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PREFACE 

Carrier phase difference observations are potentially the most precise 

measurements that can be made using the Global Positioning System. In this 

report we discuss the development and use of a software package for 

processing such data. This software package was developed at the 

University of New Brunswick (UNB), Fredericton, Canada, between July 1983 

and July 1984. It is the result of a common effort of the Department of 

Surveying Engineering of UNB and the Astronomical Institute of the 

University of Bern, Switzerland. 

This software package has been used to process observations from 

Macrometer® V-1000 single-frequency receivers. Two campaigns, the Ottawa 

1983 campaign (see Part A of this report) and the Quebec 1984 campaign (to 

be discussed in a subsequent work), have been processed to date. 

The present software package will almost certainly be followed by a 

second generation version. This version will be capable of processing 

dual-frequency observations. The option of estimating orbital parameters 

will prove its full power only when dual-frequency observations on long 

baselines are available. However, the basic structure of the package will 

likely not change in these subsequent developments. 

This report is arranged in three semi-autonomous parts. In Part A, we 

reprint, essentially unaltered, the paper "The Ottawa Macrometer® 

experiment: An independent analysis," which was presented at the 11th 

Annual Meeting of the Canadian Geophysical Union in Halifax, June 1984. 

Part B deals with the orbital aspects of positioning using GPS satellites. 

Part C concludes this report with some aspects of a technical nature, which 

did not fit neatly into either Part A or Part B. 
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PART A 

THE OTTAWA MACROMETER® EXPERIMENT: 

AN INDEPENDENT ANALYSIS 

(1) . (2) (2) (2) 
G. Beutler , D.A. Dav1dson , R.B. Langley , R. Santerre 

. (3) . (2) (2) H.D. Vall1ant , P. Van1cek , D.E. Wells 

(1) Visiting scientist from the Astronomical Institute of the University 
of Bern, Switzerland, presently at the Department of Surveying 
Engineering, University of New Brunswick, Fredericton, N.B. 

(2) Department of Surveying Engineering, University of New Brunswick, 
Fredericton, N.B. 

(3) Earth Physics Branch, Energy, Mines and Resources Canada, Ottawa. 

ABSTRACT 

During the summer of 1983, the Earth Physics Branch of the federal 

Department of Energy, Mines and Resources conducted the first test in 

Canada of the Macrometer® V-1000 GPS receiver. Two receivers were used to 

determine the vector baselines between six points in the Ottawa area. The 

data obtained were processed by the Earth Physics Branch using software 

developed by Macrometrics Inc., the manufacturer of the Macrometer®, and, 

independently, at the University of New Brunswick (UNB). 

The impetus for the UNB analysis was two-fold: (1) to corroborate the 

results obtained by the Earth Physics Branch, and (2) to develop an 

independent Canadian capability to process Macrometer® (and other types of) 

GPS observations. In this paper we describe the UNB analysis. 

A computer software package was developed to process doubly-

differenced phases from single or multiple observing sessions with the 

capability of estimating both receiver coordinates and satellite orbits. 

Our software yielded baseline components agreeing with the mean of those 

1 
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obtained with Macrometrics 1 software to about 1 ppm. The corresponding 

agreement with terrestrial measurements is of the same order for longitude 

and latitude and, as may be expected, somewhat worse for the height (2 ppm 

to 20 ppm). 

The software is also capable of directly yielding a network solution 

by processing all observation sessions on all baselines simultaneously. 

The network solution is significantly stronger than the solution based on 

single baseline processing. 

RESUME 

Au cours de 1 I ete 1983' la Direction de la Physique du Globe du 

Ministere de 1 1 Energie des Mines et des Ressources menait le premier test 

du recepteur GPS Macrometer• V-1000, au Canada. Deux recepteurs etaient 

utilises pour determiner les composantes des lignes de bases entre six 

points dans la region d 1 0ttawa. Les observations obtenues ont ete 

traitees independamment par la Direction de la Physique du Globe en 

utilisant le logiciel developpe par Macrometrics Inc., les fabricants du 

Macrometer•, et par 1 1 Universite du Nouveau-Brunswick (UNB). 

Cet article decrit 1 I analyse effectuee a 1 I Universite du Nouveau-

Brunswick. Cette analyse avait deux buts principaux: (1) corroborer les 

resultats obtenus par la Direction de la Physique du Globe, et (2) de 

developper un logiciel Canadien independant pouvant traiter les 

observations GPS du Macrometer• (et d'autres types d'observations). 

Le logiciel a ete developpe pour traiter les doubles differences de 

phases avec les options suivantes: combiner les differentes sessions 

d'observations ou les traiter independamment; estimer les coordonnees des 
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recepteurs ou les elements orbitaux des satellites. Les resultats obtenus 

avec notre logiciel concordent avec la moyenne de ceux calculi:~s avec le 

logiciel de Macrometrics a environ 1 ppm. La comparaison avec les mesures 

terrestres montre des resultats semblables pour les latitudes et les 

longitudes, cependant les differences en elevation sont de l'ordre de 2 a 

20 ppm (resultats inferieurs previsibles). 

Le logiciel permet egalement de produire une solution pour un reseau 

complet en traitant toutes les observations de toutes les !ignes de bases 

simultaneement. Cette derniere solution est significativement plus forte 

que la solution provenant de chacune des !ignes de bases trai tees 

individuellement. 

1. INTRODUCTION 

During the period from 19 July to 19 August 1983, the Earth Physics 

Branch (EPB) of the federal Department of Energy, Mines and Resources 

(EMR), with Herb Valliant as Chief Scientist, conducted the first test in 

Canada of Macrometrics' GPS surveying system (the Macrometer• 

Interferometric Surveyor). Two Macrometer• V-1000 single frequency 

receivers were used to determine the vector baselines between selected 

points of the Ottawa test network of the Surveys and Mapping Branch of EMR. 

A detailed description and the results of the experiment (as obtained 

by the EPB with Macrometrics' software) have been recorded by Valliant 

[1984]. We therefore restrict ourselves to a very short description of the 

experiment. 

A total of 30 observing sessions were conducted in as many days. The 
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first two comprised 3 one-hour observation periods on short baselines 

(points 6A and 7, length 30m; points 6A and 51, length 2230 m (see Table 

1)). The remaining 28 sessions were of longer duration (24 of 5 hours, 

four of 3 hours) and on longer baselines (13 km to 66 km, see Table 1). 

Each observation period contains 60 equally spaced observation epochs where 

at each epoch up to six satellites are observed simultaneously. A sketch 

of the test area illustrating the long baselines is given in Figure 1. The 

short baselines were on the National Geodetic Base Line (NGBL). 

Not all observing sessions yielded scientifically useful data. The 

observation schedule for those sessions producing useful results is given 

in Table 2. 

2. THE MACROMETER OBSERVABLE 

The measurements we have analysed are not the raw field data as 

recorded by single receivers. The most basic data available to us were 

those obtained from Macrometrics' INTERF or INTRFT computer programs (see 

Macrometrics [1983] or Counselman [1983]). These data usually are referred 

to as "interferometric phase differences between two receivers" or "single 

differences". In principle, one such measurement is the difference in the 

L1 carrier phase of one GPS satellite measured at (nominally) the same time 

by the two receivers. This observable corresponds approximately to the 

range difference satellite j of two receivers R1 and R2 at 

observation time t. (see Figure 2). A more precise definition is given 
1 

below in eqn. (1). 

Tables 3(a) and 3(b) show two examples of the interferometric 

measurements derived with Macrometrics' program INTRFT. The measurements 



Station 

6A 

7 

51 

Morris 

Parunure 

Metcalfe 

5 

TABLE 1 

A Priori Coordinates for Station Positions 
from Terrestrial Observations 

(nominally on NAD 27)* 

Orthometric 
Latitude Longitude (west) Height (m) 

45°23'55~79598 75°55'21~44516 77.085 

45°23'55~13131 75°55'22~48157 76.629 

45°23'07~16263 75°56' 37'!25020 70.190 

45°26'34~29253 76°15'18~81735 89.806 

45°20'18':81549 76°11'04~58789 153.956 

45°14'34~01037 75°27'31~48309 102.590 

Approximate Baseline Lengths 

Baseline Length (m) 

6A - 7 30 

6A- 51 2230 

6A - Metcalfe 40295 

6A - Parunure 21590 

6A - Morris 26489 

Metcalfe - Parunure 57931 

Metcalfe - Morris 66269 

Panmure - Morris 12844 

*from Valliant [1984, Table 6]. 

Ellipsoidal 
Heights+ 

78.754 

78.298 

71.859 

91.164 

155.346 

104.823 

+ These values refer to the Clarke 1866 Ellipsoid of the North American 
Datum 1927 (NAD 27). They were calculated from the orthometric heights 
using the geoid undulations given with respect to the WGS-72 ellipsoid 
(see Valliant [1984, Table 7]) and assumed X, Y, and z coordinate 
differences between the centres of the NAD-27 and WGS-72 ellipsoids of 
-22 m, 157 m, and 176 m respectively. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

N 
s 

d 

N 
s/s 

N 
o/s 

N 
obs 

Mo 

Pa 

Me 

7 

TABLE 2 

Summary of Observations. 

N N N N 
Baseline s d s/s o/s obs 

6A - 7 3 1/1/1 4/5/3 132/204/110 446 

6A - 51 3 1/1/1 4/5/3 147/163/103 413 

Pa - Mo 4 5/5/5/5 5/5/3/3 108/113/22/21 264 

Pa - 6A 4 5/5/5/5 5/5/6/5 114/107/149/47 417 

Mo - 6A 4 5/5/5/5 5/5/6/6 102/106/149/178 535 

Me - 6A 4 5/5/5/5 5/5/6/6 124/91/163/86 464 

Me - Pa 4 5/5/3/3 6/6/6/6 118/129/158/182 587 

Me - Mo 3 5/5/5 5/6/6 117/151/145 413 

Total number of observation sessions per baseline. 

Duration of session (hours). 

Number of satellites observed per session. 

Number of (double difference) observations per baseline and per 
session. 

Number of (double difference) observations per baseline. 

Morris 

Panmure 

Metcalfe 
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FIGURE 2 

THE MACROMETER OBSERVABLE ( SIMPLIFIED ) 

Satellite at observation time t. 
1 

Receivers at observation time t. 
1 

j 
Pki Distance of satellite j from receiver k 

at time t. 
1 

= pj - pj 
li 2i 

Integer number (ambiguity parameter 

associated with satellite j) 

Wavelength of L1 - carrier 

~P~ + Nj A/2 : Actual observable 
1 
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TABLE 3A 
+++ INTERFEROMETRIC PHASES (M) +++ 

MACROMETER OBSERVATION FILE 8 
STATIONS: 6A , 7 (30 M) 

OBSERVATION DATE: 1983 7 19 

CHANNEL: 1 CHANNEL: 2 CHANNEL: 3 
1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
3 0.0000 0.0000 0.0000 
4 0.0000 19454.6946 0.0000 
5 0.0000 19452.8690 -6866.7448 
6 0.0000 19451.1395 -6868.8989 
7 0.0000 19449.4256 -6871.0306 
8 0.0000 19447.7423 -6873.1327 
9 0.0000 19446.1177 -6875.1797 

10 0.0000 19444.6076 -6877.1130 
11 0.0000 19443.1234 -6879.0211 
12 0.0000 19441.6470 -6880.9233 
13 36032.5472 19440.1928 -6882.8050 
14 36030.7824 19438.7306 -6884.6988 
15 36028.9427 19437.1877 -6886.6684 
16 36027.0593 19435.6079 -6888.6768 
17 36025.0847 19433.9429 -6890.7701 
18 36023.0661 19432.2379 -6892.9121 
19 36021.0520 19430.5309 -6895.0494 
20 36019.0951 19428.8937 -6897.1172 
21 36017.3098 19427.4335 -6899.0123 
22 0.0000 19426.0782 -6900.8011 
23 36013.9856 19424.7567 -6902.5546 
24 36012.3719 19423.4784 -6904.2706 
25 36010.7424 19422.1863 -6905.9945 
26 36009.1388 19420.9221 -6907.6932 
27 36007.5760 19419.7063 -6909.3479 
28 36006.0228 19418.5004 -6910.9875 
29 36004.4457 19417.2711 -6912.6525 
30 36002.8951 19416.0795 -6914.2823 
31 36001.4252 19414.9584 -6915.8323 
32 35999.8508 19413.7493 ,-6917.4824 
33 35998.1667 19412.4249 -6919.2377 
34 35996.3508 19410.9778 -6921.1182 
35 35994.5062 19409.5090 -6923.0253 
36 36992.6336 19408.0024 -6924.9623 
37 35990.7021 19406.4495 -6926.9498 
38 35988.7792 19404.9000 -6928.9257 
39 35986.8697 19403.3653 -6930.8963 
40 36984.9693 19401.8500 -6932.8424 
41 35983.1436 19400.4131 -6934.7080 
42 35981.4083 19399.0694 -6936.4832 
43 36979.7006 19397.7525 -6938.2281 
44 35978.0366 19396.4799 -6939.9279 
45 35976.4169 19395.2674 -6941.5768 
46 36976.0240 19394.2629 -6942.9909 
47 35973.7161 19393.3668 -6944.3209 
48 35972.4233 19392.4696 -6946.6304 
49 35971.1391 19391.5903 -6946.9289 
so 35969.7066 19390.5627 -6948.3766 
51 36968.2192 19389.4859 -6949.8714 
62 36966.7274 19388.4036 -6951.3662 
63 35966.1776 19387.2677 -6952.9200 
64 35963.6773 19386.1843 -6954.4158 
55 36962.1426 19385.0626 -6956.9462 
66 36960.6677 19383.9113 -6967.6108 
57 36968.9282 19382.6926 -6969.1346 
58 36967.2960 19381.4797 -6960.7618 
59 36966.6843 19380.1876 -6962.4438 
60 35963.8828 19378.9122 -6964.1207 

CHANNEL: 4 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

------------------------ MACROMETER OBSERVATION 
0.0000 

FILE 8 

CHANNEL: 5 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

263.5378 
262.2448 
261.0321 

0.0000 
0.0000 

256.7587 
255.1883 
253.6985 
251.9589 
250.3227 
248.7034 
247.1011 
246.5802 
244.1548 
242.7636 
241.4093 
240.1118 
239.0466 
238.0667 
237.1091 
236.1642 
236.0668 
233.9254 
232.7839 
231.6860 
230.4477 
229.2716 
228.0628 
226.7963 
225.5336 
224.2004 
222.8791 

CHANNEL: 6 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
o.oooo 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
o.oooo 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

CHANNEL: 1 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-31175.3692 
-35984.3920 
-41294.2189 
-47111.9496 
-53441.4384 
-60295.2225 
-67676.6516 

o.oooo 
-84044.6454 
-93042.9095 

-102590.2305 
-112691.3417 
-123349.9526 
-134568.7811 
-146349.3499 
-158694.6074 
-171604.3054 
-185079.8890 
-199119.6435 
-213724.0774 
-228890.4011 
-244616.7978 
-260901.1065 
-277739.9618 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

3506495.2641 
3503735.4991 
3500939.5681 
3498116.5612 
3495276.3135 
3492428.6451 
3489583.1362 
3486748.0176 
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TABLE 3B 
+++ INTERFEROMETRIC PHASES (M) +++ 

MACROMETER OBSERVATION FILE 14 
STATIONS: METCALFE • MORRIS (66 KM) 

OBSERVATION DATE: 1983 7 22 

CHANNEL: 2 CHANNEL: 3 CHANNEL: 4 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

-321584.3996 -151480.2507 0.0000 
-324264.0496 -155789.9306 0.0000 
-327376.3508 -161489.2377 0.0000 
-330917.5478 -168580.7074 0.0000 
-334884.5494 -177067.7843 0.0000 
-339273.9333 -186950.5627 0.0000 

0.0000 0.0000 0.0000 
-349295.3403 -210890.3735 0.0000 
-354926.2093' -224954.9952 0.0000 
-360966.7338 -240414.4832 0.0000 
-367413.9693 -257266.0687 0.0000 
-374265.8165 -275506.7880 0.0000 
-381519.0190 -295131.7072 0.0000 
-389171.7306 -316137.8739 0.0000 
-397221.6756 -338519.6331 0.0000 
-405667.1112 -362272.4609 0.0000 
-414508.3290 -387390.9650 0.0000 

0.0000 0.0000 0.0000 
-433370.5343 -441695.2708 0.0000 
-443393.1979 -470871.7521 0.0000 
-453810.1650 -501389.7626 0.0000 
-464623.1581 -533242.2915 0.0000 
-475833.2253 -566421.9440 0.0000 
-487441.9784 -600922.2362 0.0000 
-499450.5455 -636734.7360 0.0000 
-511861.4338 -673852.5732 0.0000 
-524676.5710 -712268.4365 0.0000 
-537898.8487 -751974.6052 0.0000 
-551530.8864 -792964.0406 0.0000 
-565574.8817 -835228.9354 0.0000 
-580033.9818 -878763.0584 693706.0607 
-594912.7678 -923557.5828 736307.4557 
-610212.3311 -969607.7295 780063.8701 
-625937.4695 -1016907.7417 824974.1449 

0.0000 0.0000 0.0000 
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0.0000 0.0000 2448633.6927 

MACROMETER OBSERVATION FILE 14 

CHANNEL: 5 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

152283.0142 
144440.0905 
136175.0187 

0.0000 
118381.5543 
108854.9352 

98908.6583 
88542.8291 
77757.5715 
66552.2796 
54926.7390 
42880.3162 
30412.1642 
17521.2096 
4207.8464 

-9531.9277 
-23699.0068 
-38294.2218 
-53321.1126 
-68781.5052 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

1786481.3832 
1785929.8288 
1785346.3658 
1784729.3834 
1784078.0701 

0.0000 
0.0000 
0.0000 

CHANNEL: 6 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 



ll 

in Table 3(a) were recorded on the first day of the experiment on the 

shortest baseline (points 6A and 7, 19 July 1983). Only four satellites 

were observed during this session. The measurements of Table 3(b) were 

obtained three days later on the longest baseline, Metcalfe-Morris. Five 

satellites were observed during this session. 

The measurements in each column of Tables 3(a) and 3(b) contain a 

large bias. This bias is an arbitrary initial phase term which is 

different for each satellite. Because of the way the Macrometer® works, 

this constant is actually an integer multiple of X/2, where X ~ 19 em is 

the wavelength of the L1 carrier transmitted by the GPS satellites. This 

constant is usually referred to as the "ambiguity term." If neither 

receiver loses lock during the observation period, there is only one such 

ambiguity per satellite. Such was the case for the session of Table 3(a). 

If there are breaks in the data, two or more different ambiguities per 

satellite may result. Such breaks are clearly evident in the data of Table 

3(b). 

Several observation equations for these kinds of measurements have 

been published (e.g., Davidson et al. [1983]; Goad and Remondi [1983]). 

One explicit formulation is that of Bauersima [1983]. Equation (1) below 

is basically his equation (38) somewhat simplified and specifically 

modified to account for the behaviour of the Macrometer® V-1000 receivers. 

where 

~P~ + (c-~J1. 1.) ~t. + d(dpj). + d(dpj) + -2X Nj- ~P~' 
1 1 1on trop 1 

i 

j 

1,2, ••• ,nb 

1,2, ••• ,n 
s 

c is the speed of light; 

v~ (1) 
1 
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X is the nominal wavelength of the L1 carrier; 

n is the number of satellites; 
s 

nb is the number of observation times; 

ti, i=1,2, ••• ,nb are the observation times (UTC); 

j j - j I Pki = Pk(ti), k=1,2 is the distance of satellite j at time ti Pki c 

to receiver k at time ti; 

•j 
pki is the range rate at time t.; 

1 

IJ.p~ = pj - pj • 
1 li 2i' 

Nj are integer numbers; 

(dpkj). , k=1 ,2 is the ionospheric refraction correction to phase 
10n 

observation of satellite j as observed from receiver k; 

(dPkj)t , k=1,2 is the tropospheric refraction correction; rop 

d(dpj) = (dpj) - (dpj) . 
ion 1 ion 2 ion' 

d(d j) (d j) - (d j) . 
P trop P1 trop P2 trop' 

IJ.ti is the clock synchronization error of receiver clock 2 with 

respect to receiver clock 1; 

IJ.p~ 1 is the recorded phase difference measurement; 
1 

vj is the residual in range difference IJ.p~. 
i 1 

In eqn. ( 1) we usually express distances and phases in metres, times in 

seconds, and velocities in metres per second. 

3. GOALS OF THE ANALYSIS 

The most important motive for this analysis was the development of a 

software package for analysing Macrometer~ data independent of 

Macrometrics' programs. This was possible only to some extent as, so far, 

we have had no access to the raw measurements recorded by the individual 
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receivers. We therefore were not in a position to develop any software for 

computing the interferometric distance difference from the single receiver 

data.* Rather, we accepted the output of Macrometrics' INTRFT program as 

our observations. 

Apart from this point, the programs developed at UNB are completely 

independent of Macrometrics' software. 

The other goals of this analysis may be summarized as follows: 

Check of the results obtained by the Earth Physics Branch using 

Macrometrics' software. 

Comparison of the quality of our solutions with Macrometrics' 

solutions. 

Independent estimation of the influence of modelling errors 

(ionospheric, orbital errors) on baseline estimations. 

Development of an improved processing mode for high-precision surveys 

by the following techniques. 

Instead of producing one set of coordinates for each observation 

session held on the same baseline and then computing the final results by 

averaging these partial results (the technique used with Macrometrics' 

software), our programs may process all observations on the same baseline 

in one program run. Apart from obvious advantages from the theoretical 

point of view, this kind of processing greatly facilitates the resolution 

of the so-called ambiguity problem. 

The data may be processed in a "network mode" by combining all 

observations on all baselines in one program run. This program option 

makes sense for the long baselines of the Ottawa campaign, although only 

two receivers were operating simultaneously, because all the sides and 

diagonals of the quadrilateral, 6A-Morris-Panmure-Metcalfe had been 

* This step should be a simple differencing of the phases from the individual 
receivers. 
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measured. Naturally this option will be of even greater importance for 

campaigns with more than two simultaneously operating receivers. 

4. MACROMETER8 DATA PROCESSING 

The processing of Macrometer• data at UNB may be logically divided 

into (a) a preprocessing step, and (b) a parameter estimation step. The 

goal of preprocessing is the detection and, if possible, the removal of 

data breaks within the observation series pertaining to one satellite 

(columns in Tables 3(a), 3(b)) using very simple mathematical tools. The 

main goal of the parameter estimation step, of course, consists of the 

estimation of the relative position of one receiver with respect to the 

other using purely physical models. 

4.1 Data Preprocessing 

In the first step, single difference preprocessing, we analyse the 

values 

£~ 
l. 

•pJ.· 1 •pjo i-1 2 n ul. -ui' -,, ••• ,b (2) 

separately for each satellite j, where 

t:.p~ 1 are the actual (interferometric) measurements (single 
l. 

differences); 

t:.p~ 0 are the theoretical values for the distance differences t:.p~ 
l. l. 

using approximated orbits and station coordinates. 

We now distinguish two cases (where actually the first is a special case of 

the second) : 

(a) There are no breaks in the data: we fit the £j (separately for each 
i 

satellite) by low degree algebraic polynomials (the degree q typically 



chosen was between 4 and 6). 

P(t) 
q k 
I pk t 

k=O 
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(3) 

A typical example of the residuals after a polynomial fit is given in 

Figure 3(a) (see discussion below). 

(b) There are nbr breaks in the data of satellite j: the total observation 

period is divided into nbr break-free subintervals Ik' k=1 ,2, ••• ,nbr 

(see below). The €~ are now fitted by the following piecewise 
1. 

continuous function: 

p(t) (4) 

This first step is followed by the double difference preprocessing. Here 

we analyse the so-called double differences, 

values 

R.' - t.p. , forming the 
1. 

The method applied is then identical with the method for single 

differences. A typical example for the residuals after a polynomial fit to 

double differences is given in Figure 3(b). 

If we compare the residuals of a single difference analysis (Figure 

3(a)) with those of a double difference analysis (Figure 3(b)) for the same 

observation period, we note some remarkable dissimilarities. First, we 

have a difference in the scale of the residuals (roughly a factor of 100). 

Second, the distribution of the residuals is clearly systematic for single 

differences but more or less random for the double differences. 

The reason for this diversity becomes obvious if we compare the 

observation equations (1) for single differences with those for double 

differences (difference of two equations of the form of eqn. (1) for the 
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same subscript i but two different superscripts j, k): 
. k • . •k . k 

(~p~-~P.)-(PJ1 . - P 1 .)~t.+d(dpJ). -d(dp ). 
1. 1. 1. 1. 1. 1.on 1.on 

. k X . k ., 
+d(dpJ) -d(dp ) +- (NJ-N )-(~P~ 

trop trop 2 1. 

i 1, 2, ••• ,nb 

j,k = 1,2, ••• ,n , k#j. 
s 

k' 
~P. ) 

1. 
"k w~ 1. 

(6) 

In eqn. (6) the contribution of the clock synchronization error ~t. has 1. 

been reduced roughly by a factor of 5•106 as compared to eqn. (1) due to 

the elimination of the term c ~t .• 
1. 

The systematic variation in Figure 

3(a), therefore, reflects the (nonpolynomial) errors characteristic of the 

crystal-oscillator controlled clocks in the Macrometer• V-1000. 

So far, we have assumed that the divisions of an observation period 

into break-free subintervals for each satellite j are known a priori. 

This, however, is not the case. Such breaks are often not detected at the 

time of observation, and a close examination of the data is necessary to 

detect them. Although completely automatic "break-detection and -removal 

software" could be developed, we opted for a semi-automatic, interactive 

preprocessing program (similar to that available with the Macrometrics 

software) using a computer graphics package and the mathematical tools 

given in the preceding paragraphs. A brief description of the use of this 

program follows. 

First, it is assumed by default that a new subinterval begins if one 

or more zeroes are encountered in the observation series of one satellite. 

An adjustment using eqn. (4) is performed, and the residuals are displayed 

on a graphics terminal. The operator has the ability to redefine the 

interval boundaries and to reject outliers. This process may be repeated 

until a satisfactory solution is found. 

Essentially the same procedure is repeated with the double 
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differences. At this stage it is usually easy to remove any data breaks 

present. Normally, the estimated values (see eqn.(4)) 

(7) 

are close to integer numbers. If, moreover, the estimated r.m.s. errors of 

the M1k are much smaller than 1, it is safe to remove the data breaks by 

correcting the double difference observations in the subintervals 

2,3, ••• ,nbr by adding to them the values M1k•(X/2). Processing the 

corrected data without interval subdivision shows the success or the 

failure of the process. Actually, the half-cycle slips found in the double 

differences are applied to one of the two single differences forming the 

particular double difference series. Which of the single differences has 

to be corrected follows by analysing, in principle, all possible double 

differences. 

This preprocessing is done on the HP-1000 computer of the Department 

of Surveying Engineering at UNB. Program DPLOT [Davidson, 1984] was 

already available on the HP-1000 enabling interactive plotting of ASCII 

data files on an HP-7470 plotter or a Cybernex 1012 graphics terminal. 

Program DPLOT was modified, renamed GPSPL, and used to allow interactive 

preprocessing of the GPS data. Adaptations were made to directly produce 

the plots without as much operator intervention as would be required with 

DPLOT. The ability to create plots on the screen for interactive 

processing, or on paper as a permanent record, was particularly attractive. 

Figures 3(a) and 3(b) were generated on the HP-7470 plotter. 

One would expect that this non-parametric preprocessing technique 

might fail if the l1p~ 0 are only very poor approximations of the "true" 
1 

distance differences l1p~. Tests have shown that, even for the longest 
1 

baselines analysed, station offsets of up to 500 m and orbital errors of 
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the order of some kilometres did not compromise this approach. 

4.2 Parameter Estimation 

Two parameter estimation programs, PRMAC3 and PRMNET, have been 

developed. The former is used for single baseline estimations, and the 

latter for network analyses wherein observations on many baselines may be 

processed simultaneously. 

The programs in their present form may be used to estimate (almost 

any combination of) the following types of parameters: 

(a) Receiver coordinates in the conventional terrestrial system. 

(b) Ambiguity parameters as defined by eqns. (10), below. 

(c) Clock synchronization parameters c0 , c1 (offset and drift) from 

the following model: 

Ati = c0 + c 1(ti- t 1), i=l,2, ••• ,nb (8) 

(d) A maximum of six orbital parameters per satellite arc. 

By choosing different combinations of parameters for estimation, 

quite different problems may be treated. 

(a) If no orbital parameters are estimated, the programs actually 

reduce to pure (relative) positioning procedures. 

(b) Assuming all receiver positions are known and estimating all the 

orbital parameters, the programs may be used as pure orbit 

determination programs. 

It should be mentioned, however, that option (b) does not make sense for 

the data analysed here (too few receivers too close to each other and only 

one frequency observed). 

The modelling of receiver coordinates is straightforward. The 

estimation of the other parameter types, however, is more complex, and some 
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discussion of our philosophy in handling these parameters is required. 

Figure 3(a) clearly shows that the use of eqns. (1) as observation 

equations implies sophisticated models for the clock performances. In the 

authors 1 opinion, the best way of modelling is the following: define a 

statistical model of the clock performances using available information on 

clock offset, drift, and jitter. This leads to a simple stochastic 

differential equation for the phase differences of the two receiver clocks 

or, even more directly, to an equation for the clock synchronization error 

as a function of time. The At. in eqns. (1) may then be interpreted as the 
1 

solution of this stochastic equation at the observation times ti. Of 

course, this approach complicates matters considerably. Instead of more or 

less standard least-squares solutions, one would have to apply methods of 

"optimal filtering" or "optimal smoothing." Although this approach is 

advantageous from a theoretical point of view, its application would have 

required a considerable investment of time which was not available. 

Nevertheless, this technique should be kept in mind for future studies. 

The next best approach to follow is to deny all functional models for 

the errors Ati, and to introduce them as unknowns into a least-squares 

adjustment. Although there are no objections from the theoretical point of 

view, there is a strong objection from the practical point of view: the 

number of unknowns tends to increase dramatically. One gets into the 

problem of manipulations with large matrices, which cause a significant 

increase in computation time and the use of large storage areas. 

An alternative approach to those already mentioned is to implicitly 

eliminate the clock synchronization term by using the double difference 

equations (6) as observation equations. This approach--which was followed 

by Macrometrics [1983], Goad and Remondi [1983], and by ourselves--has some 
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important advantages from the practical point of view. Two major 

implications should be mentioned: 

(a) We are no longer in a position to solve for all the ambiguity 

parameters Nj, j=l,2, ••• ,n • This clearly follows from the fact that only 
s 

the differences 

j#k, j,k=l,2, ••• ,ns (9) 

figure in eqns. (6). Of all the values in eqn. (9), only n -1 are actually 
s 

independent, and so only one value of k=k need be selected: 
0 

N 
"k J 0 k 

Nj - N ° ·~k 2 Jr , j=l, , ••• ,n , 
0 s 

(10) 

It is an intrinsic feature of the double difference approach that we are 

free to choose k • 
0 

(b) As a double difference is formed with two single difference 

observations for the same time ti, the double differences for different 

satellites for the same timet., are actually correlated. 
1 

In our software, this mathematical correlation may be included or 

neglected. The precise formulation of this problem will be presented in 

Part C of this report. 

If we want to model each satellite arc with, at most, six physically 

meaningful parameters, we have to represent all satellite arcs as solutions 

of known ordinary differential equations. The unknown orbital parameters 

are essentially the initial conditions (actually we chose osculating 

Keplerian elements as unknowns). Further details of our approach to orbit 

modelling and estimation will also be dealt with in Part B of this 

report. 

The orbits we used for the present analysis were derived from the 
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so-called Macrometrics T-files using methods of numerical integration. Our 

approximation of the T-files was typically better than ± 5 m, which means 

that, for the present analysis, the T-files and our orbits may be 

considered to be identical. 

orbits. 

No serious attempt was made to improve the 

The tropospheric refraction is represented by the Saastamoinen model 

[ 1971] using the following standard surface values for the entire 

observation period for all sites: temperature 291° Kelvin, atmospheric 

pressure = 1013.2 mbar, water vapour pressure = 10 mbar. 

For the ionosphere we used two approaches. In the first approach we 

completely neglected the ionosphere. In the second, we used the model 

developed by Geckle and Fe en [ 1982] to correct single frequency Transit 

observations for the daytime GPS observations. The daily solar fluxes 

required for the model were obtained from the Herzberg Institute of 

Astrophysics [ 1983]. For nighttime observations, an exponential decrease 

of the vertical electron content was assumed with the initial value at 

"sunset" fixed at the value predicted by the daytime model. A reduction of 

electron content by a factor of 10 over 12 hours was assumed. 

In the first part of the parameter estimation programs, all 

parameters selected as unknowns, including the ambiguity parameters, are 

estimated by the standard least-squares technique. The values of these 

parameters and their corresponding estimated r.m.s. errors are printed. 

In the second part of the program, an attempt is made to resolve the 

so-called ambiguity problem by assigning known integer values to the 

ambiguity parameters. Some of the different strategies that may be used to 

solve this problem are given in Langley et al. [1984]. 

We have found that for short baselines (shorter than 20 km), it is 
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quite easy to determine the ambiguity if two or more observation periods 

are combined into the same program run. As a matter of fact, the simplest 

strategy, that of rounding the non-integer ambiguities estimated in the 

first part of the program to the nearest integers, is good enough in all 

such cases. For longer baselines, the ambiguity problem is more 

complicated due to the corrupting effect of the ionosphere on single 

frequency observations. Obviously there is a region where it is 

questionable or even subjective whether an attempt should be made to solve 

this problem. We accepted the solutions of the second part of the program 

for baseline lengths up to 22 kilometres. For the longer baselines, no 

attempt was made to fix the ambiguity parameters at integer values. 

one. 

5. RESULTS 

The decision as to what to include in this section was not a simple 

Many different program options produce a variety of slightly 

different results, and it is often difficult to say which result is the 

best. The final selection was based on the following considerations: 

(a) We wanted to include a useful comparison with the results 

obtained using Macrometrics' software. 

(b) We wanted to discuss the influence of the ionosphere. 

(c) We decided to minimize the number of program runs by not varying 

the orbits (see Part B of this report) and by not estimating the 

clock synchronization errors. 

As the baselines analysed are relatively short and as the clock 

synchronization was supervised very carefully during the Ottawa campaign, 

the two simplifications (c) are fully justified. Some experiences with the 
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estimation of orbit parameters will be presented in Part B of this report. 

5.1 Comparison with the Results Using Macrometrics' Software 

In order to obtain a meaningful comparison we had to neglect the 

ionospheric refraction completely (as was done in Macrometrics' software), 

and we had to use the orthometric heights in Table 1 as ellipsoidal heights 

referred to Clarke's 1866 ellipsoid (as was assumed in the processing with 

Macrometrics' software [Valliant, 1984]). As the difference between 

ellipsoidal and orthometric heights are fortuitously only of the order of 1 

to 2 metres in the test area, this neglect of geoidal height is harmless 

for the analysis of the present compaign. It should be stated, however, 

that the errors introduced into the baseline estimates by incorrect 

geocentric coordinates of the fixed station(s) are of the same order of 

magnitude as those introduced by orbital errors: a bias of up to 0.4 ppm in 

the baseline may result from an error of 10 m in the orbit or in the 

position of the fixed station. 

The differences between our solution and that obtained using the 

Macrometrics software, for latitude ~' longitude l, height h, for station 

pairs, and for length Jl. of the baselines, are given in Table 4. The 

absolute values of the vectorial differences and the differences in the 

lengths of the baselines between the two solutions as a function of the 

length of the baseline are given in Figures 4(a) and 4(b) respectively. 

If we take into account that there were differences in the data 

editing and that we used the first halves of three sessions (two on 

baseline 3, one on baseline 4) completely rejected by Valliant [1984, Table 

2, days 219, 224, 225], the agreement between the two solutions is quite 

good. This is particularly true for the lengths of the baselines for which 
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TABLE 4 

Comparison of UNB and EPB Solutions. 

PRMAC - 3 minus Macrometrics Solution 

Baseline lHP (em) 

6A - 7 (30 m) -0.2 

6A - 51 ( 2 km) 0.4 

Pa - Mo (13 km) 0.5 

Pa - 6A (22 km) -0.2 

Mo - 6A (27 km) -0.9 

Me - 6A (40 km) 2.8 

Me - Pa (58 km) -9.0 

Me - Mo (66 km) 3.2 

Panmure; Mo Morris; Me 

Ellipsoidal coordinates 

Length of baseline 

b. A. (em) b.h (em) 

0.0 0.3 

- 0.2 -0.3 

- 0.6 2.3 

1.0 1.1 

- 1.5 -0.1 

0.1 7.2 

13.7 0.3 

- 4.2 5.2 

Metcalfe. 

6.'1, (em) 

0.1 

- 0.1 

0.8 

1.0 

- 1.5 

1.2 

-16.3 

5.0 

For baselines 1 to 4, the solution of part 2 (ambiguities resolved) of 
program PRMAC-3 was accepted as the final solution. For baselines 5 to 8, 
the solution of part 1 (without ambiguity resolution) was selected. 
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we have agreement within 1.5 em for baselines up to 40 km in length. The 

differences for the 58 km baseline, Panmure-Metcalfe, are significantly 

larger than those for the other baselines. We believe the source of this 

anomaly lies in the editing of the data by EPB. One of the EPB solutions 

for this baseline differs in height with respect to the other solutions by 

about 25 centimetres. This solution has a significant effect on the mean 

positions with which we have compared our solutions. 

We may conclude at this stage that there appear to be no gross errors 

in either the Macrometrics or UNB software packages. A further test, where 

we use identical observations and orbits as those used with the 

Macrometrics software, may elucidate the residual discrepancies. That 

there are relatively large differences between the two solutions for the 

longer baselines is not surprising. Here we found it very difficult to do 

objective data editing. We believe that an improvement in preprocessing is 

possible, provided we have access to the raw field data. 

5.2 Ionospheric Refraction 

Ionospheric refraction certainly is the most severe limiting factor 

for any single frequency receiver. We include Figure 5, therefore, giving 

the absolute values of the vectorial position differences between the 

solutions using the ionospheric model given in section 4.2 and the solution 

neglecting the ionosphere completely. As the ionospheric model used does 

not account for any local variations, we cannot hope to model the real 

ionosphere accurately. We may, however, estimate from Figure 5 the order 

of magnitude of the mean effect. This figure indicates that improper 

modelling of the ionosphere may induce baseline errors ranging from 0.7 em 

for the 13 km baseline up to 8.7 em for the 66 km baseline. 
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During the Ottawa campaign, we operated a dual-frequency Transit 

satellite receiver in the vicinity of point 6A. The Doppler measurements 

obtained may be used to estimate directly the vertical electron content 

below the satellite during the Transit passes. Unfortunately, due to 

hardware difficulties, only a few Transit passes were recorded during the 

GPS observation sessions. A separate report will deal with the baseline 

results obtained using this potentially more accurate ionospheric 

modelling. 

5.3 Quality of Baseline Solutions 

The formal accuracy of the solutions is given by the a posteriori 

estimates of the r.m.s. errors of the parameters. We give these values in 

Figures 6(a), 6(b), 6(c) for latitude cp, for longitude A, and for the 

ellipsoidal height h as a function of the length of the baseline. 

The estimates of the formal precision are incredibly small. We 

should bear in mind, however, that they are based on presumptions that are 

not satisfied here. We know, for example, that our modelling of the 

ionosphere is far from being perfect, and we have already seen in Figure 5 

that solution differences of the order of 10 times the r.m.s. estimates in 

Figures 6(a), 6(b), and 6(c) may occur, if we modify the ionospheric 

modelling for the longer baselines. Figures 6 show, however, what 

precision may be expected from interferometric phase measurements, if the 

refraction effects are under control (for dual frequency receivers). From 

Figures 6 we also may conclude that, even without resolving the 

ambiguities, we may expect excellent results, at least if we process all 

observation sessions in the same program run. 

A further, and more realistic, check of different baseline solutions 
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(EPB's and our solutions without and with ionospheric models) may be found 

in Table 5, where we give the absolute values of the misclosure vectors 

resulting from the different solutions for all triangles and for the 

contour quadrilateral in Figure 1. First we see that the misclosures are 

all of the same order of magnitude (ranging from 0.33 ppm to 1.38 ppm). We 

see, moreover, that our misclosures are more favourable for all figures 

except those including the longest baseline, Morris-Metcalfe. 

It is somewhat disappointing to see that our solutions including a 

simple ionospheric model produce systematically larger misclosures than the 

solutions neglecting the ionosphere completely. One possible explanation 

is that spatial and temporal variations of the ionosphere lead to 

significantly different effects than those predicted by our smoothly 

varying model. This, of course, is an argument favouring Macrometrics' 

approach to this problem, which is to ignore the ionosphere completely on 

such short baselines. 

5.4 Network Solutions 

We feel that processing all observations on all baselines of Figure 1 

from all observing sessions in one program run and computing one set of 

coordinates for Morris, Panmure, and Mecalfe with respect to point 6A, is 

the best possible way of analysing the data. As in this processing mode 

the closure of the triangles of Figure 1 is enforced, we checked the 

stability of the solutions by varying the ionospheric model. 

Table 6 gives the result of this network analysis. For solution A we 

used no ionospheric modelling; for solution B, the augmented Geckle and 

Feen [ 1982] model was used. It is worth noting that the influence of 

different ionospheric modelling on the receiver coordinates is greatly 
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TABLE 5 

Figure Misc1osures. 

PRAMC - 3 

Figure Without With 
Contours Length Macrometrics Ionosphere Ionosphere 

em ppm em ppm em ppm 

6A - Mo - Pa 62 km 5.6 0.93 2.5 0.42 4.2 0.68 

6A - Pa -Me 119 km 13.7 1.15 3.9 0.33 9.7 0.82 

6A - Mo - Me 133 km 10.7 0.81 11.4 0.86 11.6 0.87 

Mo - Pa - Me 136 km 11.1 0.81 13.5 0.99 18.9 1.38 

6A - Mo - Pa - Me 137 km 15.8 1.15 6.2 0.45 13.8 1.00 



Solution 

A 

B 

Solution 

c 

D 

TABLE 6 

Network Solution for Quadrilateral 
6A - Morris - Panmure - Metcalfe 

Solution A: No ionosphere. 
Solution B: Ionospheric model given in section 4.2. 

Station 

6A (fixed) 

Morris 

Panmure 

Metcalfe 

Morris 

Panmure 

Metcalfe 

cp A 

45°23'55~79598 -75°55'21~44516 

45°26'34~29501+~00013 -76°15 I 18~81750+1: 00034 

45°20 1 18~81718+~00013 -76°11 1 4~58665+~00038 

45°14 1 34~01436+~00013 -75°27'31~48094+~00034 

45°26'34~29524+~00013 -76°15 1 18~81871+~00034 

45°20'18~81648+~00013 -76°11'4~58667+~00038 -
45 °14. 34 ~ 01346+'! 00013 -75°27'31~47919+~00034 

TABLE 7 

Network Solution for Triangle 
6A - Morris - Panmure 

Solution C: No ionosphere. 
Solution D: Ionospheric model given in section 4.2 

Station cp A 

6A (fixed) 45°23'55~79598 -75°55'21~44516 

Morris 45°26'34~29480£!00010 -75°15'18~81653£!000~6 

Panmure 45°20'18~81755+~00012 -76°11'4~58825+~00032 

Morris 45°26 1 34~29500+~00010 -76°15 1 18~81772+~00026 

Panmure 45°20'18~81702+~00012 -76°11 I 4'!58859+'! 00032 

h (m) 

78.754 

90.965+.005 

155.371+.005 

104.948+.005 

90.959+.005 

155.378+.005 I w 
-...] 

104.965+.005 

h (m) 

78.754 

90.948+.004 

155.362+.004 

90.942+.004 

155.361+.004 
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reduced in comparison to the baseline-by-baseline processing technique. 

As the influence of the ionosphere on the baselines of triangle 6A

Morris-Panmure is comparatively small, we also processed the observations 

of this triangle alone in the network mode. The results of this analysis, 

giving probably the most reliable results for Morris and Panmure, are given 

as solutions C and Din Table 7. 

In Table 8, we list the differences in station coordinates between 

our network solutions A, B, C, and D and the positions of Table 1. 

6. CONCLUSIONS 

The Ottawa test was one of a number of tests of the Macrometer• 

designed to assess its capabilities for precise positioning. Unlike other 

tests, our test also included a separate analysis of the Macrometer• data 

using a software processing package independent of that developed by 

Macrometrics. 

The formal one sigma uncertainties of the estimated coordinates for 

Morris, Panmure, and Metcalfe with respect to station 6A (as given in Table 

6) are about 4 mm, 7mm, and Smm for latitude, longitude, and height 

respectively. 

Given the effect of the ionosphere as the likely source of the 

largest systematic errors, the actual uncertainties are much larger, 

perhaps up to about 9 em for the longest baseline, when we are working in 

the single baseline mode. These uncertainties are reduced if we process 

the data in the network mode. Typically, we estimate uncertainties of 2 em 

to 4 em for the network 6A, Morris, Panmure, Metcalfe, and typically 1 to 

1.5 em for the smaller network, 6A, Morris, Panmure. 
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TABLE 8 

Differences in em between network solutions of 
Tables 6, 7 and ground values of Table 1. 

Station ~ /:).").. 

Morris 7.7 -0.3 

Panmure 5.2 2.7 

Metcalfe 12.4 -6.7 

Morris 8.4 -3.0 

Panmure 3.1 2.7 

Metcalfe 9.6 -8.6 

Morris 7.0 -1.8 

Panmure 6.4 -0.8 

Morris 7.7 -0.8 

Panmure 4.7 -1.5 

/1h 

-19.9 

2.5 

12.5 

-20.5 

3.2 

14.2 

-21.6 

1.6 

-22.2 

1.5 
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The agreement between the coordinates of stations obtained using 

Macrometrics' and UNB's software is about 1 ppm. The agreement in 

horizontal coordinates between our values and those obtained from 

terrestrial measurements is of the order of 1 ppm to 3 ppm. The 

differences in vertical coordinates are somewhat larger due, in part, to 

the uncertainties of the geoid undulations in the vicinity of Ottawa. 
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PART B 

MODELLING AND ESTIMATING THE ORBITS 

OF GPS SATELLITES 

1. INTRODUCTION 

Although only partially deployed, the Global Positioning System 

(GPS) is already being exploited for high-precision geodetic surveys (see 

Part A). The Macrometer® V-1000, a first generation interferometric 

receiver using only the L1 carrier phase of the GPS signal, has clearly 

demonstrated its ability in differential positioning. It is clear that the 

next generation, dual-frequency receivers, will have the potential of 

measuring baselines on a continental scale with an accuracy of a few 

centimetres--provided the orbits of the satellites are known to a precision 

of a few decimetres (see section 2). 

These orbital precision requirements suggest that an extended 

worldwide tracking network equipped with high-precision receivers will be 

required. Such a network is not now available to civilian users nor will 

one be available in the immediate future. Plans for several regional 

civilian tracking networks are presently being developed and/or 

implemented, and these may provide acceptable orbits over certain regions. 

However, the geodesist using GPS for large-scale, high-precision surveys 

may not be able to assume that the GPS orbits are known to sufficiently 

high accuracy. He may have to estimate so-called orbital biases along with 

the parameters in which he is actually interested, i.e., the relative 

42 



43 

coordinates of the receivers. 

Methods to estimate such orbital biases have been developed and 

widely used in the processing of Transit Doppler data. With the exception 

of some of the so-called short arc procedures, these algorithms do not 

describe the orbits by physical parameters. For example, one technique is 

to parallely shift and rotate the orbit. What usually results is 

nonphysical in the sense that the resulting orbit is not a particular 

solution of the equations of motion of the satellite. 

Here we attempt to demonstrate that there is no need for such 

nonphysical methods in the determination of GPS satellite orbits. As a 

matter of fact, it is quite simple to model the orbital biases for these 

satellites to any precision required in a purely physical way. Because of 

the orbital characteristics of GPS satellites (almost circular orbits with 

semimajor axes of about 26,500 km), we may assume the earth's gravity field 

to be known. As a rigorous modelling of the gravitational attraction due 

to the sun and the moon is not a serious problem, the only significant 

external force on the satellites which is not adequately known a priori is 

radiation pressure. That radiation pressure has an appreciable influence 

on GPS orbits is stated by van Dierendonck et al. [1980]. 

We have subdivided our discussion into the five subsequent 

sections. We discuss the orbital precision requirements for geodetic 

applications in section 2. We then develop the theory for our general 

algorithms in sections 3 and 4. These algorithms are generalizations of 

short arc methods in as much as (a) there are no constraints on the arc 

length, and (b) it is possible to solve not only for initial or boundary 

conditions but also for dynamical parameters (e.g., parameters governing 

the effect of radiation pressure). In section 5 we discuss short arc 
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applications with specific reference to the Ottawa Macrometer® test 

campaign (see also Part A). Finally in section 6 we discuss some aspects 

of the general orbit determination problem. 

2. PRECISION REQUIREMENTS 

The accuracy of orbits needed to obtain baseline estimates of a 

certain accuracy depends mainly on the length of the baseline (see 

Bauersima [1983, eqn. (84)]): 

db • dr 
1) =-

p 
(2.1) 

where b is the length of the baseline 

p is the range (receiver to satellite) 

dr is the orbit error 

db is the induced baseline error. 

For GPS satellites we have approximately 

p = 25,000 km (2.2) 

Accepting, for example, 

db = 1 em (2.3) 

as a maximum for the baseline error introduced by the orbit, we obtain the 

values in Table 2.1 for the maximum orbit error, dr, allowed. 

b 

Table 2.1 

Maximum permissible orbit error, dr, for an 
accuracy of 1 em in a baseline of length b. 

(km) •j dr (m) 

0.1 2500.0 
1.0 250.0 

10.0 25.0 
100.0 2.5 

1000.0 .25 
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Rather than assuming a specific value for a baseline error independent of 

baseline length, we may wish to talk about a relative error expressed as 

parts per million (ppm) of the baseline length. Table 2.2 gives the values 

of dr for a number of relative baseline errors. 

Table 2.2 

Maximum permissible orbit error, dr, 
f 1 h b 1' or a certa1.n re at1.ve accuracy 1.n t e ase 1.ne. 

cl_~ (ppm) 
b dr (m) 

5 125.0 
1 25.0 
0.5 12.5 
0.1 2.5 

Summarizing Tables 2.1 and 2.2: 

(a) The orbital accuracy required for surveying depends highly on the 

length of the baselines to be measured. 

(b) For "local surveys" (diameter of surveyed region smaller than 100 

km), an orbital accuracy of 5 m to 10 m will be sufficient in most 

cases. 

3. PRINCIPLES OF ORBIT DETERMINATION 

3.1 Statement of the Problem 

The orbit of every satellite is a particular solution of a system 

of second-order differential equations: 

where + 
r 

(3.1) 

r(t) is the position of the satellite in a nonrotating (with 

respect to inertial space), geocentric coordinate system. 
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;(i),i=l,2, are the first and second time derivatives of ;(t) 

pi,i=l,2, ••• ,n are parameters defining the forces acting on the 

satellite ("dynamical" parameters, e.g., coefficients of the 

expansion of the earth's gravitational field into spherical 

harmonics; parameters describing drag, radiation pressure). 

To define an orbit uniquely (a particular solution of eqn. (3.1)), 

additional information has to be supplied. The two simplest formalisms for 

introducing this information are: 

(a) Formulation as an initial value problem: 

(3.2a) 

(b) Formulation as a simple boundary value problem: 

(3.2b) 

where ki' i=l,2, ••• ,6 are six parameters uniquely specifying the vectors 

on the right-hand sides of eqns. (3.2a) or (3.2b). Possible 

choices for these parameters are: 

+ +(1) + + Components of vectors r 0 , r 0 or r 1 , r 2 • 

Osculating orbital elements at time t 0 for eqns. (3.2a). 

If we know the right-hand sides of eqns. (3.2a) or (3.2b) (parameters ki, 

i=l,2, ••• ,6) and the dynamical parameters pi' i=l,2, ••• ,n, the orbit of a 

satellite is uniquely defined. We therefore may state: 

(a) Orbit determination in its usual, more restricted, sense is defined 

as the problem of determining the six parameters k., i=l,2, ••• ,6 
1 

defining the initial values or boundary values on the right-hand 
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sides of eqns. (3.2a) or (3.2b). 

(b) Orbit determination in its most general sense is the problem of 

determining the six parameters ki, i=1,2, ••• ,6 defining the initial 

values or boundary values and the dynamical parameters pi, 

i=1,2, ••• ,n. 

For the application we have in mind here (modelling the orbits of GPS 

satellites) most of the dynamical parameters in eqn. (3.1) may be assumed 

to be known (coefficients of the earth's gravity field, gravitational force 

of the sun and the moon). For utmost accuracy, however, we will have to 

estimate some of the dynamical parameters such as those defining radiation 

pressure. 

3.2 Observations 

To solve an orbit determination problem, at some point one needs 

observations. An observation may be defined as a value of a function of 

satellite positions, ground positions, and nuisance parameters, like clock 

offsets or clock drifts of satellite and receiver clocks. More 

specifically, the following GPS observables have been instrumented in 

presently available receivers: 

pseudoranges using the C/A-code 

- pseudoranges using the P-code 

- Doppler measurements 

- phase measurements of carriers. 

The carrier phase measurements are potentially the most powerful 

measurements as they can be made with the greatest precision. We therefore 

assume that we will be dealing with measurements of this kind for orbit 

determination problems. 
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3.3 Principles of Solution of Orbit Determination Problems 

Every orbit determination is actually an orbit improvement process 

using observations such as those given in section 3.2. These observations 

are nonlinear functions of the satellite 
+ 

position r(ti) (and possibly of 

the velocity ~( 1) ( ti)) at observation time ti· 
+ 
r(ti) in turn is a 

nonlinear function of the parameters of the orbit. The linearization of 

the orbit determination problem is therefore done in two steps: (a) the 

observation has to be approximated as a linear function of ~(ti), which is 

+ 
straight forward; and (b) r(ti) has to be represented by a linear function 

of the unknown parameters ki (and possibly some of the pi). This is done 

in the following way. Since eqn. (3.1) is nonlinear, we must linearize it 

and determine our orbit iteratively, where in each iteration step we assume 

we have a known approximate orbit ~ (t) at our disposal (for the sake of 
----- a 

simplicity we are dealing only with an initial value problem here): 

+(2) 
ra = 

+ 
r (t ) 

a o 

+(1) - +(1) r (t) - r (k 1 ,k 2 , ••• ,k 6) a o ao a a a 

(3.3) 

where the kai, i=l, 2, ••• , 6 are approximate values of the unknown 

parameters. 

The true, initially unknown, orbit is now assumed to be a 

linear(ized) function of the parameters ki' i=l,2, ••• ,6: 

+ 
r(t) 

+ 
r (t) + 
a 

6 
(3.4) 
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+ 
+ 

ar 
a where z. ( t) =-a-

1 k. k=k 1 a 

If we deal with the more general problem, additional terms 

involving the dynamical parameters appear on the right-hand side of eqn. 

(3.4). Let us assume, for the sake of simplicity, that only one of the 

dynamical parameters, p1 , has to be estimated. 

replaced by: 

where 

+ 
r( t) 

+ 
Clr 

a 
= Clpl 

Equation (3.4) is now 

(3.5) 

Of course, for general problems of this kind, we have to replace p1 by Pal 

in the system of differential equations (3.3): 

+(2)- + .... +(1) r - f ( t , r , r , p 1 , p2 , ••• , p ) a a a a n 
(3.6) 

+ 
The functions z.(t) are solutions of an initial (or boundary) value 

1 

problem, which follows from the primary problem (3.3) by taking the (total) 

derivatives of all the equations in (3.3) with respect to k., i=l,2, ••• ,6 
1 

and p1 • The resulting sets of differential equations are usually called the 

systems of variational equations: 

For i=l,2, ••• ,6, we get: 

+( 2) = A + + A z+( 1) 
zi ozi 1 i 

(3.7) 
a;<l) 

ao 
=~ 

1 

For i 7 we get: 
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;7(2) Aoi7 + A ;(1) + at 
1 7 aP1 

(3.8) 

The symbols, A0 and A1 , used above are 3 x 3 matrices whose elements are 

defined by: 

A o,ik af./ ar(l) , i""1,2,3; k""1,2,3 (3.9) 
1 a,k 

where r k and r(lk) are the kth components of the r and r< 1> vectors. The a, a, a a 

systems of differential equations (3.7) and (3.8) are linear; the systems 

(3.7) are, in addition, homogeneous. 

Let us summarize: In every iteration step of the orbit improvement 

process, we have to solve one system of nonlinear differential equations of 

type (3.3), six linear systems of type (3.7), and, if dynamical parameters 

are considered, some of type (3.8). 

4. THE USE OF NUMERICAL INTEGRATION IN ORBIT DETERMINATION 

4.1 Statement of the Problem 

With numerical integration techniques, the initial or boundary 

value problems which we have to solve in each iteration step of the orbit 

improvement process may be treated directly without any transformations. 

Numerical integration, properly understood, is a special branch of 

approximation theory, the underlying mathematical theorems being the 

Weierstrass Approximation Theorem and Taylor's Theorem. 

The true solution t(t) of eqns. (3.1), (3.2a), or (3.2b) is 

approximated in a + certain time interval At by a finite series, r*(t), of 
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known base functions gi{t): 

+ 
r*(t) (4.1) 

+ 
where q is the order of the approximation, and ai' i=0,1, ••• ,q are the q+1 

unknown coefficient vectors of the series. 

In conventional integration techniques, the base functions, gi{t), 

are algebraic polynomials in t: 

gi(t) = (t - t )i 
' i=O, 1, ••• ,q. (4.2) 

0 

In principle, the time t may be chosen arbitrarily. However, when solving 
0 

initial value problems, t 0 usually is chosen to coincide with the initial 

epoch. 

The problem of numerical integration consists of determining the 

+ coefficients ai. Usually this is done in the following way: 

(a) The approximating function r*(t) is asked to satisfy the initial 

{b) 

conditions, eqn. (3.2a), or the boundary conditions, eqn. (3.2b). 

This gives us two linear (vectorial) condition equations for the 

+ 
unknown vectors ai. 

+ 
The approximating function r*(t) is asked to satisfy eqn. (3.1) at 

q-1 different times ti' i=1,2, ••• ,q-1, in the integration interval 

llt. From this step we get ( q-1) independent algebraic equations 

for the unknowns. 

We now have reduced the problem of the solution of a system of differential 

equations to the solution of a system of nonlinear algebraic equations. It 

can be demonstrated that most of the classical integration methods 

(deserving that name) are actually special cases of the general concept 

developed here (e.g., the methods of Adams, Moulton, St~rmer, etc.). 

Of course there are different techniques for practically solving 
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this nonlinear problem. The results, however, should be identical. We 

wish to stress that the direct result of a modern numerical integration 

technique is ~ a set of equi-distantly (or otherwise) spaced coordinates 

of the satellite. The result consists of one or more sets of coefficients 

+ + 
ai, i=0,1, ••• ,q, which enable us to compute r*(t) or any of its derivatives 

for any time t in the integration interval ~t. 

For long integration intervals (e.g., in the case of low 

eccentricity orbits longer than a quarter of a revolution), this interval 

~t has to be subdivided into smaller intervals and one approximate function 

of type (4.1) has to be determined per subdivision. The link between 

subsequent intervals is obtained by requiring the satellite position and 

velocity to be continuous functions at the interval boundaries. 

Seen from this point of view, numerical integration techniques are 

very transparent and very easy to use. That they are universally 

applicable, is generally acknowledged. 

4.2 Transformations 

The system of differential equations (3.1) may be transformed into 

a system of six first-order equations for the six osculating Keplerian 

elements, a, e, i, 0, w, and T (see Figure 4.1): 
0 

a(1) gl(t;a,e, ••• ,To,p1,p2, ••• ,pn) 

e 
{1) 

gz(t;a,e, ••• ,To,p1,p2, ••• ,pn) 

g3(t;a,e, ••• ,To,p1,p2, ••• ,pn) 

g4(t;a,e, ••• ,To,p1,p2, ••• ,pn) 

gs(t;a,e, ••• ,To,p1,p2, ••• ,pn) 

g6(t;a,e, ••• ,To,p1,p2, ••• ,pn) 

(4.3) 

where a( 1) is the first derivative of a with respect to time, and so on. 
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FIGURE 4.1 Kepler ian Elements. 
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As the values of the functions gi are "small" (perturbations of the central 

force field), eqns. (4.3) have two simple approximate solutions: 

(a) Keplerian approximation 

a( t) a 0 , e(t) = e0 , ••• , T0 (t) 

(b) First-order perturbations. 

T o,o (4.4) 

In first-order perturbation theory, the approximations (4.4) 

(actually the osculating elements at a time t 0 ) are used on the right-hand 

sides of (4.3). This reduces the problem of solving a system of six 

coupled differential equations to the problem of evaluating six separate 

integrals. 

4.3 Numerical Methods versus Analytical Methods 

We may solve the integrals analytically by series expansions. 

Heavy algebraic manipulations, however, are involved. Alternatively we may 

use numerical methods. These have the following advantages: 

(a) There is no heavy algebra involved (we only need code a subroutine 

giving the right-hand sides of eqns. (3.1), {3.7), and (3.8)). 

(b) They are easy to generalize: modelling an additional force merely 

introduces a new term in eqn. (3.1). 

(c) After the intrinsic integration procedure, the approximate functions 

and their time derivatives are readily available (the same is true for 

the partials) • 

(d) Apart from round-off errors, the approximation may be generated as 

precisely as desired. 

The disadvantages of numerical integration are: 

(a) The integration process itself is a heavy consumer of computer time; 

+ 
this is especially true if many partials zi(t) have to be computed. 
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(b) Numerical methods are said to be less transparent. 

We may contrast these advantages and disadvantages with those of 

analytical methods. Analytical methods have the following advantages: 

(a) The solutions are explicitly given as functions of the unknown 

parameters. Therefore, the partials with respect to these unknowns 

follow simply by differentiating the solutions. Moreover (and more 

importantly) it is easy to give simple approximations for these 

partials. 

(b) Values of the solution for "very different times" are readily 

available. 

Disadvantages of analytical methods are: 

(a) Heavy algebra is involved; generalizations are not easy to implement. 

(b) If the solution of eqn. (4.3) is needed for many instants of time, 

many trigonometric functions have to be evaluated. 

(c) The solutions actually are always approximations (Keplerian, first-, 

second-, ••• , nth-order perturbations). 

4.4 Combination of Numerical and Analytical Methods 

It is, of course, tempting to create a "new" method combining the 

positive aspects of both numerical and analytical methods. For relatively 

short arcs, this is possible by the following procedure: 

(a) Choose the osculating elements at time t 0 to define the initial state 

vectors. 

(b) Solve the primary problem of eqns. (3.1), (3.2a), or (3.2b) by 

rigorous numerical integration using as sophisticated a force field as 

necessarv. 
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(c) Use a very simple analytical approximation for the orbit to generate 

approximate partials by differentiating this approximate orbit with 

respect to the osculating elements of time t 0 • For orbits not longer 

than half a revolution, even the Keplerian approximation is good 

enough. Whereas this procedure may reduce the convergence speed of 

the orbit improvement process, it does not affect the final result. 

5. DETERMINING ORBITS OF GPS SATELLITES 

5.1 Program TRNSNEW 

A FORTRAN computer program, TRNSNEW, was developed to implement the 

techniques of section 4.4 as a first step in developing a capability to 

determine the orbits of GPS satellites. We wished to investigate, in a 

quantitative way, how imprecise orbits affected baseline determinations. 

We had access to the set of GPS observations from the Ottawa Macrometer ® 

campaign and the so-called T-files (see Part A) consisting of the 

approximate state vectors of the GPS satellites during the observation 

periods. We therefore developed TRNSNEW to generate (degraded) orbits of a 

certain chosen precision, starting with the Macrometer ® T-files which are 

believed to have an accuracy of 30 m or better. 

Designed specifically for GPS orbits, program TRNSNEW uses a 

simplified force model. It is well known that the force field acting on an 

artificial satellite is rather complex. 

important effects, we have 

Concentrating only on the most 

- gravitational attraction of the earth (usually an expansion into 

spherical harmonics is used) 

- solar and lunar gravitation (known point mass attraction) 
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- atmospheric drag 

- radiation pressure. 

GPS satellites are in high, low eccentricity orbits (semimajor axis of 

about 26,500 km; eccentricity less than 0 .01). We may therefore neglect 

atmospheric drag even for long arcs (several days) • Moreover, it can be 

assumed that the coefficients of the earth's gravity field are known from 

the analysis of low orbiting satellites (terms up to degree and order 12 

are reasonably well established). We may even expect that for short arcs 

(half a revolution or less) an approximation using only very few terms of 

the earth's gravity field should be sufficient for many applications. 

Program TRNSNEW presently contains only the J 2 , J 3 , J 4 terms of the 

earth's gravitational field and the solar and lunar point mass 

gravitational fields. 

In TRNSNEW, the user defines the time interval over which he wants 

to approximate the GPS orbits. The program then extracts the positions of 

all GPS satellites in this time interval from the T-files. These positions 

(Cartesian coordinates in the equatorial system 1950.0) are interpreted as 

observations of the satellites. An orbit improvement process is invoked, 

giving as the result the best orbit in the sense of the method of least 

squares. Then the orbits are generated by numerical integration using the 

methods of section 3. The program user defines the forces acting on the 

satellites by coding the subroutine DERIV. In TRNSNEW the osculating 

elements of Figure 4.1 (osculation epoch t is automatically defined by the 
0 

program) are chosen as parameters k1 ,k2 , ••• ,k6 defining the initial or 

boundary conditions. Starting values for these parameters are obtained by 

first solving a boundary value problem using two T-file positions as 

boundary positions, then computing r(to), r< 1) ( t ) using the resulting 
0 
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approximations ( 4.1), and finally transforming these vee tors into 

osculating elements. As in the near future only relatively short arcs will 

likely be analysed with TRNSNEW, the partials of the orbit with respect to 

the osculating elements are approximated by the method outlined in section 

4.4. 

5.2 Tests Using Program TRNSNEW 

Using T-files from the Ottawa test, we made two sets of runs using 

TRNSNEW. In the first set, we examined the successive improvement for an 

arc of fixed length of the orbit approximation using the following force 

fields: 

(1) 

(2) 

(3) 

(4) 

14 3 -2 pure central force (GM = 3.9860047•10 m s ) 

-6 (1) plus J 2 term (J2 = 1082.627•10 , ae = 6378.140 km) 

(2) plus solar and lunar gravitation (GMS = 1.32712438•1020m3s - 2 , 

GMM = 4.90278888•1o12m3s-2) 

(3) plus J 3 , J 4 terms (J3 

Numerical values for GM, J 2 , J 3 , J 4 were taken from Lerch et al. [1979], 

the values for lunar and solar gravitation constants are taken from 

Beutler [1982, eqn. (200a)]. The results are presented in Tables S.1a to 

5.1d. In each case, the force field used is specified in the header of the 

tables; the time relative to the first T-file position used is given in 

minutes; DX, DY, DZ are the differences of the numerically integrated 

position using the known approximate orbit of the present iteration step 

minus the T-file positions in metres for the first two iterations. 

"INT.-ERROR" is an estimation for the truncation introduced by numerical 

integration. 

In the second set, we examined the decreasing quality of the 
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TABLE 6.1A 

( T-FILE POSITION)-(TRNSNEW POSITION (ONLY QM- TERM)) 

PROGRAM TRNSNEW: APPROXIMATION OF MACROMETRICS' T-FILES 

TERRESTRIAL-,SOLAR,LUNAR GRAVITY CONSTANTS : 
QM= 0.398600470+16 OMS= 0.00000000+00 QMM= 0.00000000+00 
J2= 0.00000000+00 J3= 0.00000000+00 J4= 0.00000000+00 

SATELLITE NR. 1 ITERATION NR. 1 
TIME(MIN) OX OY OZ INT.-ERROR 

o.oo -0.000 0.000 -0.000 0.0001 
22.60 -108.327 48.834 -84.174 0.0001 
46.00 -202.201 86.970 -86.338 0.0001 
67.60 -245.248 99.023 -34.104 0.0001 
90.00 -217.962 82.724 27.792 0.0001 

112.60 -126.086 46.942 61.281 0.0001 
136.00 -0.000 -0.000 o.ooo 0.0001 
167.60 116.094 -47.936 -139.808 0.0000 
180.00 174.376 -100.266 -366.361 0.0000 
202.60 148.698 -169.869 -618.240 0.0000 
226.00 34.336 -276.142 -887.010 0.0000 
247.60 -146.270 -437.173 -1131.666 0.0000 

SATELLITE NR. 1 ITERATION NR. 2 
TIME(MIN) OX OY OZ · INT. -ERROR 

0.00 87.804 -200.870 -267.162 0.0001 
22.60 -36.420 -107.436 -269.743 0.0001 
46.00 -141.010 -22.061 -170.769 0.0001 
67.60 -189.901 37.736 -22.168 0.0001 
90.00 -162.802 68.777 136.947 0.0001 

112.60 -68.947 78.700 250.907 0.0001 
135.00 65.175 78.322 284.083 0.0001 
167.50 166.884 73.160 222.924 0.0000 
180.00 184.476 57.271 84.294 0.0000 
202.60 104.600 12.071 -91.968 0.0000 
226.00 -86.092 -89.641 -266.833 0.0000 
247.60 -368.919 -274.713 -368.678 0.0000 

TABLE 6.1B 
----------

(T-FILE POSITION)-(TRNSNEW POSITION (INCL. J2 )) 

PROGRAM TRNSNEW: APPROXIMATION OF MACROMETRICS' T-FILES 
-------------------------------------------------------TERRESTRIAL-,SOLAR,LUNAR GRAVITY CONSTANTS : 
OM= 0.398600470+15 QMS= 0.00000000+00 QMM= 0.00000000+00 
J2= 0.10826270-02 J3= 0.00000000+00 J4= 0.00000000+00 

SATELLITE NR. 1 ITERATION NR. 1 
TIME(MIN) ox DY DZ INT.-ERROR 

0.00 -0.000 0.000 -0.000 0.0001 
22.60 0.670 9.163 -3.046 0.0001 
45.00 0.998 14.476 -3.237 0.0001 
67.60 0.941 15.919 -1.718 0.0001 
90.00 0.653 13.646 0.233 0.0001 

112.60 0.307 8.102 1.247 0.0001 
136.00 -0.000 -0.000 0.000 0.0001 
167.60 -0.223 -9.768 -4.678 o.oooo 
180.00 -0.286 -20.142 -13.790 0.0000 
202.60 -0.017 -30.008 -28.274 0.0000 
226.00 0.794 -38.046 -49.166 0.0000 
247.60 2.186 -42.680 -77.677 0.0000 

SATELLITE NR. 1 ITERATION NR. 2 
TIME(MIN) ox DY DZ INT.-ERROR 

0.00 -4.826 -24.717 -16.314 0.0001 
22.60 -3.729 -11.181 -14.601 0.0001 
46.00 -2.654 -0.770 -9.316 0.0001 
67.60 -1.651 6.282 -2.142 0.0001 
90.00 -0.706 9.966 6.488 0.0001 

112.60 0 .094~ 10.664 12.004 0.0001 
136.00 0 .6()3" 8.660 16.998 0.0001 
167.60 0.203 4.684 16.366 0.0000 
180.00 -1.022 -0.666 12.331 o.oooo 
202.60 -3.1$8 -6.487 3.307 0.0000 
226.00 -6.843 -12.068 -11.316 0.0000 
247.60 -8.739 -16.308 -32.389 0.0000 
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TABLE 5.1C 

( T-FXLE POSXTXON)-(TRNSNEW-POSITIOW (XNCL. J2 • SUN+MOON) 

PROGRAM TRNSNEW: APPROXXMATXON OF MACROMETRXCS• T-FXLES 

TERRESTRXAL-.SOLAR,LUNAR QRAVXTY CONSTANTS : 
QM= 0.398600470+15 GMS= 0.13271250+21 QMM= 0.49027890+13 
J2= 0.10B26270-02 J3= 0.00000000+00 J4= 0.00000000+00 

SATELLXTE NR. 1 ITERATXON NR. 1 
UME(MXN) ox OY OZ XNT.-ERROR 

o.oo -0.000 -0.000 -0.000 0.0001 
22.50 -1.049 3.210 -0.238 0.0001 
45.00 -1.827 5.184 -0.147 0.0001 
67.50 -2.236 5.818 0.110 0.0001 
90.00 -2.151 5.089 0.361 0.0001 

112.60 -1.443 3.083 0.380 0.0001 
136.00 -0.000 -0.000 0.000 0.0001 
157.60 2.267 -3.869 -0.992 0.0000 
180.00 6.331 -8.115 -2.809 0.0000 
202.60 9.104 -12.343 -6.662 0.0000 
226.00 13.309 -16.112 -9.666 0.0000 
247.60 17.542 -19.060 -14.834 0.0000 

SATELLXTE NR. 1 ITERATXON NR. 2 
UME(MXN) ox OY OZ XNT.-ERROR 

0.00 3.173 -9.123 -1.768 0.0001 
22.60 0.676 -4.033 -1.662 0.0001 
45.00 -1.426 -0.031 -0.946 0.0001 
67.60 -2.834 2.798 0.063 0.0001 
90.00 -3.676 4.418 1.089 0.0001 

112.60 -3.991 4.862 1.919 0.0001 
136.00 -3.812 4.227 2.408 0.0001 
167.60 -3.146 2.674 2.466 0.0000 
180.00 -1.994 0.420 1.971 0.0000 
202.60 -0.386 -2.274 0.864 0.0000 
226.00 1.676 -6.133 -0.942 0.0000 
247.60 3.713 -7.904 -3.476 0.0000 

TABLE 5.10 
----------

(T-FXLE POSXTXON)-(TRNSNEW POSITXON) (INCL. J2,J3,J4 . SUN+MOON) 

PROGRAM TRNSNEW: APPROXIMATION OF MACROMETRICS• T-FXLES 

TERRESTRXAL-,SOLAR,LUNAR GRAVITY CONSTANTS : 
GM= 0.398600470+15 GMS= 0.13271260+21 GMM= 0.49027890+13 
J2= 0.10826270-02 J3= -0.25360000-06 J4= -0.16230000-06 

SATELLITE 
T:IME(MIN) OX 

o.oo -0.000 
22.60 -1.098 
46.00 -1.868 
67.60 -2.231 
90.00 -2.101 

112.60 -1.390 
135.00 -0.000 
167.50 2.161 
180.00 5.132 
202.50 8.836 
226.00 13.027 
247.60 17.302 

SATELLITE 
TIME(MIN) OX 

0.00 3.160 
22.60 0.629 
46.00 -1.463 
67.60 -2.803 
90.00 -3.587 

112.50 -3.881 
135.00 -3.731 
167.60 -3.128 
180.00 -2.038 
202.50 -0.463 
226 • 00 1. 546 
247.60 3.771 

NR. 1 
OY 

-0.000 
3.247 
6.224 
6.842 
6.096 
3.082 

-0.000 
-3.856 
-8.109 

-12.326 
-16.061 
-18.922 

NR. 1 
OY 

-9.117 
-3.998 
0.003 
2.811 
4.408 
4.837 
4.196 
2.640 
0.386 

-2.297 
-6.113 
-7.789 

ITERATION NR. 
oz 

-0.000 
-0.161 

0.006 
0.290 
0.499 
0.464 
0.000 

-1.027 
-2.820 
-6.684 
-9.479 

-14.544 

ITERATXON NR. 
OZ 

-1.836 
-1.662 
-0.877 
0.167 
1.161 
1.910 
2.328 
2.339 
1.872 
0.826 

-0.901 
-3.366 

1 
INT.-ERROR 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

2 
INT.-ERROR 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
o.oooo 
0.0000 
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approximation for increasing arc length, keeping the same force terms. We 

chose arc lengths of about 1.9, 4.1, 7.1, 10.1, and 14.5 hours. The 

results are presented in Tables 5.2a to 5.2e. 

We may conclude from the results that for short arcs we indeed may 

represent the orbits using very simple models for the force field. In view 

of Tables 2.1 and 2.2, it is even evident that for very short baselines (1 

km or less) and very short observation time spans (1 hour or less), even 

the simplest model for the force field (central force field of the earth) 

is good enough. 

Observation sessions of the Ottawa Macrometer• campaign (see Part 

A) lasted up to 5 hours. The Macrometer• V-1000 receiver is capable of 

providing baselines of 1 ppm accuracy. Table 2.2 indicates that for such a 

relative baseline accuracy an orbital precision of 25 m is required. This 

requirement is completely fulfilled using the most elaborate of the force 

field approximations discussed here. It is also clear, however, that the 

next generation of receivers will ask for better orbit models. A future 

program modification, therefore, will allow one to specify the earth's 

gravity field in terms of spherical harmonics with a user-specified upper 

limit. Furthermore, a radiation pressure model with some a priori known 

and some adjustable parameters (as discussed in section 3 .3) will be 

implemented. 

5.3 The Influence of Orbit Errors on Baseline Estimations 

The tests concerning the orbits presented above were not performed 

in order to produce better baseline results or in order to estimate better 

orbits than the ones defined by Macrometrics' T-files. The tests were 

proposed to give answers to the following questions: 
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TABLE 5.2A 

( T -FXLE POSI:TJ:ON) -( TRNSNEW-POSXTXOtV (ARC-LENGTH = 1. 9 HOURS) 

PROGRAM TRNSNEW: APPROXI:MATI:ON OF MACROMETRI:CS' T-FI:LES 

TERRESTRI:AL-,SOLAR,LUNAR QRAVI:TY CONSTANTS : 
QM= 0.398600470+15 OMS= 0.13271250+21 QMM= 0.49027890+13 
J2= 0.10826270-02 J3= -0.25360000-05 J4= -0.16230000-05 

SATELLI:TE NR. 1 I:TERATI:ON NR. 1 
TJ:ME(MI:N) ox OY OZ :INT.-ERROR 

o.oo -0.000 -0.000 -0.000 0.0000 
22.50 -0.955 2.586 -0.290 0.0000 
45.00 -1.553 3.909 -0.233 0.0000 
67.50 -1.675 3.893 -0.028 0.0000 
90.00 -1.197 2.549 0.118 0.0000 

112.50 -0.000 -0.000 0.000 0.0000 

SATELLI:TE NR. 1 I:TERATI:ON NR. 2 
TJ:ME(MI:N) ox OY OZ INT.-ERROR 

o.oo 0.905 -2.121 0.167 o.oooo 
22.50 -0.268 0.432 -0.229 0.0000 
45.00 -0.962 1.720 -0.211 0.0000 
67.50 -1.056 1.686 -0.010 0.0000 
90.00 -0.428 0.359 0.136 0.0000 

112.50 1.032 -2.123 -0.005 o.oooo 
TABLE 5.28 

----------( T-FI:LE POSI:TI:ON ')..,. (TRNSNEW POSI:TJ:ON) (ARC-LENGTH = 4.1 HOURS) 

PROGRAM TRNSNEW: APPROXI:MATION OF MACROMETRICS' T-FI:LES 

TERRESTRIAL-,SOLAR,LUNAR GRAVI:TY CONSTANTS : 
GM= 0.398600470+15 GMS= 0.13271250+21 QMM= 0.49027890+13 
J2= 0~10826270-02 J3= -0.25360000-05 J4= -0.16230000-05 

SATELLI:TE 
TJ:ME(MI:N) OX 

0.00 -0.000 
22.50 -1.098 
45.00 -1.868 
67.50 -2.231 
90.00 -2.101 

112.50 -1.390 
135.00 -0.000 
157.50 2.161 
180.00 5.132 
202.50 8.836 
225.00 13.027 
247.50 17.302 

SATELLI:TE 
TJ:ME(MI:N) OX 

0.00 3.160 
22.50 0.529 
45.00 -1.453 
67.50 -2.803 
90.00 -3.587 

112.50 -3.881 
1as-:-oo -3.731 
157.50 -3.128 
180.00 -2.038 
202.50 -0.453 
225 • 00 1. 545 
247.50 3.771 

NR. 1 
DY 

-0.000 
3.247 
5.224 
5.842 
5.096 
3.082 

-0.000 
-3.856 
-8.109 

-12.326 
-16.061 
-18.922 

NR. 1 
DY 

-9.117 
-3.998 
0.003 
2.811 
4.408 
4.837 
4.196 
2.640 
0.386 

-2.297 
-5.113 
-7.789 

I:TERATI:ON NR. 
DZ 

-0.000 
-0.161 
0.005 
0.290 
0.499 
0.454 
o.ooo 

-1.027 
-2.820 
-5.584 
-9.479 

-14.544 

I:TERATI:ON NR. 
DZ 

-1.836 
-1.662 
-0.877 

0.157 
1.151 
1.910 
2.328 
2.339 
1.872 
0.826 

-0.901 
-3.365 

1 
:INT.-ERROR 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
o.oooo 

2 
:INT.-ERROR 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
o.oooo 
0.0000 
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TABLE 5.2C 

cr-FXLE POSXTXON)-(TRNSNEW POSITION)(ARC-LENQTH = 7.1 HOURS) 

PROGRAM TRNSNEW: APPROXIMATION OF MACROMETRICS' T-FILES 

TERRESTRIAL-,SOLAR,LUNAR GRAVITY CONSTANTS : 
QM= 0.398600470+15 QMSz 0.13271250+21 QMM= 0.49027890+13 
J2= 0.10826270-02 J3= -0.25360000-05 J4= -0.16230000-05 

SATELLITE 
TIME(MIN) OX 

0.00 -0.000 
22.50 -1.175 
45.00 -2.050 
67.50 -2.578 
90.00 -2.708 

112.50 -2.379 
135.00 -1.509 
157.50 0.000 
180.00 2.213 
202.50 5.101 
225.00 8.480 
247.50 12.024 
270.00 15.315 
292.50 17.929 
315.00 19.517 
337.50 19.861 
360.00 18.908 
382.50 16.792 
405.00 13.817 
427.50 10.444 

SATELLITE 
UME(MIN) OX 

o.oo 4.672 
22.50 0.773 
45.00 -2.187 
67.50 -4.253 
90.00 -5.566 

112.50 -6.307 
135.00 -6.633 
157.50 -6.620 
180.00 -6.276 
202.50 -5.579 
225.00 -4.541 
247.50 -3.229 
270.00 -1.763 
292.50 -0.288 
315.00 1. 057 
337.50 2.145 
360.00 2.872 
382.50 3.173 
405.00 3.027 
427.50 2.482 

NR. 1 
OY 

0.000 
3.934 
6.587 
7.854 
7.711 
6.227 
3.569 

-0.000 
-4.131 
-8.423 

-12.461 
-15.871 
-18.381 
-19.847 
-20.266 
-19.768 
-18.682 
-16.994 
-16.304 
-13.791 

NR. 1 
OY 

-17.176 
-12.406 
-8.319 
-4.947 
-2.298 
-0.360 

0.931 
1.690 
1.639 
1.132 
0.216 

-0.976 
-2.324 
-3.756 
-6.234 
-6.766 
-8.339 

-10.008 
-11.786 
-13.695 

ITERATION NR. 
OZ 

-0.000 
0.021 
0.346 
0.763 
1.080 
1.141 
0.822 
0.000 

-1.476 
-3.786 
-7.070 

-11.381 
-16.612 
-22.602 
-28.666 
-34.636 
-39.928 
-44.089 
-46.760 
-47.681 

ITERATION NR. 
OZ 

-4.140 
-4.292 
-3.470 
-2.134 
-0.644 

0.769 
2.004 
3.034 
3.821 
4.296 
4.387 
4.020 
3.168 
1.807 
0.011 

-2.163 
-4.578 
-7.126 
-9.623 

-11.886 

1 
INT.-ERROR 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

2 
INT.-ERROR 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
o.oooo 
0.0000 
0.0000 
0.0000 
o.oooo 
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TABLE 5.20 

(T-FILE POSITION)-(TRNSNEW POSITION) (ARC-LENGTH = 10.1 HOURS) 

PROGRAM TRNSNEW: APPROXIMATION OF MACROMETRICS• T-FILES 

-------------------------------------------------------TERRESTRIAL-.SOLAR.LUNAR GRAVITY CONSTANTS : 
GM= 0.398500470+15 GMS= 0.13271250+21 GMM= 0.49027890+13 
J2= 0.10826270-02 J3= -0.25360000-05 J4= -0.16230000-06 

SATELLITE 
TXME(MIN) OX 

0.00 -0.000 
22.50 -1.176 
46.00 -2.050 
67.50 -2.578 
90.00 -2.708 

112.50 -2.379 
135.00 -1.609 
167.60 0.000 
180.00 2.213 
202.50 5.101 
226.00 8.480 
247.50 12.024 
270.00 15.315 
292.50 17.930 
315.00 19.518 
337.50 19.865 
360.00 18.917 
382.50 16.810 
405.00 13.851 
427.50 10.502 
450.00 7.338 
472.50 4.959 
496.00 3.899 
617.50 4.510 
540.00 6.873 
662.50 10.749 
586.00 15.602 
607.50 20.697 

SATELLITE 
TXME(MIN) OX 

0.00 6.630 
22.50 1.883 
45.00 -1.980 
67.50 -4.933 
90.00 -7.059 

112.60 -8.508 
135.00 -9.424 
157.50 -9.892 
180.00 -9.928 
202.50 -9.511 
225.00 -8.643 
247.50 -7.374 
270.00 -5.805 
292.50 -4.068 
315.00 -2.307 
337.50 -0.669 
360.00 0.695 
382. 50 1. 657 
405.00 2.118 
427.50 2.042 
460.00 1.478 
472.50 0.561 
495.00 -0.568 
517.50 -1.667 
640.00 -2.647 
562.60 -3.461 
685.00 -4.161 
607.50 -4.838 

NR. 1 
OY 

0.000 
3.934 
6.587 
7.854 
7.711 
6.227 
3.669 

-0.000 
-4.131 
-8.425 

-12.468 
-15.889 
-18.417 
-19.907 
-20.356 
-19.882 
-18.714 
-17.144 
-15.478 
-13.999 
-12.919 
-12.339 
-12.223 
-12.407 
-12.608 
-12.482 
-11.716 
-10.119 

NR. 1 
DY 

-8.265 
-7.880 
-7.823 
-8.020 
-8.372 
-8.762 
-9.086 
-9.254 
-9.428 
-9.737 

-10.060 
-10.293 
-10.369 
-10.259 
-9.974 
-9.662 
-9.062 
-8.690 
-8.226 
-8.066 
-8.192 
-8.664 
-9.494 

-10.650 
-12.047 
-13.669 
-15.123 
-16.682 

ITERATION NR. 
DZ 

-0.000 
0.021 
0.346 
0.763 
1.080 
1.141 
0.822 
0.000 

-1.477 
-3.786 
-7.073 

-11.387 
-16.625 
-22.623 
-28.694 
-34.668 
-39.958 
-44.114 
-46.768 
-47.694 
-46.853 
-44.420 
-40.787 
-36.519 
-32.262 
-28.608 
-25.971 
-24.477 

ITERATION NR. 
DZ 

0.357 
-1.707 
-2.690 
-2.980 
-2.893 
-2.625 
-2.247 
-1.766 
-1.225 
-0.762 
-0.416 
-0.263 
-0.362 
-0.754 
-1.456 
-2.459 
-3.732 
-5.200 
-6.743 
-8.202 
-9.407 

-10.214 
-10.538 
-10.368 
-9.742 
-8.693 
-7.200 
-5.134 

1 
INT.-ERROR 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0006 
0.0006 
0.0005 
0.0005 
0.0005 
0.0005 
0.0005 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

2 
INT.-ERROR 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0005 
0.0006 
0.0005 
0.0006 
0.0005 
0.0005 
0.0005 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
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TABLE 6.2E 

(T-FILE POSITION)- (TRNSNEW POSITION) (ARC-LENGTH = 14.6 HOURS) 

PROGRAM TRNSNEW: APPROXIMATION OF MACROMETRICS' T-FILES 

TERRESTRIAL-,SOLAR,LUNAR GRAVITY CONSTANTS : 
GM= 0.398600470+16 QMS= 0.13271260+21 GMM= 0.49027890+13 
J2= 0.10826270-02 J3= -0.25360000-06 J4= -0.16230000-06 

SATELLITE 
TIME(MIN) OX 

0.00 -0.000 
22.50 -1.176 
46.00 -2.060 
67.60 -2.678 
90.00 -2.708 

112.60 -2.379 
136.00 -1.609 
167.60 0.000 
180.00 2.213 
202.60 5.101 
226.00 8.480 
247.60 12.024 
270.00 15.315 
292.60 17.929 
316.00 19.517 
337.60 19.861 
360.00 18.908 
382.60 16.792 
406.00 13.819 
427.60 10.449 
450.00 7.265 
472.60 4.836 
495.00 3.726 
617.50 4.280 
540.00 6.582 
562.50 10.395 
586.00 15.187 
607.60 20.231 
630.00 24.764 
662.50 28.146 
676.00 30.105 
697.60 30.743 
720.00 30.572 
742.60 30.435 
766.00 31.373 
787.60 34.471 
810.00 40.678 
832.60 60.631 
866.00 64.480 
877.60 81.794 

NR. 1 
DY 

0.000 
3.934 
6.687 
7.864 
7.711 
6.227 
3.669 

-0.000 
-4.131 
-8.423 

-12.461 
-16.871 
-18.381 
-19.847 
-20.266 
-19.770 
-18.590 
-17.014 
-15.343 
-13.857 
-12.763 
-12.165 
-12.042 
-12.230 
-12.445 
-12.341 
-11.602 
-10.037 
-7.677 
-4.793 
-1.865 
0.602 
1.693 
1.190 

-1.334 
-5.965 

-12.496 
-20.414 
-28.934 
-37.072 

ITERATION NR. 
DZ 

-0.000 
0.021 
0.346 
0.763 
1.080 
1.141 
0.822 
0.000 

-1.476 
-3.786 
-7.070 

-11.381 
-16.612 
-22.602 
-28.665 
-34.636 
-39.931 
-44.096 
-46.763 
-47.704 
-46.873 
-44.445 
-40.812 
-36.639 
-32.266 
-28.580 
-25.894 
-24.335 
-23.706 
-23.622 
-23.125 
-21.849 
-19.178 
-14.878 
-9.069 
-2.272 

4.614 
10.384 
13.666 
13.112 

1 
INT.-ERROR 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
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TABLE 6.2E (CONTINUED) 

SATELLITE 
UME(MIN) OX 

o.oo -31.633 
22.60 -28.273 
46.00 -26.437 
67.60 -23.343 
90.00 -22.096 

112.60 -21.688 
136.00 -21.976 
167.60 -22.676 
180.00 -23.413 
202.50 -23.786 
226.00 -23.467 
247.60 -22.287 
270.00 -20.243 
292.60 -17.484 
316.00 -14.270 
337.60 -10.927 
360.00 -7.798 
382.60 -5.182 
406.00 -3.284 
427.60 -2.162 
460 • 00 -1 . 704 
472.60 -1.642 
496.00 -1.616 
517.60 -1.269 
540.00 -0.304 
562.60 1.331 
585.00 3.522 
607.60 6.962 
630.00 8.265 
662.60 10.064 
676.00 11. 172 
697.60 11.667 
720.00 11.841 
742.60 12.204 
766.00 13.404 
787.60 16.144 
810.00 21.073 
832.60 28.673 
855.00 39.120 
877.60 52.200 

NR. 1 
DY 

26.478 
18.632 
12.118 
6.888 
2.864 

-0.046 
-1.936 
-2.899 
-3.708 
-5.023 
-6.687 
-8.491 

-10.216 
-11.661 
-12.673 
-13.176 
-13.162 
-12.698 
-11.911 
-10.983 
-10.104 
-9.449 
-9.133 
-9.171 
-9.462 
-9.819 

-10.021 
-9.891 
-9.382 
-8.596 
-7.775 
-7.252 
-7.369 
-8.415 

-10.571 
-13.884 
-18.228 
-23.285 
-28.554 
-33.388 

ITERATION 
DZ 

24.988 
21.321 
17.112 
12.686 
8.383 
4.668 
1.546 

-0.396 
-1.420 
-1.840 
-1.843 
-1.709 
-1.732 
-2.167 
-3.160 
-4.769 
-6.956 
-9.534 

-12.233 
-14.736 
-16.744 
-18.052 
-18.611 
-18.537 
-18.085 
-17.568 
-17.265 
-17.321 
-17.697 
-18.162 
-18.359 
-17.905 
-16.490 
-13.961 
-10.370 
-6.013 
-1.440 

2.569 
5.076 
5.109 

NR. 2 
INT.-ERROR 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
0.0002 
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(a) How does insufficient orbital modelling influence baseline results? 

(b) What precision in the baseline estimates may be achieved, if only 

relatively poor orbits are known, but if we estimate orbital 

parameters along with the baselines? 

In order to answer the first question, the 6 long baselines of the Ottawa 

test (see Part A) were processed using the orbits produced by program 

TRNSNEW, when only the central force term was retained to model the force 

field. From Table 5 .1a, we know that orbital errors of the order of 

several hundred metres may occur. 

The effect of this improper modelling may be seen in Figure 5.1: 

errors of the order of 50 ppm to 100 ppm are introduced into the baseline 

estimates. This is somewhat larger than the effect we would expect from 

Table 2.2 (orbital errors of 625 m are supposed to give rise to baseline 

errors of only 25 ppm). If we bear in mind that in establishing eqn. (2.1) 

the orbital errors had to be considered as infinitesimal quantities (see 

Bauersima [ 1983]) which certainly is not true for the orbital errors 

involved here, the agreement between Figure 5.1 and Table 2.2 is not too 

bad. 

In order to study the accuracy of the estimated baselines as a 

function of the accuracy of the orbits, we used the option of estimating 

orbital parameters and baselines simultaneusly with program PRMAC-3. The 

general characteristics of this program are given in Part A of this report. 

The orbital modelling and the orbit determination follows exactly the 

pattern given in the preceding sections. We therefore may restrict 

ourselves to the description of the practical aspects. 

The program user first selects the sequence in which the osculating 

orbital elements (see Figure 4.1) are estimated. Next he chooses for each 
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observation session the number of orbital elements (between 0 and 6) to be 

estimated. The program user assigns a priori variances to each of the 

element types. (Actually it would be preferable and easy to implement in 

the program, fully populated variance-covariance matrices for the orbital 

elements. However, as this information at present is not readily 

available, the present version of PRMAC-3 does not have this option.) 

The observations on the baselines of the Ottawa test were processed 

three times assuming three different sets of uncertainties for the orbital 

elements (see Table 5.3). 

For the first trial, we assumed perfectly known orbits (as was done 

in Part A of this report) • Actually no orbital elements were estimated 

there. In the second and third trials, five orbital elements per satellite 

were determined assuming the a priori uncertainties of Table 5. 3. The 

argument of perigee was not estimated since, for short arcs of very nearly 

circular orbits, the time of perigee passage and the argument of perigee 

are almost perfectly correlated. 

-1 
As the velocity of GPS satellites is very roughly 4 km s , we are 

dealing with along-track errors of about 400 m and 4000 m for trials two 

and three, respectively. The cross-track and out-of-plane errors are 

roughly a factor of 4 smaller. 

The a posteriori estimated variances for the coordinates of the 

free ends of the baselines (expressed in latitude ~. longitude >., and 

height h) are compiled in Table 5.4. 

It is amazing and encouraging to see that even with very 

pessimistic guesses for the orbit accuracy, it is still possible to 

estimate baselines of up to 70 km in length at the decimetre level when 

interferometric observations are used. 



Trial 
a 

1 

2 

3 

70 

TABLE 5.3 

A priori variances for the 
osculating orbital elements. 

(m) 
a a. 

(") a e ~ 

0 0 0 

10 5·10-6 1 

100 5·10-5 10 

aQ (") 
crT 

(sec) 0 

0 0 

1 0.1 

10 1.0 
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TABLE 5.4 

Estimated r .m •. s. errors in centimetres for the 
free ends of the baselines for the sets of 

uncertainties of Table 5.3 
~ = latitude, A = longitude, h = height. 

Baseline 
Trial #1 Trial #2 Trial #3 

Length 

~ erA erh ~ erA erh ~ erA (Jan) 

13 0.4 0.8 0.5 1.1 3.0 1.9 4.0 10.7 

22 0.4 0.7 0.5 1.8 2.5 1.8 3.5 5.4 

26 0.4 0.6 0.5 1.5 2.4 1.4 3.2 5.0 

40 0.5 0.9 0.6 2.4 5.6 3.2 5.3 13.1 

57 0.8 1.1 0 •. 9 3.7 5.0 3.0 5.0 9.0 

66 0.7 1.2 0.9 3.3 6.0 3.5 4.8 9.1 

erh 

6.1 

6.2 

3.5 

6.8 

4.7 

5.8 
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6. DESIGN OF A FUTURE GENERAL ORBIT DETERMINATION SOFTWARE PACKAGE 

FOR GPS SATELLITES 

We have stated in the introductory section that many nonphysical 

approaches for estimating orbital parameters have been developed for 

processing Transit Doppler data. These techniques are inadequate if the 

orbits are of primary interest. The only degrees of freedom an 

investigator has in orbit determination are choice of arc lengths, the 

formulation of the problem (initial or boundary value problem), and the 

number of parameters to be estimated per satellite (six parameters defining 

initial or boundary conditions and perhaps additional dynamical 

parameters). 

One of the most powerful features of the GPS system is the 

possibility of observing more than one satellite virtually simultaneously. 

This means that the contribution of the receiver-clock error to the 

observable cancels out if the observations of two different satellites made 

by the same receiver at the same time are subtracted. Any orbit 

determination program, which wants to make full use of the potential of 

these measurements, has to take the clock errors into account. This in 

turn implies that for n simultaneously observed orbits we are not dealing 

with separate orbit determination problems but with one problem where 6n 

orbital parameters have to be estimated (together with receiver-clock 

errors, station coordinates, etc.). 

It is evident that a general simulation program is absolutely 

mandatory for complex problems of this kind. Among many others the 

following questions can only be answered by simulation techniques: 
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Choice of a proper force field as a function of the arc length 

(see section 5.2 for a discussion of short arc applications). 

Influence of imperfectly modelled effects (e.g., residual 

ionosphere, troposphere, receiver coordinates, clock errors). 

Optimum choice of receiver sites for a permanent tracking 

network. 

An orbit determination program for the orbits of GPS satellites should 

fulfill the following minimum requirements: 

The program should be designed to process all observations of all 

simultaneously observed satellites in the same program run. 

It must be possible to solve for any combination of the following 

parameters: 

orbit parameters (6 for initial or boundary conditions, one or 

more dynamical parameters) 

receiver coordinates 

observation type-specific parameters, such as clock and 

ambiguity parameters for phase observations. 

It must be possible to introduce a priori information for the above 

listed parameters via variance-covariance matrices. 

The program should be general enough to accept additional observations 

of nonpermanent high-precision receivers in order to produce networks 

of highest possible precision. 

For users of the orbits determined by such a program, variance

covariance matrices for the orbital elements should be made available. 

In a first stage, the program system may be designed for relatively 

short arcs (one half of a revolution or less), allowing an approximate 

computation of the partials as indicated in section 4.4. The program 
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structure should make it easy to switch to the correct computation of 

these quantities, as given in section 3.3, in the future, when longer 

arcs may be processed. 

7. CONCLUSIONS 

In this part of the report we have been dealing with some of the 

orbital aspects of positioning using GPS. Following the introductory 

remarks and the discussion of precision requirements, the principles of 

modern orbit determination and the tools of numerical integration were 

developed in sections 3 and 4. It was demonstrated in section 5 that the 

problem of modelling orbital biases may be solved correctly and efficiently 

without resorting to nonphysical modelling techniques. The question of 

adequate physical modelling of short satellite arcs (for short baselines) 

was discussed in section 5.2, and an illustration of the influence of 

degraded orbit models on baseline results was given in section 5.3. In the 

same section we dealt with the problem of estimating orbit parameters 

together with other parameters (receiver coordinates, ambiguity parameters, 

etc.). Table 5.4 illustrated the precision that may be expected for the 

baselines of the Ottawa Macrometer~ campaign, if we assume that the orbits 

are known a priori only to a certain precision. Finally, in section 6 we 

dealt with some aspects of a future general orbit determination program. 
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PART C 

MISCELLANEOUS REMARKS 

1. CORRELATIONS BETWEEN DOUBLE DIFFERENCE OBSERVATIONS 

Our parameter estimation programs, PRMAC-3 and PRMNET, process 

so-called double difference observations: the difference between two 

interferometric phase observations (single differences) of two different 

satellites made at the same time. The observation equations of these 

observation types are given by eqns. (1) and (6) of Part A of this report. 

Different double difference observations pertaining to the same 

observation time are mathematically correlated. In our programs, this 

correlation may be accounted for as follows: Let us assume that single 

differences for n satellites have been observed at the same time ti. Let 

us further assume that the observation errors e:i' i=1,2, ••• ,n of these n 

single differences are independent, normally distributed random errors with 

zero means and with a common variance a2 
o· Starting from these single 

differences, n(n-1) /2 different double differences may be formed, where 

only n-1 of these are linearly independent. In our software, we always 

form the differences 1-2, 2-3, ••• , (n-1)-n. If we designate the errors of 

these double differences with '\• i=1,2, ••• ,n-1, the relation between the 

e:i and the 61 may be stated by the following matrix relation: 

where 

6 = G e: -n ...;;.n -n 

e: 
-n 

76 

(1) 

(2a) 

(2b) 
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1 -1 0 0 0 0 

0 1 -1 0 0 0 

(2c) 

0 0 1 -1 

The covariance matrix cov(~) is routinely formed by first computing the 

outer product io ~, then taking the expectation value of this matrix 

equation: 

T 
cov(~ ) = G cov(e ) G (4) -n --n -n --n 

where, according to our assumptions concerning the errors ei' i=1,2, ••• ,n, 

we have: 

2 T 
cov(~ ) = a G G --n 0 --n --n 

Finally, we define the following weight matrix: 

p = a-2 (G GT)-1 
--n 0 --n --n 

(5) 

(6) 

These weight matrices are implemented in our programs in the following way. 

The linearized version of the double difference observation equations (see 

Part A, eqn. (6)) may be written in matrix notation as: 

Ax-w=v (7) 

where A is the design matrix, 

x is the vector of unknown parameters, 

w is the vector of misclosures, 

v is the residual vector. 

The least-squares solution is: 

(8) 

where the total weight matrix P has a block diagonal structure, the nonzero 
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blocks being defined by eqn. (6) above: 

where 

p = 

p 
-n1 

0 

0 

p 
n 

m 

(9) 

ni, i=1,2, ••• ,m is the number of single difference observations at 

observation timet .• 
l. 

m is the number of observation epochs. 

2. AMBIGUITY RESOLUTION 

The first version of our ambiguity resolution software was outlined 

in Langley et al. [1984]. Since that time, the following three 

modifications have been made: 

(a) A program option was implemented to divide the observation periods 

into subintervals and to estimate one set of ambiguity parameters (see 

Part A, eqn. (10)) in each subinterval. This option is used to remove 

cycle slips, which were not distinguished during the preprocessing 

phase. 

(b) Originally we developed three strategies to remove the ambiguities. 

Strategy 3 has since been removed, as in all examples considered so 

far, strategies 1 and 2 solved the problem satisfactorily. 

(c) The formulae used for ambiguity resolution had to be generalized in 

order to account for the weight matrix ~· 

As the generalizations are straight forward, we only present here, without 

proof, those equations allowing an efficient computation of the sum of 

squared residuals weighted with matrix P. Equation (9 .20) in Langley et 
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al. [1984] has to be modified as follows: 

where 

V I T p vI T * *T * 
= e1 + ~2 .!.2 + .!.2 .!3 .!.2 

T T -1 
e1 = .!: R. .!: - ~1 !n ~1, 

T T T -1 
~2 = - 2 <~2 - ~1 !u !12> • 

T -1 
.!3 = !22 - !12 !11 Nl2' 

(10) 

and where 

w is the misclosure vector (see Langley et al. (1984, eqn. (9.4)] 

P is the weight matrix defined by eqn. (9) above 

T 
~i = .!i R. .!:• i=1, 2 

T 
!ik = .!i R. ~· i,k = 1,2 

,!1 and ,!2 are defined by eqn. (9.9) in Langley et al. [1984]. 
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