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CHAPTER 1

INTRODUCTION

In an earlier contract for the Geodetic Survey of Canada
(0SU80-00311) it was made clear that the NAVSTAR Global Positioning System
(GPS) must be used in a differential mode in order to fulfil the
positioning requirements of the Canadian geodetic and geodynamic community
[Wells et al., 1981]. There are four basic types of differential GPS
measurements which have been suggested: interferometric time delay,
differential pseudorange, differential carrier phase, and differential
integrated Doppler measurements. In our last contract (0SU81-00314), we
developed mathematical models and computer software to generate and process
simulated observations of these data types, and used this software to
evaluate the accuracy of the different data types for a particular network
of ground statiouns. The simulations indicated [Davidson et al., 1983]
that, given appropriate satellite constellations and observing time spans,
a) interferometric delay and differential carrier phase observations are

capable of satisfying accuracy specifications for crustal movement
monitoring (1 cm to 2 cm);

b) interferometric delay, differential carrier phase and P-code
differential pseudorange are capable of satisfying accuracy
specifications for mining subsidence (5 cm to 10 ecm);

c¢) interferometric delay, differential carrier phase, and P-code and
C/A-code differential pseudorange are capable of satisfying accuracy
specifications for rural cadastral surveying (25 cm to 50 cm);

d) all of the differential techniques, probably including Doppler, are

capable of satisfying accuracy specifications for small-scale (e.g.,



1:50,000) mapping control (5 m).

For the present contract, we extended our simulation work to
investigate a number of aspects of GPS differential positioning not
previously considered and performed some analyses of real data.

The simulation work was carried out with a new computer program
called VECA (for VECtor Adjustment). This program was written to implement
a novel approach for analysing differential GPS observations.

We had earlier looked at the geometry of GPS positioning from a
vectorial point of view [Davidson et al., 1983]. We subsequently further
developed these ideas [Vanfgek et al., 1983] and have now extended the
mathematical model to the case of many ground stations operating
simul taneously. We have combined this geometrical model with an adjustment
algorithm that is based on filter theory. The least-squares adjustment
model is the filter, the observations are the input and the observation
residuals and parameter estimates are the output of the filter. The
construction of the basic filter for the case of one baseline is discussed
in Chapter 2, and the extension to many baselines is discussed in Chapter
3.

The non-geometrical aspects of the model in VECA are more or less
identical to those implemented in our old program DIGAP [Davidson et al.,
1983]. However, we have added to VECA an ability to estimate parameters

describing the orbits of the GPS satellites. The mathematical models for

the estimation of orbital parameters is described in Chapter 4.

The mathematical models have been implemented on both the University
of New Brunswick (UNB) IBM 3032 (now a 3081) mainframe computer and on the
UNB Department of Surveying Engineering HP-1000/F minicomputer. The HP

implementation is described in Chapter 5.



Using the VECA software package one can pose a variety of "what if"
questions to determine the capabilities of differential GPS positioning
under different conditions. For the present work we were particularly
interested in wusing VECA to determine the answers to the following
questions:

(1) How inaccurate can the a priori coordinates of the ground stations be,
before an adjustment fails to converge?

(2) What is the bhest satellite-receiver geometry for differential GPS
positioning?

(3) Is it practical or worthwhile to combine more than one kind of
differential GPS measurement type?

(4) What is the effect of different "Denial of Accuracy" degradation
scenarios on differential GPS positioning?

After some consideration we arrived at an answer to question (4) without

actually performing any simulations. Our reasoning is outlined in Chapter

6. An attempt was made to answer the other three questions using VECA.

The results of these attempts are documented in Chapter 7.

During the contract period, we were fortunate to participate in and
to obtain data framn the test of the Macrometer Interferometric Surveyor by
the Earth Physics Branch of FEnergy, Mines and Resources Canada. Some of
these data have been analysed at UNB with a special purpose suite of
programs that were developed specifically to handle Macrometer data. The
development of these programs and the results of their use are described in
Chapters 8 and 9.

Conclusions and recommendations are presented in Chapter 10.



PART A: MODEL AND SOFTWARE DEVELOPMENT

CHAPTER 2

THE CONSTRUCTION OF A FILTER

2.1 Filter for Differential Ranges

Throughout this development we shall use the terminology and

notation introduced in Van{lek et al. [1983] (see Appendix B). 1In this
notation the observation equation for an observed differential range Api

involving satellite position S1 and two points P P2 is

1’
>i .
u > _ i
a1 M T -1
u e ey
where only the three coordinate differences AR = ﬁz - ﬁl are unknown, and

Ei, Gi are known approximately. Denoting now the design matrix composed of

| S CU (2.2)
by é?, the vector of observed differential ranges by Ap and A§12 by AR, the
system of observation equations becomes

AT AR = - 80 . (2.3)

(Note the different definition of design matrix, i.e., transpositon,
compared with standard notion in adjustments. This notation is adopted
because it remains valid even for A being composed of only one vector
B =@t - dho

Let us now consider two groups of observed differential ranges,

namely Ap., and Ap,. They give the following two systems of observation

1 2

equations:



T
AR = - A
AR =-2, , C
T = -
Ay, AR = - Ao, , G5y Gy s (2.4)
where Cl’ g2 are the covariance matrices of Ao, and éﬁz respectively, and

912 is the corresponding crosscovariance matrix.

The first system of observation equations yields the following
system of normal equations:

A )AR(]') = - A c'lAp

AcC
( S U

AC C, A (2.5)

or
-1,T 1 1
A ) 1 1 e .

Taken together, the two groups of observations give the complete system of

M) = - ac (2.6)

normal equations:

+ AP A + AP A )AR(Z)

(4 PlAl * é11’1252 =2-21-1 T =2-272
=~ AP Ao, - AP A0, - APy B0 - AjBRe, (2.7)

or, briefly,

(2) _
(M) + Ny + Nyy + NAR™T = Uyley + U0, + Uyyhey + Uplho,y, (2.8)

where
_ A1 -1 -1 -1
Py =CyT +CC(C - CyiCiTCy) 'c, 218 (2.9)
-1 -1 -1
P1a =781 €5(C - &y C1 &) =By (2.10)
-1
By = (G, = Cy1C) 012) . (2.11)
Denoting now
P = ) 4 v (2.12)
and realizing that le _;1 we can write eqn. (2.8) as
NT (1) NI
(N + N 2 12 + N )AR + (N + N12 12 + N )SR
= UjBp; + Uy Aoy + Uj 00, + Uyhoy - (2.13)
Taking eqn. (2.5), i.e.,
1
~HLAE( ) =040y (2.14)

into account, we have



T T (L)
= - +
(M) + Nyp + Ny # N8R = ~(Fy, + N, + N)AR
. 2.1
+ Uprley + (Uyy + Updley (2.15)
The vector of residualslg(l) from the first adjustment (eqn. (2.6))
is
e = aTar™M v ap (2.16)
Substituting for Aﬂl in eqn. (2.15) from eqn. (2.16) we get
T _ T (1)
(N, + N1 12 + N8R = - (N, + Nj, + N,)AR
(1) (1)
U, (A alarM + Py 4 Uy, + U8y (2.17)
T
= i . 017
Realizing now that UZPél AQBZPél EQI we can simplify eqn. (2 ) to
read
- _ (1) _ (1)
(N, +, +N12 SR = (Uy,+U,)A0, = (Ny,+N,)AR Uyt . (2.18)

Denoting Ap, + égég(l) (observed minus computed differential range vector)

byA2 we obtain finally

(N, + N + NT + N,)8R =

- (L)
PP +U,)4, = Uyx s (2.19)

Z91L

U9

the equation for the increment SR to the solution Ag(l) (of the first

system of normal equations) as a linear function of the misclosures A2,

i.e., the filter equation we have been 1looking for. Here, because

B eH)

)=0, we obtain U = 0.

Equation (2.19) takes into account (rigorously) the correlation C
between the first group of observations_A_g1 and the second group Ap,. As a
result the filter is unwieldy. For this reason, we will assume, from now

on, the correlation between Ap, and -522 to be nonexistent, and the

crosscovariance matrix C12 to be zero. Under these circumstances, we get



SR = A 2.20
(N, + N8R = U8, (2.20)
or, written in the usual form
SR = (N, + N,) © U4 . (2.21)
. -1 =2 —2—2

This equation can be written also for a second "group"” of

. . i, .
observations Agz consisting only of one observation, Ap , in which case it

leads to a recursive formula for §R. We denote

-1_ -2 _ -2 i _o(i-1) _ (i-1) i (1)_,o(i-1)
Cy =001 ™07 » A=K, MmN, womaN,, NETTU AN SN, ARTH=ARTTTU4SR
and get
Ay
r N )
or, = - )T o2 et - B e RETDy (2.22)

Other shapes of the filter are possible. It appears to us however

that this particular form is the simplest from the mathematical point of
view and thus particularly suitable for the later investigation of non-

geometrical effects.

2.2 Convergence of Differential Range Filter

To study the rate of convergence of the sequence of solutions, let

i
us first rewrite A" as follows:

i +1 +1 »i
i_ u _ u _ u
AT Gi . ;i ) l{;i + Zi) . éi —'l(l + cosmi) ’ (2:23)
1 2°1 2 1 2

where wi is the paralactical angle (the angle under which the baseline AR

is subtended, viewed from Si). Realizing that



1 i 20} i ot
-5(1 + cosy ) = cos 5 and U = cosy—
we get
+>i
A9 (2.24)
i ml
u COS—Z-—

Further, since SNi can be written as

_ =2 3 i_ =2 -2w u fu
§N, = o, At e &t = 0,7 cos om —=—— (2.25)
(u)
where
B 214 i i i i
cos"a; cosajcosa, cosajcosay
> >
u & u _ i i 2 i i i
ST oL cosajcosa, cos™a, cosa,cosag (2.26)
u u
o i I cos icos i cos2 i
hc sajcosay @,COS0 4 gy )

. . . . >
is the matrix of products of direction cosines of u .

Now, the complete matrixlg(i) of normal equations is merely

i i
N = 3 AN, = 1 . _ . (2.27)
— +> +>
=0 4 j=0 2 24,3 ol dd
Oj cos —2—-

Let us assume, without any detriment of generality,

¥j @ oj =0 . (2.28)

We also realize that for a random distribution of SJ over the =zenithal

hemisphere
i . . 0 k#2
lim 3 COSal‘ZCOSaJ =:::: . (2.29)
i+ j=0 L 0.5 =%
Hence
(i) p 1 1
lim N =lim—5 I I = lim —5 1 (2.30)

fre0 i+ 207 j=0 i+0 267 7



and, approximately

>
> u
By >-7-1 8

| N

: s | (2.31)

[=4

which clearly tends to ] as i increases, since ﬁ/u is a unit vector and A
is small for all i. This shows that the sequence of solutions converges.
It must evidently converge to the best least-squares value since it 1is
equivalent to a complete least-squares solution.

The convergence may be slow, when the initial_ég(o) is very far away
from the final solution. As a matter of fact the solution may not even

converge to the right solution, because E‘l-l)

(1)

in eqn. (2.22) does not have

the benefit of using the best estimate AR in its evaluation, and also

the misclosure Ai should be computed from Agﬁi). Thus H(l-l) (and perhaps

even Ai) may have to be updated after each step particularly at the

(o)

beginning of the process when the initial value AR is far removed from

the correct solution.
If the matrix N of normal equations has been updated at each step of
the filter, then..E(l_l) reflects the knowledge _Ag(i_l) and should be

updated for the effect of jgi. Let us first write the expression for
n(i=1)

as follows:
. i-1 . . i-1
E‘l . b3 g.ZKJ 8 ) = I AN, . (2.32)
=0 =0 3
In this expression, each 21 has to be corrected by 5KJ caused by ﬁgi to

obtain

* — . . 3 Y
AN, = AN, + 8N, = ojz(KJ + k%) o (&Y + sk%y . (2.33)

Now, from eqn. (2.2) we can write (leaving out superscripts):



10

=¥

+ 6A

(@ + su)/[(u + su) ° El]

> > + > 6{; ' -é
(u+ su)/(a e e -——7)

c
°
D+
—

(2.34)

.
(=24
(=]
[+

6-» -+
> .
> (8u el)

1]
>+
+

o
|
>+

> > >
uc e (u=*e)

all under the assumption of Su << u. Realizing now that u e ;1 » 1 we get

sk = su-Asu-epn . (2.35)
> > >
Because 8u is only due to the change 6e2 in ez, we have (from
- > >
u—1/2(e1+e2)):
> 1.~

On the other hand, from the definition of gz (i.e., 32 = gz/pz) we have:

p p
2, + 58y = _:2___% . (2.37)
|92 + 692!
From the definition of 32 (i.e., 32 =7 - ﬁz) it follows that
§op = - SR . (2.38)
We also have
|32 + 532| =0, - 22 . SR, (2.39)

and



11

b - &R o, * SR
4] - e *
> > & 72 2
e, + Se, = 5 (1 + 05 )
S > e ¢ SR
e
sR 2
- -DHa+ ) (2.40)
) 2
e, * SR
> e. ®
) 2
Hence
->
. .8, ¢+ sk
58, 2 32-3——— -8R , (2.41)
02 02
sus L@, - shye, - s8] (2.42)
202 2 2

and finally

6k .7%; (8,0 6R)8,~6R-R((3,+6R) (8,08 )-6ReE )] . (2.43)

Realizing that 32 . ;1 w1, 31 > gz v A we can further reduce this equation
to
> ® 1 > > > >
sk = 12(R + sRK - 6R) . (2.44)
2

Substitution of eqn. (2.44) into eqn. (2.33) yields:

+j > +j > +j > +j >
. g s (ARSROAT - 6R, . (ATesR AT - R,
AN 46N, = ¢ “(RI + L L He@ + : I
-3 =] 3 253 253
2 2
3.
I T I B IRC JNC T PG U
=g, [ATRA” + ——= A'RA” - ——(A R§R, + SR,RA”)]
J 2 J 2 J 1 1
P2 P2
(2.45)
KJ°6§i 072 .
= AN, + ——> AN, - —L sym(27 0 sR) .
=j 20 T ] i
2 2
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The total correction (update) G_Iji to E(l_l) is then given by
i-1 RJesR -1 33
§N, = 1 — T AN, - sym( 3 o> @ sK) . (2.46)
—i . i —3 _ j2 i
j=0 205 j=0 P30

This equation is difficult to implement efficiently. Clearly, it
may be more economical to always go all the way back and restart the
process for j=0 with better and better initial approximation _@_(0) until
changes —631 are "sufficiently small”. This practice would also dispose of
the problem with updating Ai. An estimate of what is sufficiently small
may be obtained from eqn. (2.22), which can be written briefly as

SR = - M A% | (2.47)

where M stands for _Ii—lo-zz and A* is the observation misclosure. Clearly

A* is of the order of SR while the elements of M are at worst of the order
of 1. Thus, if we want to determine S8R to an accuracy of 1 mm, the product
dMA*, where dM is the admissible error in M, should be smaller than 1 mm.

Now, disregarding the variances, the error dM would be of the same
order of magnitude as that of N, dN. The error dN, in turn, will be of the
order of two times the error in direction cosines, i.e., of the order of
28R/p. Taking p v 2x107 m, we get the final result that "sufficiently
small” changes 5_1_{_i should be smaller than 100 m.

Another alternative to the rigorous filter update would be to make
the first few observations (until SRi < 100 m is reached) 1look less
accurate than they actually are. This would give the new observations a

better chance to change AR to what it should be, i.e., to get the filter

unstuck from a possibly biased value AR. A reasonable choice appears to be

*

oy = o //1 (2.48)

*
where o; is the actual standard deviation of ith observation and cri is the

artificial value. The artificial standard deviation should be applied,
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instead of O in eqn. (2.22).

2.3 Filter for Other Observables

Let us consider here two more observables (in addition to
differential ranges Ap): range differences (Vp) and ranges (p). The
observation equations for range differences (Doppler) read:

R v . AT + VU, * T
Vu1 R1 - o1 + e1 r u1 r

(2.49)

>

> _ +->.-)++.
Vu2 R2 = sz e2 AT Vu2

(232

(for notation and derivation see Vanicek et al. [1983], Appendix B). The

observation equations for ranges are

agd

+8, o
€1

+'ﬁ-
1T R T
(2.50)
e, * R, =-op,+e, T

€2 T R T TP T & )

Clearly, unless simultaneous observations are made at the two ground
. . > "1 . . .
stations, i.e., unless Ar's and/or r's in the pairs of corresponding
equations are the same, it would be obviously quite superficial to convert
>
these equations to observation equations for AR. Thus the treatment of
these observables is better left for Chapter 3, where we develop the
-+

observation equations and the filter equations for position vectors Ri of a
network of ground stations. However, even if the observations are made
simultaneously, we feel that the contribution of these two kinds of
observables will be felt most strongly in the positioning of the baseline
(or network) rather than in the length of the baseline (or relative
positions of the network points). Hence we shall not even attempt to

construct the filter equations for a baseline using these two additional

observables. The rest of our investigations in this chapter will
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concentrate on differential ranging.

2.4 Clock Errors and Filtering

Let us assume now the most simple-minded (unknown) errors in the
receivers' clocks: constant offsets AT,, AT, with respect to the
satellites' clocks. We shall show that the presence of these two unknown
offsets can be rigorously accounted for simply by changing the weight
matrix of the observed differential ranges.

Let us begin by rewriting observation equation (2.1) as follows:

i i

> i
e A = A - - A .
R p2 + c T2 01 c T1 s (2.51)

where ¢ is the speed of light. Denoting AT2 - AT1 by 8T we get

>
- A

- &Y ¢ AR - 8T = Aot . (2.52)

The system of observation equations then becomes (cf. eqn. (2.3)):

§T
T
R e TR (2.53)
R
where
T
a =-2¢(1, 1,..., 1)" = = ca . (2.54)
The corresponding normal equations read:
AT [ et AT
e - U B B S I e IR YRR SLE
A AR A
or
.3?97¥_ | EFéf¥é? ST .ET I
_______L_ _____ - = - - 9 _A_D . (2056)
acta | aciAT AR A

Rewriting these equations as
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Ny b o | et at |
SR DU ) OO S P ')
No1 | Hop | LR A
the solution is given in the following form:
: T
o o P2
et Ml LR B B et R V:)
AR My ) Yoo ] | a
where
T -1
My =My =~ Ny Nyp My
Myy = (Nyp = Nyy Ny -42) y

(2.57)

(2.58)

(2.59)

Substituting these into the equations for AR (and forgetting §T) we obtain:

Substitution for M

AR = - (AC

x (—AC a(a’C "a)

- (AC

1}

|
~
I3

ET1 -1
- [le 1 Ezz] -—- c Lo
A

-1
‘[-%ﬁbﬁu_' Bo | |-~-

—1 T
—2 1—1 12

=29 |- —— - —

A

Tl -

Moo E—Zl and N11 yields

1T _ s laqale lay ! aTelaTy !

¢l et e e

—1T1 -1
ac x

1
a

ATy”

L - aa’cha)

(2.60)

(2.61)
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We note that if we regard Efl(l_— g) as a modified weight matrix, the shape
of these equations is exactly the same as the shape of the normal eqn.
(2.5) for the case when the clock offsets are not considered. This then
proves our original assertion that the presence of unknown clock offsets

changes only the weight matrix of observations from P to

P' =PI - E(ﬁTPa)—liTP) . (2.62)

Taking into account eqn. (2.54) we can rewrite eqn. (2.62) as

PP oGP0 e’ (2.63)
Having a closer look at eqn. (2.63) we discover that 2F£g = Zozz
(for uncorrelated observations) and
z cfz, —0;2,..., o2
i1t n
P
— -2 -2 -2
P' = S| % » z O  seees O . (2.64)
Lo i#2
- - -2
—01 , —02 yeeey, I oi
i i#n
For the special case of ¥i: o; =0, we get
n-1, -1,..., -1
P
_11, _% -1, n-1,..., -1 , (2.65)

-1, -1,..., n-1
and for large n: P' + P = 021 .
= - o—

Clearly a similar treatment may be given to more complicated clock
errors, e.g., linear or non-linear drift, with the same result, except that
the P' matrix would be more complicated. 1In fact the shape of eqn. (2.62)
for P' will be the same, only the a will no longer be a vector but a matrix
with p columns, where p is the number of base functions used for the clock

error modelling. It is interesting to note that
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P'a =.2?£' =0 , (2.66)

i.e., the new weight matrix is orthogonal to the clock error design matrix.

Once the new P' matrix is assembled, the filter can be used in
exactly the same way as in the case of no clock error. Let us just mention
here, that clock error parameters may be treated as being part of the
vector of unknown parameters, in which case the design matrix has to be
changed accordingly. Once the design matrix 1is changed the filter
equations are again applied the same way as before. This is the approach

used in the next chapter.

2.5 Orbit Improvement and Filtering

Let us first have a 1look at the effect of incorrectly known
satellite positions. We begin by assuming that the satellite position, at
the instant of differential range measurement is T+ 8T instead of T. We
wish to see the resulting effect §A and &N, §T causes.

. > R > > > > -> >
Evidently, 8r changes the unit vectors e e, to e, + Se e, + Se

1’ 72 1 1’ 72 2
where, say
> + > > > >
s r + §r - R1 _ r + §r - R1
el 6e1 N > > B > > > > > >
|r + 8r - Rll /[(r + ér - Rl)'(r + 8r - Rl)]
(2.67)

> > >
r + §r - Rl

ﬁl) + 2(r - ﬁl)-sE]

VI(T - §1>~<¥

having assumed 8r << r. Equation (2.67) can be rewritten as
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. T+ ot - K
e + se, =
1 1 . 2(r-§1)'6r
|T-R, [/[1 + ]
1 - % |2
1
, T+ 6r - ﬁl (r - ﬁl)'sr
= — z (1 + >3 5 (2.68)
¥ - & % - &
> >
= (*1 +535ya El . 85y
°1 1
* > > > >
=& + srl el(e1 5r1) s
»>% >
where Grl = Gr/o1 . Analogously, we get
> +>% > > +>%
Gez = Grz - ez(e2 Grz) . (2.69)
Since
> + >
e e
K = —+—1—+__2_+— ’ (2.70)
(e1+e2)°e
we can write
.. El+a¥*-31(31~s?*)+32+s¥*-€2(32-5?*)
A+ SA = (2.71)

> * * >% > >% * *
(e1+s¥ -El(éloa§ )+22+sr —ez(éz-sr ))-(32+s§ —22(32-5¥ ))

where by 6;* we denote 26;/(pl+02). Retaining only the first-order terms

>
in 8r* we can write further:
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* * *
... & e, 28T~ (817 8T )=8,(8,*8T )
A+dA = > > > +>% > +% > & +% +> >+ 6»* > > 6»*
(el+e2) e1+(26r -el(e1 Sr )—ez(e2 §r )) e1+(e1+e2) (8r -el(el r))
* * *
26T -6, (e, *6F Y-o,(e.*6T )
. 171 2072
= (Z_'_ — — ) x (2.72)
(e1+e2)°e1
* * * * %
262708 —8 6T —(3. 08 )(E o6t )HE 6T HE 6T —8 o6F ~(2. 08 )(2.+sE)
1 1 1 2 2 1 2 1 1 2 1
x(1 - > > > ) .
(e1+e2)'e1

In this equation, (Zl+gz)'gl can be approximated by 2 (in the corrective

terms) and we obtain

> . +% > . +% »> . +>% -+ R +>% > .+
+ s > ek e1 Sr N e2 Sr e1 §r e2 Sr e1 e2 R % > %
A+SA=(A+ST “e >y “ey—5 ) (1- 5 - 5 + > (e1°6r +e2'6r ))
. »% g1+32 P > % 5 4%
=(R+s% - ——(U§T7)) (1= desT +uesT ) (2.73)

* *
R+st" - u(hest ) .

Thus, we get finally

A

* *
st - u(ussr )

It e

(2.74)

Lo -3 eyt
0 =
where p is the mean range.
Realizing now that s¥ can be expressed as a linear function of the
satellite position change sk expressed in Keplerian elements k, i.e.,
>
§r = S8k s (2.75)

where § is the Jacobian of transformation from Keplerian elements into

Cartesian coordinates, we get the resulting equation

*
(I-u@uWSsk =T sk . (2.76)

o~

>
SA
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This is then easily transformed into 8N as

§N = o_2sk. @ sk

SN = o %ok, L (2.77)

if these quantities are of interest.

We shall now turn to the real problem of interest, namely, the
evaluation of orbital biases &k from observed differential ranges. To
solve the problem, let us consider again the system of observation

equations (2.3). Clearly, since the design matrix A is wrong by

[ i ]
84, [T
= =T k , 8K ,..., 6k
L2 ze —2 [ O poeees O, ]
sk Ia
- n_ - -
(2.78)
=T Ak,

where -Ii are constructed from T*s and zeros and -ﬁkj belong to the s
satellites used in the campaign. The computed AR is wrong by §R. We can
thus rewrite eqn. (2.3) as
T T
(A" + 8AAR + 8R) = - 8p . (2.79)
Neglecting powers of higher order than one in the small quantities §A, &R

we obtain

é AR + AT EB*-EAT Ag;-_A_o_ . (2.80)

Now a substitution for SA from eqn. (2.78) yields:

AT(AR + 8R) + AkT 1T AR Z - a0, (2.81)

which can be rewritten as

AT(8R + 8R) + AR"

T Ak = - a0, (2.82)

or

A( +6R)+BTAk--Ap . (2.83)

Assuming P to be the weight matrix of observed differential ranges, the
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system of normal equations for the unknowns AR + §R and Ak is

APAT(aR + 5R) + APB' AR = - APsp
(2.84)

&T(A*ﬁ+ SRy + ﬂT AR = - BPAp . (2.84)
From the first set of equations we get

AR + 68 = (APAT)7'(- APAp - APB' AR) . (2.85)

N—l

Substitution of this result into the second set of equations gives:

BPAN ' (- APAp - APB'AR) + BPB'AR = - BPAp (2.86)
or

(-eATN 'apBT + BPBT)AR = - (BP - BPATN 'AP)AD . (2.87)
This equation can be rewritten as

B2 - 2A"N 'AR)BTAR = - B(P - PATN AR)AR (2.88)

Y Y

or, simply

BYB'AR = - BYso . (2.89)
Realizing now that in eqn. (2.82)

AR = - N'aRsp (2.90)
we obtain

R = - N lapeTaR . (2.91)

—_— —_———

Equations (2.89) and (2.91) are the ones to use for the evaluation of the
best estimates AK of orbital biases and the best estimate SR of the

baseline correction. If the orbital biases are regarded only as nuisance
parameters to be eliminated then the correction‘gg can be computed directly

as a linear combination of the observed differential ranges as

1

sR = nlapBT(yBT) lBYAe . (2.92)

As such it can be obtained from modified filter equations.
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It is interesting to note that the "weight matrix” Y in the normal

eqns. (2.88) for_AE is orthogonal to the design matrix A. We get, clearly,

T

AY =YA" =0 . (2.93)

We also note that for other observation modes, we get identical

equations for AR, where only the matrix T, and thus B, will have a

different form.

2.6 Optimum Geometrical Configuration for Differential Ranging

To investigate the optimum configuration for differential ranging
from the geometrical point of view it is expedient to take the final system
of normal equations rather than the equations for the filter. Clearly, if
the filter is applied properly, the end results (Ag) from both techniques
should be identical.

Now, the most accurate (best) result will be obtained for the case
when Tr(N) is the maximum and the off-diagonal elements of N are as close
to zero as possible. In the first approximation, for shorter baselines,
the contribution to the matrix of normal equations from an observed (ith)

differential range is (uncorrelated case):

_ . e _oas i .
AN, = 0,2 A8 Ki = 0,231 R ul/(ul)2
h— S 1 1
FCOSZ i cosaicosai cosaicosai-
*1 1 2 1 3
o =2 i i 2 i i i
= Gi cosazcosa1 cos a2 cosazcosa3 sy (2.94)
cosaicosai cosaicosai coszai
| 3 1 3 2 3 i

where the elements are obviously expressed as products of directional

cosines. Thus the upper triangular part of N can be written as
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[ To. cos i %5, cos icos i %o, cos icos i
“94 *1 S S R 03 ©05¢) 0%
i i i
-2 2 i -2 i i
N = ?oi cos’a, ?ci cosa,cosay (2.95)
i i
-2 2 i
Zo, cOos a
i 1 3

From eqn. (2.94) it is not difficult to see that for three

differential ranges the optimal configuration is achieved for Gl_l 32

Gl_L 33 s 32 l_33, i.e., for an orthogonal triad of mean vectors Gl, 32,
+3

u”. This is the same result as obtained for the geometrical configuration

optimal for ranging [Spilker, 1978].
It appears to us that an algorithm for selecting satellites could be
designed such that N would tend to the most ideal case:

-2

N=zzolI |, (2.96)
i

since for satellites theoretically available at any desired position we

would get

i i
£ cosa coSsq, = (2.97)
i s t \\\\‘\~O s#t

Of course, the question remains whether such a selection would be really

desirable; clearly, the accuracy of the solution also can be improved

simply by augmenting the number of observations.

2.7 Optimum Geometrical Configuration for Differential Range Differences

Whereas in the case of the differential Doppler determination of Vp
the satellite locations S, Sk are separated by about 10° m (for one
30-second Doppler integration interval) along one pass, for the

differential range differencing techniques the optimal satellite
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configuration would require Sj and Sk to subtend a large angle (e.g., 900)
at the baseline. Thus, while the paralactical angles for one Doppler
measurement are of the order of 5 x 10—3 radians they would optimally be
close to 90° for the differential range differencing. Considering the
observation equation for differenced Doppler observations [Vanfgek et al.,
1983]

vieak = vPp - AueaR + Azﬁo(ﬁm - ™ (2.98)
we can see that clearly, differenced Doppler observations V2p wouid have to
be measured with an accuracy at least two orders of magnitude greater than
the differential range observations Ap. The geometric disadvantage would
tend to disappear, of course, when the Doppler integration interval is
extended; more than one hour of integration would be needed, however, to
get a good configuration [Fell, 1980]. The effect of imperfect knowledge
of AT can be minimized by selecting passes that are approximately normal to
AR. In such cases V4 tends to be normal to AT and the second term on the
right-hand side of eqn. (2.98) will go to zero. It is interesting to see
that under these circumstances even Azﬁ tends to O and the third term does
not contribute appreciably either.

Obviously, not much is achieved from the geometrical point of view
when differential range differences (or differenced range differences) are
used instead of just differential ranges. On the other hand, the best
satellite configuration for the differential range differencing can only
bring V4 close to a unit vector and make the effect of errors in Vzp on Aﬁ
as small as that of differential ranges. On the other hand, there are the
additional terms that generally will reduce the accuracy of AR. It is
important to bear in mind that the argument in favour of differential range

differences is based on the elimination of clock errors.



CHAPTER 3

MATHEMATICAL MODELS OF MULTI-STATION DIFFERENTIAL OBSERVATIONS

In this section we seek to formulate the mathematical models relating
the multistation solution (instead of the interstation vector Aﬁ) to
differential ranges, range differences, or differential range differences
observations. To do so we shall deviate somewhat from the previous
formulation choosing to formulate the mathematical models in terms of
coordinate components (position vectors) for each station rather than

coordinate differences (interstation vectors).

3.1 Multistation Differential Range Mathematical Model

Let us start from the single point Pa mathematical model for ranging
>i __ i +i >
e, "R =-o +e T, (3.1)
where the subscript indicates the participating station and the superscript

- . . A i . .
the participating satellite position S . For a pair of ground stations P

PB we get

g e R -3t R = ppt -t o, (3.2)
a
which may also be written as

+>i T i ] - i _ g2, 2 _ 1
[(ea) 1 (eB)J iia Ap Ad r g s (3:3)

R
8

where A' is the misclosure. For several ground stations Pys PB’ ees, P

aB

observing simultaneously and for many satellite positions Sl, SJ, eeey S
we have

R=2 (3.4)

25
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where the rows of design matrix AA are composed of pairs of unit vectors

T > > >
and R* = [R,Rp, .. «,R J.

(see Figure 3.1), A is a vector of misclosures A; "

B

3.2 Multistation Range Difference Mathematical Model

The equation for range difference (Doppler) observation Vp can be

obtained from the following two range equations:

> > +1i +i >
ei « R = - pl 4 e1 . 2
o o o a
(3.5)
PSS U2 B S
a o o o
as
. . . . . i i »i
ol e B = -yl 4l ek
o o o o o
= - vptd 4 23 ¢ AFEY 4ot o 71 (3.6)
o o o
13
=—VaJ s

where Vij is the misclosure of the observed range difference Vpij.
Considering several ground stations, the system of observation equations
becomes

A,R=Y (3.7)
where the rows of the design matrix contain just only —Vﬁ's corresponding
to the appropriate i's and to the appropriate pairs of satellite positions

for which the corresponding range difference is observed.

3.3 Multistation Differential Range Difference Mathematical Model

Since differential range differences and differenced differential
ranges (double differences) are the same [Vanfgek et al., 1984] we can

derive their observation equations from either section 3.1 or section 3.2.
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We shall use eqn. (3.6) to start with.
Writing two observation equations (3.6) for range differences VD;J

and Vng (observed simultaneously from two ground stations) and subtracting

the second from the first we get

veldeg —patdeg - ¢ -yt dtioedi a2t L (3.8
a a B B af a B o B

This can be rewritten as

+13,T _ +1§, T > _21j _ ngt I % _ 2+ij.*i
[(Vua ) ] (VuB ) A] Ra =V paB AuaB Ar A u,g"T
5 (3.9)
" y2i3 .
aB

It can easily be shown that a difference of two eqns. (3.2) formulated for

i
Pa PB S” and Pa P

should.

8 SJ, gives an equation identical to eqn. (3.9), as it

It is clear that the system of observation equations for several

ground stations is

A R=9, (3.10)
v

where the design matrix évz has rows containing vectors Vﬁij, -V;gj and l?
is the vector of misclosures given by eqn. (3.9).

At the moment, only double differences pertaining to one satellite
(i.e., differential range differences or differential Doppler can be
processed with the VECA package (see Chapter 5 ). Double differences

involving two satellites have to be processed using PRMAC-3 (see Chapter

9).
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3.4 Mathematical Model Expansion to Include Clock Errors

The previous models, egns. (3.2), (3.6) and (3.9), can be easily
modified to include clock error parameters in the solution vector. For
this purpose we have assumed that both satellite and receiver clock errors
can be represented by an algebraic polynomial in time as (cf. Davidson et
al. [1983])

At = a, + al(t - to) + az(t - to)2 , (3.11)

and

2

AT ) R (3.12)

AO + Al(T - TO) + A2(T - T,
where t0 and To are some reference time epochs for the particular set of
coefficients. In view of such errors, a range to a satellite can be
expressed as

0 =0 + cAt - cAT (3.13)
where ¢ is the speed of light and 0 represents the measured pseudorange.

Usually satellite clock errors can be accounted for by using the

clock coefficients supplied in the navigation message, so that eqn. (3.13)
can be simplied to

p = p% — CAT (3.14)
with the understanding that the satellite clock error has been included as

part of the "reduced" observation ok,

With eqn. (3.14) in mind, a double difference can be expressed as

2,45 _ gpii _ gpli
v =V -V
P Py Py
= (pj - oi) - (oj- pi) (3.15)
B B a o

v25% = c[AT (¢3) = aT (¢1)] + c[aT (¢1) - AT (<]
B B o o

2 ~ ” "
where V' p* represents the "reduced” observation and t is used to denote the

GPS time scale (cf. Davidson et al. [1983]). Substituting eqn. (3.15) into
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eqn. (3.5), the model for differenced range difference observations

including receiver clock errors can be written as

e _ gndider® o v25% - iy - i
Vua RO. VU-B RB =V p* C[ATB(T ) ATB(T )]
(3.16)
. . T e
+ c[AT, (TT) - AT (TH)] - Aul cArtd + 4%y dert

or using eqn. (3.12) and transferring the terms in brackets to the

left-hand side

g _geileg 3 3y q?
va JeR - vailer + + -T. )+ -
u ug "Ry T cllAg HAg, (To(r)=Ty HAL, (Tg(T)=Tg ) ]

o«
T Mg * Asl(Te(Ti) " Teo) * Asz(TB(Ti) B Tso)zl}
- clla, Aal(Ta(Tj) - T, Aaz(Ta(rj) - Tao)z] (3.17)
- [Aao * Aal(Ta(Ti) - Tao) * AaZ(Ta(Ti) B Tao)zl}
= V2* ,
where the first subscript in the coefficients Az,o s Al, s AQ,Z and Tz,o

1
. 2
is used to denote the station to which they refer and V * is the reduced
misclosure. Defining the vectors
>
B

g =aB (3.18)

g = [Py1 Doy byl
where
bll =0 (3.19)

(i.e., constant time offset cannot be determined from double differences),

by, = el (+h) -1, ) - (1T -1, )]

= [T, (t1) - Ty (xH)] (3.20)
_ b 2 i 2
byy = cl(T,(x) = Ty )" - (T, () - T, )" (3.21)
eqn. (3.17) can be simplified to
V-» '}E V+ g > .-) > .-) _ V2*
u,*Ry = Vug*Rg + B *Q, + Bg*Qy = R (3.22)

where
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Q = 1A

[ ao

Q = [4g,

Aal Aa2]

Agy Mg,

convenient matrix form:

where

A, R+B

A,R+B,Q=V

v

I
—_—
04

B

v2

T

T

For several ground stations

is the second design matrix, and

is the solution vector for the 2% clock parameters.

(3.13) a differential range can be expressed as

Substituting eqn. (3.28) into eqn. (3.2) yields

where

with

and

Q=14 1

Ap=p_

+clAy, + Ay (T, = Ty ) + A (T, - T

> > -
e *R - e
a a

B = [b
g = [Pyq
bll = c
b£2 = c[Tz
blS = C[Tl
Q = 1A
Ql =1 20

> T
81

o

By = c[AT, = AT ]

>
.R =Ap_

31

eqn.

Ap - c[ABo + ABl(TB - TBo) + ABZ(TB -

(3.23)

(3.24)

(3.22) may be written in a more

(3.25)

(3.26)

(3.27)

Similarly, using eqn.

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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Recalling eqn. (3.4) and after some simple manipulations, eqn. (3.29) can
be simplified to
A\R+B, Q=1ax (3.35)

where the second design matrix is defined as
§A= [—§l: 22] (3.36)
and A* is a vector of reduced misclosures.
For range differences we end up with an expanded observation equation

for point Pa:

Sl = v 4 AL ot (7)) - T (1Y) (3.37)
o [} o al o a

2,3y _ iy - iyy _ w21
+ A, (T () = 2T (T (t7) = T (t7)) = T (t7))
where V* is the misclosure reduced for satellite time correction. For
several ground stations, we have again

Ay R+3B,Q=19% (3.38)

where EV is a two-row matrix of coefficients
T ( j) -T( 1 T2( j) - 2T (T 1 - T ( 1 - Tz( i 3.39
c[T (7 (T 1 clT (x a0 (T (T LT ) (T ] (3.39)

and Q has two columns of Aa and Aa2 for « = 1,2,.... We again note that

1

constant time shift Aao cannot be determined for range differences alone.



CHAPTER 4

ESTIMATION OF ORBITAL PARAMETERS

4.1 General Considerations

It is clear that every observation of a satellite is a function of
the satellite's position at that time. This functional relationship is
given through orbital parameters which describe the motion of the satellite
around the earth in a unique way. However, the number and choice of such
parameters are by no means unique.

The orbit of every satellite is a particular solution of a system of

second-order differential equations:

= %(t; r, r, p]_, p29 ceey Pn) (4.1)

where

= ¥(t) is the position of the satellite in an inertial reference

Ry

frame,

L4 e

pry
t is the satellite's velocity, and r is the acceleration,

P;> i=1,2,...,n are parameters defining the forces acting on the

satellite.
The parameters 1 describe, for example, the gravity field, drag and
radiation pressure experienced by the satellite. Their choice and their
number mainly depend on the length of the orbital arcs considered, and as
such are not unique.

Of course, eqn. (4.1) does not define a satellite's orbit uniquely
either. We have to furnish additional conditions, and again we have
several possibilities. We only describe here the option used in VECA: it
calls for specified initial values of position and velocity (initial

conditions), specified themselves as functions of a set of six parameters,

33
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the so-called osculating orbital elements ki’ i=1,2,...,6 at reference
epoch to. This osculation epoch may be chosen arbitrarily in principle; in
VECA it is always associated with the middle of the observation interval.
The choice of the kind of elements used in VECA is discussed in section
4.2.

>
ro(kl, kz’

-
r(to) ceey k6)

(4.2)

b
ro(kl’ k

3
r(to) g3ttt k6)

If we specify the values of orbital elements ki’ and those of the
"dynamical™ parameters PysPysecesPpy> the orbit of the satellite wunder
consideration is then uniquely defined.

A completely general parameter estimation program should be able to
solve for the best estimates of values of any combination of the orbital
parameters

P15 Pys ves P kil’ kiZ’ ooy ki6’ i=1,2,...,nS (4.3)
where n_ is the number of satellites or, more specifically, the number of

satellite orbital arcs observed, and k,

ig? 2=1,2,...,6 are the six

osculating elements at epoch t = (see eqn. (4.2)) for satellite g. Such
complete generality is not provided for in VECA. Only relatively short
contiguous orbital arcs (typically shorter than 10 hours) will be processed
with this program. This means that we are allowed to model ¥ in eqn. (4.1)
using only very few parameters. Moreover we are allowed to assume that
these parameters (for example, low order potential coefficients, lunar and
solar gravity) are known a priorily. Therefore, in VECA we are left only
with the necessity to determine or update the set of orbital elements kil'

Often, this way of processing data is referred to as the semi-dynamical

approach.
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Actually even this set may contain more free parameters than
required. If the observations originate from a relatively small area on
the earth's surface (within a diameter of, say, less than 100 km) and if
the number of simultaneously operating receivers is small (say, 2 or 3) it
probably will not make sense to solve for all these elements. Often we
will be able to estimate only one element (responsible for a possible
along-track error) per satellite with any degree of certainty.

For these reasons it is possible in VECA to define the subset of
elements to he estimated for each satellite. Moreover an option exists to
introduce a priori information concerning these parameters by specifying an
input variance-covariance matrix.

These options make VECA an ideal instrument for answering, by
simulations, questions of the following kind: What orbital accuracy is
needed when a certain positional accuracy is needed? How do these
requirements change with the number of receivers and their separations?
How do these results change if we assume the positions of a subset of

receivers to be known?

4.2 Coordinate Systems and Satellite Position at Osculation Epoch

The apparent place coordinate system defined by the true equator and
equinox corresponding to the middle of the observation epoch, to, is chosen
as the reference frame for the orbital elements.

Osculating Keplerian elements at time to are used, where (see Figure

4.1)

~
]

1 a, semimajor axis of the orbit

=~
]

e, eccentricity

= i, inclination of orbital plane with respect to equatorial plane

w
I
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k4 = Q, right ascension of ascending node
k5 = w, argument of perigee
k6 = To’ time of perigee passage.

> >
If r*(to) and r(to) are the position vectors of the satellite at osculation
epoch expressed in the conventional terrestrial and apparent place

coordinate systems, respectively, we have

> T >
TR(E ) = X (t ) o) r(t ) (4.4)
where
1 0 X
T
§ (to) = o ]_ —y (405)
=X y 1

and x,y are the displacements of the instantaneous rotation pole with

respect to the CIO at to where

* ine*
cosh (to) sing (to) 0
a(t) = -sino*(t ) coso*(t ) 0 (4.6)
0 0 1

and 6% = Greenwich Apparent Sidereal Time at tys where

r cos(f)
T(t,) = Ry(=0)Ry (~1)Ry(-w) r sin(f) (4.7)
0
and
r = a(l—ez)/(1+ecos £) , (4.8)
£ = 2arctan[(}’+:)1/2 tan(5)] (4.9)

and the Kepler equation
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E = (5%)1/2 (tO - To) + e sin E s (4.10)

gives E, the eccentric anomaly. £ is the true anomaly at time to'

4.3 Transformation Equations

It was shown in Chapter 2 that the Jacobian matrix of transformation
from the system of Keplerian elements into the conventional terrestrial
system is needed to solve our problem. To derive the Jacobian let us first
define the following functions:

. >

zi(t) = EEi’ i=1,2,...,6 , (4.11)
really the elements of the Jacobian matrix of transformation from Keplerian
elements into the apparent place system. It is easy to define implicitly
these functions by taking the total derivatives of eqns. (4.1) and (4.2)
with respect to these parameters. The result (together with the

corresponding initial conditions) 1is usually called the system of

variational equations for the orbital elements

Ei = A Ei + A Ei , (4.12)

N 31.‘0
Zi(to) B aki
(4.13)
L) a:f
> [o]
zi(to) = SE; .

where the matrices éb and él are defined by their elements in the following
way:

af; of
— ;-él,ik =-—3— , 1=1,2,3; k=1,2,3 . (4.14)

Ty
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Every orbit determination is actually an orbit improvement process,
which means that we always have approximate orbits at our disposal. In
practice we evaluate the partial derivatives for these known orbits, which
means that we may assume the matrices A  and A; in eqn. (4.12) to be known.

Equation (4.12) is a system of second-order differential equations
for each of the elements ki. As opposed to the original system of
equations (4.1), the variational system of eqn. (4.12) is linear and
homogeneous. These properties may be used to produce very accurate and
very powerful numerical solution algorithms (see Beutler [1982]).

However, the partials of eqn. (4.11) are calculated approximately in
VECA since only short arcs are being considered here. It should be pointed
out that the benefit stemming from the approximations given below is not a
saving of computing time, but a simpler program structure.

It is well known that eqn. (4.1) has an analytical solution if we

approximate t by

>
f=-oM % . (4.15)

2]

This analytical solution is given by eqns. (4.4) to (4.10) where these
expressions may actually be used for any time t and not only for t = t
(the time for which eqns. (4.4) to (4.10) are explicitly written). In
VECA, the partials defined in eqn. (4.11) are approximated by taking the
derivatives of eqn. (4.7) with respect to the elements (and not by solving
the initial value problems defined by eqns. (4.12) and (4.13)).

The derivatives of the satellite position vector ;*(t) in the

conventional terrestrial system (see eqn. (4.4)) with respect to the

elements ki are given as follows:
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We then have

= 0% — Q

=71 ¢ (cos f, sin f)
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cosn*cosy—-sing*cosisinyg, —cosg*siny—sing*cosicosy

sing*cosytcosp*cosising, —sing*sinytcosg*cosicosy

sinisinuw,

sinicosw

sinQ*sinisinw , sin@*sinicosw

-cosQ*sinisinw , —cosQ*sinicosw

cosising , cosicosy

-sinQ*cosy—cosQ*cosising
cosQ*cosw—sinQ*cosisinuw

0

~cosQ*siny~sinQ*cosicosy

-sinQ*sinwtcosQ*cosicosy

sinicosy
_dE _ 3 6M1/2 1
" da 2 ( 3) r (t
a
= g§-= — sin E
dE GM\1/2 a

b

sing*siny-cosg*cosicosw
—cosQ*sinw—-sinQ*cosicosw

0

-cosQ*coswtsinQ*cosising

-sinQ*cosw—cosQ*cosising

- sinisiny

T )

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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—-asinE E
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da X Eo\ a r+ +a(l—% ¥/ cosE Ea (
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= XM
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o
The proper working of the procedure outlined here has been tested in
VECA using elliptical orbits. These tests have been successful,
demonstrating that the implementation is correct. It may be desirable to
replace the orbital modelling presently used in VECA (relying basically on
the GPS messages) by a more accurate procedure, based on numerical

integration.



CHAPTER 5

IMPLEMENTATION OF MATHEMATICAL MODELS

In this chapter we outline the software that has been written to
implement the models described in earlier chapters. Since we have
attempted to make the software self-documenting, here we take a
block-diagram approach.

The software has been implemented on both the UNB IBM 3081 mainframe
computer, and on the UNB Surveying Engineering HP-1000/F minicomputer. The
latter implementation was used for the simulations reported in Chapter 7.
It is the version that will be under continued active development, and
which is compatible with hardware elsewhere than at UNB. Hence we describe
only the HP implementation here. The two implementations do not differ
significantly, however, particularly in terms of the mathematical models.
The main differences are the interactive capabilities of the HP
implementation, which do not exist for the IBM implementation.

The functions of the four main programs involved are:

GPS Interactively set up and schedule n runs of FOROB, VECA, and VEPLT.

FOROB Select the desired subset of the data on the input observation
magnetic tape, for processing by VECA.

VECA Vector GPS adjustment. The mathematical models described earlier
are all implemented in VECA. This is the only one of these four
programs also implemented on the IBM version.

VEPLT Plot the results of one VECA run, using the Autoplot feature of the
HP2648A terminal.

Normally GPS will be the only program run by the operator. However, it is

possible to "manually” run the other program, as long as the appropriate

42
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input files have been set up.

These programs use many disk data files. The # character is used as
the first character of a data file. There are four input data files which
must be available before any of these progams can be run. They can be set
up using the HP Editor, or for some external data source. They are:

#DEFLT Default values for all interactive options for program GPS.
#STATN A priori station coordinates and covariance matrix.

#EPHEM Satellite ephemerides for all satellites to be used.
Observation tape.

If GPS sets up and schedules n runs of FOROB, VECA, and VEPLT, then

4n+l temporary data files will be set up and used. These are:

#FORii  Run instructions for the ith run of FOROB

#VECii  Run instructions for the ith run of VECA

#PLTii  Run instructions for the ith run of VEPLT

#RESii  Results of the ith run of VECA

#VEOBS Input data selected by FOROB for each run of VECA. Due to the
size of this file, it is overwritten for each run.

Figure 5.1 shows the overall interaction between the four programs
and all of these files. Figures 5.2, 5.3, 5.4, and 5.5 are block diagrams
of GPS, FOROB, VEPLT, and VECA, respectively. Tables 5.1, 5.2, 5.3, and
5.4 are LOADR maps of these four progams, with short descriptions of each

subroutine used.
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JoRO
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TAPE
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#PLTii
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GPSKD n RUNS
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#FORii
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—1 verT |5
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Fig. 5.1 Overall interaction between the program and the files
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GPS
I
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FORM LIST SCHED
DEFLT  RVDAT LIST
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GTCHD GETST GETSA GETOE GETCE
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GETOT GETNO GETVS GETUP GETTY
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GETCO
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GTBUF OFFST VALUE  CURV

|

PAR 20

Fig. 5.2 Block diagram of GPS
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FOROB

RMTAP

Fig. 5.3 Block diagram of FOROB

VEPLT

‘ |

AUTOP HARDP

Fig. 5.4 Block diagram of VEPLT



VECA

|
|
oNSO T LN

BASEL
CKCOR
COMRM
DERIV
LSA

0SCIC
READE
SATDR
TRPCR
VMEAN

CLKAN

NCLOK
NEPHM

14
15

19
21

DASET
ZEROE

DATUM
REDXR
GTEPH
ZERO

IZERO
SRTUV
DSGAR
EXTAR
PRLSA
BATCH
EXTPX
COMPR
SEQSL
REDOB
RPART
UPDAT
COMSY

CARTL
ANML2

VMEAN,
ROTRF

SPINE

ANMLY,
NCLOK,
VECSM,
DERIV,
SCMUL,

ANMLZ
DASET
DASET
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DECDG, PLXYZ, ZERO, ERR3D, DASTE, MOUTE, SPINE, COMRM
READE, DASET

ZCONT, DASET, CKCOR, OSCIC, UNITV, VMEAN
TRPCR, DOTVC

ROWSE, SATDR, DOTVC
LSA, MATE2, MATE3

SPINE, MATE3
LCSTA, RION, CION

RANGE, SCMUL, UNITV, DOTVC, ROWSE, SPINE, XYZPL
XYZPL, ROTRF, PROP, BASEL

DASET, MOUTD

ROTRF, DASET, SCMUL, RANGE, SCDOT, VECSM
DASET, NEPHM, CLKAN

ROWSE

TROP

VECSM

FIGURE 5.5

Block Diagram of VECA.



GPS2
‘FORM
RUDAT
DEFLT
LIST
GTCMD
GETST
GETSA
GETOE
GETCE
GETOT
GETNO
GETVS
GETUP
GETTY
GETCO
GETAU
CURV
OFFST
VALUE
GTRUF
PAR20
SCHED

12042

26756
30140

30602

31203
32203
33551
34102
34436
34653
35054
35610
36006
36207
36660
37347
40752
411356
41475
41670
42017
42222
43641

26755
30137
30601
31202
32202
33550
34101
34435
34652
35053
35607
36005
36206
36657
37346
40751
41188
41474
41667
42016
42221
435640
44154

VECA I
INTERA
READ/E

NTERACTIVE INPUT PROGRAM WITH VEPLT
CTIVE INPUT FOR ONE FOROE / VECA RUN
DIT AVUDAT1 FILE (STN COORDS/EPHEM)

SET INPUT PARAMETERS TO DEFAULT VALUES

LIST I
GET IN
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

NPUT PARAMETER VALUES

TERACTIVE DATA ENTRY COMMAND

STATION NUMBERS

SATELLITE NUMRERS

NUMBER OF ORRIT PARAMETERS TO EE EST.
STATION NUMEERS

ORSERVATION TIME SPAN AND INTERVAL
NUMRER OF ORSERVATIONS PER RATCH

(840128,
(840128,
(840128,
(840128,
(84018,
(840128,
(840128,
(840128,
(840128,
(840128,
(840128,
(B340128.

NUMBER OF SATELLITES ACTUALLY VISIEBLE(840128,

UPDATE SWITCH AND LLIMITS
OBSERVATION TYPES

STATION COORDINATE OFFS8ET AND SIGMAS

ENTER
COMPUT
ADD RA
FUNCTI
GET A
PARSE
SCHEDU

Table 5.1

AUTOPLOT OUTPUT FILE OPTION

E LAT/LON RADIAN TO METRE CONVERSION
DIANS TO ANGLE IN D/M/S

ON TO RETURN D.P, VALUE FROM IPEUF
PARSED INPUT PARAMETER STRING

INPUT STRING OF UP TO 20 PARAMS

LE PROGRAM (WITH/WITHOUT WAIT/QUEUE)

LOADR of GPS

(840128,
(840128,
(840128,
(840129,
(840128,
(840128,
(840128
(840128,
(840128,
(840128,

16162
16169
1616)
1616
16160
16162
1616
16162
1616)
1616
1616)
1616
1616
16169
1616
1616)
1616
1616
1616)

1616

1616
1616
1616

8%



FOROR
RHTAP

VEPLT
AUTOP
HARDP

30042 74144 SELECT SUBSET OF OBS DATA FOR VECA INPUT
74145 74215 READ AND UNELOCK ASCII DATA FROM TAPE

Table 5.2 LOADR of FOROB

30042 31533 AUTOPLOT VECA OUTPUT
31534 32033 SET UP AUTOPLOT FUNCTIONS AUTOMATICALLY
32034 32135 COPY HPZ648A GRAPHICS MEMORY TO PLOTTER

Table 5.3 LOADR of VEPLT

{HEADLRD 1elsS)
840130, 161D

<CBEA0130. 1609
(BA01THE0, 1609
{BA0130 ., 1609

(3%
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COM 12042 22054
VECA1 22055 30720
DASET 30721 30755 VSUB - COPY DELE PREC VECTOR (VIS, NO EMA) (840218.0!
ZEROE 30756 31021 VSUR - ZERO REALX8 MATRIX IN EMA (VIS) (B40217.1:

RMPAR 31022 31066 22068-1X025 REV.2101 800919
ERRD 31067 31074 24998-1X250 REV.2140 8103506
CEXIT 31075 31150 24998-1X320 REV.2101 800731
FFRW 31151 31274 24998-1X297 REV., 2226 820413 N
JFMER 31275 31346 24998-1X352 REV.2226 820412
CEIO. 31347 31421 24998-1X329 REV.2226 820503
JFMCN 31422 31503 24998-1X345 REV. 2226 820107
JIOER S 31504 31651 24998-1X321 REV. 2140 810506
JFMFP 31652 33115 24998-1X346 REV . 2226 82042
JFMO? 33116 33177 24998-1X351 REV.2140 810415
LITI0. 33200 33353 24998-1X343 REV.2140 810422
JUFMP 33354 33371 24998-1X296 REV . 2226 820426
JFMCV 33372 344631 24998-1X333 REV.2303 830103
JHMUT 34632 35764 24998-1X349 REV.2140 810416
JFMGE 33765 36241 24998-1X353 REV,.2226 820420
JFMIOD 36242 36464 24998-1X348 REV.2226 820420
JFPAU 36465 36570 24998-1X324 REV.2101 800731
PAU.E 36571 36571 24998-1X254 REV.2001 750701
LI00P 36572 36600 24998-1X300 REV.2101 800805
.I0CM 36601 36644 24998-1X327 REV.2101 801007
JFFOP 36645 40064 24998-1X301 REV.2226 820414 N
.I0CL 40065 40166 24998-1X305 REV.2101 800731
FOP? 40167 40244 24998-1X326 REV.2101 800729
FFCL 40245 40605 24998-1X306 REV.2226 820414 N
LFIOI 40606 40676 24998-1X322 REV.2226 820629
+SQART 40677 40770 24998-1X128 REV.2226 820414
JYINT 40771 41016 24998-1X133 REV. 2001 780424
JTENT 41017 41132 24998-1X160 REV.2001 780424
DUWMY 41133 41160 12824-1X043 REV.2026 800506
LOGLU 41161 41236 92067-1X297 REV.2013 790228
REIO 41237 41363 92067-1X275 REV.2140 810805
OPEN 41364 41744 92067-16125 REV.2101 810615
CLOSE 41745 42161 92067-16125 REV.2140 810616
NAMR 42162 42461 92068-1X021 REV.2226 820225
$SMVE 42462 42554 92067-1X483 REV.2013 800129
LURQ 42555 43167 92067-1X270 REV.2013 791024
POST 43170 43216 92067-16125 REV,1903 740801
OVRD. 43217 43217 92067-16125 REV.1903 7805264
RUNDF 43220 43304 92067-16125 REV.1903 780724
CREAT 43305 43674 9206716125 REV.2226 820420

Table 5.4 LOADR of VECA



LOCF

LUTRU
SESSN
R/7Ws$

P.PAS
IFTTY
PNAME
$ALRN
LIMEM
$0PEN
READF
RW$UR
RWND%
.OPN?
ERO.E
JFMIN
WCOM
NAM. .
COR.A
LWAS

VECAZ
DATUM

VECA3
REDXR
SPINE
ZERO

COMRM
ERR3D
DASTE
DECDG
MOUTE
PLXYZ
UMEAN
SCMUL
VECSM

. DMAP
.FI10.

43675
44176
44305
44323
44462
44511

44577
44650
44766
45030
452095
46520
47072
47225
47251
47252
47533
50109
sS0202
50223

50224 ¢

50243

50224
50255
53405
54275
54334
54657
60352
60437
60560
60731
61176
61257
61312

61373
61564

Table

P2067-16125
92067-1X308
92067~-16125
92067-16125
92067-16125
22067-1X295
?2068-1X035
22067-1X271
92067-1X477
92067-16125
P2067-16125
92067-1612%
9206716125
24998-1X325
24998-1X249
24998-1X344
12824-1X045
22067-16125
22067-1X277
?2067-1X592

VSUE - INITIALIZE DATUM PARAMETERS

VSUE - READ

VSUB —~ CARTESIAN COV TO GEODETIC AND VWV
VSUR - COPY DERLE PREC VECTOR
VSUE - DEG/MIN/SEC TO DEGREES
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REV

REV.
REV.
REV.
REV.
REV.
REV.
REV,
REV . &
REV.
REV,
REV.
REV,
REV.
REV.
REV,
2026
REV.,
2013
REV.,

REV

REV

1903
2013
1903
2101
1903
2013
2101
2013

2226

1903

2226

2101
2226
2101
2001

2226

19203

2226

7811140
790223
780413
801013
740801
790118
800919
770715
820326
790103
820114
800303
820114
800803
750701
820420
800506
740801

770621

820326

STATION FILE
VSUR - MATRIX INVERSION IN EMA
VSUER - ZERO REALx8 MATRIX (VIS)
VSUE —~ MEAN ALL STN VECTOR PAIRS

(VIS,

VSUE - PRINT OUT MATRIX FROM EMA

VSUR - ELLIPSOIDAL TO CARTESIAN COORDS
VSUR — COMPUTE MEAN OF TWO VECTORS

VSUE - MULTIPLY VECTOR EY SCALAR

VUSUR - VECTOR SUM OR DIFFERENCE (VIS)

92068-1X046 REV,.2101 800919
24998-1X330 REV.2140 810414

5.4 Continued

(840218.

(840310,
(840217.
<840217.
(840218,
(840311,
EMA 0OUT)I<840218.
(840218.
(840218,
(840310 .
(840217,
(840217,
(840217,

0045)>

15465
11262
1126
00435
1019
0044°>
0043
00519
1545
1126
11262
11265
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JEMLD 61625 62720 24998-1X347 REV. 2226 820423
88T 62721 63036 24998-1X336 REV.2140 810812
LJTTOT 63037 63142 24998-1X132 REV. 2013 791019
LL0G 63143 63274 24998-1X158 REV.2001 790417
EXP 63275 63371 24998-1X156 REV.2001 780921
T8CS 63372 63562 24998-1X131 REV. 2001 790417
.ARS 63563 63604 24998-1X030 REV.2001 781016
ZEXTH 63605 63715 24998-1X175 REV.2001 790417
A.0G0 63716 63741 24998-1X125 REV ., 2001 780424
UDRP 63742 64013 12824-1X047 REV.2026 8003506
DWDOT 44014 64020 12824-1X042 REV, 2026 800506
LAZRO 64021 64024 24998-1X183 REV.2001 780424

VECA4 50224 50241

GTEPH 50242 50765 VSUR — READ EPHEMERIS AND CORRECT CLOCK (840218.0048>
READE 50766 51403 VSUR - READ EPHEMERIS DISC FILE {(840217.2219>
CLKAN 51404 51724 VSUR - CORRECT CLOCK COEFFICIENTS (840218.0042>

NCLOK 51725 52116 VSUR - EXTRACT CLOCK INFO FROM EPHEMERIDES <(840218.0051)
NEPHM 52117 52421 VSUR -~ EXTRACT EPHEM INFO FROM INPUT RECORD(8B40218.00051)
ANMLZ2 52422 53115 VSUR - ECCTY/MEAN ANOM TO ECC/TRUE ANOM  <840218.0040>

LTTOT 53116 53221 24998-1X132 REV. 2013 791019
LOG 53222 53353 24998-1X1898 REV. 2001 790417
EXP 53354 53450 24998-1X156 REV,.2001 780921
LTSCE 53451 53641 24998-1X131 REV. 2001 790417
JATARZ 53642 53756 24998-1X118 REV.2101 800421
.ABRS 537597 S54000 24998-1X030 REV,.2001 781016
JATAN . 54001 54201 24998-1X154 REV.2001 790417
ZJEXTH  $4202 $4312 24998-1X175 REV, 2001 790417
.MOD 54313 54353 24998-1X058 REV.2001 781016
VAZRO 54354 54357 24998-1X183 REV,.2001 780424

VECAS 350224 30761

ZERO 50762 51020 VSUE - ZERD REAL*8 MATRIX (VIS) (840217 .1126>
IZERO 351021 51100 VSUR -~ ZERO INTEGER MATRIX (840217 .1126>

VECAsL 50224 3
9

0261
SRTUV 50262 52520 VSUER - SORT OUT UNIT VECTORS (840217.1126>
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UNITV
UMEAN
ZCONT
CKCOR
0sCIC
RANGE
ROTRF
scpoT
SCMUL
VECSHM
ANMLY
ANML.2

. DMAP
. T8CS
ATA2
. ABS

ATAN
. MOD

PDMOD
. VDRP
+4ZRO

VECA?
DSGAR
TRPCR
TRPRG
DERIV
boTVC
ROTRF

. DMAP
. TSCS
JATAR
. ARS

. ATAN
.AZRO

VECASB
EXTAR

54264
55454
55600
56627
60714
60747
61030
61610

62304
62475
62666
63003
63025
63226
63267
63315
63367

50224
50251
50579
51675
52233
53542
53575

w4624
55015
95206
55323
55345
55546

RS e
[
o>

A
oo

bh2641
a27e2

53144

) 54263

55453
959%77
56626
60713
60746
61027
61607
62303

62474
62665
63002
63024
63225
63266
63314
63366
63372

30250
50574
51674
52232
53541
53574
54623

55014
552035
55322
55344

55545

55551

i

r)3 .
5

4

[ ]

0
0

w

VSUER
VSUER
VSUR
VSUE
VSUR
VSUR
VSUR
VUSUR
VSUR
VSUR
VSUER
VSUR

92068-1X046
24998-1X131
24998-1X118
24998-1X030
24998-1X154
24998-1X058
92832~-16700
12824-1X047
24998-1X183

VSUE
VSUE
VSUER
VSUER
VUSUE
VSUE

?2068-1X046
24998-1X131
24998-1X118
24998-1X030
24998-1X154
24998-1X183

53

SAT/USER COORDS TO UNIT VECTOR (VIS)Y<B840217.1126

COMPUTE MEAN OF TWO VECTORS

COMPUTE Z-COUNT

CORRECT CLOCK FROM EPHEMERIS VALUES
SAT EARTH FIXED POSN/VEL FROM EPHEM
STATION TO SATELLITE RANGE
ROTATION/REFLECTION PRODUCT MATRIX
SAT VEL (AVG TERR) FROM EPHEM
MULTIPLY VECTOR RBY SCALAR

VECTOR SUM OR DIFFERENCE (VIS)
EPHEMERIDES TO MEAN/ECC/TRUE ANOM

GIVEN TIME,

ECCTY/MEAN ANOM TO

DIFFERENTIAL RANGE DESIGN MATRIX
TROPO CORRECTION FOR CARRIER PHASE
TROPO CORRECTION FOR RANGES

REV.2101
REV.2001
REV.21101
REV.2001
REV.2001
REV.2001
REV.2101
REV.2026
REV.2001

800919
790417
8004:21
781016
790417
781016
801010
800506
780424

ECC/TRUE ANOH

<840217.1126
(840217, 1126
(840218.0042
(B40217.2219
<840217.,2219
(840217.1126
<840217.1126
(840217 .1126
(840217 .1126
{B40216.0039
(840218.0040

{840218.0047

{840310.1550
(840310, 1551

STN/SAT RNG + DERIV WRT LAT/LON/ELEV(840218.0046

SCALAR PROD OF TWO POSN VEC (VIS)
ROTATION/REFLECTION PRODUCT MATRIX

REV.2101
REV.2001
REV.Z2101
REV.2001
REV.2001
REV.2001

800919
790417
800421
781016
790417
780424

{840218.0046
(840217.1126

VSUE - EXTEND A MATRIX FOR STN CLOCK PARAMS<840218,0048
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LTTOT 50456 30511 24998-1X258 REV. 2101 800303
TTOI 50512 50630 24998-1X070 REV., 2013 791019
CAZRO 50631 50634 24998-1X183 REV.2001 780424

VECA? 50224 50270

PRLSA 350271 516352 VSUE - PREPARE DESIGN MAT/MISCL VEC FOR LSAK840217.2219>
ROWSE 51693 51754 VSUE -~ PLACE VECTOR INTO MATRIX ROW (EMA) <840217.1126)
SATDR H1755 52510 VSUE -~ PREPARE DESIGN MATRIX FOR DOPPLER (840217.1126>
VECSM 52511 52571 VSUR - VECTOR SUM OR DIFFERENCE (VIS) <840217.1126)
DOTVC 52572 52624 VSUR - SCALAR PROD OF TWO POSN VEC (VIS) {840218.0046>

.DMAP 52625 53015 92068-1X046 REV.2101 800919
LUDRP 53016 53067 12824-1X047 REV.2026 800506

VEC10 50224 50273
BATCH 50274 50723 VSUER - SOLN/COVAR FROM FIRST ORSERV BATCH <B40218.0411)
LSA 50724 53564 VSUB - LEAST SQUARES APPROXIMATION SOLUTION(840218.0050>

MATEZ2 53565 54234 VSUR - MATMY FROM EMA TO NORMAL (840218,0030>
MATE3 §4235 54736 VSUB - MATMY FROM EMA TO EMA (840218.0050>
SPINE 54737 55626 VSURB - MATRIX INVERSION IN EMA {840217.1126>

DMAP 55627 56017 92068-1X046 REV.2101 800919
LTTOT 56020 56123 24998-1X132 REV.2013 791019
106G 56124 56255 24998-1X158 REV.2001 790417
EXP 56256 56352 24998-1X156 REV.2001 780921
.ARS 56353 56374 24998-1X030 REV.2001 781016
ZEXTH 56375 56505 24998-1X175 REV.2001 790417
LOGO 56506 56531 24998-1X125 REV.2001 780424
DWDOT 56532 56536 12824-1X042 REV.2026 800506
VAZRO 56537 56542 24998-1X183 REV.2001 780424

VEC11 50224 30247
EXTPX 50250 51053 VSUR -~ EXTEND PX FOR ADDED OREBIT PARAMS <840218.0048>

.DMAP 51054 51244 92068-1X046 REV,2101 800919

VEC12 50224 50257
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COMPR

. DMAP

VEC13
SEQSL
SPINE
MATE3

. DMAP
LTTOT
LOG
cEXP
. ARS
/EXTH
.LOGO
DWADD
. VDRP
DWDOT
. 4ZRO

VEC14
EXTPX

. DMAP

VEC1S
COMPR

. DMAP

VEC16
REDOR
RION
CION
LCSTA

$0260

54006

50224
03135
52546

53436

54140
54331
54435
54567
54664
54706
55017
55043
55050
55122
53127

oo
ro ro
o
- b

o

wn
—
o
(&)}
a

50224 !

50262

54010

50224
50241
52455
52546

52647

G0314
52545
53435
54137

54330
54434
54566
54663
54705
05016
55042
85047
55121
55126
535132

50240
52454
525495
52646
53040

VUSUE -~ COMPARE ESTIMATED AND APRIORI COORDS(8B40218.

?2068-1X046

REV. 2101

800919

VUSUE - S0L.N/COVAR SEQUENTIAL UPDATE (840217

VSUE - MATRIX INVERSIUON IN EMA (840217,
VSUER - MATMY FROM EMA TO EMA (840218,

92068-1X046
24998-1X132
24998-1X158
24998-1X156
24998-1X030
24998-1X175
24998-1X125
12824-1X024
12824-1X047
12824-1X042
24998--1X183

REV.2101
REV.2013
REV.2001
REV.2001
REV ., 2001
REV.2001
REV ., 2001
REV.2026
REV. 2026
REV.2026
REV.2001

VUSUE - EXTEND PX FOR

?2068-1X046

VUSUR -~ COMPARE ESTIMATED AND APRIORI COORDSC840218,

REV.2101

800919
791019
790417
780921

781016
790417
780414
800S06
800506
800506
780424

ADDED OREIT PARAMS (840218,

800919

92068-1X046 REV. 2101 600919

VSUR - READ OBSERVATION FILE (840217,
VSUE ~ PSEUDORANGE IONOSPHERIC CORRECTION

VSUE - CARRIER PHAGSE

LTONOSPHERIC CORRECTIONC840218,
VSUE - ARRAY VALUES FROM STN OR SAT INDEX (840218,
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0043

L1126

11265
0050

0048>

Gn4a3>

22199
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00495

SS



VEC17
RPART

VEC1S
UPDAT
XYZPL
DOTVC
RANGE
ROWSE
SCMUL
SP INE
UNITV

. DMAP
LJTTOT
.LOG

EXP

. TSCS
CATAZ
.ARS

ATAN
/EXTH
L LOGO
. VDRP
DWDOT
.4ZRO

VEC19
UPDAT
XYZPL.
poTVvC
RANGE
ROWSE
SCMUL
SPINE
UNITV

oo
fo o
¢ ra
N D

[

4]
o
&5
o
P

50224
50305
53743
54417
54452
54576
54700
54733

55623

55744
56135
56241
56373
56470
56661
56776
57020
57221
57332
57356
57430
57435

50224
50305
53743
54417
54452
543576
54700
54733

55623

g
o h
oo

[, B &5
fo o

n
rg
~
e
e

G50304
53742
54416
54451
545795
G4677
54732
55622

58743

56134
56240
56372
56467
56660
56775
57017
57220
57331
57355
57427
%7434
57440

50304
53742
54416
54451
54575
54677
54732
55622

55743

VSUE - DERIV OF POSN VECTOR WRT ORE ELEM

24998-1X131 REV.Z2001 790417

VUSUR
VSUE
VSUE
VSUE
VSUE
VSUER
VSUER
VSUE

- UPDATE NORMAL EQUATIONS
- CARTESIAN TO ELLIPSOIDAL COORDS
- SCALAR PROD OF TWO POSN VEC (VIH)

STATION TO SATELLITE RANGE

- PLACE VECTOR INTO MATRIX ROW C(EMA)

MULTIPLY VECTOR RY SCALAR

- MATRIX INVERSION IN EMA
- SAT/USER COORDS TO UNIT VECTOR (VISY(BA0217.11267

?2068-1X046
24998-1X132
24998-1X158
24998-1X156
24998-1X131
24998-1X118
24998-1X030
24998-1X154
24998-1X17%5
24998-1X125
12824~1X047
12824-1X042
24998-1X183

VSUE - UPDATE NORMAL EQUATIONS

REV.2101 800919
REV.2013 791019
REV.2001 790417
REV.2001 780921
REV.,2001 790417
REV.2101 800421
REV.2001 781016
REV.2001 790417
REV.2001 790417
REV.2001 780424
REV., 2026 800506
REV.2026 800506
REV,.2001 780424

VSUE
VSUE
VSUE
VSUE
VSUE
VSUER
VSUE

- CARTESIAN TO ELLIPSOIDAL COORDS

- SCALAR PROD OF TWO POSN VEC (VIS)
- STATION TO SATELLITE RANGE

- PLACE VECTOR INTO MATRIX ROW (EMA)
- MUL.TIPLY VECTOR BY SCALAR

MATRIX INVERSION IN EMA
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(840217, 1126

(840217 .1126)
(840217 .1126>
(B840218.0046>
(840217 .2219>
(84021711265
(840217 11267
<B840E17 . 1126

(840217 . 1126
(840217 .1126>
(840218.,00467
(840217 .2219>
(840217.1126>
(840217.1126>
(840217 . 11267

- SAT/USER COORDS TO UNIT VECTOR (VIS)Y<K8B40217.116)
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. DMAP
LTTOT
.LOG

LEXP

. TSCS
JATA2
+AEBS

JATAN
/EXTH
LOGO
. VDRP
DWDOT
.4ZRO

VEC20
COMSY
PROP

ROTRF
XYZPL
BASEL
CARTL

. DMAP
. TSCS
JATA2
.ARS

.DASN
ATAN
47RO

VEC21
CoMSsY
PROP

ROTRF
XYZPL
RASEL
CARTL

. DMAP
. TSCS

55744
56135
56241
56373
56470
56661
56776
57020
S7221
57332
97356
57430
57435

H0224
50254
55634
56125
57154
G57630
60017

60442
60633
61024
61141
61163
61325
61526

50224
50254
55634
56125
57154
57630
60017

60442
60633

56134
56240
56372
56467
56660
56775
57017
57220
57331
57355
57427
57434
57440

50253
55633
56124
57153
57627
60016
60441

60632
61023
61140
61162
61324

61525

61531

50253
55633
56124
57153
57627
60016
60441

60632
61023

22068-1X046
24998-1X132
24998-1X158
24998-1X156
24998-1X131
24998-1X118
24998-1X030
24998-1X154
24998-1X175
24998-1X125
12824-1X047
12824-1X042
24998-1X183

REV.2101 800919
REV.2013 791019
REV. 2001 790417
REV.2001 780921
REV.,2001 790417
REV.2101 800421
REV . 2001 781016
REV.2001 790417
REV.2001 790417
REV.2001 780424
REV,2026 800306
REV.2026 8003506
REV.2001 780424

VSUR - COMPARE ADJUSTED - APRIORI COORDS (840218.0044)

VSUE - COVARIANCE PROPAGATION

(840217.2219>

VSUE - ROTATION/REFLECTION PRODUCT MATRIX <(840217.1186)

VSUE -~ CARTESIAN TO ELLIPSQIDAL

COORDS (840217 . 11265

VSUE - COMPARE TRUE/COMP BASELINE LEN/AZ/ELL(840218.0040)5

VSUR

!

?2068-1X046
24998-1X131
24998-1X118
24998-1X030
24998-1X383
24998-1X154
24998-1X183

VSUE

3
H

COMPARE

REV.2101 800919
REV.2001 790417
REV, 2101 800421
REV.2001 781016
REV.2101 800222
REV.2001 790417
REV.2001 780424

CONVERT CARTESIAN TO LOCAL BASELINE (840218.0411)5

ADJUSTED - APRIORI COORDS (840218.0044)
VSUE -~ COVARIANCE PROPAGATION

(840217.2219>

VSUE - ROTATION/REFLECTION PRODUCT MATRIX <(840217.11260

VSUE -~ CARTESIAN TO ELLIPSOIDAL

COORDS (840217 .1126>

VSUER ~ COMPARE TRUE/COMP RASELINE LEN/AZ/ELCB840218.,0040)
VSUR — CONVERT CARTESIAN T0 LOCAL BASELINE (840218.0411>

22068-1X046
24998-1X131

REV.2101 6800919
REV.2001 790417
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JATAZ2 61024 61140 24998-1X118 REV.2101 800421
. AES 61141 61162 24998-1X030 REV.2001 781016

.DASN 61163 61324 24998-1X383 REV.2101 800222
JATAN 61325 61525 24998-1X154 REV. 2001 790417

+4ZRO 61526 61531 24998-1X183 REV.2001 780424
23 PAGES RELOCATED 91 PAGES REQ’D 68 PAGES EMA 3 PAGES MBEG
LINKS:EP PROGRAM:LE LOAD: TE COMMON : NC

/LOADR:VECA1 READY AT 10:40 AM MON., 12 ™AR., 1984

/LOADR : $END

89
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PART B: PERFORMANCE ANALYSIS

CHAPTER 6

DENTIAL OF ACCURACY

It is the announced policy of the U.S. Department of Defense
[USDOD/DOT, 1983] that upon GPS being declared operational in the 1late
1980s, access to standard non-differential GPS will be of two types.
Precise Positioning Service (PPS) users will have access to the P-code and
to the full accuracy capability of GPS. Standard Positioning Service (SPS)
users will not have access to the P-code, but only to the C/A-code.
Further, the C/A-code will be artificially degraded to limit the accuracy
available to SPS users. The policy of imposing this degradation has been
called Denial of Accuracy (DOA) and Selective Availability (SA). Following
a policy change during 1983, the present policy is that this degradation
will be such that an SPS user would obtain the following instantaneous

navigational accuracies at the 95% confidence level (over time and space):

Horizontal Vertical
Predictability 100 m 160 m
Repeatability 100 m 160 m
Relative Accuracy 10 m 16 m

where predictability measures the uncertainty in the relationship between a
position and some well-defined coordinate system; repeatability measures
the uncertainty in the capability of returning to the same point; and
relative accuracy measures the uncertainty in position with respect to a
differential monitor.

These are the prospects for instantaneous non-differential GPS

navigation. What are the prospects for time-averaged differential geodetic
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GPS positioning? Rather than speculating about such institutional issues
as who will have access to PPS, let us consider the mechanism by which the
DOA degradation may be implemented, and its implications.

Little official information concerning DOA is available. However we
know the following:

(1) The production GPS system will broadcast the same navigation message
as is being broadcast at present. This message is changed only once
per hour [Payne, 1982]. PPS and SPS use the same message.

(2) Tests with simulated DOA data [Kalafus, 1983] indicate that the
characteristic period of the DOA degradation will 1likely be of the
order of tens of seconds.

DOA degradation must involve some mismatch between the actual
satellite status (position, clock, signal status, etc.), our knowledge of
the satellite status as represented by the satellite messate, and by our
measurements. The message is updated only hourly, and is common to both
PPS and SPS, so that DOA at a ten-second period cannot be obviously
implemented via message degradation.

The only way to implement a mismatch in position with a period of
tens of seconds would be to actually physically move the satellite around
in orbit. This is not a realistic possibility.

It would be possible to electronically dither the satellite reference

clock frequency or epoch so as to depart from the clock model contained

within the navigation message. However, this would affect both PPS and SPS
users, While it is possible that this kind of dither could be unscrambled
by all PPS receivers, but not by SPS receivers, this would involve
unnecessary complications. A frequency dither in particular would

introduce other complications (in refraction modelling, for example).
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The most likely mechanism for DOA is to introduce a dither only in
the C/A-code epochs, leaving the carrier, P-Code, and message unaffected.
This would impact only on SPS users, and would affect only their
pseudorange measurements.

Differential users, whether static or dynamic, will be unaffected by
DOA, only as long as both stations in a differential pair make simultaneous
measurements (at the same "phase" of the DOA dither).

If this line of reasoning is valid, then the effect of DOA on
differential C/A-code positioning will be nil. The effect of DOA on
differential P-code positioning will also be nil (provided access to the
P-code is available). However, it is more difficult to assess the possible
effects on code-independent differential positioning methods, such as the
Macrometer and SERIES techniques, since the methods for recovering
reconstructed carrier phase without knowledge of the codes are so far
proprietary secrets. However, if these methods involve assumptions about
the coherence between the carrier and codes, then DOA may cause same
problems, since the C/A-code will no longer be coherent (derived from the
same basic oscillator) with the carrier and P-code. However, the

P-code/carrier coherence would be preserved.
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(1

(2)

(3)

7.1

CHAPTER 7

SIMULATION RESULTS

Program VECA was used to estimate station positions from a simulated
set in an effort to obtain answers to the following questions:
How inaccurate can the a priori coordinates of the ground stations be,
before an adjustment fails to converge?

What 1is the best satellite-receiver geometry for differential GPS

positioning?

Is it practical or worthwhile to combine more than one kind of

differential GPS measurement type?

Simulation Procedure

The simulation procedure used is as described in Chapter 12 of

Davidson et al. [1983]:

(1)

(2)
(3)

(4)

(5)

(6)

"True" values were assigned to the ground and satellite coordinates
involved.

The "true"” coordinates were used to generate "errorless” observations.
The "errorless” observations were corrupted to account for clock and
atmospheric effects, and for measurement noise.

These simulated noisy observations were used as input to the
ad justment .

Either the "true" ground station coordinates, or values offset by
exactly one kilometre from them, were used as a priori coordinates in
the adjustment.

The output from each simulation run consisted of the vector

displacements between the adjusted ground station coordinates, and the
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a priori coordinates, together with the covariance matrix for these
vector displacements.

The ground stations used were stations 1, 3, 4, and 8 of the Point
Sapin network (Figure 7.l1). Only data on baselines 1-3, 1-4, and 1-8 were
used. A priori standard deviations assigned to the "true"” coordinate
values were always 100 metres. When the one-kilometre offset was applied
to the true values, an a priori standard deviation of one kilometre was
used. For station 1 (the "fixed" station), an a priori standard deviation
of one millimetre on all components was used.

The satellite constellation used was a hypothetical 18-satellite GPS
constellation. The simulated observation period was 1800 to 1900 UT on 12
November 1981, during which time six of these 18 GPS satellites were
visible from the Point Sapin network. Figure 7.2 shows a polar plot of the
azimuth and elevation of each satellite, for this observation period, as
seen from station 6 (the centre) of the Point Sapin network.

Observations were generated at six-second intervals, for each of five
data types: interferometric delays, differential carrier phase,
differential P-code and C/A-code pseudoranges, and differential integrated
Doppler. The simulated data was created by programs DIFGPS and FOROBS
[Davidson et al., 1983] and stored on file OBSERV44. Because of present
limitations of the hardware and operating system of the HP-1000/F computer,
the Doppler observations were not used in this analysis.

The station vector displacements (or "discrepancy vectors") resulting
from the adjustments are actually the adjusted minus a priori baseline
vectors. They can be interpreted as position displacements, however, since
we designed the simulations to hold fixed one end of all baselines involved

(station 1). Exceptions are runs 3 and 4, discussed below. These
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Figure 7.1

Point Sapin Network used for Simulations
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FIGURE 7.2

Polar Plots of Satellite Azimuth and Elevation
as seen from Point Sapin Network Station 6,
for the Period 18GC to 1920 UT, 12 November 1981,
for the Proposed 18-Satellite Constellation.
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discrepancy vectors, and their covariance matrices, were presented in three
coordinate systems: the geocentric Cartesian system (delta X, delta Y,
delta Z), the local topocentric system (delta latitude, delta longitude,
delta height), and a system aligned to the a priori baselines (delta
length, delta azimuth, delta elevation). The length of the discrepancy
vector was also presented.

A total of 19 simulation runs were made, as listed in Table 7.0.
Tables 7.1 to 7.19 present the final results for each of the 19 rums, in
all three coordinate systems. Shown for each coordinate system are the
displacement vector components and length, followed by their standard
deviations in parentheses. All values in each table are in millimetres
(except for the baseline lengths shown in the bottom right-hand corner,
which are in metres).

Figures A.1 to A.19 in Appendix A also present the results for each
of the 19 runs. Each figure represents a time history of selected
discrepancy vector components (in millimetres) as a function of the
accumulated observation time (in seconds). Covariance information is not
shown. The figure captions are coded as follows:

-~ the discrepancy vector component plotted (e.g., D¢ = delta latitude)

-— observation type (e.g., P-code = differential P-code)

—— satellites used (e.g., 2 57 10 12 15, includes all 6 in Figure 7.2)
Station numbers are noted on the plots. A set of four plots (3 components

and length of the discrepancy vectors) comprise each of the 19 figures.

7.2 General Results and Conclusions

Runs 1 to 4 (see Tables 7.1 to 7.4 and Figures A.l1 to A.4) were

designed to consider the first of the above three questions. This test was
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limited to offsetting either onme or two of the a priori components by one
kilometre and finding out how well the "true"” values were recovered by
VECA. 1In the case of one "bad"” component, the true value was recovered to
within about 50 mm. In the case of two "bad"” components (one for each of
the two stations), the baseline components were recovered to within about
50 mm using carrier phase observations, and to within about one metre using
P-code pseudorange observations.

Runs 5 to 16 (see Tables 7.5 to 7.16 and Figures A.5 to A.1l6) were
designed to consider the second of the above questions. Using three
subsets of the six available satellites shown in Figure 7.2, it was found
that the accuracy with which VECA could recover the "true" coordinate
values varied from between 10 mm and 100 mm.

Runs 17 to 19 (see Tables 7.17 to 7.19 and Figures A.17 to A.19) were
designed to consider the third and last of the above questions, but were
limited to the combination of P-code and carrier phase. Results based on
the combination of P-code and carrier phase (run 19) differ little from
those based on carrier phase alone, since the carrier phase observations
are an order of magnitude better than the P-code observations.

These results represent most of the information content of the 19
runs?$
(1) One km offsets affect convergence only to the 50 mm to 1 metre level.
(2) Constellation changes affect results at the 10 mm to 100 mm level.

(3) If carrier phase is available, other less accurate observations
improve the results very little.

(4) While these are neither surprising nor exhaustive results, perhaps the
main conclusion to be derived from them is that VECA performed as

expected.
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In the following three sections, we discuss in more detail the

results of the runs related to each of the above three questions.

7.3 Convergence Tests

The convergence capability of VECA was tested using data from one
baseline, that involving stations 1 and 8.

First the a priori latitude of station 8 was offset from the true
value by 1 kilometfe. Two runs were made; one using P-code pseudorange and
one using carrier phase data. The convergence is illustrated in Figures
A.1 and A.2 and the final results are tabulated in Tables 7.1 and 7.2.

Referring to Figure A.l, convergence using the pseudo-range data is
initially quite rapid. After only a few observations, the bulk of the
offset 1is recovered. After one hour, the final offsets in latitude,
longitude, and height are 39, 28, and 45 mm, respectively. Figure A.l
shows that, using pseudo-range data, convergence to about 100 mm of the
true position is achieved after about 300 seconds of observations. After
one hour, the final offsets in latitude, longitude, and height are less
than 50 millimetres.

Figure A.2 shows that, using phase data, convergence to within 50 mm
is achieved after 300 seconds of observations.

Next the a priori longitude of station 1 and latitude of station 8
were offset by 1 kilometre. The corresponding figures are Figures A.3 and
A.4; the corresponding tables are Tables 7.3 and 7.4.

From Table 7.3 (P-code pseudoranges), we obtain the discrepancy in
the 1-8 baseline components by differencing the DLAT, DLON, and DHGHT
values, and subtracting the 1 km offsets in latitude and longitude. The

results indicate that the "true" baseline is recovered with an accuracy of
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-977 mm in latitude, -985 mm in longitude, and +536 mm in height. The
corresponding values from Table 7.4 (carrier phase), indicate a "true"
baseline recovery accuracy of -59 mm in latitude, +36 mm in longitude, and
433 mm in height.

Figures A.3 and A.4 illustrate the time histories of the discrepancy
vectors for stations 1 and 8 separately. Whereas the components of the
individual discrepancy vectors show large variations over the observation
period, the plots for the two stations track in unison. This indicates
that although the absolute positions of the two stations are not well
determined, even after one hour of data, the baseline vector between the

two stations is well determined.

7.4 Satellite-Receiver Geometry Tests

In Chapters 2 and 3 we discussed, theoretically, the optimum
selection of satellites for a particular configuration of ground stations.
We used VECA to gain some "practical” insight into the effects of selecting
different subsets of the available satellites.

During the 1 hour observation period, a total of 6 satellites were
visible. We selected 3 subsets of 4 satellites and processed separately
the interferometric delay, differential carrier phases, differential P-code
and differential C/A-code pseudoranges. Because the carrier phase
observable is likely to be the most accurate GPS observable available, at
least in the near term, we have concentrated our attention on those
results.

The constellation of satellites 2, 5, 7, and 10 is displaced slightly
to the northern half of the sky but is well positioned in the east-west

direction. Using the phase observable (Figure A.6 and Table 7.6),
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baselines 1-3 and 1-4 are more poorly determined than baseline 1-8 which
has a large east-west component. For baseline 1-3, convergence is to
within 100 mm after 40 minutes and to within 70 mm after one hour. No one
component of the baselines is determined better than the others.

The interferometric delay results (Figure A.5 and Table 7.5) closely
parallel the carrier phase results, both in the rate of convergence and
accuracy of the final results. The 1-8 baseline, however, appears in this
case to be no better than the 1-3 and 1-4 baselines.

The P-code results (Figure A.7 and Table 7.7) and the C/A-code
results (Figure A.8 and Table 7.8) are essentially identical, and about
five times worse than the carrier phase (final convergence to within a few
hundred mm, rather than 70 mm).

The constellation of satellites 5, 10, 12, and 15 is more offset to
the east and south and suffers from satellite 12 being available only
during the last half hour of the observations. As expected, convergence is
only achieved after half an hour (Figure A.10 and Table 7.10). However,
after one hour of observations, baselines 1-3 and 1-4 are determined, using
the phase observable, to about 10 mm and baseline 1-8 to about 30 mm
(mostly in the horizontal components).

The interferometric delay results (Figure A.9 and Table 7.9) also
show convergence after half an hour. Baseline 1-8 is recovered as
accurately as for carrier phase, however baselines 1-3 and 1-4 are
recovered only to the 20 cm level.

The P-code results (Figure A.1ll and Table 7.11) and C/A-code results
(Figure A.12 and Table 7.12) are again roughly five times worse than the
carrier phase results. Again, convergence is achieved only in the second

half hour. The 1-4 baseline using P-code is recovered to 150 mm, and the
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other two baselines to 60 mm. The C/A-code results are between 40 mm and
100 mm, with 1-8 being the worst.

The constellation of satellites 5, 7, 10, and 15 provides few low
elevation observations. Although convergence using the phase observable is
to within 70 mm after 10 minutes on all three baselines, convergence
improves to only 50 mm after one hour. It appears that the heights of the
stations are poorly determined using this constellation (Figure A.1l4 and
Table 7.14).

The interferometric delay results (Figure A.13 and Table 7.13) are
very similar to the carrier phase results, not improving significantly
after the first 15 minutes. Baseline 1-3, however, was the worst
determined here, as compared to 1-8 for carrier phase.

The P-code results (Figure A.l5 and Table 7.15) and C/A-code results
(Figure A.16 and Table 7.16) are again about five times worse than carrier
phase. They also require the first 15 minutes to achieve best convergence,

however start diverging again after about 35 minutes.

7.5 Tests of the Effect of Combining Two Observation Types

We tested the effect of combining P-code pseudorange observations
with carrier phase observations to determine whether there may be some
advantage in using these two observation types simultaneously.

We first obtained solutions using the pseudoranges and carrier phases
separately. All six visible satellites were wused. The results are
presented in Figures A.l7 and A.18 and Tables 7.17 and 7.18. The final
results using the phase observable are slightly worse (by 10 mm or so) than
the results when the constellation of satellites 5, 10, 12, and 15 was used

(Figure A.10 and Table 7.10). This may not be statistically significant
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given the estimated standard deviations of the results (up to 9 mm). As

might be expected, convergence is initially much faster with the six
satellite constellation.

The results of analysing the combined data types are presented in
Figures A.19 and Table 7.19. Since the phase results are one order of
magnitude better than the P-code results, it is not surprising that the
combined results differ little from the phase results. However, P-code
data may be useful for other purposes, such as helping to resolve cycle

ambiguities in phase data. This was not tested here.
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TABLE 7.0

SIMULATION RUNS

8
8

offset + 1 km, P-code.
offset + 1 km, carrier phase.
offset + 1 km, station 8 ¢ offset + 1 knm,

> o o

A offset + 1 km, station 8 ¢ offset + 1 km,

7, 10 interferometric delay.

7, 10 differential carrier phase.
7, 10 differential P-code.

7, 10 differential C/A-code.

12, 15 interferometric delay.

12, 15 differential carrier phase.
12, 15 differential P-code.

12, 15 differential C/A-code.

10, 15 interferometric delay.

10, 15 differential carrier phase.
10, 15 differential P-code.

10, 15 differential C/A-code.

7, 10, 12, 15 differential P-code.
7, 10, 12, 15 differential carrier phase.
7, 10, 12, 15 P-code + carrier phase.
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DISCREPANCY ERETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS & PRIUKL)

STN NAME DX (SD-DX) DY (5D~DY) DZ (8DH-DE) DR £8D-DR)
1 PTSAPIN1 0¢ 1) 0¢ 1) S0 &) 0¢ &
2 PTSAPINS 291173 ¢ 4) ~-670322¢ S5 ~682623¢ &) 1000045¢ &)

DISCREPANCY EETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUBTED MINUS A& PRIORI)

STN NAME DLAT (SD-DLAT) DLON (8D-DLON) DHGT (SD~DHGT) DR (8D-DR)
1 PTSAPIN1 6¢ 1) 0¢ 1) 0¢ &) 0¢ 2)
2 PTSAPINS -1000041¢C 3) ~12¢ 3) =18 Y 1000042¢ "))

Table 7.2 Final results station 8 offset ¢ + 1 km carrier phase.
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DISCREPANCY EETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS A PRIORI)

8TN NAME DX (SD~DX) DY (SD-DY) DZ (8H~D) DR (SD-DR )
1 PTSAPINI ~923384( 27893) ~39B499( 28394) -49237¢ 4158%5) 1006909 (¢ 26728)
2  PTSAPINS 273286 27884) ~644716( 28308) ~731629C 41HE) 1012733¢ 232684)

DISCREPANCY BETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUSTED MINUS A PRIURL)

8TN - NAME DLAT (S5D-DLAT) DLON (SD-DLON) DHGT (SDH~DHET)H DR (SD~-DR)
1 PTSAPIN -10148¢ 22407) -1005231( 27723 =57263C 45198) 1006913C 26728)
2 PTSARPINS ~1011125¢ 22296) =6216¢ 27707) ~S6727( 45175 10127353¢C 23286)

Table 7.3 Final results station 1 A offset + 1 km,
station 8 ¢ offset + 1 km P-code.
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DISCREFANCY BETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS A PRIORI)D

5TN NAME DX (SDb-DX) DY (SD--DY) DZ (SD~DZ) DR (3D~DR)
1 PTSAPIN1 =-201358C 2135 ~422203C  2174) =10.063C  3185) Feu393C  2106)
2 PTSAP ING 2953310 2135) ~668255C  2168) ~hYEHE7C 0 3182 1006758¢ 1784)

DISCREPANCY RETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUSTED MINUS A PRIORI)

STN NAME DLAT (SD-DL&T) DLON (SD-DLON) DHGT (SD-DHGET)H DR (SD-DR)
1 PTSAPIN1 ~6657C  17135) =P95340C 2123) =7547C  3462) YRS3IP2(C  2106)
2 PTSAPING = ~1006716C 1707 4624¢C  2121) =7014¢ 3460 1006755¢  1724)

Table 7.4 Final results station 1 A offset + 1 km,
station 8 ¢ offset + 1 km carrier phase.
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DISCREPANCY RETWEEN & PRIORL AND ADJUSTED CARTESIAN COORDINATES I MM (abDJUSTED MINUS A PRIORD?
S5TN NAME DX (SD-DX) DY (SD-DY) DZ (5D-DZ) DR (HD-DRD

PTSAP TN FooIoX E D S T aA T I 0 N

PTSAP TN 11¢ P =a1] &) 38 167 45 ( 147
PTSAPINYG 17¢ 99 =10 &) [t 16) 2000 &)
PTSAP ING 4 5) —3( &) -~ 44 ( 163 S 139

FNERE

DISCREPANCY BETWEEN A PRIORI aND ADJUSTED GEQDETIC COORDINATES IN MM (ADJUSTED MINUS & PRIORILD
STN NAME DLAT (SD-DLAT) DLLON (SD-DLON) DHGET (SD-DHET Ll (SD-DED

1 PTSAP INT For X E D 5 T A T T O N

e PTSAP INJ 7 Y) 1< 4) 44 ( 1%) 45 16)
3 PTSAP INA =11¢ 9) 11¢ 4) 122¢ 1%) 20« &)
4 PTSAPING ~47( 9) =5 4) =18 153 91« 13)

DISCREPANCY RETWEEN A PRICORI AND ADJUSTED RASELINE COMPONENTS IN MM (ADJUSTED MINUS o PRIORID
5TN NAME. DLEN (SD-DLEN) DAZ (5D-DAZ) DELEV (SD-DELEV) BASELINE (IN M)

PTSAP IN1 F I X E D s T A T I 0 N

PTSAPIN3 -t ( §) 0¢ 4) 4% ( 15) GR42Y
PTSAP IN4 13 ¢ 9) -8 ¢ 4) 18 ¢ 15) 142000
PTSAPING 34 7) ~ 3 7) “16( 15) 154584

N

S

Table 7.5 Final results sat 2, 5, 7, 10 interferometric delay.
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DISCREPANCY BRETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS A PRIORIDD
5TN NAME DX (SD-DX) DY (SD-DY) Dz (80D-DZH DR (SD-DR)

1 PTSAP TN For X E D S T A T 1T 0 N

e PTSAPIN3 19¢ 9 ~24( &) 60« 16) 68( 17)
3 PTSAP ITN4 2% W) ~19¢ &) 29¢ 16) 42¢ 15)
4 PTEAPINS ¢ 5 -8 ( b) -14( 16) 33¢ 6)

DISCREPANCY BETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUSTED MINUS A PRIORID)
H5TN NAME DLAT (SD~DLAT) DLON (SD-DLOND DHGT (SD-DHGT) DR (SD~-DR)

1 PFraarIng For X kB D S T A T I 0 N

P PTSAF IN3 18¢ G 7¢ 4) 66 ( 18) 68¢ 17)

3 PTSAP IN4 0« ¥ 124 4) 40¢ 1% 4t 15)

4 PTSAP ING ~30¢ 7 b 4) EAS 15) 33¢ &)

DISCREPANCY BETWEEN A PRIORL AND ADJUSTED KASELINE COMPONENTS IN MM (ADJUSTED MINUS A PRIORID
HTN NAME: DLEN (SD-Dl.EM) DAZ (SD--DAZ) DELEV (SD-DELEWV) BASELINE (IN M)

1 PTSARINT For o X EOD S T A T I 0 N

s PTEAP IN3 =16 ( ) VA 4 6H6 ¢ 18) 2429
5 PTSARINA &2 9 =11 4) 40 (¢ 19) 142000

4 PTSAP ING 24 ( 7 -19( 7) 9 13) 154584

Table 7.6 Final results sat 2, 5, 7, 10 differential carrier phase.
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DISCKEPANCY BETWEEN A PRIORL anND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS & PRIORD)
GTN NAME DX (ED~DX) DY (ED-DY) DZ (8D-D2) DR (SD-DR

1 PTSAPTNI Pl X E D S T A T I 0 N

2 PTSAPING VA 710 35 94) ~30C 300D g2C 182
3 PTSAPINA 59 ( 71) ~135 ¢ 94) 545 (  E01) HE70C 3100
4 PTSAPING YLC 7D -39 93) 5300 300) 5360 306)

DISCREPANCY BETWEEN A& PRIORL AND ADJUSTED GEQDETIC COORDINATES IN tMM (ADJUSTED MINUS & PRIORD)
STN NAaME DLAT (5D-DLAT) DLON (S5D-DLON) DHGT (SD-DHGT) DR (SD-DR)D

1 PTSAPINL Fol X E D 5 T A T I 0 N

2 PTSAPING 2 160) 46 ( 650) ~630 B4 82¢C  182)
3 PTSARING L&) 55 ¢ 60) 503C 273 570¢  310)
4 PTSAPING 160) 49 ¢ 60) 431C 273 536 306)

‘.

DISCREFANCY BETWEEN & PRIORL AND ADJUSTED RASELINE COMPONENTS IN MM (ADJUSTED MINUS A PRIORI)
8TN NAME. DLEN (5D-DLEN) DAZ (SD-DAL) DELEV (SD-DELEV) RASELINE (IN M)

1 PTsarIng o X E D T A T I O N

PTSHP TN =a8( 1979 45 ¢ 6H2) ~6H3( =278) - 92429
3 PTSAP TN —a6 0] 158 -1 54) S06C 2749 142000
4 FTSAPING 227 115) 217¢ 1239 434 ¢ a74) 154584

P

Table 7.7 Final results sat 2, 5, 7, 10 differential P-code.
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DISCREPANCY BETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES InN MM (ADJUSTED MINUS A PRIORID

STN

R TS A
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PTSAPINI
PTSAPIN3
PTSAP IN4
PTSAPINSG
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DISCREPANCY BETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUSTED MINUS A& PRIORI)

STN.

1
2
3
4
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PTSAP INT
PTSAP IN3
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DISCREPANCY BETWEEN A PRIORI AND ADJUSTED RBRASELINE COMPONENTS IN MM (ADJUSTED MINUS & PRIORIL)

5TN

1
2
3
4

NAME.

PTSAP TN
PTSAP ING
PTSAP IN4
PTSAP INS

DLEN (SD-DLEN) DAL (SD-DAZL) DELEV (SH-DELEVD

F I X & D S T A T 1T 0O N
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Table 7.8 Final results sat 2, 5, 7, 10 differential C/A-code.
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DISCREPANCY EETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS A PRIORI)

STN NAME
1 PTSAPIN1
2 PTSAPIN3
3 PTSAPIN4
4 PTSAPINSB

DX (8D-DX) DY (SD-DY) DZ (SD-DZ) DR (8D~-DR)
F I X E D g T & T I 0 N

16¢ 92) -7 ( ?3) 57¢ 175) 60¢ 169)

~24¢ 92) ~14¢( 92) 146¢ 17%) 149¢ 184)
1¢ 93) 60¢( 93) 1¢ 176) 60 ( ?1)

DISCREPANCY EETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUSTED MINUS A PRIORI)

STN NAME
1 PTSAPIN1
2 PTSAPIN3
3  PTSAPINA
4

PTSAPINS

DLAT -(SD-DLAT) DLON (SD-DLON) DHGT (SD-DHGT) DR (SD-DR)
F I X E D S T A T T 0N

28¢ 107) 11¢ ?0) S1¢ 168) 60¢ 169)

99« 108) ~-28¢ . 90> 108¢ 167) 149¢ 184)

41¢ 106) 25¢ 90) ~36( 169) 60¢( ?1)

DISCREPANCY RETWEEN A PRIORI AND ADJUSTED EBASELINE COMPONENTS IN MM (ADJUSTED MINUS A PRIORI)

STN NAME
1 PTSAPINI1
2 PTSAPIN3
3 PTSAP IN4
4 PTSAPINS

DLEN (SD-DLEN) DAZ (SD~DAZ) DELEV (SD-DELEV) BASELINE (IN M)
F I X E D S T A T I O N
-26¢( 110) -12¢( 85) Sa( 169) 2429
-9 ( 114) 18¢ 81) 109 < 168) 142000
-44( 49) 17¢ 130) ~35¢( 169) 154584

Table 7.11 Final results sat 5, 10, 12, 15 differential P-code.
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DISCREPANCY RETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS A PRIORI)

STN NAME DX (8D-DX) DY (8D-DY) DZ (8D-DZ) DR (SD-DR)
1 PTSAPINI 0¢ 1) 0¢ 1) 0¢ 1) 0¢ 1)
2 PTSAPINI 38¢ 92) -32¢ - 93) 0¢ 17%) 45( 989)
3 PTSAPIN4 =7( ?2) =31 ( ?2) 59¢ 178) 79¢ 181)
4 PTSAPINS -36¢ ?3) ~10¢( ?2) ~63( 1769 86¢ 113)

DISCREPANCY BETWEEN A PRIORI AND ADJUSTED GEODETIC COORDINATES IN MM (ADJUSTED MINUS A PRIORI)D

STN NAME DLAT (8D~-DLAT) DLON (SD-DLOND DHGT (8D-DHET) DR (BD~-DR)
1 PTSAPINI1 0¢ 1) 0¢ 1) 0¢ 1) 0« 1)
2 PTSAPINS -31¢ 1073 14¢ ?0) 28¢ 1687 45 Y5
3 PTSAPIN4 9 108) ~28( 89) 73( 167) 79 181)
4 PTSAPING ~34( 106) ~96( Y0 =54 ( 1699 86 ¢ 1139

DISCREPANCY BETWEEN A PRIORI AND ADJUSTED RASELINE COMPONENTS IN MM (ADJUSTED MINUS A PRIORI)

8TN NAME DLEN (S8D-DLEN) DAZ (8D-DAZ) DELEV (8D-DELEW) RASELINE (IN M)
1 PTSAPIN1 0¢ 1) 0¢ 1) 0¢ 1) 0
2 PTSAPIN3 33¢ 1100 ~-11¢ 835) ; 28¢( 167) 92429
3 PTSAPIN4 =10¢( 114 28( 81) 73( 168) 142000
4 PTSAPINS 65¢ 49) 8¢ 130) -H5¢ 169) 154584

Table 7.12 Final results sat 5, 10, 12, 15 differential C/A-code.
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DISCREPANCY RBETWEEN A PRIORI AND ADJUSTED CARTESIAN COORDINATES IN MM (ADJUSTED MINUS A PRIORID)
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PART C: PRELIMINARY ANALYSES OF OTTAWA MACROMETER TEST DATA

CHAPTER 8

NON-PARAMETRIC ANALYSIS

8.1 Introduction

In the period from 19 July to 19 August 1983, the Earth Physics
Branch of the Federal Department of Energy, Mines and Resources, with Herb
Valliant as Chief Scientist, conducted the first test of Macrometrics' GPS
surveying system (the Macrometer Interferometric Surveyor) in Canada. Two
Macrometer V-1000 single frequency receivers were used to determine the
vector baselines between selected points of the Geodetic Survey's Ottawa
test network.

A general description and the results of the experiment (as obtained
with Macrometrics' software) have been recorded by Valliant [1983a; 1983b].
We therefore restrict ourselves to a very short description of the
experiment.

A total of thirty observing sessions were conducted in as many days.
The first two comprised three one-hour observation periods on short
baselines (points 6A, 7, length 30 m; points 6A, 51, length 2230 m (see
Table 8.1)). The remaining 28 sessions were longer in duration (24 of 5
hours, 4 of 3 hours) and on longer baselines (13 km to 66 km, see Table
8.1). Four of these sessions provided no data due to operational
difficulties.

We obtained the observations for an independent analysis. Preliminary
results of the analysis look very promising. Here we present some of these

results computed to date and an outline of the methods used to generate
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TABLE 8.1

A priori coordinates for station positioms.
(nominally NAD 27)%*

Station
6A

7

51
Morris
Panmure

Metcalfe

Latitude

4592315579598
45°23'55%13131
45°2310716263
45°26 134729253
45°20'18%81549

45°14 13401037

Longitude

75°55'21%44516
75°55122148157
75°56 137425020
76°15'18781735
76°11'04%58789

75°27'31:48309

Approximate baseline lengths

Baseline

6A - 7

6A - 51

6A — Metcalfe
6A - Morris

Metcal fe-Panmure
Metcalfe-Morris
Panmure-Morris

Length (m)

30
2230
40295
26489
57930
66268
12843

Geodetic Height
(m)

77.085

76.629

70.190

89.806

153.956

102.590

*from Valliant [1983b, Table 4].
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them. A final report on the UNB analysis of the Macrometer test data will

be presented in a future publication.

8.2 Methods of Analysis

Initially the analysis was severely handicapped by the lack of good
ephemerides of the GPS satellites; only the predicted ephemerides from the
NASA bulletins [NASA, 1983] were available. This of course was a serious
limitation: one cannot expect high precision in the estimation of even
comparatively short baselines without proper knowledge of the satellite
orbits. On the other hand, the following goals could be achieved even with
poor ephemeridal information:

(1) Proper understanding of the Macrometer observable.

(2) Quality and consistency checks of the recorded data.

(3) Development and testing of a parameter estimation program for
processing the Macrometer observations.

In order to achieve these goals, three computer programs were
developed: PRMAC-1, PRMAC-2, and PRMAC-3 (names stand for PRocessing of
MACrometer observations). The purpose of these programs 1is briefly
described in Table 8.2. These programs were developed independently of the
work on the VECA program solely for the efficient analysis of the
Macrometer data and are not intended to be general purpose programs. It is
our intention to process the data with the VECA program and to compare the
results at a later date.

The PRMAC programs were tested with the NASA predicted ephemerides
and this proved to be sufficient for the kind of analysis performed with
PRMAC-2. It could be verified that no phase jumps were present in the

measurements pertaining to the two short baselines and that the rms error
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TABLE 8.2

Functions of Computer Programs.

Program Name

Description

PRMAC-1

PRMAC-2

PRMAC-3

Lists the observations (not documented).

Non-parametric quality check of data based on
polynomial fit of "observed quantities minus
approximate theoretical values of observations".
See section 8.4.

Parameter estimation program. The observations
are modelled as functions of the physical

parameters. For a description, see Chapter 9.




97

for a single observation was of the order of some millimetres (see Chapter
9).

The high quality of the recorded data for the short baselines
facilitated the first tests of the parameter estimation program, PRMAC-3.
The development of "phase jump removal software” could be postponed;
essentially only one so-called ambiguity parameter per satellite had to be
estimated (see Chapter 9).

Whereas the proper performance of the parameter estimation program
could be tested without problems using the NASA predicted ephemerides, the
quality of the baseline estimates, as expected, was rather poor; the
uncertainty was of the order of centimetres for the 30 m baseline, of the
order of decimetres for the 2 km baseline. The reason 1is clear: in
addition to receiver coordinates and ambiguity parameters some of the
orbital parameters for each satellite also had to be estimated; it is quite
obvious however that it is not possible to determine simultaneously
receiver coordinates and satellite orbits with a high accuracy from
observations of two receivers separated only by 30 m or 2 kilometres.

This situation drastically changed when better ephemerides,
originating from the Naval Surface Weapons Center [0'Toole, 1976], became
available to us. With the orbits now assumed known, PRMAC-3 estimated the
(relative) receiver coordinates with a precision in the sub-centimetre
region for the two short baselines (see Chapter 9).

In our subsequent analyses, even better orbital information will be
at our disposal; the so-called Macrometer T-files (see Counselman [1983])
have been made available by Macrometrics. These T-files contain geocentric
rectangular coordinates of the satellites in tabular form. Of course, the

short baselines will be reprocessed with these best available orbits.
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However, in view of the shortness of the baselines, it is not expected that

the results will be essentially better than those reported in Chapter 9.

8.3 The Observation Equation

The measurements we deal with here are not the raw field data as
recorded by single receivers. The most basic data available to us were
those obtained from Macrometrics' INTERF or INTRFT computer programs (see
Macrometrics [1983] or Counselman [1983]). These data usually are referred
to as "interferometric phase differences between two receivers™; in
principle one such measurement is the difference in the L1 carrier phase of
one GPS satellite measured at (nominally) the same time by the two
receivers.

Several observation equations for these kinds of measurements have
been published (e.g., Davidson et al. [1983]; Goad and Remondi [1983]).
One explicit formulation is that of Bauersima [1983b]. The observation
equation (8.1) below is basically his equation (38) somewhat simplified.

Expressing all quantities in metres, they read

\]

_*3 h| h| h| J o = o]
(c °11)Ati + apy + d(dp )101rl + d(dp )trop"' AN] = Bp; v (8.1)

i= 1,2,0.o,nb
j= 1,2,...,nS

where

c is the speed of light;

A is the nominal wavelength of the Ll—carrier;
n, is the number of satellites;

ny is the number of observation times;

ti’ i=1,2,...,n, are the observation times (UTIC);

b
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i h| . . |
= = t - Cc
pki pk(ti)’ k=1,2 is the distance of satellite j at time i Oki/
to receiver k at time ti' (Note: in Part C of this report,
the index j in pii specifies a satellite; k specifies a
receiver; and i specifies an observation time);
*j . . .
Che} is the range rate at time ti’
o3 - 3.,
Ay = P13 T Pp43
Ng are integer numbers;

(dpi)ion’ k=1,2 1is the ionospheric refraction correction to phase

observation of satellite j as observed from receiver k;

j I . . )
(dpk)trop’ k=1,2 is the tropospheric refraction correction;
i - h| _ i .
d(dp )ion (dpl)ion (d°2)ion’
3 - J _ 3 .
d(de )trop (dpl)trop (dpz)trop’

Ati is the clock synchronization error of receiver clock 2 with
respect to receiver clock 1;

Apg' is the recorded phase difference measurement;

vi is the residual in range difference Apg.

These observation equations have been deduced in a purely theoretical way.

They are applicable to any receivers making phase difference measurements.

The observation equations pertaining to the Macrometer V-1000 receivers

differ in two points from the (more general) eqns. (8.1):

(1) The Macrometer keeps track of the number of integer wavelengths of the
L1 signal between observation times (with a "finite number"” of
exceptions, the so-called cycle-slips or phase jumps, which may be

removed more or less easily). Therefore after some preprocessing

("phase jump removal software") we may assume

n] - N, i=1,2,...,n (8.2)

b

This means that there is only one unknown "ambiguity parameter” Nj per
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satellite per observing session. This of course simplifies matters
considerably.

(2) Due to the manner in which the Macrometer works (in reconstructing the
carrier phase the frequency is doubled), the ambiguity parameter is
actually the number of half cycles.

This leads us finally to the following set of observation equations:

23 j j A A3 3 L3
(c pli)Ati+Api+d(dp )ion+d(dp )trop+'2' N Ap vy (8.3)

i

]

1,2,...,nb

j= 1,2,...,nS

These observation equations were used for the analyses reported here.
Moreover, for the two short baselines, the tropospheric and ionospheric
correction terms in eqn. (8.3) are so small that they were completely

neglected.

8.4 Non-parametric Analysis

As already stated, the program PRMAC-2 was developed to give a first
impression of the quality and the consistency of the observational data

from the Ottawa campaign. The method used is very simple: If we look at

the unknown terms of eqns. (8.3) for one satellite j, clearly the term ApJ

s !
shows the "strongest” time dependence (Apg are the known observations).

We therefore approximated this term as follows: Let Apio be the

J

approximation of the term Api

in eqn. (8.3), calculated with the
provisional values for the receiver coordinates and with the NASA predicted

orbits (of course, better orbital information may be used if available).

Next we made the following assumption: The values

J_ o, *] j_, Jo j j A ]
£ = (c=py;) At +(2p; Bpy )+d(dp™);  +d(dp )tmp"’z N (8.4)
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for i=1,2,...,n, are values of a low degree algebraic polynomial (in time):

b

LR RPN SN
z Pk (ti) = ‘Ei > i=1’2,°"’nb (8.5)
k=0

where q is the degree of the polynomial. Equations (8.3) may then be

rewritten as follows:

Joy o (8.6)

q . ¥
j k _ j'_
L op (ti) (L\oi Aoy

k=0

i= 1,2,---,nb; j=1,2,...,ns.
From eqn. (8.6) the polynomial coefficients pg for each satellite j are
estimated by a conventional least-squares technique.

The assumption made in eqn. (8.5) clearly holds if all the terms on

the right-hand side of eqn. (8.4) (for one value of j) can be modelled by

low degree polynomials. This certainly is true for the last term,-% Nj,

which is a constant for every satellite. In view of the short observation
sessions (a maximum of 5 hours corresponding to less than one-half of the
satellites' orbital periods), experience indicates that the same assumption
holds sufficiently well for other than the first term of eqn. (8.4)
provided we choose the polynomial degree q > 4. Whether or not the
assumption is true for the first term depends on the performances of the

clocks in the two receivers.

8.5 Single Difference Results

The non-parametric analysis was applied to the observations of all
the satellites in the observing sessions on the two short baselines.
Instead of giving a complete list of results, we only give one

example in Figure 8.1. This figure shows the "residuals” as produced by

PRMAC-2 for the interferometric phase observations (single differences) as
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Figure 8.1
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recorded on 20 July (day 201 of year 1983) on the shortest baseline. These
residuals show a clear systematic variation. We therefore have to draw the
conclusion that assumption of eqn. (8.5) is not valid. Figure 8.1 reflects
the (non-polynomial) errors to be expected from the crystal clocks in the
Macrometer V-1000. The quality of the results obtained with this analysis
is consistent with the results published by Goad and Remondi [1983].

In principle there are two techniques to overcome this "clock

synchronization problem”:

(1) use of better frequency standards in the receivers;

(2) use of more sophisticated models to describe the clock performances.
Whereas the first technique will be applied probably in the next generation
of receivers, for the present analysis better modelling had to be looked
for.

In the authors' opinion the best way of modelling is the following:
define a statistical model of the clock performances using the known facts
on clock offset, drift and jitter. This leads to a simple stochastic
differential equation for the phase differences of the two receiver clocks
or, even more directly, to an equation for the clock synchronization error
in eqns. (8.3) may then be

as a function of time. The At i=1,2,...,n

i’ b

interpreted as the solution of the stochastic equation at the observation

times t 1=1,2,...,nb. Of course, this approach complicates matters.

i
Instead of more or less standard least-squares solutions, one would have to
apply methods of "optimal filtering” or "optimal smoothing”. Although this
approach is advantageous from a theoretical point of view, its application
would have required a considerable investment of time which was not

available. Nevertheless, this technique should be kept in mind for future

studies.
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The next best approach to follow is to deny all functional models for
the errors At i=1,2,...,nb and to introduce them as unknowns into a
least—-squares adjustment. Although there are no objections from the
theoretical point of view, there is a strong objection from the practical
point of view: the number of unknowns tends to increase dramatically. One
gets into the problem of manipulations with large matrices, which cause a
significant increase of computation time and the use of large storage
areas. These requirements more or less restrict the processing to large

main frame computers.

8.6 Use of Double Differences

An alternative approach to those already mentioned is to implicitly
eliminate the clock synchronization term by using the differences of two
eqns. (8.3) with the same subscript i but different superscript j. One
easily sees that the main contribution of the clock synchronization error

(cat;) is eliminated and one gets:
o ok j k j k
- - t + - +d(d -d
(p147py)at (a0 =00 )¥d(dp™), | =d(dp ),

vaeaph)  -aeaey |+ 3 oV lv-ao] -a0fy = Wl (8.7)
i=1,2,..., ng
ik =1,2,..., n_, k#3.

Again for simplicity we have assumed thaf the same number n_ of
satellites is observed at each observation time. In practice this
assumption is usually not satisfied, which leads to a slightly more complex
program logic.

It should also be pointed out that the time synchronization errors

have not been removed completely by the use of eqns. (8.7) rather than eqn.
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(8.3). However the order of magnitude of these terms in eqn. (8.7) is
quite different from that in eqn. (8.3).

Since |Bii| < 0.8 km/s [Bauersima, 1983a], the ratio of the

coefficients of Ati in the two equations 1is smaller than 5 x 10—6. This
means that the effect of imperfect clocks, so predominant in the "single
differences" (Figure 8.1), will be much smaller in the so-called "double

differences" of eqn. (8.7). It also implies that the time synchronization
error remaining in eqn. (8.7) may be modelled very simply by a first-degree
algebraic polynomial (representing clock offset and drift).

If we use eqn. (8.7) as the observation equation, we are no longer in
a position to solve for all the ambiguity parameters Nk, k=1’2""’ns°
This clearly follows from the fact that only the differences
-nd -y (8.8)
figure in eqn. (8.7) and only these can be solved for.

One option of the program PRMAC-2 is to analyse these "double
differences”. The procedure is very similar to the one used for the
"single differences"” as described above. A brief summary of the principles

is therefore sufficient.

J, Ap? in eqn. (8.7) are approximated in the same way as

The terms Api

in the 1last section. Then the assumption embodied in eqn. (8.5) is

replaced by the following assumption. The

jk

ik
5 = gg - £, 1=1,2,...,n (8.9)

b

(see eqn. (8.4)) are values of a low degree algebraic polynolial (in time):

4 x5k g _ ik
i pl (ti) =z i—1,2,...,nb (8.10)

2=0

where q is the degree of the polynomial. Using eqns. (8.9), (8.10), and
(8.4), we may rewrite eqns. (8.7) in the following way:
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T %3k i k' k k
J L_ 3t _ oy doy_ _ Oy, _ ]
z P, (ti) [(Ac>i Aoi)(Aai Boy )] vy (8.11)
2=0
i=1,2,...,nb
j,k=1,2,...,ns, k#5.

For every pair of indices j,k, eqns. (8.1ll) may be used to determine the
polynomial coefficients p:jk, 2=0,1,...,9 by a conventional least-squares
technique.

In practice this of course is not done for every possible index
combination j,k. The program PRMAC-2 identifies the index j with the

satellite that has the most observations, then k is varied to cover the

other satellites.

8.7 Double Difference Results

The double difference analysis was applied to all satellite pairs
mentioned above in the observing sessions on the two short baselines.

The residuals for two typical examples, one for a satellite pair
observed on the 30 m baseline and one for a satellite pair observed on the
2 km baseline, are given in Figures 8.2a and 8.2b.

First we see that there are positively no phase jumps which would
amount to a multiple of 9.5 em in the residuals, and secondly that a
significant reduction in the scale of the residuals is obtained (from
approximately 20 ecm in Figure 8.1 to 2 mm and 6 mm in Figures 8.2a, 8.2b,
respectively). Moreover the residuals seem to be reasonably random (at
least in Figure 8.2a) thus supporting the assumption behind eqn. (8.11).

We conclude this (non-parametric) analysis with the following

remarks:
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Figure 8.2a
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Macrometer V-1000 single frequency receivers are capable of producing
high quality measurements. For very short baselines, the rms errors
for a single observation is of the order of 3 mm.

There 1is, however, an important contribution from the clock
synchronization error when dealing with the original interferometric
phase observations ("single differences"). This difficulty can be
overcome either by physical modelling 1leading to stochastic
differential equations, or by introducing one unknown clock parameter
for each observation time, or by working with so-called "double
differences” as shown above. These options are given in decreasing
order of theoretical desirability but in increasing order of practical

feasibility.



CHAPTER 9

PARAMETRIC ANALYSIS

9.1 Parameter Estimation

Having seen the excellent quality of Macrometer data using the
preprocessing methods (Chapter 8), the next step was to write a parameter
estimation program able to produce receiver coordinates. Rather than
employing VECA which, at the moment, does not process double-difference
data, we developed the program PRMAC-3 (cf. Table 8.2). Some of the
features of this program will subsequently be implemented in VECA.

The present version of PRMAC-3 is 1limited by the following
assumptions:

(a) It is assumed that only two receivers are operating simultaneously.
(Only one baseline is estimated in one program run.)

(b) The "double difference approach” is used: the linearized versions of
eqns. (8.7) are used as observation equations. Furthermore these
observations are assumed to be uncorrelated.

(c) The satellite orbits are assumed to be purely "Keplerian" during each
observation period.

As actually only two receivers took part in the Ottawa compaign, the
restriction of assumption (a) is irrelevant for this study.

Assumption (b) helps to reduce computation times, storage areas, and
program logic. That this approach is by no means the best one was stated
in the previous chapter. However using a more sophisticated approach will
likely have only a minor effect on the results.

Concerning assumption (c), the quality of orbits needed to obtain

baseline estimates of a certain precision depends highly on the length of

109
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the baseline under consideration [Bauersima, 1983a]:

dAR ., dr
w® o ©-1

where dAR is the baseline error, dr the orbit error, AR is the baseline
length, P the range (receiver-satellite).

We can calculate the order of magnitude of an orbital error giving
rise to a baseline error of 2 mm for the two short baselines. Using P =
25,000 km, we have

dr 1700 m for the 30 m baseline

dr 25 m for the 2 km baseline.

These errors may be compared to the orbital errors to be expected through
adoption of assumption (c).

The NSWC elements are osculating elements where the osculation epochs
correspond to the middle of the observation periods. As these periods were

one hour for the two short baselines, we must estimate the effect of

assumption (c¢) after 1/2 hour. To do so we use Table 2 from van
Dierendonck et al. [1978] giving the maximum acceleration due to the J2
gravity field coefficient as

a=5.3x 10-'5 ms"1 .

The maximum error neglecting this influence after 30 minutes therefore will

be

*

1 2
= _ A
dr 5 a 4t

£ 90 m (9.2)

Comparing this with the permissible errors given above, we conclude that
assumption (c) is fully justified for the 30 m baseline, and that we have a

questionable case for the 2 km baseline. Bearing in mind however that we
have made the worst case estimation (in three respects: (a) the large

errors occur only at the beginning and at the end of the observation
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period; (b) the acceleration, a, 1is a maximum value; (c) the estimations
from eqn. (9.1) are rather pessimistic), the use of assumption (c) probably
will not bias our results significantly. It will be interesting to see the
difference in the results, when the 2 km baseline 1is reprocessed with
better ephemerides with the next version of PRMAC-3.

Apart from the limitations due to the above of assumptions, the
present version of PRMAC-3 is a general parameter estimation program which
can solve for (almost) any combination of the physical parameters in eqns.
(8.7). These parameters are
(a) Receiver coordinates in the conventional terrestrial system.

(b) Ambiguity parameters as defined by eqn. (8.8).
(¢) Clock synchronization parameters cy» €1 (offset and drift) from the
following model:

Ati =c  +cy(t; - t), i=1,2,...,n

b (9.3)

(ti = observation times).

(d) A maximum of six orbital parameters are allowed per satellite. They

figure implicitly in the second term of eqns. (8.7).

(e) Parameters describing tropospheric and ionospheric refraction (terms
3, and 4 in eqns. (8.7)) are neglected in the present analysis.

For obvious reasons (see assumption above) the Keplerian elements
defined in Chapter 4 are used to represent the orbits. In addition, it is
possible to specify an a priori variance covariance matrix for these
parameters. The reference plane 1is the true equator of date (at the
midpoint of the observation period). This description of the orbits will
be kept in the next version of the program where better orbhital models will

be used. We then will have to specify that the elements are osculating

elements.



112

The observation equations (8.7) are linear in the clock parameters
(see eqn. (9.3)) and in the ambiguity parameters (see eqn. (8.8)); they are
nonlinear in both the receiver coordinates and the orbital parameters. In
PRMAC-3 a linearized version of egns. (8.7) is used, where only the second
term has to be linearized. This is done in the conventional way, using a
Taylor's series expansion.

As almost any combination of the parameters mentioned above may form
the vector of unknowns, PRMAC-3 must accommodate many options. The
following are the main options:

(a) It may be used for pure positioning, assuming the orbits to be
perfectly known.

(b) It may be used for pure orbit estimation, assuming all receiver
positions to be known. (It is questionable however whether this
option would produce reasonable results in the case of single
frequency receivers.)

(c) It is possible to process data originating from different observation

sessions of the same baseline in the same run.

9.2 Principles of Operation of PRMAC-3

PRMAC-3 has two parts: In part 1 the parameters chosen as unknowns
are estimated with a conventional least-squares technique. 1In part 2 the
integrality of the ambiguity parameters is enforced, and the best integer
set of ambiguity parameters is determined. We shall first describe the
functions of part 1 in detail.

In matrix notation the 1linearized version of eqns. (8.7) may be
written

(9.4)

| >
I
1
k!
L[}
|<
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where
np is the number of parameters;

ny is the number of observations;

A is the design matrix (n_ columns, n, rows);

x is the vector of unknown parameters (np elements);
w is the vector of n, "misclosures”™ (observed minus computed values);
v is the vector of n, residuals.

The least-squares solution is
g=@ AT . (9.5)
PRMAC-3 calculates‘£ and it also gives the standard deviations Ui for these
elements as square roots of the diagonal elements of (é?é)_l. The a
posteriori variance factor is given by
SERCER VR (9.6)
We will find it most convenient later to partition the vector of

unknowns into:

AT A A ~
X = (xl’ Koy eees X ) (9.7)
o
and
AT A ~ .
X, = (xno+1, ey xnp), ambiguity parameters (9.8)
where

np is the total number of parameters;

n_ is the the number of ambiguity parameters;
n_=n_-n1n_.
s
The vector_g2 contains the nsambiguity parameters, and_;g1 the remaining ng
parameters. With eqns. (9.7) and (9.8), we rewrite eqn. (9.4) as
Axnthx-v=v , (9.9)

where.é1 is the matrix formed with the first n columns of matrix A, éz is
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the matrix formed with the last ns columns of A. Equation (9.5) may be

written as

T | T ~ T
4 1 AL xH 4
—_ — - - -= == w (9.10)
T ] T ~ T
L % K
Introducing
T T T
Np=a04 o Np=AA , N,=4)4
(9.11)
T T
Yy =AW s Uy =AW
then eqn. (9.10) becomes
- - - L
N N x u
- -+ - --q4 =F-1 . (9.12)
1
T A
N2 : N9 %) 1,

Part 2 of PRMAC-3 1is devoted to the solution of the ambiguity
problem. Whereas we know from the very beginning that the ambiguity
parameters are integer numbers, there appears to be no simple way of
utilizing this knowledge in the solution algorithm of the first part of the
program. Ideally, the standard deviations associated with these parameters
will be small (hopefully << 1). If this is so, then it will not be too
difficult to find the correct set of integer ambiguity parameters in the
second part of the program.

All strategies for resolving the ambiguity problem have one
characteristic in common. The ambiguity vectorigz, or at least some of the
elements of this vector, is no longer considered to be unknown. To some or
all of these elements, known integer values are assigned a priori. These

values are chosen to be "in the vicinity” of the non-integer values 22
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estimated in part 1 of the program, the "vicinity” being somehow limited by
the corresponding standard deviations. Having made a choice for the
integral values of the ambiguity parameters, we can use a standard
least-squares solution to obtain values for the remaining unknown
parameters -}31 and the corresponding residual square sum. The latter will
be used to judge the a priori choice for ),;2.

As the case where some of the elements of £2 are assumed to be known
may be made formally equivalent to the case where the entire —)EZ is known
simply by transferring some elements of 2_2 into the vector 21, we only deal
with the latter case.

Let 53 be an integer valued approximation of We are now looking

RN
for the best values for gl in the least-squares sense, provided Xy is
approximated by 53.

The observation equations for this new problem may be simply
transcribed from (9.9), using primes (') to distinguish the matrices of the

second part of the program from those in the first. We get:

A Ei -w' =V s (9.13)
where

w' =w - éz _:53 . (9.14)
The least-squares solution is

2 T T

X = (A A AW (9.15)
Using eqns. (9.11), gi reads as:

A -1

Ny o (9.16)
where

T
Bi = él w' . (9.17)

As the quality of the choice of values for 5’5 will be measured by the

sum of the squared residuals, X_'T v', and as many different trials may have
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to be checked, it is absolutely mandatory to have a rapid algorithm to

calculate this number. Starting from eqn. (9.13) we have

T ’

= GA-wD A K-, (9.18)

which may be brought easily into the well-known standard form
vy =T w -’ . (9.19)

Replacing the primed quantities on the right—hand side using eqns. (9.14),

(9.15) leads to the following simple results:

T oo o T % %7 *
voy'=d; +d) x5+ x5 Dy xj (9.20)
where
T T -1
d]_—.Y. E-EIH]_]_}_“.]_
T_ ., T _ T -1
4y = "2y~ Ny Ny) 9.21)
_ T -1
D3 = Npp =~ Nyp Nyy Nyp -
As dl’ 22, 23 are functions of quantities already appearing in part 1 of
the program and may therefore be calculated once and for all, eqn. (9.20)

is an efficient tool for the calculation of XﬁT4X" Moreover it is quite
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