter than is necessary to 

exactly overcome the A2 rank deficiency. They are, therefore, not equivalent to the 

differencing approach, and lead to different normal equations. 
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TABLE 4.2 
BIAS DESIGN RANK DEFECTS 

m2 - add to both 
Differencing sides to get 

Difference Diophantine Undifferenced Rank 
to equation Diophantine eqn. defect 
Eliminate (4-11) (4-12) ofA2 

Single differences 
1 a R(S-1) T '2 m1 RT 0 
2 f3 (R-1) S T '2 m1 ST 0 
3 r R S (T-1) '2 m1 RS 0 
Double differences 
4 a,f3 (R-1)(S-1) T'2 m1 RT+ST- T T 
5 a, y R(S-1)(T-1) '2 m1 RT +RS -R R 
6 {3, y (R-1) S (T-1) '2 m1 ST + RS- S s 
Triple difference 
7 a, {3, y (R-1)(S-1)(T-1) '2 m1 RT + ST + RS- (R + S + T-1) R+S+T-1 

TABLE 4.3 
BIAS RANK DEFECT MODELS 

Nuisance 
Solution unknowns a model P model ymodel 

Double differences 
1 a,f3 RT + ST- T (R-1) T +ST 
2 RT + (S-1) T 
3 a, r RT +RS -R R (T-1) +RS 
4 RT + R (S-1) 
5 f3,r ST + RS- S S (T-1) +RS 
6 ST + (R-1) T 

Triple differences 
7 a,f3,r RT+ST+RS (R-1)(T-1) +ST + (R-1) S 
8 -(R+S+T-1) (R-1)(T-1) + S (T-1) +RS 
9 RT + (S-1)(T-1) + R(S-1) 

10 R(T-1) + (S-1)(T-1) +RS 
11 (T-1) T +ST + (R-1)(S-1) 
12 RT + (S-1) T + (R-1)(S-1) 

13* (R-1) T + S (T-1) + R(S-1) 
14* R (T-1) + (S-1) T + (R-1) S 
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In each column of Table 4.3, there are only four types of models for each group of nuisance 

parameters. Let us interpret the assumptions lying behind each in Table 4.4. 

TABLE 4.4 
PHYSICAL INTERPRETATION OF BIAS RANK DEFECT MODELS 

a models: 
1 RT 
2 (R-1)T 
3 R(T-1) 
4 (R-1)(T-1) 

f3 models: 
5 ST 
6 (S-1)T 
7 S(T-1) 
8 (S-1)(T-1) 

r models: 
9 RS 
10 (R-1)S 
11 R(S-1) 
12 (R-1)(S-1) 

all receiver clocks completely unknown 
one receiver clock completely known, others unknown 
all receiver clocks synchronized at one epoch 
one clock known, all synchronized at one epoch 

all satellite clocks completely unknown 
one satellite clock completely known, others unknown 
all satellite clocks synchronized at one epoch 
one clock known, all synchronized at one epoch 

all ambiguities unknown 
ambiguities to one receiver completely known 
ambiguities to one satellite completely known 
ambiguities to one receiver and one satellite known 

Note that when we state here that a bias is "known," this is intended in the modelling sense 

only-it forms a "datum," or reference, relative to which the remaining biases will be 

determined. For example, for the a, f3 double difference case, if all receiver clocks and all 

satellite clocks are left completely free in the solution, :there is nothing to provide a "time 

datum," which fact is expressed mathematically in the form of a rank defective A2 matrix. For 

this example, we see that the two possibilities arising from the rank defect of T are to adopt 

either one satellite clock or one receiver clock as the "datum" clock. 

For the cases we have studied: 
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• A2, the bias design matrix, consists only of elements 0 and 1. 

• A2 and Ai' P <p A2 depend on the ordering of the unknowns and on the choice of rank 
defect model. 

• P<p A2 (A~ P<pA2t1 A~ P<p is invariant with respect to the ordering of the unknowns 
and on the choice of rank defect model. 

4.3 Advantages of Undifferenced Observations 

Some of the advantages in using an undifferenced observation equation, rather than 

differencing, are as follows. 

• Using the differenced-observation approach to eliminate satellite-specific biases 
involves forming between-receiver differences. This introduces the baseline vector, 
rather than the position vector, as the basic unknown quantity. This is a new and 
complex concept, particularly when many receivers are being used, which is 
unnecessary using the undifferenced observation approach. 

• Differencing is completely efficient only when there are no data gaps in any of the data 
series being differenced. Gappy data requires rejection of perfectly good undifferenced 
observations, because the "partner" observation in the difference is missing. Figure 
4.1 demonstrates this problem. The undifferenced observation approach retains all 
observations. 

• Differencing has been shown above to be equivalent to assuming a very general model 
for the biases, which is laudably conservative in many cases, but which does not permit 
the inclusion of serial correlation models for the biases. Such serial correlation models 
may be justified in some cases, and can be easily (but cautiously!) implemented using 
the undifferenced observation approach. 

• One of the traditional methods of model improvement is careful study of the nature of 
biases, with resultant refinement of bias modelling. Bias behaviour cannot easily be 
studied if the biases have been cancelled from the observations by differencing. With 
the differencing approach, it may be possible to recover bias values (relative to the 
chosen basis). However, the undifferenced observation approach permits bias 
solutions as part of the original processing, without the need for back substitution. 

• Differencing requires finding some basis system for ~he observations, as described in 
section 4.1. In theory the selection is arbitrary, but in practice a poor basis selection 
may degrade the results. Basis selection requires some care, and adds another step in 
the analysis and processing of GPS data. It is difficult to ascribe physical meaning to 
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such bases as the orthomormalized ones (equation C1-10)). With the undifferenced 
observation approach, a basis selection must also be made to overcome the A2 rank 
defect. In this case, however, the physical meanings are evident (Table 4.4). In the 
future, the differencing basis selection problem will become more acute, and perhaps 
intractable, with campaigns using several roving receivers tracking the full GPS 
constellation 24 hours per day. 
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FIGURE 4.1 
EFFECTS OF DATA LOSS ON DIFFERENCED DATA 

(from VaniCek et al., [1985b]) 
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• Undifferenced observations are closer to the physical observables in GPS receivers, 
and thus are preferable both for aesthetic reasons and because they permit greater 
insight into their physical and geometrical meaning. 

There are, of course, advantages to using the differenced-observation approach as well. 

For example, the between-receiver, satellite and epoch triple difference approach, can and has 

been implemented as an automatic process, including the detection and elimination of cycle 

slips [Goad and Remondi 1984; Beutler et al. 1984]. In our view this is a valid preprocessing 

method. However, both for design, and for final network processing, particularly when the 

limit of GPS capability is required, we feel the above advantages for the undifferenced 

observation approach tilt the balance overwhelmingly in its favour. 

4.4 Commutative Diagram 

Relations between the undifferenced observation approach (equations (4-6)), and the more 

commonly used differencing approach (equations (4-4)) is summarized and more graphically 

illustrated in the form of a diagram in Figure 4.2. Let us consider the central circuit in this 

diagram. 

The undifferenced approach is described by the top and diagonal lines. The upper 

horizontal line describes the mapping of q> onto the estimates of both the desired parameters 

~lu• and the nuisance parameters ~lu (equations (4-5)). The diagonal line describes the 

reduced normal equations, from which ~2u have been eliminated (equations (4-6)). 

Note that we can obtain ~2u equivalently in either of two ways: 

• by proceeding to the top right comer, that is, by solution of the full normal equations 
(4-5), or 
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FIGURE 4.2 
COMMUTATIVE DIAGRAM 
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5.1 Assumptions and Criteria for Optimality 

• 

• 

• 

• 

We adopt the following assumptions and limitations. 

All receivers are deployed simultaneously and only once (that is, we limit ourselves, 
for the present, to solutions based on a campaign of one observing session only). 

The campaign involves R receivers, S satellites, and T epochs, and all receivers 
obtain data from each satellite at each epoch (that is, we always assume the 
expression n = R S T given by equation (3-3)). 

The expression form will be limited to various combinations of the expressions for 
Xg, xs, a, {3, and ywhich are listed in Tables 3.1, 3.2, and 3.3. 

We will consider only designs which are minimal in the following sense: given 
values for any two of R, S, and T, the value chosen for the third is the least value 
which will satisfy equation (5-1). We limit our consideration to designs which fall 
within the region R e {1,20}, S e {1,10}, T e {1,'100}. 

In selecting the most appropriate design from the list of minimal designs for a given type of 

solution, there are several possible optimality criteria which can be used. We consider some of 

these. 

• 

• 

• 

• 

Minimal R. This criterion has perhaps the strongest economic content, since GPS 
receivers (at least at present) are very expensive, and their deployment involves 
manpower costs. 

Minimal S. This criterion has implications for both receiver design and satellite 
constellation design. Actually the goal in either case is not to select minimal S but 
only values of S which are below the lowest of the two thresholds set by the receiver 
and constellation. 

Minimal T. This has some economic content, since recording and preprocessing 
expenses may increase slightly with the length of the data series. Note, however, that 
T represents the number of time epochs at which data is recorded, and not the time 
span of the observations (which is T multiplied by the interval between data samples). 
The time span is one of the most important factors in configuration design, to be 
considered later, and has stronger economic content than T itself. 

Minimal m. Such design(s) involve the fewest necessary unknowns, and therefore 
the smallest set of normal equations, and least computational requirements. 
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• Minimal ST, or minimal R +ST. These designs represent the fewest satellite 
points, and fewest total (ground+ satellite) network points, respectively. Particularly 
for the free orbit solutions, they are a useful indication of what network structures are 
viable without constraints on the orbits. 

5.2 Types of Solutions Considered 

The most general type of solution considers all terms (except f and c, when they are 

assumed to be constants) on the right-hand side of equation (3-1) to be unknown, and all but r 
to be time varying with different values for each observation epoch. We refer to this as the 

kinematic, free-orbit, triple difference solution. In total 

m =3RT+ 3ST + RT + ST + RS- (R+S+T-1)- 6T (5-2) 

where we must reduce the number of unknowns on the right-hand side by the number of 

parameters which must be held fixed (or conditions on the parameters) in order to account for 

the GPS datum defect of six, per epoch in this case. 

The Diophantine equation for the kinematic free orbit triple difference solution is, from 

equations (3-3) and (5-2), 

RST;::: 3RT+ 3ST +'RT + ST + RS- (R+S+T-1)- 6T (5-3) 

Minimal designs for this type of solution are listed in Table C.l. From this list, we can see 

that (given maximum values for R, SandT of 20, 10, and 100, respectively) the minimum 

number of receivers R required is 6, the minimum number of satellites S is 5, the minimum 

number of time epochs T is 2, the minimum number of unknowns m is 300, the minimum 

number of satellite points (ST) is 20, and the minimum number of total network points (R +ST) 

is 38. 
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Other types of solutions which might be of interest are listed in Table 5.1. The resulting 

lists of minimal solutions are given in Appendix C. The minimal values for each of R, S, T, 

m, ST, and R+ST are given in Table 5.2. A guide to the reasons we selected these particular 

solutions for study is: 

• 

• 

• 

Solutions in Tables C.1 to C.6 and C.8 are of interest in studying kinematic modelling 
of deforming networks. 

Solution 40300 (Table C.7) reproduces the well-known GPS four-dimensional 
navigation minimal configuration of one receiver, four satellites, and one epoch. 

Solutions in Tables C.9 to C.18 are of interest in studying strategies for differential 
GPS real-time navigation of moving objects, like ships, planes, and other satellites. 

• · Solutions in Tables C.19 to C.25 are of interest in studying the free orbit approach. 

• 

• 

5.3 

Solutions in Tables C.26 to C.31 represent the standard methods used at present for 
processing GPS measurements. 

Solutions in Tables C.32 to C.38 are of interest in studying strategies for establishing 
networks to determine positions of GPS satellites. 

Comparison with Previous Redundancy Design Studies 

Previous GPS redundancy design studies (e.g., Grafarend and Muller [1985]; 

Delikaraoglou [1985]) lumped all satellite points together, from different satellites and epochs. 

Structures of the biases f3 and yrequire that we consider points from each satellite separately. 

Hence the total number of satellite points in these previous studies is represented by the product 

ST here. The optimality criteria used in previous studies was usually first fewest receivers R, 

then fewest network points (R+ST). 
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TABLE 5.1 
TYPES OF SOLUTION CONSIDERED 

SOLUTION NUMBER OF UNKNOWNS LABEL ON SOLUTION RESULTS 

XgX"aPr Xg X" a p r rank datum 

43331 3RT +3ST +RT +ST +RS -(R+S+T-1) -6T Kinematic, free orbit, triple difference c. 1 
43330 3RT +3ST +RT +ST -T -6T Kinematic, free orbit, double difference c. 2 
43030 3RT +3ST +ST -6T Kinematic, free orbit, single difference c. 3 
43001 3RT +3ST +RS -6T Kinematic, free orbit, Doppler C.4 
43000 3RT +3ST -6T Kinematic, free orbit, unbiased C. 5 
40331 3RT +RT +ST +RS -(R+S+T-l) Kinematic, known orbit, triple difference c. 6 
40300 3RT +RT Kinematic, known orbit, 4-D navigation c. 7 
33331 6R +3ST +RT +ST +RS -(R+S+T-1) -6 Linear deform, free orbit, triple difference C. 8 
23331 3(R-1+n +3ST +RT +ST +RS -(R+S+T-1) -6 Static (rover), free orbit, triple difference c. 9 
23330 3(R-1+T) +3ST +RT +ST -T -6 Static (rover), free orbit, double diff. c. 10 
23030 3(R-1+n +3ST +ST -6 Static (rover), free orbit, single diff. c. 11 
23001 3(R-1+n +3ST +RS -6 Static (rover), free orbit, Doppler c. 12 
23000 3(R-1+n +3ST -6 Static '(rover), free orbit, unbiased c. 13 
20331 3(R-1+n +RT +ST +RS -(R+S+T-1) Static (rover), known orbit, triple diff. c. 14 
20330 3(R-1+n +RT +ST -T Static (rover), known orbit, double diff. c. 15 
20030 3(R-1+n +ST Static (rover), known orbit, single diff. c. 16 
20001 3(R-1+n +RS Static (rover), known orbit, Doppler c. 17 
20000 3(R-1+n Static (rover), known orbit, unbiased c. 18 
13331 3R +3ST +RT +ST +RS -(R+S+T-1) -6 Static, free orbit, triple difference c. 19 
13330 3R +3ST +RT +ST -T -6 Static, free orbit, double difference c. 20 
13231 3R +3ST +3R +ST +RS -S -6 Static,free orbit, 231 c. 21 
13230 3R +3ST +3R +ST -6 Static,free orbit, 230 c. 22 
13030 3R +3ST +ST -6 Static, free orbit, single difference c. 23 
13001 3R +3ST +RS -6 Static, free orbit,Doppler c. 24 
13000 3R +3ST -6 Static, free orbit, unbiased c. 25 
10331 3R +RT +ST +RS -(R+S+T-1) Static,known orbit,triple difference c. 26 
10330 3R +RT +ST -T Static, known orbit, double difference c. 27 
10230 3R +3R +ST Static, known orbit, 230 c. 28 
10030 3R +ST Static,known orbit,single difference c. 29 
10001 3R +RS Static, known orbit, Doppler c. 30 
10000 3R Static, known orbit, unbiased c. 31 
03331 +3ST +RT +ST +RS -(R+S+T-1) Known; free orbit, triple difference c. 32 
03330 +3ST +RT +ST -T Known, free orbit, double difference c. 33 
03230 +3ST +3R +ST Knowri, free orbit, 230 c. 34 
03031 +3ST +ST +RS -S Known, free orbit, 031 c. 35 
03030 +3ST +ST Knowri, free orbit, single difference c. 36 
03001 +3ST +RS Known, free orbit, Doppler c. 37 
03000 +3ST Known, free orbit, unbiased c. 38 
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TABLE 5.2 
MINIMAL VALUES FOR TYPES OF SOLUTIONS CONSIDERED 

SOLUTION MINIMAL VALUES TABLE 
XgX 5 af3y R s T m ST R+ST 

43331 6 5 2 300 20 38 c. 1 
43330 6 5 1 49 5 14 C.2 
43030 5 4 1 35 4 12 c. 3 
43001 4 4 2 189 16 30 C.4 
43000 4 4 1 24 4 10 c. 5 
40331 2 5 2 60 16 22 c. 6 
40300 1 4 1 4 4 5 c. 7 
33331 5 2 3 216 16 31 c. 8 
23331 5 2 2 160 12 26 c. 9 
23330 5 2 1 49 5 14 c. 10 
23030 5 1 1 35 4 12 c. 11 
23001 4 1 2 72 6 17 c. 12 
23000 4 1 1 24 4 10 c. 13 
20331 2 2 2 40 9 16 c. 14 
20330 2 2 1 14 5 9 c. 15 
20030 2 1 1 12 4 8 c. 16 
20001 1 1 2 12 5 11 c. 17 
20000 1 1 1 3 3 4 c. 18 
13331 5 2 2 141 12 24 c. 19 
13330 5 2 1 49 5 14 c. 20 
13231 5 1 2 98 9 21 c. 21 
13230 5 1 1 84 8 19 c. 22 
13030 5 1 1 35 4 12 c. 23 
13001 4 1 2 35 5 12 c. 24 
13000 4 1 1 24 4 10 c. 25 
10331 2 2 2 24 9 13 c. 26 
10330 2 2 1 14 5 9 c. 27 
10230 2 1 1 24 7 12 c. 28 
10030 2 1 1 12 4 8 C.29 
10001 1 1 2 4 4 5 c. 30 
10000 1 1 1 3 3 4 c. 31 
03331 5 2 2 52 4 16 c. 32 
03330 5 2 1 14 2 9 c. 33 
03230 5 1 1 48 4 14 c. 34 
03031 5 1 2 14 2 9 c. 35 
03030 4 1 1 4 1 5 C. 36 
03001 4 1 2 12 2 8 c. 37 
03000 3 1 1 3 1 4 c. 38 
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The specific types of solution considered previously are listed (in our notation) in Table 

5.3. 

• 

• 

• 

TABLE 5.3 
COMPARISON WITH PREVIOUS RESULTS 

SOLN TABLE 

Grafarend and Muller [1985] 

13000 C.25 Static, free orbit, unbiased 
13001 C.24 Static, free orbit, Doppler 

Delikarooglou [1985] 

10030 C.29 Static, known orbit, single difference (model G.1) 
03030 C.36 Known, free orbit, single difference (model G.2) 
13030 C.23 Static, free orbit, single difference (model G.3) 
10230 C.28 Static, known orbit, single difference, quadratic receiver 

clock (model HG.1) 
03230 C.34 Known, free orbit, single difference, quadratic receiver 

clock (model HG.2) 
13230 C.22 Static, free orbit, single difference, quadratic receiver 

clock (model HG.3) 
13231 C.21 Static, free orbit, single difference, quadratic receiver 

clock, ambiguity (model HG.4) 

The 4-6 and 4-10 solutions discussed in Grafarend and MUller [1985] are reproduced 
as special cases in Tables C.25 and C.24, respectively. 

Models G.l, G.2 and G.3 of Delikaraoglou [1985] are reproduced in our Tables 
C.29, C.36 and C.23, respectively. 

Models HG.1, HG.2, and HG.3 discussed by Delikaraoglou [1985] differ from our 
models in Tables C.34, C.35, and C.36, since the Delikaraoglou [1985] models 
include as unknowns only receiver clock coefficients relative to a reference receiver 
clock(= 3(R-1) unknowns), rather than the independent clock coefficients for each 
receiver included here(= 3 R unknowns). However, the only difference between 
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Delikaraoglou [1985] and our results is that our values forST are higher by 3 for 
minimal R, and higher by 1 for greater than minimal R, in all three cases. 

• Model HG.4 in Delikaraoglou [1985] includes only S rather than RS ambiguity bias 
(/?unknowns and does not include the A2 rank defect of S (see Table 4.2, item 6). 
Therefore, the two sets of results are not comparable. 

5.4 Applications of Redundancy Design 

• 

• 

• 

• 

• 

Some interesting examples of the application of redundancy design are as follows. 

Selecting the type of receiver. One criterion for receiver selection is the number 
of satellites which can be simultaneously tracked. Various actual receivers are capable 
of simultaneously tracking one, four, five, six, and nine satellites. If the results of a 
redundancy design indicate a minimum value for S, then a receiver capable of 
simultaneously tracking at least S satellites must be selected, if that redundancy design 
is to be achieved. 

Selecting satellite systems. We have limited our study to a maximum of 10 
satellites, since this is about the maximum that can be expected to be visible at any time 
from the GPS constellation. However, larger values of S would be available if, for 
example, a receiver were to be designed capable of tracking not only GPS satellites but 
also other satellites from similar systems (for example, the 12 satellites of the 
U.S.S.R. GLONASS system which are already in orbit). In this case the advantages 
of larger S values should be studied more carefully. 

Selecting the number of receivers. If the results of a redundancy design 
indicate a minimum required value for R, then only configuration and logistics designs 
involving at least R receivers can be considered, if that redundancy design is to be 
achieved. 

Selecting receiver clocks. Let us say that the comparison between redundancy 
designs which involve the most general model for a (index value of 3 in Table 3.3), 
and redundancy models which involve less general models for a (for example, index 
values of 2, 1, or 0 in Table 3.3) indicate that the design would be significantly 
improved (for example, in the sense of fewer R or S or T or m) if the less general 
model were to be used. The use of more accurate receiver clocks may permit the use 
of such a less general model. Some caution should be exercised, since a is not 
necessarily solely due to clock biases. 

Selecting the processing method. It may be, for example, that double 
differences provide significant redundancy design advantages over triple differences. 
In that case, a preprocessing stage should be considered which will provide integer 
estimates for ywhich can then be held fixed in the fmal processing. 
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5.5 Conclusions for Each Optimality Criterion 

Many interesting facts from which one can draw conclusions for each optimality criterion 

have been described in the previous subsection. On the one hand, it is rather simple to get 

optimal designs if only one criterion is considered. Minimal values of R, S, and T, all equal to 

one, can only be obtained in a small number of solutions. Solutions which include between­

epoch differencing (that is, j'-biases are estimated in the biased-range approach) require a 

minimum of two epochs. If one is able to allow large enough numbers of receivers and 

satellites, many minimal redundancy designs can be obtained with only one or two epochs. 

On the other hand, for practical reasons, the network designer should consider a 

combination of some, and perhaps even all, of the optimality criteria mentioned above. For 

example, if T has been designed as low as possible (one or two), we will end up with rather 

large values for RandS. This may lead to better redundancy designs for some criteria (say, m 

and R+Sn, but will degrade the redundancy design according to other criteria (e.g., RandS). 

Therefore an appropriate balance between different optimality criteria will often be desired. 
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6. GPS CONFIGURATION DESIGN 

We consider redundancy design to be a simple algebraic first step in the first-order design 

problem - placing necessary, but not sufficient, conditions on the regularity of the normal 

equation matrix. Configuration design is the more extensive second step. For GPS, as 

equation (4-1) implies, there are two types of configuration design, which we label "network 

configuration design" and "bias configuration design," referring respectively to the structures 

of A 1 and A2 in equation (4-1). Section 4.2 deals with bias configuration (A2) design. 

Appendix B contains examples of the structure of A2. 

6.1 Network Configuration Design 

Network configuration design is the GPS first-order design step which is most similar to 

terrestrial network first-order design. The main design tool for network configuration design is 

likely to remain computation of the estimated solution covariance matrix under simulated 

conditions- essentially an iterative approach. However; there may be some aspects that can 

be tackled in a more satisfying theoretical way. 

There are differences between GPS and terrestrial network configuration design. We may 

consider the entire set of ground and satellite points to be analogous to the set of terrestrial 

network points in a classical design problem. In terrestrial design, our freedom of selection of 

station locations is limited by practical considerations, most notably intervisability. The 

selection of ground points in GPS configuration design has no such limitations (except for 

shadowing and reflection of the satellite signal, which is a much more local problem). 

However, we have much less control over "constellation design," that is, the configuration of 
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the satellite points. They are determined by the designers of the GPS system. We are only free 

to select the times and time span for which we make observations, and to select which satellites 

to track (if we do not take the more geodetically reasonable decision to track all available 

satellites). Therefore the problem of GPS configuration design is mainly concerned with two 

factors: selecting the observing session times, and the configuration of the ground points. 

Once full GPS coverage is available after 1989, observations made for equal periods, but at 

different times in the day, are unlikely to provide significantly different results (apart perhaps 

from refraction considerations), although the observing time span will still be an important 

design selection. As regards the ground station configuration, we are freer than in the 

terrestrial case to select regular geometric patterns of stations which may be more amenable to 

theoretical analysis than irregular patterns. 

One question concerning satellite point selection is the important one of the relative 

advantages of space and time diversity. Is it better to track as many satellites as possible for a 

short period, or to track fewer satellite over longer arcs? In our terms, should we prefer to 

minimize S or T? For example, for the kinematic, free orbit, triple difference solution (Table 

C.1), given 14 receivers R, the minimal S-design is 5 satellites for 52 epochs, while the 

minimal T-design is 8 satellites for 3 epochs. Which is better from the configuration point of 

view? 

For ground networks established to determine the positions of GPS satellites, what 

distance apart must the stations be to achieve a given accuracy in the satellite coordinates? 
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6.2 Symmetry of Diophantine Equations 

Referring to the contents of the last two paragraphs, let us consider solution types for 

which the Diophantine equation (5-3) is symmetrical, that is, unchanged under exchange of 

quantum number values. We observe that: 

• 

• 

• 

• 

Neither R and T nor SandT are symmetric in any of the cases considered in this 
report. 

R and S are symmetric, that is, all points of a GPS network configuration are 
equivalent, when they are symmetric for both the non-bias parameters (modelling Xg 
and XS) and for the bias parameters (modelling a, {3, 1). 

R and S are symmetric for the non-bias parameters in the following cases: 

» kinematic, free orbit 

» static, unknown orbit translations 

» known ground stations, known orbits. 

R and S are symmetric for the bias parameters in the following cases: 

» triple difference 

» between receiver and satellite double difference 

» between epoch single difference. 
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7. GPS LOGISTICS DESIGN 

Given R receivers and G ground stations (whose locations have already been determined 

from the configuration design), the logistics design problem is to select P mappings of the 

receivers onto the stations which will result in a network determination which is optimal (or at 

least acceptable) according to some criterion. 

In the present era of expensive receivers and short daily GPS coverage periods, the 

logistics design problem degenerates into the rather simple problem of selecting which 

baselines to observe. Formal logistics design has not generally been undertaken for GPS 

campaigns so far. 

With the advent of inexpensive receivers and continuous coverage, the problem becomes 

much more complex. Proper logistics design, in addition to proper configuration design, is 

required to optimize various aspects of network determination, such as accuracy, observation 

time, and perhaps most important, cost. 

In order to deal with the logistics design problem in a more complete way, we extend the 

number of observing sessions from the single session we have considered so far to multiple 

sessions. At flrst we assume that there is a definite break between each of the multiple sessions 

(as is the case today, with satellite coverage of only a few hours per day). Then we consider 

the case of continuous satellite coverage (expected after 1989), and suggest that any change 

whatever in the configuration of either satellites or ground stations (satellite rise or set, receiver 

move or loss of lock, or even cycle slip) is sufficient reason to declare a new incremental 

session to have begun. 

Recently, investigations into logistics design have begun. Hothem et al. [1984] discussed 

some practical aspects of two-receiver campaigns. Network logistics with three or four 
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receivers have been treated by Snay [1986]. Design considerations for multi-receiver 

campaigns are given in Vanfcek et al. [1985]. 

7.1 Extension From Single to Multiple Observing Sessions 

So far we have assumed that the number of available and simultaneously tracking 

receivers equals the number of ground stations to be observed. Now let us use separate 

quantum numbers to represent receivers and ground stations: for receivers r = l,2, ... ,R and 

for ground stations g = 1,2, ... ,G, where G > R. Here, we further assume that during 

different sessions, different numbers of receivers will be used to observe different numbers of 

satellites over different time spans, and hence introduce subscripts on R, SandT above. For 

the pth session we have: 

r = 1,2, ... ,Rp 

s = 1,2, ... ,Sp 

t = 1,2, ... ,Tp. 

Each value for s refers to a separate continuously-tracked arc of a specific satellite. If the signal 

is lost and regained from a satellite, each arc will have a distinct value for s, and Swill be 

incremented by one. 

Neglecting receiver failures, in many campaigns Rp will be equal for all sessions. The 

number of satellites Sp depends on the network location on the earth's surface, the observing 

time span, and the observing time of day. Depending on the receiver design, Tp may be the 

same for all sessions (for example, for the Macrometer), or may be completely different from 

session to session. The number of observations during the pth session now becomes 

(7-1) 
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while the total number of observations in the whole campaign assembled from P sessions is 

(7-2) 

In the most general case, the number of unknowns of various types over the whole 

campaign, under the modelling assumptions which we have made, are shown in Table 7.1. 

TABLE 7.1 
MULTIPLE SESSION PARAMETER MODELS 

ground station coordinates Xg => 3G L Tp 

satellite position biases xs => 3 L Sp Tp 

receiver-specific biases a => L Rp Tp 

satellite-specific biases {3 => L Sp Tp 

pair-specific biases r => L Rp Sp 

We must reduce the number of unknowns by the number of parameters required to be held 

fixed in order to solve for the datum defect, which is 6T p for session p, or a total of L6T P• and 

by the number of bias unknowns required to satisfy the A2 rank defect, which is Rp+Sp+Tp-1 

for sessionp, or a total of I,(Rp+Sp+Tp-1). We end up with the total number of unknowns to 

be: 

m = I,{3GTp + 3SpTp + RpTp + SpTp + RpSp- (Rp + Sp + Tp- 1)- 6Tp} (7-3) 
p 

In this discussion we have adopted the kinematic model for the ground stations, under 

which the coordinates for each ground station are assumed to have different and independent 

values for each time epoch t. This has several implications. 
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• 

• 

• 

During a multiple-session campaign, any particular ground station will be occupied by 
a receiver for only some of the sessions. During the sessions when a station is not 
occupied, under the kinematic assumption we have no information whatever about its 
position or trajectory. 

The kinematic assumption, together with the free orbit assumption, introduces a new 
datum defect of 6 for each observation epoch t. This introduces the problem of what 
connects the ground station coordinates between different epochs. 

Even if the known orbit assumption is made, the kinematic assumption still introduces 
the problem of what connects the ground station coordinates between different 
sessions. See Figure 7.1 for an example. 

0 

0 

0 

x 3 (p=l) 

FIGURE 7.1 
KINEMATIC NETWORK MOVEMENT 
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• If significant deformations are expected to occur during the interval between GPS 
observations (seconds to minutes), then it is likely that GPS is not an appropriate 
measurement tool for these deformations. 

• Due to these implications, we will consider only the static case for the remainder of 
this section. In that case, equation (7-2) becomes 

m = 3G +L {3SpTp + RpTp + SpTp + RpSp- (Rp + Sp- 1)}- 6, (7-4) 
p 

and the Diophantine equation is 

7.2 Extension From Multiple to Incremental Observing Sessions 

In the above extension to multiple observing sessions, the assumption was still made that 

during each session each available receiver tracked all available satellites for all epochs 

(equation (7-1)). This may be a reasonable approximation of the actual situation during a 

campaign held while the GPS coverage is still limited to a few hours per day. However, once 

continuous GPS coverage is available, there will no longer be definite breaks between 

sessions. Then we need to modify the meaning of the session index p. Now p will be 

incremented whenever the configuration of receivers and satellites changes: that is whenever 

• 

• 

• 

a satellite rises or sets, or 

a receiver loses lock on any satellite, or 

one or more receivers are shut down to be moved. Regarding this last point, the ideas 
presented by Remondi [1985b] and Hofmann-Wellenhof and Remondi [1985] indicate 
that maintaining receiver tracking while moving from one station to the next would 
provide significant advantages. 
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We now say that p represents the incremental session index. The assumption that all 

receivers track all satellites for all epochs during a session will now continue to hold. 

However, the number of incremental sessions may well be many more than under the 

definition of session accepted so far. 

New bias terms may be introduced whenp is incremented, depending on the model we use 

for the bias terms. In the most general model, since new values for a and f3 are introduced for 

each time epoch anyway, a change in p has no special effect. In this case, however, new r 
values must be introduced, but only for those satellite/receiver pairs which have caused the 

change in p. Similarly, if we use less general models for a and {3, some but not all of the 

biases will need to have new coefficient terms introduced whenever p changes. 

Since, in general, not all but only certain of the bias terms will be affected by incrementing 

p, we must introduce some factor to indicate which and how many satellites or receivers or 

receiver/satellite pairs are unaffected by the change. The intersection between the new and 

previous sets performs this task: that is, 

Rp n Rp-1 represents the number of unchanged receivers, 

Sp n Sp-1 represents the number of unchanged satellites, and 

(Rp n Rp-1)(Sp n Sp-1) represents the number of unchanged receiver/satellite pairs. 

The total number of observations in the campaign is still given by equation (7-2). 

However, the total number of unknowns for the most general case is now given by 

p 
- L, (Rp nRp-1)(Sp n Sp-1)- 6. 

p=2 

The Diophantine equation is 
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(7-7) 

There is much yet to be done in investigating GPS logistics design. One must first adopt 

some particular logistics design strategy, and then study the implications for redundancy design 

(using equation (7-7)), and for configuration design (both bias and network configuration 

designs), using the incremental observing session concept we have introduced. Here we 

conclude by describing some possible logistics design strategies which have been suggested. 

7.3 Examples of Logistics Design Strategies 

So far, we have dealt mainly with theoretical/analytical considerations of the logistics 

design problem. Now we give a short review of some concrete strategies for solving logistics 

design problems. 

Some algorithms applicable for GPS surveys are given by Snay [1986], considering three 

influences. 

• 

• 

• 

The number of receivers is restricted to three or four . 

In order to be aple to detect setup errors of the receiver antenna with respect to the 
terrestrial bench mark, two independent observed baselines to each ground station are 
required. In order to be able to identify setup errors, three independent baselines to 
each station are required [Hothem et al. 1984]. Therefore, Snay requires that every 
ground station should be occupied three times (to identify set up errors), or, for a more 
economical network design, only twice (to merely detect setup errors). 

Finally, Snay distinguishes between one-dimensional loop geometry and a two­
dimensional area geometry. 
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A couple of examples show the practical procedure for logistics design solutions. However, 

we have to keep in mind that with a sophisticated observed model, that is, with many unknown 

bias terms, we very often need five or even more receivers, as can be seen from our 

redundancy design analyses. 

Other important aspects in practical logistics design are considered by Vanfcek et al. 

[1985]. Assuming typical time intervals for observing sessions, as well as equipment setup 

and teardown times, the total number of receivers required has been computed depending upon 

the station spacing and network diameter. An idealized structure based on equilateral triangles 

has been used as the basic figure for the network of ground stations. With increased station 

spacing, the results differ significantly if the transportation of the receivers is done by land 

vehicles or helicopters. In small scale applications, however, most of the overhead is due to 

the setup and teardown delays, rather than travelling time. 

As can be seen from these examples, a lot more work remains to be done in the field of 

GPS logistics design. Logistics design will be a critical component of GPS first-order design 

when receivers are much less expensive, and 24-hour coverage from the full GPS satellite 

constellation is provided, both of which are expected to occur in 1990. 
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8. GPS SECOND-ORDER DESIGN 

In this section, we provide some initial hints as to how one specific GPS second-order 

design problem might be approached. This problem can be stated thus: How may prior 

information be used to model the "stability" of satellite and ground points? We first discuss 

what we mean by the term stability. We then discuss some aspects of using prior information 

that may lead to a solution to our problem. 

8.1 Modelling Stability 

By stability we mean the time span over which a model is valid. We introduced two basic 

assumptions (stability models) about the receiver coordinates Xr. which we called the kinematic 

and static assumptions. Similarly, we considered the free orbit and known orbit assumptions 

(stability models) regarding the satellite coordinates xs. In this section, we consider a more 

generalized approach, of which these are the limiting cases. In doing so, we follow the 

suggestion of Brouwer [ 1985] for modelling the stability of VLBI source coordinates 

(equivalent to our xs). 

To apply the Brouwer approach to GPS, we must distinguish between several sets of time 

epochs: 

• 

• 

• 

observation epochs t (which may be between seconds and minutes apart) 

epochs ts at which it is appropriate to estimate new corrections to a priori satellite positions 
(which may be between seconds and hours apart) 

epochs tg at which it is appropriate to estimate new corrections to a priori ground station 
coordinates (which may be between seconds and decades apart). 
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Let us assume that each of these sets of epochs is equispaced in time, that is, the intervals 

between epochs are constants &, &s, and &g, respectively. We introduce two stability 

parameters, J.l and v, such that J.l = &t&s, and v = 8t!8tg. Then, as J.l ~ 1 (&s ~ &, or 

decreasing stability), the satellite model approaches the free orbit model, and as J.l ~ 0 (ots ~ 

oo, or increasing stability), the model approaches the known orbit model. Similarly, as v ~ 1 

(8tg ~&,or decreasing stability), the ground station model approaches the kinematic model, 

and as v ~ liT (Otg ~ T 8t = the complete observation period, or increasing stability), the 

model approaches the static model. 

The goal is to have J.l and v stability parameters for groups of network points, or even 

individual ground points, in the case of deformation studies. The hope is that the stability 

parameters can be related to some method of taking prior information into account. 

8.2 Prior Information Considerations 

A very detailed description of the theory and application of stochastic prior information is 

given in Schaffrin [ 1985]. We follow some of this ideas here. In general, prior information is 

taken into account on two levels, that is, by the vector of a priori values and its corresponding 

covariance matrix. The application of some of these general models for GPS has been 

presented in Grafarend et al. [1985a]. 

Let us now consider normal equations N ~ = b, which take into account only the covariance 

matrix of (stochastic) prior information. Then we have 

(8-1) 
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Assuming that the a priori covariance matrix C~ is regular, the normal equations can be 

transformed into 

T -1 b:;:;;A C qJ. 
<p 

(8-2) 

From this equation we can see that some a priori weights on the parameters have been added to 

the normal equation matrix of equation (4-5). Often this is done to regularize the normal 

equations and make Cayley inversion possible. Here our purpose is different- we wish to 

use the prior information to model the stability of the solution parameters. 

Looking at the problem from the filtering point of view, the solution to the normal 

equations is 

(8-3) 

where 

(8-4) 

Using matrix identities given by several authors (e.g., Wells [1974]), we can also write 

(8-5) 

Processing the observations epoch by epoch, using the summation of normal equations 

technique, we have 

~(t) :;:;; K(t) <p(t) (8-6) 

where 

1 t-1 1 c; (t) = L, AT(k) c· (k) A(k) . 
~ k=1 <p 

(8-7) 
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-1 -2 -1 -2 
Starting with the simplest example, where C cp =I acp and Cl; =I 0"1; , we have 

-2 
b =a AT qJ • cp 

(8-8) 

Introducing A= (aq/q)2, which describes the ratio of the a priori variance factors for the 

observations and the prior information, we end up with the following solution for the 

parameters: 

(8-9) 

To generalize, rather than the scalar matrix I A, we introduce a diagonal matrix so that each 

point or group of points has associated with it its own value for 1. Still looking at the 

adjustment from the filtering point of view, we realize that every filter has a time constant 

associated with it. Two of the challenges remaining to solve our problem are, first, to obtain 

expressions for such time constants which involve these A (or other similar) parameters, and, 

second, to relate these time constants to the stability parameters we introduced earlier. 
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9. SUMMARY AND CONCLUSIONS 

The following statements summarize the important conclusions which can be drawn from 

the discussions contained in this paper. 

• Undifferenced and differenced GPS carrier beat phase observations result in the same 
normal equations for the estimates of the desired parameters, as long as the models 
chosen for the undifferenced observation biases satisfy the assumptions of the 
fundamental differencing theorem. 

• Four conditions related to the validity of the fundamental differencing theorem are given 
and explicitly demonstrated. Only one of them is essential. 

• Normal equations for the desired parameters based on undifferenced observations are 
independent of the choice of model to satisfy the bias rank defect. 

• Normal equations based on differenced observations are independent of the choice of 
differencing basis and of the order of differencing. 

• There are many advantages to using the undifferenced rather than the differencing 
approach. 

• As in all geodetic measurements involving electromagnetic propagation, atmospheric 
refraction is the most difficult effect to model and places the ultimate limitation on the 
capabilities of GPS. 

• GPS first-order design can, in some sense, be defined in terms of three steps: 
redundancy design, configuration design, and logistics design. 

• A linear combination of GPS measurements has the same datum defect as geometrical 
ranges themselves, that is, origin and orientation (six components). Scale may or may 
not be provided, depending on the validity of atmospheric refraction modelling. 

• Extensive redundancy design results confirm and extend previous work. 

• Varying the models for the desired and the nuisance parameters, between the most 
general case and the simplest one, any possible redundancy design can be evaluated 
using a convenient computer program. 
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• The kinematic and free orbit assumptions are important considerations in design, 
although all appropriate constraints should be used in actual processing of data. 

• Some examples of applications for different optimality criteria for redundancy design 
are presented. 

• Configuration design can be subdivided into bias configuration design, and network 
configuration design. 

• The fundamental differencing theorem is the main tool in bias configuration design. 

• Network configuration design consists of selecting the observing session times 
(constellation design) and the conventional terrestrial configuration of the ground 
station points. 

• GPS logistics design selects a set of mappings of available receivers onto the ground 
stations selected in the configuration design. This involves extending the concept of a 
session to include incrementally changing observing conditions. 

• One challenge in GPS second-order design is the use of prior information theory to 
model the stability of satellite and ground points. 

• The triple difference solution (whether using the undifferenced approach, the 
differenced-observation approach, or a combination of the two) accounts for the biases 
as generally as possible. 

• While solutions, other than the triple difference one, involve less complete bias models, 
for certain applications this may not be a serious problem. 
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APPENDIX A 

DEMONSTRATION OF THE 
DIFFERENCING THEOREM 

GPS DESIGN 

Within this appendix, we intend to demonstrate explicitly the conditions which are 
sufficient to guarantee the validity of the fundamental differencing theorem. 

The demonstration will consist of showing that the following four conditions hold for a 
specific case. These conditions, already given in Chapter 4, involve only the differencing 
operator D, and the bias design matrix A2: 

• (D DT)-1 must exist 

• (A~ A2)-1 must exist 

• D A2 = 0 

• DT (D DT)-1 D + A2 (AI A2)· 1 Ai =I 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

The specific example which we have chosen to use in this demonstration is the sixth design 
listed in Table C.27: the static, known orbit, double difference solution, using R = 3 
receivers, S = 6 satellites, and T = 1 observation epoch. 

A.l Condition (A-1) 

The references against which the differences are taken by the differencing operator can be 
formulated on a fixed basis (case 1), or a sequential basis (case 2), or an orthonormal basis 
(case 3). In our example, we will use a fixed receiver basis, and a sequential satellite basis. In 
this case the covariance matrix of the differenced observations (DDT) is 

4 2 2 1 2 1 2 1 2 1 
2 4 1 2 1 2 1 2 1 2 
2 1 4 2 2 1 2 1 2 1 
1 2 2 4 1 2 1 2 1 2 
2 1 2 1 4 2 2 1 2 1 
1 2 1 2 2 4 1 2 1 2 
2 1 2 1 2 1 4 2 2 1 
1 2 1 2 1 2 2 4 1 2 
2 1 2 1 2 1 2 1 4 2 
1 2 1 2 1 2 1 2 2 4 
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The determinant of (DDT) is 8748, proving its regularity and satisfying condition (A-1). 

For the orthonormalized basis, the differencing operator has been constructed in such a 
way that the row vectors of D are orthogonal to each other and have a unit norm. This implies 
that (DDT) is a unit matrix, with dimension equal to the number of differenced observations. 
Even if D is composed of three single orthonormal differencing operators, the condition (A-1) 
holds. 

A.2 Condition (A-2) 

From Table 4.2, we see that the rank defect of the bias design matrix involving nuisance 
parameters ex. and ~ is equal to T. For our double difference example, A2 has a rank defect of 
T = 1. This can be removed by using either one receiver clock or one satellite clock as a 
completely known reference (i.e., the master clock). Using CX.3 as the master clock, the matrix 
AI A2 is given by 

6 0 I 1 1 1 1 1 1 
0 6 I 1 1 1 1 1 1 
---------------------------------------------------------
1 1 I 3 0 0 0 0 0 
1 1 I 0 3 0 0 0 0 
1 1 I 0 0 3 0 0 0 
1 1 I 0 0 0 3 0 0 
1 1 I 0 0 0 0 3 0 
1 1 I 0 0 0 0 0 3 

CX.} CX.2 ~1 ~2 ~3 ~4 ~5 ~6 

The determinant of AI A2 is also equal to 8748, which allows normal Cayley inversion. 

A.3 Condition (A-3) 

The condition D A2 = 0 can be demonstrated rather simply for the fixed and sequential 
differencing bases, since then D contains only + 1, 0, and -1 values. Here we choose to 
demonstrate it for the more interesting orthonormalized basis. First we will develop general 
expressions for the triple differencing case, and then apply them to our simpler double 
differencing example. 

Applying equation ( 4-10) three times, first we have between-receiver differences 
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(A-5) 

Applying the same equation a second time to obtain between-receiver and satellite double 
differences, we have 

(A-6) 

Substituting equation (A-5) twice into (A-6), we have 

Finally we apply the Gram-Schmidt orthonormalization a third time to obtain triple differences 

Inserting equation (A-7) into (A-8) twice, we have 

where 

1 r s t . 

L.l = - <t> L L L ~(k) 
rs i=l j=l k=l 1 

1 s t . 
L2 = <st~ .L L ~+1 (k) 

j=l k=l 

1 r s . 
L4 = (-) L L ~(t+l) 

rs "1"11 1= J= 
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1 s . 
L.6 =- (-) L. <P! 1(t+1) 

s . 1 r+ l= 

8 = ~~.s+l(t 1) 
"'r+l + 

where in all cases r=1,2, ... ,R-1; s=1,2, ... ,S-1; t=l,2, ... ,T-l. 

Equation (A-9) is merely a description of the differencing operator D using an 
orthonomalized basis, where in the sequence of the observation vector, R is the fastest index 
and Tis the slowest one. 

From our computations we draw the following conclusions: 

• The condition D A2 = 0 holds. 

• A2 is independent of the differencing basis, of course. 

• As is shown in Table 4.1, the sequence of the differencing is arbitrary. 

• The differencing operator given by equations (A-9) is the most general one, which 
includes all other differences on a lower level. If one selects terms which are 
related to only one or two of the quantum numbers r, s, t, every differencing 
operator using the orthonormalized basis can be obtained. 

• If the phase observations are ordered in a receiver-wise manner, that is, tis the 
fastest index and r the slowest one, then the structure of the D matrix changes, but 
not its individual elements. 

• D A2 = 0 can be more easily verified for the fixed and the sequential bases because 
only + 1, 0, -1 values occur in both the D and A2 matrices. 

The validity of the condition D A2 = 0 is now explicitly demonstrated for the example given 
earlier in this appendix. For the four possible cases of the double difference observations, it 
can be shown that: 
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(a) 2,4 + 2,3 = 0 

(b) L-6+8=0 

(c) 2,4 + L.6 = 0 

(d) 2.7 + 8 = 0. 

A.4 Condition (A-4) 

This last condition is only explicitly demonstrated for the example used throughout this 
appendix. For the first part, DT(D DTt1D, we have Fig. A.1, and for the second part, A2(Ai 
A2t1A'i, we have Fig. A.2. The sum of these two matrices is the identity matrix, with 
dimension equal to the number of undifferenced J:?hase observations. 

10 -5 -5 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 

-5 10 -5 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 

-5 -5 10 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 

-2 1 1 10 -5 -5 -2 1 1 -2 1 1 -2 1 1 -2 1 1 

1 -2 1 -5 10 -5 1 -2 1 1 -2 1 1 -2 1 1 -2 1 

1 1 -2 -5 -5 10 1 1 -2 1 1 -2 1 1 -2 1 1 -2 

-2 1 1 -2 1 1 10 -5 -5 -2 1 1 -2 1 1 -2 1 1 

1 -2 1 1 -2 1 -5 10 -5 1 -2 1 1 -2 1 1 -2 1 

1 1 -2 1 1 -2 -5 -5 10 1 1 -2 1 1 -2 1 1 -2 

-2 1 1 -2 1 1 -2 1 1 10 -5 -5 -2 1 1 -2 1 1 

1 -2 1 1 -2 1 1 -2 1 -5 10 ,-5 1 -2 1 1 -2 1 

1 1 -2 1 1 -2 1 1 -2 -5 -5 10 1 1 -2 1 1 -2 
-2 1 1 -2 1 1 -2 1 1 -2 1 1 10 -5 -5 -2 1 1 

1 -2 1 1 -2 1 1 -2 1 1 -2 1 -5 10 -5 1 -2 1 

1 1 -2 1 1 -2 1 1 -2 1 1 -2 -5 -5 10 1 1 -2 
-2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 10 -5 -5 
1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 -5 10 -5 
1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 -5 -5 10 

FIGURE A.l 
EXAMPLE FOR DT(DP-1DTyiD 

cp 
(18 x 18 example. All elements multiplied by 18 to give integers.) 
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8 5 5 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 
5 8 5 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 
5 5 8 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 

2 -1 -1 8 5 5 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 
-1 2 -1 5 8 5 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 
-1 -1 2 5 5 8 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 

2 -1 -1 2 -1 -1 8 5 5 2 -1 -1 2 -1 -1 2 -1 -1 
-1 2 -1 -1 2 -1 5 8 5 -1 2 -1 -1 2 -1 -1 2 -1 
-1 -1 2 -1 -1 2 5 5 8 -1 -1 2 -1 -1 2 -1 -1 2 
2 -1 -1 2 -1 -1 2 -1 -1 8 5 5 2 -1 -1 2 -1 -1 

-1 2 -1 -1 2 -1 -1 2 -1 5 8 5 -1 2 -1 -1 2 -1 
-1 -1 2 -1 -1 2 -1 -1 2 5 5 8 -1 -1 2 -1 -1 2 
2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 8 5 5 2 -1 -1 

-1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 5 8 5 -1 2 -1 
-1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 5 5 8 -1 -1 2 
2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 8 5 5 

-1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 5 8 5 
-1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 5 5 8 

FIGURE A.2 

EXAMPLE FOR Pq><'h(AiP<pi12)-1Ai Pep 

(18 x 18 example. All elements multiplied by 18 to give integers.) 
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This part of the first-order design, or configuration, matrix, which belongs to the nuisance 
parameters, is called bias design matrix A2. Its complete non-regularized structure is given in 
Fig. B.l. 

The corresponding non-regularized normal equation matrix N22 = AiA2, has the structure 
given in Fig. B.2 for the most general case. 

Here we emphasize again that regularity of A2 or N22. respectively, is a necessary 
condition for the validity of the fundamental differencing theorem (cf. Appendix A). 
Therefore, the rank defect of N22 has to be overcome by eliminating the number of columns in 
A2 and the number of columns and corresponding rows in N22 which is equal to the rank 
defect given in Table 2. 

The actual structure of A2 for the example of Appendix A, after fixing of 0.3 as receiver 
reference clock, is given by Figure B.3: 

1 0 1 0 0 0 0 0 
0 1 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 0 0 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 
1 0 0 0 1 0 0 0 
0 1 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 
1 0 0 0 0 1 0 0 
0 1 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 
1 0 0 0 0 0 1 0 
0 1 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 

0.1 0.2 ~1 ~2 ~3 ~4 ~5 ~6 

FIGURE B.3 
EXAMPLE OF A2 MATRIX STRUCTURE. 
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T 1 l T 1 l T 
s 1 l .. s 11 l .. s 11 l .. s 1 2 .. s 

T S R 1 2 .. R 1 2 .. R 1 2 .. R 1 2 .. R 1 2 .. R 1 2 .. R 

l 1 1 1 
2 1 1 1 

l : 1 1 1 
R 1 1 1 
1 1 1 1 
2 1 1 1 l 2 : l l 1 
R 1 1 1 
l 1 1 1 
2 

1 l 1 s : 
1 l 1 

R 1 1 1 

1 1 1 1 
2 1 1 1 

l : 1 1 1 
R 1 1 It 
l 1 1 1 
2 1 1 1 

2 2 : 
1 1 1 

R 1 1 1 
1 1 1 1 
2 1 1 1 s : 

1 1 1 
R 1 1 11 
1 1 1 1 
2 

1 1 11 1 : 
1 1 

R 1 1 
1 1 1 l 
2 1 1 1 T 2 : 

1 1 1 
R 1 1 
1 1 1 1 

s 2 1 1 1 
: 

1 l 
R 1 1 

FIGURE B.l 
BIAS DESIGN MATRIX A 2 
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T 1 2 T 1 2 T 
s 1 2 •• Sll 2 .. s 11 2 .. s 1 2 . . s 

T S R 1 2 .. R 1 2 .. R 1 2 .• R 1 2 •• R 1 2 .. R 1 2 •• R 

l s 1 1 1 1 1 1 1 
2 IS 1 1 1 1 1 1 1 

l : iS 1 1 1 1 1 1 1 
R s 1 1 1 1 ~ 11 [ 

1 s 1 1 1 1 1 1 1 
2 IS 1 1 ll. 1 1 1 1 2 : s 1 1 1 1 1 1 1 
R IS 1 1 1 1 1 1 1 
1 s 1 1 1 1 1 1 1 
2 IS 1 1 1 1 1 1 1 T : 

IS 1 1 ll. ll. 1 1 1 
R IS I.L I.L I.L I.L 1 1 1 

l R 1 1 1 1 
2 IR 1 1 1 1 I : 

R 
s R 1 1 1 1 
1-

R 1 1 1 1 1 
2 t-~ 

R 1 1 1 1 
2 : 

R 
s R 1 1 1 1 

1--
1 R 1 1 1 1 
2 R 1 1 1 1 

T : 
R 

s R 1 1 1 1 
1 T 
2 T 1 : 

T 
R T 
1 T 
2 

T 2 : 
T 

R l! 
1 T 

s 2 T 
: 

T 
R 

FIGURE B.2 
NORMAL EQUATION MATRIX N22 
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APPENDIX C 

REDUNDANCY DESIGN RESULTS 

In this appendix we list the results of 38 redundancy design studies, out of a possible 640 
which could be made, given the solution types listed in Tables 3.1, 3.2, and 3.3. Each study 
was based on a different solution type. 

The characteristics of each solution model are listed at the head of each table in this 
appendix, and are summarized in Table 5.1. Taking Table C.1 as an example, let us examine 
the information in the header. In this case our solution code is 43331. These digits are 
interpreted as follows: 

4 Xg-solution type (from Table 3.1, 4 =kinematic; 3RTunknowns) 
3 xs-solution type (from Table 3.2, 3 = free orbit; 3ST unknowns) 
3 a-solution type (from Table 3.3, 3 =free; RT unknowns) 
3 J3-solution type (from Table 3.3, 3 =free; ST unknowns) 
1 y-solution type (from Table 3.3, 1 = unknown; RS unknowns). 

For these studies we always assume that R receivers trackS satellites forT epochs, so that 
the total number of observations, n, is always RST. The total number of unknowns, m, is 

• the sum of the unknowns resulting from the solution type tables as above (in this 
case 3RT + 3ST + RT + ST + RS), 

• reduced by the A2 rank defect from Table 4.2 (in this case R+S+T-1), 

• also reduced by the datum defect, if neither Xg nor XS is assumed known (in this 
case 6D. 

Combining these terms we have m = 1 - R - S -7 T + 4 RT + 4 ST + RS for this example, or a 
coefficient vector of (1 -1 -1 -7 4 4 1) on the basis (1, R, S, T, RT, ST, RS). 

Within the body of the table are listed all those R,S,T combinations (i.e., redundancy 
designs) which are minimal in the following sense: given values for any two of R, S, and T, 
the value chosen for the third is the least value for which n ~ m. In addition toR, S, and T, 
are listed three additional parameters which might be used as optimality criteria: m, the number 
of unknowns; ST, the number of satellite points; and R+ST, the total number of network 
points. The actual redundancy, n-m, is also listed. We have limited our consideration to 
redundancy designs which fall within the region R M {1,20}, S M {1,10}, T M {1,100}. At 
the bottom of each table, the minimum values in each of the columns is listed. These minimum 
values are summarized in Table 5.2. 
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TABLE C.1 

Kinematic, free orbit, triple difference 
( 4 3 3 3 1 ) 

n = RST, 
m =3RT +3ST +RT +ST +RS-(R+S+T -1)-6T 

( 1 -1 -1 -7 4 4 1 ) 

R s T m ST R+ST n-m 

6 9 40 2160 360 366 0 
6 10 15 900 150 156 0 
7 8 14 784 112 119 0 
7 9 8 504 72 79 0 
7 10 6 420 60 67 0 
8 7 14 784 98 106 0 
8 8 7 448 56 64 0 
8 9 6 422 54 62 10 
8 10 5 388 50 58 12 
9 6 40 2160 240 249 0 
9 7 8 504 56 65 0 
9 8 6 422 48 57 10 
9 9 4 324 36 45 0 

10 6 15 900 90 100 0 
10 7 6 420 42 52 0 
10 8 5 388 40 50 12 
10 10 3 300 30 40 0 
11 6 10 660 60 71 0 
11 7 5 385 35 46 0 
11 8 4 346 32 43 6 
12 6 8 575 48 60 1 
12 9 3 319 27 39 5 
13 6 7 543 42 55 3 
13 7 4 364 28 41 0 
14 5 52 3640 260 274 0 
14 6 6 503 36 50 1 
14 8 3 334 24 38 2 
15 5 28 2100 140 155 0 
16 5 20 1600 100 116 0 
16 6 5 480 30 46 0 
17 5 16 1360 80 97 0 
18 5 14 1258 70 88 2 
19 5 12 1140 60 79 0 
19 7 3 399 21 40 0 
19 10 2 380 20 39 0 
20 5 11 1099 55 75 1 

minimum values 6 5 2 300 20 38 
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TABLE C.2 

Kinematic, free orbit, double difference 
( 4 3 3 3 0 ) 

n = RST, 
m =3RT +3ST+RT+ST -T-6T 

( 0 0 0 -7 4 4 0 ) 

R s T m ST R+ST n-m 

6 9 1 53 9 15 1 
7 7 1 49 7 14 0 
9 6 1 53 6 15 1 

13 5 1 65 5 18 0 
minimum values 6 5 1 49 5 14 

TABLE C.3 

Kinematic, free orbit, single difference 
( 4 3 0 3 0 ) 

n = RST, 
m =3RT +3ST +ST -6T 

( 0 0 0 -6 3 4 0 ) 

R s T m ST R+ST n-m 

5 9 1 45 9 14 0 
6 6 1 36 6 12 0 
7 5 1 35 5 12 0 

10 4 1 40 4 14 0 
minimum values 5 4 1 35 4 12 
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TABLE C.4 
Kinematic, free orbit, Doppler 

(43001) 
n = RST, m =3RT +3ST +RS -6T 

(000-633 1 ) 

R s T m ST R+ST n-m 
4 7 28 784 196 200 0 
4 8 16 512 128 132 0 
4 9 12 432 108 112 0 
4 10 10 400 100 104 0 
5 5 25 625 125 130 0 
5 6 10 300 60 65 0 
5 7 7 245 49 54 0 
5 8 6 238 48 53 2 
5 9 5 225 45 50 0 
6 5 10 300 50 56 0 
6 6 6 216 36 42 0 
6 7 5 207 35 41 3 
6 8 4 192 . 32 38 0 
7 4 28 784 112 119 0 
7 5 7 245 35 42 0 
7 6 5 207 30 37 3 
7 7 4 193 28 35 3 
7 9 3 189 27 34 0 
8 4 16 512 64 72 0 
8 5 6 238 30 38 2 
8 6 4 192 24 32 0 
8 8 3 190 24 32 2 
9 4 12 432 48 57 0 
9 5 5 225 25 34 0 
9 7 3 189 21 30 0 

10 4 10 400 40 50 0 
11 4 9 395 36 47 1 
12 4 8 384 32 44 0 
12 5 4 240 20 32 0 
12 6 3 216 18 30 0 
12 10 2 240 20 32 0 
14 4 7 392 28 42 0 
14 9 2 252 18 32 0 
18 4 6 432 24 42 0 
18 8 2 288 16 34 0 

minimum values 4 4 2 189 16 30 

TABLE C.S 
Kinematic, free orbit, unbiased 

(43000) 
n = R S T, m = 3RT +3ST -6T 

( 0 0 0 -6 3 3 0 ) 

R s T m ST R+ST n-m 
4 6 1 24 6 10 0 
5 5 1 24 5 10 1 
6 4 1 24 4 10 0 

minimum values 4 4 1 24 4 10 
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minimum values 

minimum values 
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TABLE C.6 

Kinematic, known orbit, triple difference 
(40331) 

n = RST, m =3RT +RT +ST +RS ·(R+S +T -1) 

R 

2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
5 
5 
6 
7 
7 
8 

10 
10 
16 

R 

1 
1 

2 

( 1 -1 -1 -1 4 1 1 ) 

s T m ST R+ST 

8 7 112 56 
9 4 72 36 

10 3 60 30 
6 10 180 60 
7 4 84 28 
8 3 71 24 

10 2 60 20 
6 5 120 30 
7 3 84 21 
9 2 72 18 
5 16 400 80 
6 4 120 24 
5 10 300 50 
5 8 280 40 
8 2 112 16 
5 7 280 35 
5 6 300 30 
6 3 180 18 
5 5 400 25 
5 2 60 16 

TABLE C.7 

Kinematic, known orbit, 4D navigation 
(40300) 

s 
4 
4 

n = RST, 
m =3RT +RT 
(0000400) 

T m ST 

1 
1 

4 
4 

4 
4 

58 
38 
32 
63 
31 
27 
23 
34 
25 
22 
85 
29 
56 
47 
23 
43 
40 
28 
41 
22 

5 
5 

n-m 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

n-m 

0 
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TABLE C.S 
Linear deform, free orbit, triple difference 

(33331) 
n = RST, 

m = 6R +3ST +RT +ST +RS -(R+S+T -1)-6 
(-5 5 -1 -1 1 4 1 ) 

R s T m ST R+ST n-m 
5 5 40 1000 200 205 0 
5 6 22 660 132 137 0 
5 7 16 560 112 117 0 
5 8 13 520 104 109 0 
5 9 12 536 108 113 4 
5 10 10 500 100 105 0 
6 3 40 720 120 126 0 
6 4 15 360 60 66 0 
6 5 10 300 50 56 0 
6 6 8 287 48 54 1 
6 7 7 291 49 55 3 
6 8 6 287 48 54 1 
6 10 5 300 50 56 0 
7 3 16 336 48 55 0 
7 4 9 252 36 43 0 
7 5 7 242 35 42 3 
7 6 6 246 36 43 6 
7 7 5 242 35 42 3 
7 9 4 252 36 43 0 
8 2 49 784 98 106 0 
8 3 12 284 36 44 4 
8 4 7 224 28 36 0 
8 5 6 232 30 38 8 
8 6 5 232 30 38 8 
8 7 4 224 28 36 0 
9 2 28 504 56 65 0 
9 3 10 264 30 39 6 
9 4 6 216 24 33 0 
9 5 5 220 25 34 5 
9 6 4 216 24 33 0 
9 10 3 264 30 39 6 

10 2 21 420 42 52 0 
10 3 8 240 24 34 0 
10 8 3 240 24 34 0 
11 2 18 394 36 47 2 
11 4 5 220 20 31 0 
11 5 4 220 20 31 0 
12 2 16 381 32 44 3 
12 3 7 249 21 33 3 
12 7 3 249 21 33 3 
13 2 14 364 28 41 0 
14 2 13 364 26 40 0 
15 3 6 268 18 33 2 
15 6 3 268 18 33 2 
16 2 12 381 24 40 3 
17 4 4 272 16 33 0 
18 2 11 394 22 40 2 

minimum values 5 2 3 216 16 31 
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TABLE C.9 
Static (rover), free orbit, triple difference 

( 2 3 3 3 1 ) 
n = RST, 

m = 3(R-1+T)+3ST +RT +ST +RS -(R+S+T-1)-6 
(-8 2 -1 2 1 4 1 ) 

R s T m ST R+ST n-m 

5 8 34 1360 272 277 0 
5 9 19 855 171 176 0 
5 10 14 700 140 145 0 
6 5 15 449 75 81 1 
6 6 9 322 54 60 2 
6 7 7 291 49 55 3 
6 8 6 284 48 54 4 
6 9 5 269 45 51 1 
7 4 10 280 40 47 0 
7 5 6 210 30 37 0 
7 6 5 207 30 37 3 
7 7 4 196 28 35 0 
8 3 15 359 45 53 1 
8 4 6 192 24 32 0 
8 5 5 193 25 33 7 
8 6 4 186 24 32 6 
8 8 3 190 24 32 2 
9 3 9 241 27 36 2 
9 4 5 177 20 29 3 
9 5 4 174 20 29 6 
9 7 3 183 21 30 6 

10 3 7 207 21 31 3 
10 4 4 160 16 26 0 
10 6 3 174 18 28 6 
11 2 34 748 68 79 0 
11 3 6 194 18 29 4 
11 5 3 163 15 26 2 
11 10 2 220 20 31 0 
12 2 19 456 38 50 0 
12 3 5 179 15 27 1 
12 9 2 215 18 30 1 
13 2 14 364 28 41 0 
13 8 2 208 16 29 0 
14 2 12 334 24 38 2 
14 4 3 168 12 26 0 
15 2 10 300 20 35 0 
15 3 4 180 12 27 0 
15 7 2 210 14 29 0 
16 2 9 288 18 34 0 
18 2 8 286 16 34 2 
19 6 2 228 12 31 0 
20 2 7 280 14 34 0 

minimum values 5 2 2 160 12 26 
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TABLE C.lO 

Static (rover), free orbit, double difference 
(23330) 

n = RST, m = 3(R-l+T)+3ST+RT+ST -T-6 
(-9 3 0 2 1 4 0 ) 

R s T m ST R+ST n-m 

5 8 6 240 48 53 0 
5 9 3 135 27 32 0 
5 10 2 100 20 25 0 
6 5 5 149 25 31 1 
6 6 3 105 18 24 3 
6 7 2 81 14 20 3 
6 9 1 53 9 15 1 
7 4 4 112 16 23 0 
7 5 2 70 10 17 0 
7 7 1 49 7 14 0 
8 3 8 191 24 32 1 
8 4 3 93 12 20 3 
9 3 5 133 15 24 2 
9 4 2 72 8 17 0 
9 6 1 53 6 15 1 

10 3 4 117 12 22 3 
11 2 24 528 48 59 0 
11 3 3 99 9 20 0 
12 2 14 335 28 40 1 
13 2 10 260 20 33 0 
13 5 1 65 5 18 0 
14 2 9 249 18 32 3 
15 2 8 236 16 31 4 
16 2 7 221 14 30 3 
17 2 6 204 12 29 0 
19 3 2 114 6 25 0 

Minimum values 5 2 1 49 5 14 

TABLE C.ll 

Static (rover), free orbit, single difference 
(23030) 

n = RST, m = 3(R-l+T)+3ST +ST -6 
(-9 303040) 

R s T m ST R+ST n-m 

5 4 6 120 24 29 0 
5 5 3 75 15 20 0 
5 6 2 60 12 17 0 
5 9 1 45 9 14 0 
6 2 9 108 18 24 0 
6 3 3 54 9 15 0 
6 4 2 47 8 14 1 
6 6 1 36 6 12 0 
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Table C.ll cont'd 
7 2 4 56 8 15 0 
7 3 2 42 6 13 0 
7 5 1 35 5 12 0 
8 1 15 120 15 23 0 
8 2 3 48 6 14 0 
9 1 9 81 9 18 0 

10 1 7 70 7 17 0 
10 4 1 40 4 14 0 
11 1 6 66 6 17 0 
13 1 5 65 5 18 0 
13 2 2 52 4 17 0 
19 1 4 76 4 23 0 

minimum values 5 1 1 35 4 12 

TABLE C.12 

Static (rover), free orbit, Doppler 
( 2 3 0 0 1 ) 

n = RST, m = 3(R-1+T)+3ST +RS -6 
(-9 3 0 3 0 3 1 ) 

R s T m ST R+ST n-m 
4 4 19 304 76 80 0 
4 5 12 239 60 64 1 
4 6 9 216 54 58 0 
4 7 8 223 56 60 1 
4 8 7 224 56 60 0 
5 2 16 160 32 37 0 
5 3 7 105 21 26 0 
5 4 6 116 24 29 4 
5 5 5 121 25 30 4 
5 6 4 120 24 29 0 
6 2 7 84 14 20 0 
6 3 5 87 15 21 3 
6 4 4 93 16 22 3 
6 6 3 108 18 24 0 
7 1 19 133 19 26 0 
7 2 6 80 12 19 4 
7 3 4 81 12 19 3 
7 5 3 101 15 22 4 
8 1 12 95 12 20 I 
8 2 5 76 10 18 4 
8 4 3 92 12 20 4 
9 1 9 81 9 18 0 
9 2 4 72 8 17 0 
9 3 3 81 9 18 0 
9 8 2 144 16 25 0 

10 1 8 79 8 18 1 
10 7 2 139 14 24 1 
11 1 7 77 7 18 0 
11 6 2 132 12 23 0 
14 1 6 83 6 20 1 
14 5 2 139 10 24 1 
18 2 3 108 6 24 0 

minimum values 4 1 2 72 6 17 
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TABLE C.13 
Static (rover), free orbit, unbiased 

(23000) 
n = RST, 

m = 3(R-1+T)+3ST -6 
(-9 3 0 3 0 3 0 ) 

R s T m ST R+ST n-m 

4 4 3 48 12 16 0 
4 5 2 39 10 14 1 
4 6 1 24 6 10 0 
5 2 6 60 12 17 0 
5 3 2 30 6 11 0 
5 5 1 24 5 10 1 
6 2 3 36 6 12 0 
6 4 1 24 4 10 0 
7 1 12 84 12 19 0 
8 1 8 63 8 16 1 
9 1 6 54 6 15 0 
9 2 2 36 4 13 0 

11 1 5 54 5 16 1 
15 1 4 60 4 19 0 

minimum values 4 1 1 24 4 10 

TABLE C.14 
Static (rover), known orbit, triple difference 

( 2 0 3 3 1 ) 
n = RST, 

m = 3(R-1+T) +RT +ST+RS-(R+S+T-1) 
(-2 2 -1 2 1 1 1 ) 

R s T m ST R+ST n-m 
2 5 7 70 35 37 0 
2 6 4 48 24 26 0 
2 7 3 42 21 23 0 
2 10 2 40 20 22 0 
3 3 10 90 30 33 0 
3 4 4 48 16 19 0 
3 5 3 44 15 18 1 
3 7 2 42 14 17 0 
4 3 5 60 15 19 0 
4 4 3 48 12 16 0 
4 6 2 48 12 16 0 
5 2 16 160 32 37 0 
5 3 4 60 12 17 0 
6 2 10 120 20 26 0 
7 2 8 112 16 23 0 
7 5 2 70 10 17 0 
8 2 7 112 14 22 0 

10 2 6 120 12 22 0 
10 3 3 90 9 19 0 
16 2 5 160 10 26 0 

minimum values 2 2 2 40 9 16 
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TABLE C.15 

Static (rover), known orbit, double difference 
(20330) 

n = RST, 
m = 3(R-1+T) +RT+ST -T 

(-3 3 0 2 1 1 0 ) 

R s T m ST R+ST n-m 

2 5 3 30 15 17 0 
2 6 2 23 12 14 1 
2 7 1 14 7 9 0 
3 3 6 54 18 21 0 
3 4 2 24 8 11 0 
3 6 1 17 6 9 1 
4 3 3 36 9 13 0 
4 5 1 20 5 9 0 
5 2 12 120 24 29 0 
6 2 8 95 16 22 1 
7 2 6 84 12 19 0 
7 3 2 42 6 13 0 
9 2 5 89 10 19 1 

13 2 4 104 8 21 0 
minimum values 2 2 1 14 5 9 

TABLE C.16 

Static (rover), known orbit, single difference 
(20030) 

n = RST, 
m = 3(R-1+T) +ST 

(-3 3 0 3 0 1 0 ) 

R s T m ST R+ST n-m 

2 4 3 24 12 14 0 
2 5 2 19 10 12 1 
2 6 1 12 6 8 0 
3 2 6 36 12 15 0 
3 3 2 18 6 9 0 
3 5 1 14 5 8 1 
4 2 3 24 6 10 0 
4 4 1 16 4 8 0 
5 1 12 60 12 17 0 
6 1 8 47 8 14 1 
7 1 6 42 6 13 0 
7 2 2 28 4 11 0 
9 1 5 44 5 14 1 

13 1 4 52 4 17 0 
minimum values 2 1 1 12 4 8 
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TABLE C.17 

Static (rover), known orbit, Doppler 
( 2 0 0 0 1 ) 

n = RST, 
m = 3(R-1+T) +RS 

(-3 3 0 3 0 0 1 ) 

R s T m ST R+ST n-m 

1 4 4 16 16 17 0 
1 5 3 14 15 16 1 
1 6 2 12 12 13 0 
2 2 7 28 14 16 0 
2 3 3 18 9 11 0 
2 5 2 19 10 12 1 
3 2 4 24 8 11 0 
3 4 2 24 8 11 0 
4 1 13 52 13 17 0 
5 1 9 44 9 14 1 
6 1 7 42 7 13 0 
6 2 3 36 6 12 0 
8 1 6 47 6 14 1 

12 1 5 60 5 17 0 
minimum values 1 1 2 12 5 11 

TABLE C.18 

Static (rover), known orbit, unbiased 
(20000) 

n = RST, 
m = 3(R-1+T) 

(-3 303000) 

R s T m ST R+ST n-m 

1 3 1 3 3 4 0 
2 2 3 12 6 8 0 
3 2 2 12 4 7 0 
4 1 9 36 9 13 0 
5 1 6 30 6 11 0 
6 1 5 30 5 11 0 
9 1 4 36 4 13 0 

minimum values 1 1 1 3 3 4 
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TABLE C.19 

Static, free orbit, triple difference 
( 1 3 3 3 1 ) 

n = RST, 
m = 3R +3ST +RT +ST +RS -(R +S+T-1)-6 

(-5 2 -1 -1 1 4 1 ) 

R s T m ST R+ST n-m 

5 5 25 625 125 130 0 
5 6 15 449 90 95 1 
5 7 11 385 77 82 0 
5 8 10 397 80 85 3 
5 9 9 401 81 86 4 
5 10 8 397 80 85 3 
6 3 22 396 66 72 0 
6 4 9 216 36 42 0 
6 5 7 207 35 41 3 
6 6 6 211 36 42 5 
6 7 5 207 35 41 3 
6 9 4 216 36 42 0 
7 3 9 189 27 34 0 
7 4 6 165 24 31 3 
7 5 5 169 25 32 6 
7 6 4 165 24 31 3 
7 9 3 189 27 34 0 
8 2 25 400 50 58 0 
8 3 7 165 21 29 3 
8 4 5 154 20 28 6 
8 5 4 154 20 28 6 
8 7 3 165 21 29 3 
9 2 15 269 30 39 1 
9 3 6 157 18 27 5 
9 4 4 141 16 25 3 
9 6 3 157 18 27 5 

10 2 11 220 22 32 0 
10 3 5 147 .15 25 3 
10 5 3 147 15 25 3 
11 2 10 217 20 31 3 
11 10 2 217 20 31 3 
12 2 9 212 18 30 4 
12 3 4 144 12 24 0 
12 4 3 144 12 24 0 
12 9 2 212 18 30 4 
13 2 8 205 16 29 3 
13 8 2 205 16 29 3 
14 2 7 196 14 28 0 
14 7 2 196 14 28 0 
18 2 6 215 12 30 1 
18 6 2 215 12 30 1 

minimum values 5 2 2 141 12 24 
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TABLE C.20 

Static, free orbit, double difference 
(13330) 

n = RST, 
m = 3R +3ST+RT+ST -T-6 

(-6 3 0 -1 1 4 0 ) 

R s T m ST R+ST n-m 
5 5 9 225 45 50 0 
5 6 5 149 30 35 1 
5 7 3 105 21 26 0 
5 9 2 89 18 23 1 
6 3 12 216 36 42 0 
6 4 4 96 16 22 0 
6 5 3 87 15 21 3 
6 6 2 70 12 18 2 
6 9 1 53 9 15 1 
7 3 5 105 15 22 0 
7 4 3 81 12 19 3 
7 5 2 67 10 17 3 
7 7 1 49 7 14 0 
8 2 18 288 36 44 0 
8 3 4 94 12 20 2 
8 4 2 64 8 16 0 
9 2 11 197 22 31 1 
9 3 3 81 9 18 0 
9 6 1 53 6 15 1 

10 2 8 160 16 26 0 
11 2 7 153 14 25 1 
12 2 6 144 12 24 0 
13 5 1 65 5 18 0 
15 2 5 149 10 25 1 
16 3 2 96 6 22 0 

minimum values 5 2 1 49 5 14 

TABLE C.21 

Static, free orbit, 231 
( 1 3 2 3 1 ) 

n = RST, 
m = 3R +3ST+3R+ST+RS-S-6 

(-6 6 -1 0 0 4 1 ) 

R s T m ST R+ST n-m 
5 1 28 140 28 33 0 
5 2 16 160 32 37 0 
5 3 12 180 36 41 0 
5 4 10 200 40 45 0 
5 5 9 224 45 50 1 
5 6 8 240 48 53 0 
5 8 7 280 56 61 0 
6 1 18 107 18 24 1 
6 2 10 120 20 26 0 
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Table C.21 cont'd 
6 3 8 141 24 30 3 
6 4 7 162 28 34 6 
6 5 6 175 30 36 5 
6 6 5 180 30 36 0 
6 10 4 240 40 46 0 
7 1 14 98 14 21 0 
7 2 8 112 16 23 0 
7 3 6 126 18 25 0 
7 4 5 140 20 27 0 
7 6 4 168 24 31 0 
8 1 13 101 13 21 3 
8 2 7 112 14 22 0 
8 5 4 157 20 28 3 
8 9 3 213 27 35 3 
9 1 12 104 12 21 4 
9 3 5 132 15 24 3 
9 4 4 144 16 25 0 
9 7 3 188 21 30 1 

10 1 11 107 11 21 3 
10 2 6 120 12 22 0 
10 6 3 180 18 28 0 
11 1 10 110 10 21 0 
13 3 4 156 12 25 0 
13 5 3 192 15 28 3 
15 1 9 134 9 24 1 
16 2 5 160 10 26 0 
16 10 2 320 20 36 0 
19 4 3 228 12 31 0 
19 9 2 342 18 37 0 

minimum values 5 1 2 98 9 21 

TABLE C.22 

Static, free orbit, 230 
(13230) 

n = RST, 
m = 3R +3ST+3R+ST -6 

(-6 600040) 

R s T m ST R+ST n-m 

5 1 24 120 24 29 0 
5 2 12 120 24 29 0 
5 3 8 120 24 29 0 
5 4 6 120 24 29 0 
5 5 5 124 25 30 1 
5 6 4 120 24 29 0 
5 8 3 120 24 29 0 
6 1 15 90 15 21 0 
6 2 8 94 16 22 2 
6 3 5 90 15 21 0 
6 4 4 94 16 22 2 
6 5 3 90 15 21 0 
6 8 2 94 16 22 2 
7 1 12 84 12 19 0 
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Table C.22 cont'd 
7 2 6 84 12 19 0 
7 3 4 84 12 19 0 
7 4 3 84 12 19 0 
7 6 2 84 12 19 0 
8 1 11 86 11 19 2 
9 1 10 88 10 19 2 
9 2 5 88 10 19 2 
9 5 2 88 10 19 2 
9 10 1 88 10 19 2 

10 1 9 90 9 19 0 
10 3 3 90 9 19 0 
10 9 1 90 9 19 0 
13 1 8 104 8 21 0 
13 2 4 104 8 21 0 
13 4 2 104 8 21 0 
13 8 1 104 8 21 0 

minimum values 5 1 1 84 8 19 

TABLE C.23 

Static, free orbit, single difference 
(13030) 

n = RST, 
m = 3R +3ST +ST -6 

(-6 300040) 

R s T m ST R+ST n-m 

5 1 9 45 9 14 0 
5 2 5 49 10 15 1 
5 3 3 45 9 14 0 
5 5 2 49 10 15 1 
5 9 1 45 9 14 0 
6 1 6 36 6 12 0 
6 2 3 36 6 12 0 
6 3 2 36 6 12 0 
6 6 1 36 6 12 0 
7 1 5 35 5 12 0 
7 5 1 35 5 12 0 

10 1 4 40 4 14 0 
10 2 2 40 4 14 0 
10 4 1 40 4 14 0 

minimum values 5 1 1 35 4 12 
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TABLE C.24 

Static, free orbit, Doppler 
(13001) 

n = RST, 
m = 3R +3ST +RS -6 

(-6 3 0 0 0 3 1 ) 

R s T m ST R+ST n-m 

4 1 10 40 10 14 0 
4 2 7 56 14 18 0 
4 3 6 72 18 22 0 
4 6 5 120 30 34 0 
5 1 7 35 7 12 0 
5 2 5 49 10 15 1 
5 3 4 60 12 17 0 
5 9 3 135 27 32 0 
6 1 6 36 6 12 0 
6 2 4 48 8 14 0 
6 4 3 72 12 18 0 
7 3 3 63 9 16 0 
8 9 2 144 18 26 0 
9 1 5 45 5 14 0 
9 7 2 126 14 23 0 

10 6 2 120 12 22 0 
12 2 3 72 6 18 0 
12 5 2 120 10 22 0 
18 4 2 144 8 26 0 

minimum values 4 1 2 35 5 12 

TABLE C.25 

Static, free orbit, unbiased 
(13000) 

n = RST, 
m = 3R +3ST -6 

(-6 3 0 0 0 3 0 ) 

R s T m ST R+ST n-m 

4 1 6 24 6 10 0 
4 2 3 24 6 10 0 
4 3 2 24 6 10 0 
4 6 1 24 6 10 0 
5 1 5 24 5 10 1 
5 5 1 24 5 10 1 
6 1 4 24 4 10 0 
6 2 2 24 4 10 0 
6 4 1 24 4 10 0 

minimum values 4 1 1 24 4 10 

Page 100 Appendix C: Redundancy design results 



GPS DESIGN 

TABLE C.26 

Static, known orbit, triple difference 
( 1 0 3 3 1 ) 

n = RST, 
m = 3R +RT +ST +RS -(R+S +T-1) 

( 1 2 -1 -1 1 1 1 ) 

R s T m ST R+ST n-m 

2 2 7 28 14 16 0 
2 3 4 24 12 14 0 
2 4 3 24 12 14 0 
2 7 2 28 14 16 0 
3 2 6 35 12 15 1 
3 6 2 35 12 15 1 
4 2 5 40 10 14 0 
4 3 3 36 9 13 0 
4 5 2 40 10 14 0 

minimum values 2 2 2 24 9 13 

TABLE C.27 

Static, known orbit, double difference 
(10330) 

n = RST, 
m = 3R +RT+ST -T 

( 0 3 0 -1 1 1 0) 

R s T m ST R+ST n-m 

2 2 6 24 12 14 0 
2 3 3 18 9 11 0 
2 4 2 16 8 10 0 
2 7 1 14 7 9 0 
3 2 5 29 10 13 1 
3 6 1 17 6 9 1 
4 2 4 32 8 12 0 
4 3 2 24 6 10 0 
4 5 1 20 5 9 0 

minimum values 2 2 1 14 5 9 
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TABLE C.28 

Static, known orbit, 230 
(10230) 

n = RST, 
m = 3R +3R+S T 
(0 6 0 0 0 1 0) 

R s T m ST R+ST n-m 

2 1 12 24 12 14 0 
2 2 6 24 12 14 0 
2 3 4 24 12 14 0 
2 4 3 24 12 14 0 
2 6 2 24 12 14 0 
3 1 9 27 9 12 0 
3 2 5 28 10 13 2 
3 3 3 27 9 12 0 
3 5 2 28 10 13 2 
3 9 1 27 9 12 0 
4 1 8 32 8 12 0 
4 2 4 32 8 12 0 
4 4 2 32 8 12 0 
4 8 1 32 8 12 0 
7 1 7 49 7 14 0 
7 7 1 49 7 14 0 

minimum values 2 1 1 24 7 12 

TABLE C.29 

Static, known orbit, single difference 
(10030) 

n = RST, 
m = 3R +ST 
( 0 3 0 0 0 1 0) 

R s T m ST R+ST n-m 

2 1 6 12 6 8 0 
2 2 3 12 6 8 0 
2 3 2 12 6 8 0 
2 6 1 12 6 8 0 
3 1 5 14 5 8 1 
3 5 1 14 5 8 1 
4 1 4 16 4 8 0 
4 2 2 16 4 8 0 
4 4 1 16 4 8 0 

minimum values 2 1 1 12 4 8 
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TABLE C.30 
Static, known orbit, Doppler 

( 1 0 0 0 1 ) 
n = RST, 

m = 3R +RS 
( 0 3 0 0 0 0 1 ) 

R s T m ST R+ST n-m 
1 1 4 4 4 5 0 
1 2 3 5 6 7 1 
1 3 2 6 6 7 0 

minimum values 1 1 2 4 4 5 

TABLE C.31 
Static, known orbit, unbiased 

(10000) 
n =RST 
m = 3R 

( 0 3 0 0 0 0 0 ) 

R s T m ST R+ST n-m 
1 1 3 3 3 4 0 
1 2 2 3 4 5 1 
1 3 1 3 3 4 0 

minimum values 1 1 1 3 3 4 

TABLE C.32 
Known, free orbit, triple difference 

( 0 3 3 3 1 ) 
n = RST, 

m= +3ST+RT+ST+RS-(R+S+T-1) 
( 1 -1 -1 -1 1 4 1 ) 

R s T m ST R+ST n-m 
5 5 16 400 80 85 0 
5 6 10 300 60 65 0 
5 7 8 280 56 61 0 
5 8 7 280 56 61 0 
5 10 6 300 60 65 0 
6 3 10 180 30 36 0 
6 4 5 120 20 26 0 
6 5 4 120 20 26 0 
6 10 3 180 30 36 0 
7 3 4 84 12 19 0 
7 4 3 84 12 19 0 
8 2 7 112 14 22 0 
8 3 3 71 9 17 1 
8 7 2 112 14 22 0 
9 2 4 72 8 17 0 
9 4 2 72 8 17 0 

10 2 3 60 6 16 0 
10 3 2 60 6 16 0 
13 2 2 52 4 17 0 

minimum values 5 2 2 52 4 16 
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TABLE C.33 

Known, free orbit, double difference 
(03330) 

n = RST, 
m= +3ST+RT+ST -T 

( 0 0 0 -1 1 4 0) 

R s T m ST R+ST n-m 

5 4 1 20 4 9 0 
6 3 1 17 3 9 1 
7 2 1 14 2 9 0 

minimum values 5 2 1 14 2 9 

TABLE C.34 

Known, free orbit, 230 
(03230) 

n = RST, 
m= +3ST+3R+S T 

( 0 300040) 

R s T m ST R+ST n-m 

5 1 15 75 15 20 0 
5 2 8 79 16 21 1 
5 3 5 75 15 20 0 
5 4 4 79 16 21 1 
5 5 3 75 15 20 0 
5 8 2 79 16 21 1 
6 1 9 54 9 15 0 
6 2 5 58 10 16 2 
6 3 3 54 9 15 0 
6 5 2 58 10 16 2 
6 9 1 54 9 15 0 
7 1 7 49 7 14 0 
7 2 4 53 8 15 3 
7 4 2 53 8 15 3 
7 7 1 49 7 14 0 
8 1 6 48 6 14 0 
8 2 3 48 6 14 0 
8 3 2 48 6 14 0 
8 6 1 48 6 14 0 

10 1 5 50 5 15 0 
10 5 1 50 5 15 0 
16 1 4 64 4 20 0 
16 2 2 64 4 20 0 
16 4 1 64 4 20 0 

minimum values 5 1 1 48 4 14 
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TABLE C.35 

Known, free orbit, 031 
( 0 3 0 3 1 ) 

n = RST, 
m= +3ST +ST+RS-S 

( 0 0 -1 0 0 4 1 ) 

R s T m ST R+ST n-m 
5 1 4 20 4 9 0 
6 1 3 17 3 9 1 
7 1 2 14 2 9 0 

minimum values 5 1 2 14 2 9 

TABLE C.36 

Known, free orbit, single difference 
(03030) 

n = RST, 
m= +3ST +ST 
( 0 0 0 0 0 4 0) 

R s T m ST R+ST n-m 
4 1 1 4 1 5 0 

minimum values 4 1 1 4 1 5 

TABLE C.37 
Known, free orbit, Doppler 

( 0 3 0 0 1 ) 
n = RST, 

m= +3ST +RS 
( 0 0 0 0 0 3 1 ) 

R s T m ST R+ST n-m 
4 1 4 16 4 8 0 
5 1 3 14 3 8 1 
6 1 2 12 2 8 0 

minimum values 4 1 2 12 2 8 

TABLE C.38 
Known, free orbit, unbiased 

(03000) 
n = RST, 

m= +3ST 
( 0 0 0 0 0 3 0) 

R s T m ST R+ST n-m 
3 1 1 3 1 4 0 

minimum values 3 1 1 3 1 4 
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APPENDIX D 

SOURCE CODE OF COMPUTER PROGRAMS USED 

This appendix is a compendium of source codes of four Apple Macintosh Basic programs 

which were written in August 1985 by D. Wells. These programs were used to generate the 

results presented in this report. 

The redundancy design tables in Appendix C were created by the 'Diophantine Equation 

Calculations' program listed in Appendix D.l. Program 'GPS Differencing Design' 

(Appendix D.2) allows the user to evaluate all matrix products which involve the differencing 

operator Dusing fixed and sequential differencing bases as described in section 4.1. Program 

'GPS Undifferenced Design' (Appendix D.3) offers the same possibilities for the bias design 

matrix A2 as given in section 4.2. Finally, in Appendix D.4, program 'GPS Annihilation' 

checks whether the matrix product of D and A2, in fact, results in a zero matrix, as it is 

demanded by condition (A-1). 

Note that, within all four programs, the variable 'g', instead of 'r', is sometimes used to 

represent specific receiver related indices. 
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Appendix D.l 

'DIOPHANTINE EQUATION CALCULATIONS- D. Wells 85-08-09 

'this version has rank defects built in 

'open output 
'device1$ ="scm:" 
'device1$ = "lpt1:direct" 
device1$ = "DesignSoft:AppendC" 

'device2$ = "scm:" 
'device2$ = "lptl:direct" 
device2$ = "DesignSoft:Tab1e 5.1" 

'device3$ = "scm:" 
'device3$ = "lpt1:direct" 
device3$ = "DesignSoft:Table 5.2" 

OPEN device1$ FOR OUTPUT AS #1 
OPEN device2$ FOR OUTPUT AS #2 
OPEN device3$ FOR OUTPUT AS #3 

starttime = TIMER 

'GOTO jumpstuff 
table%= 0 

CALL FindDesign (4, 3, 3, 3, 1, table%) 
CALL FindDesign (4, 3, 3, 3, 0, table%) 
CALL FindDesign (4, 3, 0, 3, 0, table%) 
CALL FindDesign (4, 3, 0, 0, 1, table%) 
CALL FindDesign (4, 3, 0, 0, 0, table%) 
CALL FindDesign (4, 0, 3, 3, 1, table%) 
CALL FindDesign (4, 0, 3, 0, 0, table%) 
CALL FindDesign (3, 3, 3, 3, 1, table%) 
CALL FindDesign (2, 3, 3, 3, 1, table%) 
CALL FindDesign (2, 3, 3, 3, 0, table%) 
CALL FindDesign (2, 3, 0, 3, 0, table%) 
CALL FindDesign (2, 3, 0, 0, 1, table%) 
CALL FindDesign (2, 3, 0, 0, 0, table%) 
CALL FindDesign (2, 0, 3, 3, 1, table%) 
CALL FindDesign (2, 0, 3, 3, 0, table%) 
CALL FindDesign (2, 0, 0, 3, 0, table%) 
CALL FindDesign (2, 0, 0, 0, 1, table%) 
CALL FindDesign (2, 0, 0, 0, 0, table%) 
CALL FindDesign (1, 3, 3, 3, 1, table%) 
CALL FindDesign (1, 3, 3, 3, 0, table%) 
CALL FindDesign (1, 3, 2, 3, 1, table%) 
CALL FindDesign (1, 3, 2, 3, 0, table%) 
CALL FindDesign (1, 3, 0, 3, 0, table%) 
CALL FindDesign (1, 3, 0, 0, 1, table%) 
CALL FindDesign (1, 3, 0, 0, 0, table%) 
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CALL FindDesign (1, 0, 3, 3, 1, table%) 
CALL FindDesign (1, 0, 3, 3, 0, table%) 
CALL FindDesign (1, 0, 2, 3, 0, table%) 
CALL FindDesign (1, 0, 0, 3, 0, table%) 
CALL FindDesign (1, 0, 0, 0, 1, table%) 
CALL FindDesign (1, 0, 0, 0, 0, table%) 
CALL FindDesign (0, 3, 3, 3, 1, table%) 
CALL FindDesign (0, 3, 3, 3, 0, table%) 
CALL FindDesign (0, 3, 2, 3, 0, table%) 
CALL FindDesign (0, 3, 0, 3, 1, table%) 
CALL FindDesign (0, 3, 0, 3, 0, table%) 
CALL FindDesign (0, 3, 0, 0, 1, table%) 
CALL FindDesign (0, 3, 0, 0, 0, table%) 

GOTO endstuff 

ends tuff: 
stoptime = TIMER 
elapsedtime = stoptime - starttime 

PRINT "start=" ,starttime 
PRINT "stop=",stoptime 
PRINT "elapsed=" ,elapsedtime 
CLOSE#1 
CLOSE#2 
CLOSE#3 
CAlL OKWindow 

END 

SUB FindDesign (ng%,ns%,na%,nb%,nn%,table%) STATIC 

table% = table% + 1 
PRINT USING "###";ng%;ns%;na%;nb%;nn%,table% 

CALL coeff (ng%,ns %,na %,nb%,nn%,kO,kg,ks,kt,kgt,kst,kgs) 

maxg%=20 
maxs% = 10 
maxt% = 100 
mint%= 1 

'get least g, given maxs%,maxt% 
CALL GMin Value (kO,kg,ks,kt,kgt,kst,kgs,ming%,maxs%,maxt%) 

' get least s, given maxg%,maxt% 
CALL SMin Value (kO,kg,ks,kt,kgt,kst,kgs,maxg%,mins %,maxt%) 

'get least t, given maxg%,maxs% 
CALL TMin Value (kO,kg,ks,kt,kgt,kst,kgs,maxg%,maxs%,mint%) 

'get max t (expected to occur either at ming%, or mins%) 
CALL TMaxValue (kO,kg,ks,kt,kgt,kst,kgs,ming%,mins%,firsts%,maxt%,maxt2%) 

'PRINT #1, "min/max";ming%;maxg%,mins%;maxs%,mint%;maxt%;maxt2% 
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maxt% = maxt2% 

CALL Header (ng%,ns%,na%,nb%,nn%,table%,k0,kg,ks,kt,kgt,kst,kgs) 

'GOTO EndOfSub 

FOR s =1 TO maxs% 
minit(s) = 999 

NEXTs 

minunk = 9999 
minst = 9999 
minpoints = 9999 

FOR g% = ming% TO maxg% 
lastt = 9999 
g=g% 
CALL SMin Value (kO,kg,ks,kt,kgt,kst,kgs,g%,mins %,maxt%) 
FOR s% = mins% TO maxs% 

S=S% 
CALL TMinValue (kO,kg,ks,kt,kgt,kst,kgs,g%,s%,mint%) 
FORt% = mint% TO maxt% 

t=t% 
obs% = g * s * t 
unkn% = kO + kg*g + ks*s + kt*t + kgt*g*t + kst*s*t + kgs*g*s 

'PRINT USING "###";3, kO;kg;ks;kt;kgt;kst;kgs 
'PRINT USING "####";4, g;s;t;obs%;unkn% 

IF obs% < unkn%THEN GOTO nextt 
IF t => lastt THEN GOTO nexts 
lastt = t 
IF t => minit(s) THEN GOTO nexts 
minit(s) = t 
st = s * t 
points = g + st 
redund = obs%- unkn% 
PRINT #1, 

Diophantine equation not satisfied 
'not minimal in s, for given g,t 

'not minimal in g, for given s,t 

CHR$(9);g;CHR$(9);s;CHR$(9);t;CHR$(9);unkn%;CHR$(9);st;CHR$(9);points;CHR$(9); 
redund 

IF unkn% < minunk THEN rninunk = unkn% 
IF st < minst THEN minst = st 
IF points < minpoints THEN minpoints = points 

GOTOnexts 'keep only minimal t, for given g,s 
nextt: 

NEXTt% 
nexts: 

NEXTs% 
NEXTg% 

PRINT #1, "minimum values" 
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PRINT #1, 
CHR$(9);rning%;CHR$(9);rnins%;CHR$(9);rnint%;CHR$(9);rninunk;CHR$(9);minst;CHR$( 
9);minpoints 

'print Table 5.2 data 
PRINT #3, USING "#";ng%;ns%;na%;nb%;nn%; 
PRINT #3, 

CHR$(9);rning%;CHR$(9);mins%;CHR$(9);rnint%;CHR$(9);minunk;CHR$(9);minst;CHR$( 
9);rninpoints; 

PRINT #3, CHR$(9);gnd$;sat$;bias$; 
PRINT #3, CHR$(9);" C.";table% 

EndOfSub: 
END SUB 

SUB Header (ng%,ns%,na%,nb%,nn%,table%,k0,kg,ks,kt,kgt,kst,kgs) STATIC 

gnd$ = "" 
IF ng% = 4 THEN gnd$ = "Kinematic, " 
IF ng% = 3 THEN gnd$ = "Linear deform, " 
IF ng% = 2 THEN gnd$ ="Static (rover)," 
IF ng% = 1 THEN gnd$ ="Static," 
IF ng% = 0 THEN gnd$ = "Known, " 

sat$="" 
IF ns% = 3 THEN sat$ =,"free orbit, " 
IF ns% = 2 THEN sat$ = "Keplerian orbit, " 
IF ns% = 1 THEN sat$= "translated orbit," 
IF ns% = 0 THEN sat$= "known orbit," 

bias$= STR$(na%*100 + nb%*10 + nn%) 
IF na% = 3 AND nb% = 3 AND nn% = 1 THEN bias$= "triple difference" 
IF na% = 3 AND nb% = 3 AND nn% = 0 THEN bias$ = "double difference" 
1F na% = 0 AND nb% = 3 AND nn% = 0 THEN bias$ = "single difference" 
1F na% = 0 AND nb% = 0 AND nn% = 1 THEN bias$ = "Doppler" 
1F na% = 0 AND nb% = 0 AND nn% = 0 THEN bias$ = "unbiased" 
1F ng% = 4 AND na% = 3 AND nb% = 0 AND nn% = 0 THEN bias$= "4D navigation" 

ug$ =II II 

1F ng%=4 THEN ug$ = "3GT " 
IF ng%=3 THEN ug$ = "6G " 
IF ng%=2 THEN ug$ = "3(G-1+T)" 
IF ng%=1 THEN ug$ = "3G " 
us$=" " 
IF ns%=3 THEN us$="+3ST" 
IF ns%=2 THEN us$="+6S" 
IF ns% := 1 THEN us$=" +3S" 
ua$ =" " 
IF na%=3 THEN ua$="+GT" 
IF na%=2 THEN ua$="+3G" 
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IF na%=1 THEN ua$="+0" 
ub$=" " 
IF nb%=3 THEN ub$=" +ST" 
IF nb%=2 THEN ub$=" +3S" 
IF nb%=1 THEN ub$="+S" 
un$=" " 
IF nn%=1 THEN un$="+GS" 
bd$="" 
IFna% = 3 ANDnb% = 3 THENbd$ = "-T" 
IF na% = 3 AND nn% = 1 THEN bd$ = "-0" 
IF nb% = 3 AND nn% = 1 THEN bd$ = "-S" 
IF na% = 3 AND nb% = 3 AND nn% = 1 THEN bd$ = "-(G+S+ T -1 )" 
dd$= II 11 

IF ng%*ns% <> 0 THEN dd$=" -6 " 
IF ng%=4 AND ns% >0 THEN dd$="-6T' 

'print appendix tables header 
PRINT #1, II II 

PRINT #1 ,"TABLE C .";table% 
PRINT #1 ,gnd$;sat$;bias$;" (";ng%;ns%;na%;nb%;nn%;")" 
PRINT #1 ,"n = RST, m = ";ug$;us$;ua$;ub$;un$;bd$;dd$;"(";kO;kg;ks;kt;kgt;kst;kgs;")" 
PRINT #1, II II 

PRINT #1 ,CHR$(9);"R";CHR$(9);"S";CHR$(9);"T";CHR$(9);"m ";CHR$(9);"ST'; 
CHR$(9);"R+ST' ;CHR$(9);"n-m" 

PRINT #1 'II II 

'print Table 5.1 data 
PRINT #2, USING "#";ng%;ns%;na%;nb%;nn%; 
PRINT #2,CHR$(9);ug$;us$;ua$;ub$;un$;bd$;dd$; 
PRINT #2,CHR$(9);gnd$;sat$;bias$; 
PRINT #2,CHR$(9);" C.";table% 

END SUB 

SUB coeff (ng%,ns%,na%,nb%,nn%,kO,kg,ks,kt,kgt,kst,kgs) STATIC 

' get coefficients for general equation 
' n = cg*g+cg1 *(t-1)+cgt*g*t + 
' + cs*s+cst*s*t + 

+ ca*g+cat*g*t + cb*s+cbt*s*t + cn*g*s + 
+ bd + bdt*t + bds*s + bdt*t + 
+ dd+ddt*t 

ground coord model 
satellite model 
bias model 
bias rank defect 
datum defect 

IF ng%=3 THEN cg=6 ELSE IF ng%=2 OR ng%=1 THEN cg=3 ELSE cg=O 
IF ng%=2 THEN cg1=3 ELSE cg1=0 
IF ng%=4 THEN cgt=3 ELSE cgt=O 

IF ns%=2 THEN cs=6 ELSE IF ns% = 1 THEN cs = 3 ELSE cs = 0 
IF ns%=3 THEN cst=3 ELSE est = 0 
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IF na%=2 THEN ca=3 ELSE IF na%= 1 THEN ca= 1 ELSE ca=O 
IFna%=3 THEN cat=1 ELSE cat=O 

IF nb%=2 THEN cb=3 ELSE IF nb%=1 THEN cb=1 ELSE cb=O 
IF nb%=3 THEN cbt=1 ELSE cbt=O 

IF nn%=1 THEN cn=1 ELSE cn=O 

IF na% = 3 AND nb% = 3 AND nn% = 1 THEN bd = 1 ELSE bd = 0 
IF na% = 3 AND nb% = 3 TBEN bdt = -1 ELSE bdt = 0 
IF na% = 3 AND nn% = 1 THEN bdg = -1 ELSE bds = 0 
IF nb% = 3 AND nn% = 1 THEN bds = -1 ELSE bdg = 0 

IF ng% * ns%=0 THEN dd=O ELSE IF ng%=4 AND ns% >0 THEN dd=O ELSE dd=-6 
IF ng%=4 AND ns% >0 THEN ddt=-6 ELSE ddt=O 

'PRINT # 1, "c-coeffs" ;cg;cg 1 ;cgt;cs;cst;"bias" ;ca;cat;cb;cbt;cn;" defect" ;bd; bdt; bds;bdg;dd;ddt 

'compute coefficients to 
'n = kO + kg*g + ks*s + kt*t + kgt*g*t + kst*s*t + kgs*g*s 

kO = -cg1 + dd + bd 
kg = cg + ca + bdg 
ks = cs + cb + bds 
kt=cg1 +ddt+ bdt 
kgt = cgt +cat 
kst = est + cbt 
kgs =en 

'PRINT #1, "k-coeffs";kO;kg;ks;kt;kgt;kst;kgs 

END SUB 

SUB GMinValue (kO,kg,ks,kt,kgt,kst,kgs,outg%,inps%,inpt%) STATIC 

' find outg% = least g to satisfy m=>n, given inps%, inpt% 
' where m = g * s * t 
' n = kO + kg*g + ks*s + kt*t + kgt*g*t + kst*s*t + kgs*g*s 

s = inps% 
t= inpt% 
numer% = kO + ks*s + kt*t + kst*s*t 
denom% = s*t- kg- kgt*t- kgs*s 
value%= 1 

IF denom% =0 TiffiN GOTO zeroDenom: 
value%= INT(numer% I denom%) 

IF INT(numer% MOD denom%) <> 0 TiffiN value%= value%+ 1 
IF value% < 1 THEN value% = 1 

zeroDenom: 
outg% = value% 

'PRINT #1, "Gmin-numer,denom,outg,inps,inpt",numer%;denom%;outg%;s;t 
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SUB SMin Value (kO,kg,ks,kt,kgt,kst,kgs,inpg%,outs%,inpt%) STATIC 

'find outs%= least s to satisfy m=>n, given inpg%, inpt% 
' where m = g * s * t 
' n = kO + kg*g + ks*s + kt*t + kgt*g*t + kst*s*t + kgs*g*s 

g = inpg% 
t= inpt% 
numer% = kO + kg*g + kt*t + kgt*g*t 
denom% = g*t- ks- kst*t- kgs*g 
value%= 1 

IF denom% =0 THEN GOTO zeroDenomS: 
value%= INT(numer% I denom%) 

IF INT(numer% MOD denom%) <> 0 THEN value%= value%+ 1 
IF value% < 1 THEN value% = 1 

zeroDenomS: 
outs% = value% 

'PRINT #1, "Smin-numer,denom,inpg,outs,inpt",numer%;denom%;g;outs%;t 

END SUB 

SUB TMin Value (kO,kg,ks,kt,kgt,kst,kgs,inpg%,inps%,outt%) STATIC 

'outt% =the least t to satisfy m=>n, given inpg%,inps% 
'where m = g * s * t 
' n = kO + kg*g + ks*s + kt*t + kgt*g*t + kst*s*t + kgs*g*s 

g = inpg% 
s = inps% 
numer% = kO + kg*g + ks*s + kgs*g*s 
denom% = g*s - kt- kgt*g - kst*s 
value%= 1 

IF denom% =0 THEN GOTO zeroDenomT: 
value%= INT(numer% I denom%) 

IF INT(numer% MOD denom%) <> 0 THEN value%= value%+ 1 
IF value% < 1 THEN value% = 1 

zeroDenomT: 
outt% = value% 

'PRINT #1, "Tmin-numer,denom,inpg,inps,outt" ,numer%;denom%;g;s;outt% 

END SUB 

GPS DESIGN 

SUB TMaxValue (kO,kg,ks,kt,kgt,kst,kgs,ming%,mins%,firsts%,maxt%,maxt2%) STATIC 

'find firsts% =the least s to satisfy m=>n, given ming%,maxt% 
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CALL SMin Value (kO,kg,ks,kt,kgt,kst,kgs,ming%,firsts%,maxt%) 

'firstt% =the least t to satisfy m=>n, given ming%,frrsts% 
CALL TMin Value (kO,kg,ks,kt,kgt,kst,kgs,ming%,firsts%,firstt%) 

'find laterg% =the least g to satisfy m=>n, given mins%,maxt% 
CAlL GMin Value (kO,kg,ks,kt,kgt,kst,kgs,laterg%,mins%,maxt%) 

'find latert% =least t to satisfy m=>n, given laterg%,mins% 
CAlL TMin Value (kO,kg,ks,kt,kgt,kst,kgs,laterg%,mins%,1atert%) 

' select greatest of frrstt%, latert% as new maxt2% 
maxt2% = frrstt% 

IF latert% > maxt2% TiffiN maxt2% = latert% 
'PRJNT #1, "Tmax-frrstt,later,maxt2",frrstt%;latert%;maxt2% 

END SUB 

SUB OKWindow STATIC 
WINDOW 3,"",(485,320)-(505,335),2 
TEX1MODE1 
BUTTON 1,1,"0K",(0,0)-(20,15),1 
DialogActive = 1 
WlllLE DialogActive 

EventType = DIALOG(O) 
IF EventType = 1 TiffiN GOTO endsub 

WEND 
endsub: 
WINDOW CLOSE 3 

END SUB 
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Appendix D.2 

'GPS DIFFERENCING DESIGN (D operator)- D. Wells 85-08-15 

DEFDBLA-z 

device$= "scm:" 
device$ = "lptl :direct" 
'device$ = "GPSDesign:DOutput" 
OPEN device$ FOR OUTPUT AS #1 
starttime = TIMER 

R%=3 
S%=6 
T%= 1 

' D operator design parameters 
' differencing modes 

inmode1$ ="receiver" 
inmode2$ ="satellite" 

inmode3$ = "none" 

' referencing for differences 
seqR$ = "fix" 'use "fix" or "seq" 
seqS$ = "fix" 
seqT$ = "fix" 

CALL Doperator (R %,S%,T%,inmode1$,inmode2$,inmode3$,seqR$,seqS$,seqT$) 

stoptime =TIMER 
elapsedtime = stoptime- starttime 
PRINT #1, 
PRINT #1, "elapsed secs=";elapsedtime 
CLOSE#1 
CALL OKWindow 

END 

SUB Doperator (R %,S%,T%,inmode1$,inmode2$,inmode3$,seqR$,seqS$,seqT$) STATIC 
'compute differencing operator D, DDT, (DDT)(-1), DT(DDT)(-1)D 

DEFDBLA-z 

DIM totalD%(100,100) 
DIM nextD%(100,100) 
DIM tempD%(1 00, 100) 
DIM COV(lOO,lOO) 
DIM ker(100,100) 
DIM inmode$(3) 
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DIM karr%(3,3) 

mm%= 100 

inmode$(1) = inmode 1$ 
inmode$(2) = inmode2$ 
inmode$(3) = inmode3$ 

RST% =R% * S% * T% 

PRINT #1, "GPS Differencing Design" 
PRINT #1, "Design (#rcvrs, #sats, #epochs)= ";R%;S%;T% 
PRINT #1, "D: Differencing references are: " ;seqR$;" rec ref, ";seqS$;" sat ref, ";seqT$;" time 
ref' 
PRINT #1, "Differencing between ";inmode$(1);", then ";inmode$(2);", then ";inmode$(3) 

GOSUB initialk 
GOSUBinitialD 

FOR idiff% = 1 TO 3 
1F inmode$(idiff%) = "none" THEN GOTO nomorediffs 
1F inmode$(idiff%) ="receiver" THEN GOSUB betweenReceiver 
1F inmode$(idiff%) = "satellite" THEN GOSUB betweenSatellite 
1F inmode$(idiff%) = "time" THEN GOSUB between Time · 
GOSUB productD 

NEXTidiff% 

nomorediffs: 
GOSUB covariance 
GOSUB inverse 
GOSUB kernel 

EXIT SUB 

initialD: 
' set totalD = Identity(dim=rst) to start 
rowtotalD% = RST% 
coltotalD% = RST% 

FORi% = 1 TO rowtotalD% 
FOR j% = 1 TO coltotalD% 

tota1D%(i%,j%) = 0 
NEXTj% 

tota1D%(i%,i%) = 1 
NEXTi% 

RETURN 

initialk: 
'set up k array for inmode$ sequence 

Page 116 Appendix D: Source code of computer programs used 



'this sets up the following 15 cases 

'in mode kxR% kxS% kxT% 
I 1 2 3 r s t r s t r s t 

'r - 1 0 0 0 0 0 0 0 0 single differencing modes 
I s 0 0 0 0 1 0 0 0 0 
I t 0 0 0 0 0 0 0 0 1 

'r s - 1 0 0 1 1 0 0 0 0 double differencing modes 
I s r - 1 1 0 0 1 0 0 0 0 
'r t - 1 0 0 0 0 0 1 0 1 
I t r - 1 0 1 0 0 0 0 0 1 
I s t 0 0 0 0 1 0 0 1 1 
I t s - 0 0 0 0 1 1 0 0 1 

'r s t 1 0 0 1 1 0 1 1 1 triple differencing sequences 
'r t s 1 0 0 1 1 1 1 0 1 
I s r t 1 1 0 0 1 0 1 1 1 
I t r s 1 0 1 1 1 1 0 0 1 
I s t r 1 1 1 0 1 0 0 1 1 
I t s r 1 1 1 0 1 1 0 0 1 

FORi= 1 T03 
FORj = 1 T03 

karr%(i,j) = 0 
NEXTj 
NEXTi 

IF inmode$(1) ="receiver" THEN karr%(1,1) = 1: col2% = 1 
IF inmode$(1) ="satellite" THEN karr%(2,2) = 1: col2% = 2 
IF inmode$(1) ="time" THEN karr%(3,3) = 1: col2% = 3 

IF inmode$(2) ="receiver" THEN karr%(1,1) = 1: karr%(1,col2%) = 1 
IF inmode$(2) ="satellite" THEN karr%(2,2) = 1: karr%(2,col2%) = 1 
IF inmode$(2) ="time" THEN karr%(3,3) = 1: karr%(3,col2%) = 1 

GPS DESIGN 

IF inmode$(3) ="receiver" THEN karr%(1,1) = 1: karr%(1,2) = 1: karr%(1,3) = 1 
IF inmode$(3) ="satellite" THEN karr%(2,1) = 1: karr%(2,2) = 1: karr%(2,3) = 1 
IF inmode$(3) ="time" THEN karr%(3,1) = 1: karr%(3,2) = 1: karr%(3,3) = 1 

krR% = karr%(1,1): ksR% = karr%(1,2): ktR% = karr%(1,3) 
krS% = karr%(2,1): ksS% = karr%(2,2): ktS% = karr%(2,3) 
krT% = karr%(3,1): ksT% = karr%(3,2): ktT% = karr%(3,3) 

PRINT #1, "Differencing sequence array: for R S T' 
PRINT #1," between-receiver differencing:";krR%;ksR%;ktR% 
PRINT #1," between-satellite differencing:";krS%;ksS%;ktS% 
PRINT #1," between-epoch differencing:";krT%;ksT%;ktT% 

RETURN 
I 
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betweenReceiver: 
'build GPS between-receiver differencing transformation matrix R 

maxR%=R%-krR% 
maxS% = S%- ksR% 
max.T% = T% - ktR% 
rownextD% = maxR% * maxS% * max.T% 
colnextD% = R% * max.S% * maxT% 

FORi% = 1 TO rownextD% 
FOR j% = 1 TO colnextD% 

nextD%(i%,j%) = 0 
NEXTj% 
NEXTi% 

FOR it% = 1 TO max.T% 
FOR is% = 1 TO max.S% 
FOR ir% = 1 TO maxR% 

factor%= (is%-1)+ (it%-1)*maxS% 
i% = ir% +factor% * maxR% 
jp% = ir% + factor% * R% 
jn% = R% +factor%* R% 'fixedrcvrdiffs· 

IF seqR$ = "seq" THEN jn% = 1 + ir% + factor% * R% 'seq rcvr diffs 
nextD%(i%,jp%) = 1 
nextD%(i%jn%) = -1 

NEXTir% 
NEXT is% 
NEXT it% 

PRINT #1, 
PRINT #1, "between-receiver differencing operator: Dr(";rownextD%;",";colnextD%;")" 
GOSUB nextDprinter 

RETURN 

betweenSatellite: 
'build GPS between-satellite differencing transformation matrix S 

maxR% = R%-krS% 
max.S% = S%-ksS% 
max.T% = T%-ktS% 
rownextD% = maxR %*maxS%*maxT% 
co1nextD% = max.R%* S% *max.T% 

FORi% = 1 TO rownextD% 
FORj% = 1 TO colnextD% 

nextD%(i%,j%) = 0 
NEXTj% 
NEXTi% 

FOR it% = 1 TO maxT% 
FOR is% = 1 TO max.S% 
FOR ir% = 1 TO maxR% 
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i% = ir% + ((is%-1)+ (it%-1)*maxS%)*maxR% 
jp% = ir% + ((is%-1)+ (it%-1)* S%)*maxR% 
jn% = ir% + ((S%-1)+ (it%-1)* S% )*maxR% 

IF seqS$ ="seq" THEN jn% = ir% +(is% + (it%-1)* S% )*maxR% 
nextD%(i%,jp%) = 1 
nextD%(i%jn%) = -1 

NEXTir% 
NEXT is% 
NEXT it% 

PRINT #1, 

GPS DESIGN 

'fixed sat diffs 
'seq rcvr diffs 

PRINT #1, "between-satellite differencing operator: Ds(";rownextD%;",";colnextD%;")" 
GOSUB nextDprinter 

RETURN 

between Time: 
'build GPS between-epoch differencing transformation matrix TT 

maxR% = R%-krT% 
maxS% = S%-ksT% 
maxT% = T%-ktT% 
rownextD% = maxR%*maxS%*maxT% 
colnextD% = maxR%*maxS%* · T% 

FOR i% = 1 TO rownextD% 
FOR j% = 1 TO colnextD% 

nextD%(i%,j%) = 0 
NEXTj% 
NEXTi% 

FOR it% = 1 TO maxT% 
FOR is% = 1 TO maxS% 
FOR ir% = 1 TO maxR% 

factorl% = ir% + (is%- 1) * maxR% 
factor2% = maxR% * maxS% 
i% = factor1% + (it%-l)*factor2% 
jp% = factor1% + (it%-1)*factor2% 
jn% = factor1% + ( T%-1)*factor2% 

IF seqT$ = "seq" THEN jn% = factorl% + it% *factor2% 
nextD%(i%,jp%) = 1 
nextD%(i%,jn%) = -1 

NEXTir% 
NEXT is% 
NEXT it% 

PRINT #1, 

'fixed sat diffs 
'seq rcvr diffs 

PRINT #1, "between-epoch differencing operator: Dt(";rownextD%;",";colnextD%;")" 
GOSUB nextDprinter 

RETURN 
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productD: 
'form totaiD = nextD * totaiD 

IF colnextD% <> rowtotaiD% TiffiN GOTO errorl 
rowtotaiD% = rownextD% 

FORi = 1 TO rowtotaiD% 
FOR j = 1 TO coltotalD% 

tempD%(ij) = 0 
FORk= 1 TO colnextD% 

tempD%(i,j) =tempD%(ij) + nextD%(i,k)*tota1D%(kj) 
NEXTk 
NEXTj 
NEXTi 

FORi = 1 TO rowtotaiD% 
FOR j = 1 TO coltotalD% 

tota1D%(ij) = tempD%(ij) 
NEXTj 
NEXTi 

PRINT #1, 
PRINT #1, "total differencing operator: D(";rowtotalD%;",";coltota1D%;")" 
GOSUB totalDprinter 

RETURN 

error1: 
PRINT #1, ''noncomformable matrices'';colnextD%;rowtotalD% 

STOP 

covariance: 
'form COV = totalD * totalD(T) 

n% = rowtotalD% 
FORi= 1 TOn% 
FORj = 1 TOi 

COV(ij) = 0 
FORk= 1 TO coltotalD% 

COV(i,j) = COV(i,j) + totalD%(i,k)*totalD%(j,k) 
NEXTk 

COV(j,i) = COV(i,j) 
NEXTj 
NEXTi 

PRINT #1, 
PRINT #1, "covariance: D*DT(";n%;",";n%;")" 
GOSUB COVprinter 

RETURN 
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inverse: 
I matrix inversion for symmetric positive-definite matrices 
I Matrix to be inverted is upper n% x n% portion of COV 

COV is dimensioned mm% x m.m% in calling routine 
I parameters (I = input, 0 = output) 
I I/0 COV =matrix to be inverted (dim= mm% x mm%) 

on output, upper left n% x n% submatrix contains inverse 
of input upper left n% x n% submatrix 

I I n% 
1 I mm% 
10 

=dimension of actual part (upper left corner) of COV to be inverted (n% < mm%) 
= dimensioned size of COV in calling routine 

10 
DEf = non-exponent portion of determinant of input n% x n% matrix 
idexp% = exponent (of 10) part of the determinant. 
The full determinant = DET * 10 11 idexp% 

test= 9.9999999999999990-21 
DET=O# 

1 Choleski decomposition COY = U' U 
1 u(i,i) = sqr[COV(i,i)- sum{k=1,i-1} u(k,i)*u(k,i)] 
I u(i,j>i) = [COV(i,j)- sum{k=1,i-1} u(k,i)*u(k,j)] I u(i,i) 
I det(COV) = det{U)112 det(U) = prod{i=1,n} u(i,i) 

FORj% = 1 TOn% 
FORi%= 1 TOj% 

IF i% = 1 THEN GOTO firstrow 
sum1 = 0# 

FORk%= 1 TO i%-1 
sum1 = sum1 + COV(k%,i%) * COV(k%,j%) 

NEXTk% 
COV(i%,j%) = COV(i%,j%)- sum1 

frrstrow: 
IF i% <> j% THEN COV(i%,j%) = COV(i%j%) I COV(i%,i%): GOTO frrstnex 

DET = DET + LOG(COV(i%,i%))/LOG(10#) 
COV(i%,i%) = SQR (COV(i%,i%)) 

firstnex: 
NEXTi% 
NEXTj% 

idexp%=DET 
rpart = DET - idexp% 

IF ABS(rpart) <test THEN DET = 1# ELSE DET = 10# 11 rpart 

1 inverse B = U(-1) 
' b(i,i) = 1 I u(i,i) 
' b(i,j>i) =- [sum{k=i,j-1} b(i,k)*u(k,j)] I u(jj) 

FORj% = 1 TOn% 
FORi%= 1 TOj% 

IF i% => j% THEN COV(j%j%) = 1# I COV(j%j%): GOTO nexti 
sum2 = 0# 

FORk%= i% TO j%-1 
sum2 = sum2 + COV(i%,k%) * COV(k%,j%) 
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NEXTk% 
COV(i%j%) =- sum2/ COV(j%j%) 

nexti: 
NEXTi% 
NEXTj% 

' inverse P = COV(-1) 
' p(i,j=>i) = sum{k=j,n} b(i,k)*b(j,k) 
I p(i,j<i) = p(j,i) 

FORj% = 1 TOn% 
FORi%= 1 TOj% 

sum3 = 0# 
FORk%=j%TOn% 

sum3 = sum3 + COV(i%,k%) * COV(j%,k%) 
NEXTk% 

COV(i%j%) = sum3 
IF i% <> j% TiffiN COV(j%,i%) = sum3 
NEXTi% 
NEXTj% 

PRINT #1, 
PRINT #1, 11 inverse ofD*DT(11 ;n%;11 , 11 ;n%;11), multiplied by II;RST% 
GOSUB inverseprinter 

RETURN 

kernel: 
'compute Ker = totalD(T) * (totalD * totalD(T))(inverse) * totalD 

FOR i = 1 TO coltotalD% 
FOR j = 1 TO coltotalD% 

ker(i,j) = 0 
FORk = 1 TO rowtotalD% 
FOR 1 = 1 TO rowtotalD% 

ker(i,j) = ker(i,j) + totalD%(k,i)*COV(k,l)*totalD%(1j) 
NEXT I 
NEXTk 
NEXTj 
NEXTi 

PRINT #1, 
PRINT #1, 11 DT* inv (D*DT) * D(";RST%;",";RST%;"), multiplied by 11 ;RST% 
GOSUB Kemelprinter 

RETURN 

nextDprinter: 
FORi% = 1 TO rownextD% 
FORj% = 1 TO colnextD%-1 

PRINT #1, USING 11###11 ;nextD%(i%,j%); 
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NEXTj% 
PRINT #1, USING "###";nextD%(i%,colnextD%) 

NEXTi% 
RETURN 

I -------------------------------------------------------------
totalDprinter: 

FOR i% = 1 TO rowtotalD% 
FOR j% = 1 TO coltotalD%-1 

PRINT #1, USING "###";tota1D%(i%,j%); 
NEXTj% 

PRINT #1, USING "###";totalD%(i%,coltotalD%) 
NEXTi% 

RETURN 

I 

-------------------------------------------------------------
COY printer: 

FORi%= 1 TOn% 
FORj% = 1 TO n%-1 

PRINT #1, USING "###";COV(i%j%); 
NEXTj% 

PRINT #1, USING "###";COV(i%,n%) 
NEXTi% 

RETURN 

inverseprinter: 
FORi%= 1 TOn% 
FORj% = 1 TO n%-1 

QQ = COV(i%j%) * RST% 
CALL ratio(QQ,ia%,ib%) 

PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT#1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib%; 

NEXTj% . 
QQ = COV(i%,n%) * RST% 

CALL ratio(QQ,ia%,ib%) 
IF ib% <> 1 THEN PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT #1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib% 
IF ib% = 1 THEN PRINT #1, USING "###";ia% 

NEXTi% 

nomatrix: 
FullDet = DET * 10# " idexp% 

PRINT #1, "det ofD*DT = "; 
PRINT #1, USING "############.##";FullDet 

RETURN 

Kernel printer: 
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FORi% = 1 TO RST% 
FOR j% = 1 TO RST%-1 

QQ = ker(i%,j%) * RST% 
CALL ratio(QQ,ia%,ib%) 

PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT#1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib%; 

NEXTj% 
QQ = ker(i%,RST%) * RST% 

CALL ratio(QQ,ia%,ib%) 
IF ib% <> 1 THEN PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT #1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib% 
IF ib% = 1 THEN PRINT #1, USING "###";ia% 

NEXTi% 
RETURN 

endofmainsub: 
END SUB 

SUB ratio(x,ia%,ib%) STATIC 
' given x, find ia%/ib% = x 

DEFDBLA-z 
eps = .0000001# 
ia%=0 
ib% = 1 

try again: 
test= x * ib% - ia% 

IF ABS(test) < eps THEN EXIT SUB 
IF test* x > 0 THEN ia% = ia% + 1 * SGN(x) 
IF test * x < 0 THEN ib% = ib% + 1 
GOTO tryagain 

END SUB 

SUB OKWindow STATIC 
WINDOW 3,"" ,( 485,320)-(505,335),2 
TEX1MODE1 
BUTTON 1,1,"0K" ,(0,0)-(20,15),1 
DialogActive = 1 
WIDLE DialogActive 

EventType = DIALOG(O) 
IF EventType = 1 THEN GOTO endsub 

WEND 
endsub: 
WINDOW CLOSE 3 

END SUB 
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'GPS UNDIFFERENCED DESIGN (A2 matrix) -D. Wells 85-08-17 

DEFDBLA-z 
device$= "scm:" 
device$ = "lptl :direct" 
'device$ = "GPSDesign:A20utput" 
OPEN device$ FOR OUTPUT AS #1 
starttime = TIMER 

'select which quantum number is to be fast for each bias parameter 

afast$ = "t" 
'afast$ = "g" 

bfast$ = "t" 
'bfast$ = "s" 

Nfast$ = "g" 
'Nfast$ = "s" 

'between receiver and satellite (alpha/beta) double difference example 
'R% = 3 
'S% = 6 
'T% = 1 

'CALL A2Design (R %,S%,T%,afast$,bfast$,Nfast$, 1,0,0,0,R %,S%) 
'CALL A2Design (R %,S%,T%,afast$,bfast$,Nfast$,0,0, 1,0,R %,S%) 

'triple difference example 
R%=2 
S% =3 
T%=4 

CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,1,1,0,0,1,0) 
'CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,1,1,0,1,0,0) 
'CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,0,0,1,1,0,1) 
'CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,0,1,1,1,0,0) 
'CALL A2Design (R %,S%,T%,afast$,bfast$,Nfast$, 1 ,0,0,0, 1, 1) 
'CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,0,0,1,0,1,1) 
'CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,1,0,0,1,0,1) 
'CALL A2Design (R%,S%,T%,afast$,bfast$,Nfast$,0,1,1,0,1,0) 

ends tuff: 
stoptime = TIMER 
elapsedtime = stoptime - starttime 

PRINT #1, 
PRINT #1, "elapsed secs=";elapsedtime 

CLOSE#1 
CALL OKWindow 

END 
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I 

--------------------------------------------------------------
'comments on A2Design arguments 

' A2 rank defect design parameters 

'kra% =number of known receiver clocks 
'kta% =number of receiver clock sync epochs 

'ksb% = number of known sat clocks 
'ktb% = number of sat clock sync epcohs 

'krN% = number of rcvrs with known am big TO AIL sats 
'ksN% = number of sats with known ambig TO AIL rcvrs 

'How to select values for rank defect parameters 

'biases est bias unknowns kra kta ksb ktb krNksN 
I 

'alpha RT 0 0 s T R s single differences 
'beta ST R T 0 0 R s 
'N RS R T s T 0 0 

'alpha, beta RT+ST-T 1 0 0 0 R s double differences 
I 0 0 1 0 R s 
'alpha,N RT+RS-R 0 1 s T 0 0 
I 0 0 s T 0 1 
'beta,N ST+RS-S R T 0 1 0 0 
I R T 0 0 1 0 

'alpha,beta,N RT+ST+RS 1 1 0 0 1 0 triple differences 
I -(R+S+T-1) 1 1 0 1 0 0 

0 0 1 1 0 1 
0 1 1 1 0 0 
1 0 0 0 1 1 
0 0 1 0 1 1 
1 0 0 1 0 1 (+1) 
0 1 1 0 1 0 (+1) 

--------------------------------------------------------------
SUB A2Design (R%,S%,T%,afast$,bfast$,Nfast$,kra%,kta%,ksb%,ktb%,krN%,ksN% ) 
STATIC 

DEFDBLA-z 

DIM A2%(100,100) 
DIM BB(lOO,lOO) 
DIM CC(100,100) 
mm%= 100 

'total number of observations 
RST% = R% * S% * T% 
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'total number of bias unknowns for undifferenced approach (A2) 
n% = (R%-kra%)*(T%-kta%) + (S%-ksb%)*(T%-ktb%) + (R%-krN%)*(S%-ksN%) 

PRINT #1, "GPS Undifferenced Design (A2 matrix)" 
PRINT #1, "Design (#rcvrs, #sats, #epochs) = ";R%;S%;T% 
PRINT #1, "Total #obs =";RST%;" Total #undifferenced bias unknowns =";n% 
PRINT #1, "A2: Rank defect parameters for alpha: ";kra%;" ";kta% 
PRINT #1," for beta: ";ksb%;ktb% 
PRINT #1, " for N: ";krN%;ksN% 
PRINT #1, "fast quantum number for alpha unknowns= ";afast$ 
PRINT #1, " beta unknowns = ";bfast$ 
PRINT #1, " N unknowns = ";Nfast$ 

begintime = TIMER 
GOSUB design 

endtime =TIMER 
timetaken = endtime - begintime 

PRINT #1, "calculated in ";timetaken;" seconds" 
begintime = TIMER 

GOSUB normal 
endtime =TIMER 
timetaken = endtime - begintime 

PRINT #1, "calculated in ";timetaken;" seconds" 
begintime = TIMER 

GOSUB inverse 
endtime =TIMER 
timetaken = endtime - begintime 

PRINT #1, "calculated in ";timetaken;" seconds" 
begintime = TIMER 

GOSUB kernel 
endtime =TIMER 
timetaken = endtime - begintime 

PRINT #1, "calculated in ";timetaken;" seconds" 
EXIT SUB 

design: 
'build GPS design matrix elements for biases 

FORi% = 1 TO RST% 
FORj% = 1 TOn% 

A2%(i%j%) = 0 
NEXTj% 
NEXTi% 

betaOffset = (R%-kra%)*(T%-kta%) 
NOffset = betaOffset + (S%-ksb%)*(T%-ktb%) 

FOR it%= 1 TOT% 
FOR is%= 1 TO S% 
FORig% = 1 TOR% 

i% = ig% + (is%-l)*R% + (it%-l)*R%*S% 
'alpha bias 
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ja% = ig% + (it%-1)*(R%-kra%) 't slow, g fast 
IF afast$ = "t" THEN ja% =it%+ (ig%-1)*(T%-kta%) 'g slow, t fast 
IF ig% =< (R%-kra%) AND it%=< (T%-kta%) THEN A2%(i%,ja%) = 1 

'beta bias 
jb% = betaOffset +is%+ (it%-1)*(S%-ksb%) 't slow, s fast 
IF bfast$ = "t" THENjb% = betaOffset +it%+ (is%-1)*(T%-ktb%) 's slow, t fast 
IF is%=< (S%-ksb%) AND it%=< (T%-ktb%) THEN A2%(i%,jb%) = 1 

'N bias 
jN% = NOffset + ig% + (is%-1)*(R%-krN%) 's slow, g fast 
IF Nfast$ = "s" THEN jN% = NOffset +is%+ (ig%-1)*(S%-ksN%) 'g slow, s fast 
IF ig% =< (R%-krN%) AND is%=< (S%-ksN%) THEN A2%(i%,jN%) = 1 

NEXTig% 
NEXT is% 
NEXT it% 

PRINT #1, 
PRINT #1, "Undifferenced bias design matrix: A2(";RST%;",";n%;")" 
GOSUB A2printer 

RETURN 

normal: 
'form N22 = A2' A2 

FORj = 1 TOn% 
FORi= 1 TOj 

BB(i,j) = 0 
FORk= 1 TORST% 

BB(i,j) = BB(i,j) + A2%(k,i)* A2%(k,j) 
NEXTk 

BB(j,i) = BB(i,j) 
NEXTi 
NEXTj 

PRINT #1, 
PRINT #1, "Normal equation matrix bias partition: A2T*A2=N22(";n%;",";n%;")" 
GOSUB BBprinter 

RETURN 

inverse: 
'matrix inversion for symmetric positive-definite' matrices 
' Matrix to be inverted is upper n% x n% portion of BB 

BB is dimensioned mm% x mm% in calling routine 
'parameters (I = input, 0 = output) 
' 1/0 BB =matrix to be inverted (dim= mm% x mm%) 

on output, upper left n% x n% submatrix contains inverse 
of input upper left n% x n% submatrix 

' I n% =dimension of actual part (upper left comer) of BB to be inverted (n% < mm%) 
' I mm% = dimensioned size of BB in calling routine 
' 0 DEf = non-exponent portion of determinant of input n% x n% matrix 
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I 0 idexp% =exponent (of 10) part of the determinant. 
The full determinant = DET * 10 A idexp% 

test= 9.9999999999999990-21 
DET=O# 

1 Choleski dec,omposition N22 = U' U 
I u(i,i) = sqr[N22(i,i) - sum{k=l,i-1} u(k,i)*u(k,i)] 
I u(ij>i) = [N22(i,j)- sum{k=l,i-1} u(k,i)*u(k,j)] I u(i,i) 
1 det(N22) = det(U)"'2 det(U) = prod{i=1,n} u(i,i) 

FORj% = 1 TOn% 
FORi%= 1 TOj% 

IF i% = 1 THEN GOTO firstrow 
sum1 = 0# 

FORk%= 1 TO i%-1 
sum1 = sum1 + BB(k%,i%) * BB(k%,j%) 

NEXTk% 
BB(i%,j%) = BB(i%,j%)- sum1 

frrstrow: 
IF i% <> j% THEN BB(i%,j%) = BB(i%,j%) I BB(i%,i%): GOTO firstnex 
DET = DET + LOG(BB(i%,i%))/LOG(10#) 
BB(i%,i%) = SQR (BB(i%,i%)) 

frrstnex: 
NEXTi% 
NEXTj% 

idexp%=DET 
rpart = DET - idexp% 

IF ABS(rpart) <test THEN DET = 1# ELSE DET = 10# A rpart 

FullDet = DET * 10# A idexp% 
PRINT #1, "det ofN22 = "; 
PRINT #1, USING "##############.##";FullDet 

I inverse B = U(-1) 
1 b(i,i) = 1 I u(i,i) 
1 b(i,j>i) = - [sum{k=i,j-1} b(i,k)*u(k,j)] I u(j,j) 

FORj% = 1 TOn% 
FORi%= 1 TOj% 

IF i% => j% THEN BB(j%,j%) = 1# I BB(j%,j%): GOTO nexti 
sum2 = 0# 

FORk%= i% TO j%-1 , 
sum2 = sum2 + BB(i%,k%) * BB(k%,j%) 

NEXTk% 
BB(i%,j%) =- sum2 I BB(j%,j%) 
BB(j%,i%) = 0 

nexti: 
NEXTi% 
NEXTj% 
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'PRINT #1, 
'PRINT #1, "Choleski root ofN22=A2T*A2(";n%;",";n%") multiplied by ";RST% 
'GOSUB rootprinter 

' inverse P = N22( -1) 
' p(i,j=>i) = sum{k=j,n} b(i,k)*b(j,k) 
I p(i,j<i) = p(j,i) 

FORj% = 1 TOn% 
FORi%= 1 TOj% 

sum3 = 0# 
FORk%=j%TOn% 

sum3 = sum3 + BB(i%,k%) * BB(j%,k%) 
NEXTk% 
CC(i%,j%) = sum3 

IF i% <> j% THEN CC(j%,i%) = sum3 
NEXTi% 
NEXTj% 

PRINT #1, 
PRINT #1, "inverse ofN22=A2T*A2(";n%;",";n%;"), multiplied by";RST% 
GOSUB CCprinter 

RETURN 

kernel: 
'compute Ker = CC * CCT, where CC = A2 *Root 

FORi= 1 TORST% 
FORj = 1 TOn% 

CC(ij) = 0 
FORk= 1 TOj 

CC(i,j) = CC(i,j) + A2%(i,k)*BB(k,j) 
NEXTk 
NEXTj 
NEXTi 

FORi= 1 TORST% 
FORj = 1 TOi 

BB(ij) = 0 
FORk= 1 TOn% 

BB(i,j) = BB(ij) + CC(i,k)*CC(j,k) 
NEXTk 

IF i <> j THEN BB(j,i) = BB(ij) 
NEXTj 
NEXTi 

PRINT #1, 
PRINT #1," A2 * inv N22 * A2T (";RST%;",";RST%;"), multiplied by";RST% 
GOSUB Kemelprinter 

RETURN 
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A2printer: 
FORi%= 1 TORST% 
FORj% = 1 TOn%-1 

PRINT #1, USING "###";A2%(i%,j%); 
NEXTj% 

PRINT #1, USING "###";A2%(i%,n%) 
NEXTi% 

RETURN 

BBprinter: 
FORi%= 1 TOn% 
FORj% = 1 TO n%-1 

PRINT #1, USING "###";BB(i%,j%); 
NEXTj% 

PRINT #1, USING "###";BB(i%,n%) 
NEXTi% 

RETURN 

CCprinter: 
FORi%= 1 TOn% 
FORj% = 1 TO n%-1 

QQ = CC(i%,j%) * RST% 
CALL ratio (QQ,ia%,ib%) 

PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT#1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib%; 
NEXTj% 

QQ = CC(i%,n%) * RST% 
CALL ratio (QQ,ia%,ib%) 
IF ib% <> 1 THEN PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT#1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib% 
IF ib% = 1 THEN PRINT #1, USING "###";ia% 
NEXTi% 

RETURN 

rootprinter: 
FORi%= 1 TOn% 
FORj% = 1 TO n%-1 

QQ = BB(i%,j%) * RST% 
PRINT #1, USING "###.#######";QQ; 

NEXTj% 
QQ = BB(i%,n%)* RST% 

PRINT #1, USING "###.#######";QQ 
NEXTi% 

RETURN 
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'--------------------------------------------------------------
Kernel printer: 

FORi%= 1 TORST% 
FORj% = 1 TO RST% -1 

QQ = BB(i%,j%) * RST% 
CALL ratio (QQ,ia%,ib%) 

PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT#!, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib%; 

NEXTj% 
QQ = BB(i%,RST%) * RST% 
CALL ratio (QQ,ia%,ib%) 

IF ib% <> 1 THEN PRINT #1, USING "###";ia%; 
IF ib% <> 1 THEN PRINT #1, "/"; 
IF ib% <> 1 THEN PRINT #1, USING "##";ib% 
IF ib% = 1 THEN PRINT #1, USING "###";ia% 

NEXTi% 
RETURN 

endofmainsub: 
END SUB 

SUB ratio(x,ia%,ib%) STATIC 
'given x, find ia%/ib% = x 

DEFDBLA-z 
eps = .0000001 # 
ia%=0 
ib% = 1 

try again: 
test= x * ib%- ia% 

IF ABS(test) < eps THEN; EXIT SUB 
IF test* x > 0 THEN ia%l = ia% + 1 * SGN(x) 
IF test * x < 0 THEN ib% = ib% + 1 
GOTO tryagain 

END SUB 

SUB OKWindow STATIC 
WINDOW 3,"" ,(485,320)-(505,335),2 
TEX1MODE1 
BUTTON 1,1,"0K",(0,0)-(20,15),1 
DialogActive = 1 
WHll..E DialogActive 

EventType = DIALOG(O) 
IF EventType = 1 THEN GOTO endsub 

WEND 
endsub: 
WINDOW CLOSE 3 

END SUB 
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'GPS ANNIHILATION OF A2BYD-D. Wells 85-08-17 

DEFDBLA-z 

device$= "scm:" 
device$ = "lptl :direct" 
'device$ = "GPSDesign:AnnOutput" 
OPEN device$ FOR OUTPUT AS #1 
starttime = TIMER 

R%=3 
S%=6 
T%= 1 

' D design parameters 

inmode1$ = "receiver" 
inmode2$ = "satellite" 
inmode3$ = "none" 

seqR$ = "fix" 
seqS$ = "fix" 
seqT$ = "fix" 

' A2 rank defect design parameters 

'biases est bias unknowns 
I 

'alpha RT 
'beta ST 
'N RS 

'alpha, beta RT+ST-T 
I 

'alpha,N RT+RS-R 
I 

'beta,N ST+RS-S 
I 

'alpha,beta,N RT+ST+RS 
I -(R+S+T-1) 

kra 

0 
R 
R 

1 
0 
0 
0 
R 
R 

1 
1 
0 
0 
1 
0 
1 
0 

kta 

0 
T 
T 

0 
0 
1 
0 
T 
T 

1 
1 
0 
1 
0 
0 
0 
1 
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ksb ktb 

s T 
0 0 
s T 

0 0 
1 0 
s T 
s T 
0 1 
0 0 

0 0 
0 1 
1 1 
1 1 
0 0 
1 0 
0 1 
1 0 

GPS DESIGN 

krN ksN 

R S single differences 
R S 
0 0 

R S double differences 
R S 
0 0 
0 1 
0 0 
1 0 

1 0 triple differences 
0 0 
0 1 
0 0 
1 1 
1 1 
0 1 (+1) 
1 0 (+1) 
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kra% = 1 
kta% =0 

'number of known receiver clocks 
'number of receiver clock sync epochs 

ksb% = 0 
ktb% =0 

'number of known sat clocks 
'number of sat clock sync epcohs 

krN%=R% 
ksN% = S% 

'number of rcvrs with known ambig to all sats 
'number of sats with known ambig to all rcvrs 

CALL 
DandA2(R%,S%,T%,inmode1$,inmode2$,inmode3$,seqR$,seqS$,seqT$,kra%,kta%,ksb%, 
ktb%,krN%,ksN%) 

stoptime = TIMER 
elapsedtime = stoptime - starttime 

PRINT #1, 
PRINT #1, "elapsed secs=";elapsedtime 

CLOSE#1 
CALL OKWindow 

END 

SUBDandA2 
(R%,S%,T%,inmode1$,inmode2$,inmode3$,seqR$,seqS$,seqT$,kra%,kta%,ksb%,ktb%,kr 
N%,ksN% ) STATIC 

DEFDBLA-z 

DIM A2%(100,100) 
DIM totalD%(100,100) 
DIM nextD%(100,100) 
DIM tempD%(100,100) 
DIM inmode$(3) 
DIM karr%(3,3) 
mm%= 100 

'total number of observations 
RST% =R% * S% * T% 

'total number of unknowns for undifferenced approach (A2) 
n% = (R%-kra%)*(T%-kta%) + (S%-ksb%)*(T%-ktb%) + (R%-krN%)*(S%-ksN%) 

'differencing modes 
inmode$(1) = inmodel$ 
inmode$(2) = inmode2$ 
inmode$(3) = inmode3$ 

PRINT #1, "GPS Annihilation of A2 by D" 
PRINT #1, "Design (#rcvrs, #sats, #epochs)= ";R%;S%;T% 
PRINT #1, "Total #obs =";RST%;" Total #undifferenced bias unknowns =";n% 
PRINT #1, 
PRINT #1, "A2: Rank defect parameters for alpha: ";kra%;" ";kta% 
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PRINT #1," 
PRINT #1," 
PRINT #1, 

for beta: ";ksb%;ktb% 
forN: ";krN%;ksN% 

PRINT #1, "D: Differencing references are:" ;seqR$;" rec ref, ";seqS$;" sat ref, ";seqT$;" time 
ref' 
PRINT #1, "Differencing between ";inmode$(1);", then ";inmode$(2);", then ";inmode$(3) 

GOSUB initialk 

'compute A2 
GOSUB design 

'computeD 
GOSUB initialD 

FOR idiff% = 1 TO 3 
IF inmode$(idiff%) = "none" TiffiN GOTO nomorediffs 
IF inmode$(idiff%) ="receiver" TiffiN GOSUB betweenReceiver 
IF inmode$(idiff%) ="satellite" TiffiN GOSUB betweenSatellite 
IF inmode$(idiff%) ="time" TiffiN GOSUB betweenTime 

GOSUB productD 
NEXTidiff% 

nomorediffs: 
' try out annihilation 
GOSUB annihil 

EXIT SUB 

--------------------------------------------------------------
initialk: 

'set up k array for inmode$ sequence 
'this sets up the following 15 cases 

'in mode kxR% kxS% 
' 1 2 3 r s t r s t r s 

'r 1 0 0 0 0 0 0 0 
' s 0 0 0 0 1 0 0 0 
' t 0 0 0 0 0 0 0 0 

'r s 1 0 0 1 1 0 0 0 
' s r 1 1 0 0 1 0 0 0 
'r t 1 0 0 0 0 0 1 0 
' t r 1 0 1 0 0 0 0 0 
' s t 0 0 0 0 1 0 0 1 
I t s 0 0 0 0 1 1 0 0 

kxT% 
t 

0 single differencing modes 
0 
1 

0 double differencing modes 
0 
1 
1 
1 
1 

'r s t 1 0 0 1 1 0 1 1 1 triple differencing s~uences 
lr t s 1 0 0 1 1 1 1 0 1 
' s r t 1 1 0 0 1 0 1 1 1 
' t r s 1 0 1 1 1 1 0 0 1 
' s t r 1 1 1 0 1 0 0 1 1 
I t s r 1 1 1 0 1 1 0 0 1 
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FORi= 1 T03 
FORj= 1 T03 

karr%(i,j) = 0 
NEXTj . 
NEXTi 

IF inmode$(1) ="receiver" THEN karr%(1,1) = 1: col2% = 1 
IF inmode$(1) ="satellite" THEN karr%(2,2) = 1: col2% = 2 
IF inmode$(1) ="time" THEN karr%(3,3) = 1: col2% = 3 

IF inmode$(2) ="receiver" THEN karr%(1,1) = 1: karr%(1,col2%) = 1 
IF inmode$(2) ="satellite" THEN karr%(2,2) = 1: karr%(2,col2%) = 1 
IF inmode$(2) ="time" THEN karr%(3,3) = 1: karr%(3,col2%) = 1 

IF inmode$(3) ="receiver" THEN karr%(1,1) = 1: karr%(1,2) = 1: karr%(1,3) = 1 
IF inmode$(3) ="satellite" THEN karr%(2,1) = 1: karr%(2,2) = 1: karr%(2,3) = 1 
IF inmode$(3) ="time" THEN karr%(3,1) = 1: karr%(3,2) = 1: karr%(3,3) = 1 

krR% = karr%(1,1): 
krS% = karr%(2,1): 
krT% = karr%(3,1): 

ksR% = karr%(1,2): 
ksS% = karr%(2,2): 
ksT% = karr%(3,2): 

ktR% = karr%(1,3) 
ktS% = karr%(2,3) 
ktT% = karr%(3,3) 

PRINT #1, "Differencing sequence array: for R S T' 
PRINT #1," between-receiver differencing:";krR%;ksR%;ktR% 
PRINT #1," between-satellite differencing:";krS%;ksS%;ktS% 
PRINT #1," between-epoch differencing:";krT%;ksT%;ktT% 

RETURN 

design: 
'build GPS design matrix elements for biases 

FORi%= 1 TO RST% 
FORj% = 1 TOn% 

A2%(i%,j%) = 0 
NEXTj% 
NEXTi% 

betaOffset = (R%-kra%)*(T%-kta%) 
NOffset = betaOffset + (S%-ksb%)*(T%-ktb%) 

FORit%= 1 TOT% 
FOR is% = 1 TO S% 
FORig% = 1 TOR% 

i% = ig% + (is%-1)*R% + (it%-1)*R%*S% 
'alpha bias 

ja% = ig% + (it%-1)*(R%-kra%) 't slow, g fast 
ja% =it%+ (ig%-1)*(T%-kta%) 'g slow, t fast 
IF ig% =< (R%-kra%) AND it%=< (T%-kta%) THEN A2%(i%,ja%) = 1 

'beta bias 
jb% = betaOffset +is%+ (it%-1)*(S%-ksb%) 't slow, s fast 
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jb% = beta Offset+ it% + (is %-1 )*(T%-ktb%) 's slow, t fast 
IF is%=< (S%-ksb%) AND it%=< (T%-ktb%) THEN A2%(i%jb%) = 1 

'N bias 
jN% = NOffset + ig% + (is%-1)*(R%-krN%) 's slow, g fast 
jN% = NOffset +is%+ (ig%-1)*(S%-ksN%) 'g slow, s fast 
IF ig% =< (R%-krN%) AND is%=< (S%-ksN%) THEN A2%(i%jN%) = 1 

NEXTig% 
NEXT is% 
NEXT it% 

PRINT #1, 
PRINT #1, "Undifferenced bias design matrix: A2(";RST%;",";n%;")" 
GOSUB A2printer 

RETURN 
I 

initialD: 
'set totalD = Identity(dim=rst) to start 

rowtotalD% = RST% 
coltotalD% = RST% 

FORi% = 1 TO rowtotalD% 
FOR j% = 1 TO coltotalD% 

totalD%(i%,j%) = 0 
NEXTj% 

totalD%(i%,i%) = 1 
NEXTi% 

RETURN 

betweenReceiver: 
'build GPS between-receiver differencing transformation matrix R 

maxR%=R%-krR% 
maxS% = S%- ksR% 
maxT% = T% - ktR% 
rownextD% = maxR% * maxS% * maxT% 
colnextD% = R% * maxS% * max.T% 

FORi% = 1 TO rownextD% 
FORj%= 1 TOcolnextD% 

nextD%(i%,j%) = 0 
NEXTj% 
NEXTi% 

FOR it% = 1 TO maxT% 
FOR is% = 1 TO maxS% 
FOR ir% = 1 TO maxR% 

factor%= (is%-1)+ (it%-1)*maxS% 
i% = ir% +factor%* maxR% 
jp% = ir% + factor% * R% 
jN% = R% +factor%* R% 
IF seqR$ ="seq" THEN jN% = 1 + ir% +factor%* R% 

Appendix D: Source code of computer programs used 

'fixed rcvr diffs 
'seq rcvr diffs 
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nextD%(i%,jp%) = 1 
nextD%(i%,jN%) = -1 

NEXTir% 
NEXT is% 
NEXT it% 

PRINT #1, 
PRINT #1, "between-receiver differencing operator: Dr(";rownextD%;",";colnextD%;")" 
GOSUB nextDprinter 

RETURN 

betweenSatellite: 
'build GPS between-satellite differencing transformation matrix S 

maxR% = R%-krS% 
maxS% = S%-ksS% 
maxT% = T%-ktS% 
rownextD% = maxR %*maxS%*maxT% 
colnextD% = maxR %* S% *maxT% 

FORi% = 1 TO rownextD% 
FOR j% = 1 TO colnextD% 

nextD%(i%,j%) = 0 
NEXTj% 
NEXTi% 

FOR it% = 1 TO maxT% 
FOR is% = 1 TO maxS% 
FORir% = 1 TOmaxR% 

i% = ir% + ((is%-1)+ (it%-1)*maxS%)*maxR% 
jp% = ir% + ((is%-1)+ (it%-1)* S%)*maxR% 
jN% = ir% + ((S%-1)+ (it%-1)* S% )*maxR% 'fixed sat diffs 
IF seqS$ ="seq" THEN jN% = ir% +(is% + (it%-1)* S% )*maxR% 'seq rcvr diffs 
nextD%(i%,jp%) = 1 
nextD%(i%,jN%) = -1 

NEXTir% 
NEXT is% 
NEXT it% 

PRINT #1, 
PRINT #1, "between-satellite differencing operator: Ds(";rownextD%;",";colnextD%;")" 
GOSUB nextDprinter 

RETURN 

between Time: 
'build GPS between-epoch differencing transformation matrix TI 

maxR% = R %-krT% 
maxS% = S%-ksT% · 
maxT% = T%-ktT% 
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rownextD% = maxR %*max.S%*max.T% 
colnextD% = maxR%*maxS%* T% 

FORi% = 1 TO rownextD% 
FORj% = 1 TO colnextD% 

nextD%(i %,j%) = 0 
NEXTj% 
NEXTi% 

FOR it% = 1 TO max.T% 
FOR is% = 1 TO maxS% 
FOR ir% = 1 TO maxR% 

factor!%= ir% +(is%- 1) * maxR% 
factor2% = maxR% * maxS% 
i% =factor!%+ (it%-l)*factor2% 
jp% =factor!%+ (it%-l)*factor2% 
jN% =factor!%+ ( T%-l)*factor2% 
IF seqT$ = "seq" THEN jN% = factor!% + it% *factor2% 
nextD%(i %,jp%) = 1 
nextD%(i%,jN%) = -1 

NEXTir% . 
NEXT is% 
NEXT it% 

PRINT #1, 

GPS DESIGN 

'fixed sat diffs 
'seq rcvr diffs 

PRINT #1, "between-epoch differencing operator: Dt(";rownextD%;",";colnextD%;")" 
GOSUB nextDprinter 

RETURN 

productD: 
'form totalD = nextD * totalD 

IF colnextD% <> rowtotalD% THEN GOTO errorl 
rowtotalD% = rownextD% 

FORi = 1 TO rowtotalD% 
FOR j = 1 TO coltotalD% 

tempD%(ij) = 0 
FORk = 1 TO colnextD% 

tempD%(i,j) =tempD%(i,j) + nextD%(i,k)*totalD%(kj) 
NEXTk 
NEXTj 
NEXTi 

FORi = 1 TO rowtotalD% 
FOR j = 1 TO coltotalD% 

tota1D%(i,j) = tempD%(i,j) 
NEXTj 
NEXTi 

PRINT #1, 
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PRINT #1, "total differencing operator: D(";rowtotalD%;",";coltotalD%;")" 
GOSUB totalDprinter 

RETURN 

error1: 
PRINT #1, "noncomformable matrices";colnextD%;rowtotalD% 

STOP 

annihil: 
'check that D * A2 = 0 

PRINT #1, 
PRINT #1, "checking that D (";rowtotalD%;",";RST%;") * A2(";RST%;",";n%;") =null 
matrix'' 

FailFlag = 0 
FORi = 1 TO rowtotalD% 
FORj = 1 TOn% 

DxA2ij%=0 
FORk= 1 TORST% 

DxA2ij% =DxA2ij% + tota1D%(i,k)*A2%(kj) 
NEXTk 
IF DxA2ij% <> 0 THEN FailFlag = 1 
IF DxA2ij% <> 0 THEN PRINT #1, "row ";i;" ofD fails to annihilate col";j;" of A2. 

(D* A2)ij =" ;DxA2ij 
NEXTj 
NEXTi 

PRINT #1, 
IF FailFlag = 0 THEN PRINT #1, "D completely annihilates A2" 

RETURN 

A2printer: 
FORi%= 1 TORST% 
FORj% = 1 TOn%-1 

PRINT #1, USING "###";A2%(i%,j%); 
NEXTj% 

PRINT #1, USING "###";A2%(i%,n%) 
NEXTi% 

RETURN 

nextDprinter: 
FORi% = 1 TO rownextD% 
FORj% = 1 TO colnextD%-1 

PRINT #1, USING "###";nextD%(i%j%); 
NEXTj% 

PRINT #1, USING "###";nextD%(i%,colnextD%) 
NEXTi% 
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RETURN 

'--------------------------------------------------------------
totalDprinter: 

FORi%= 1 TOrowtotalD% 
FORj% = 1 TO coltotalD%-1 

PRINT #1, USING "###";totalD%(i%,j%); 
NEXTj% 

PRINT #1, USING "###";totalD%(i%,coltotalD%) 
NEXTi% 

RETURN 

endofmainsub: 
END SUB 

SUB OKWindowSTATIC 
WINDOW 3,"",(485,320)-(505,335),2 
1EX1MODE1 
BUTTON 1,1,"0K",(0,0)-(20,15),1 
DialogActive = 1 
WHll.E DialogActive 

EventType = DIALOG(O) 
IF EventType = 1 THEN GOTO endsub 

WEND 
endsub: 
WINDOW CLOSE 3 

END SUB 
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