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ABSTRACT 

Heading information is a fundamental parameter in ship's naviga­

tion. Traditionally a gyrocompass is used as the primary sensor to 

provide heading reference on board ship. However, gyrocompass indicated 

headings are subject to a number of errors, which are functions of the 

ship's motion and of the latitude of operation. 

The objective of thisthesis is to investigate the gyrocompass 

behaviour, study its deviations under different conditions of operation 

and develop suitable algorithms for the software compensation of these 

deviations. To meet this objective, mathematical models describing the 

gyrocompass behaviour are developed using different dynamic considerations. 

In particular, the gyrocompass equations of motion and their solutions 

are developed for the cases of a stationary, uniformly moving, and manoeuv­

ering ship. A general discrete-time model as well as a special model to 

represent a manoeuvering ship are developed. Specific attention is drawn 

to the problem of high latitude behaviour of the gyrocompass. 

Simulation studies of the gyrocompass dynamic response are 

carried out using the mathematical models developed in this study. The 

simulation results indicate that transient errors of 1° are expected at 

latitudes of 30°, while errors in excess of 10° are likely to occur at 

latitudes beyond 70°. These errors may degrade considerably not only the 

gyrocompass performance, but also the performance of a multi-sensor 

integrated navigation system (e.g. introducing as much as 0.5 nautical 
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miles error in a satellite fix) , or they may introduce an error of as 

much as 2 mgals in real-time Eotvos correction calculations in precise sea 

gravimetry. 

An open-loop software compensation procedure of gyrocompass 

errors is proposed as an alternative to manual mechanical compensation 

traditionally used, to improve the gyrocompass performance. The algorithm 

developed in this thesis is a function of the gyrocompass design parameters 

and of the particular dynamics of the ship's motion. 

Finally, recommendations for future work include sea-trials of 

the developed software compensation algorithm, extension of the mathema­

tical models to incorporate random disturbing forces, and evaluation of 

the dynamic response of modern marine gyrocompasses, such as, the Sperry 

MK 37 Gyrocompass Equipment. 
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CHAPTER 1 

INTRODUCTION 

Navigation is the art of finding the position of a ship at sea, 

and conducting it safely from place to place [Admikalty Manual o6 Navi­

gation 1964]. The process of navigation, in general, consists of 

defining the route, conducting the craft along it, and finding .the 

vessel's position from time to time to check its progress [Eneyclopaedia 

B4itt~ea 1970]. 

The above definition addresses navigation from the traditional 

viewp·::>int. Modern navigation relies more and more upon mechanical and 

electronic devices. This framework is supplemented by more and more 

sophisticated high-speed digital computers. 

The essential sensors in modern navigation may be summarized 

as: ship's log and gyrocompass (representing the cia6~ieal dead-~eckoning 

6unction); electronic aids to navigation, such as, radionavigation systems. 

(Omega, Loran, VLF and VHF systems, etc.); satellite navigation systems 

such as, the Navy Navigation Satellite System (NNSS) and the Global Posi­

tioning System (GPS) ; inertial navigation systems, and acoustic navigat.ion 

systems. 

-1-
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The multiplicity and diversity of the navigation systems avail­

able today open a new era in navigation. It is no longer purely an "art", 

but also a definite scientific function of applied research and technology. 

This new era calls for evaluation and use of the full potential of any 

navigation component sensor on board ships, leading to what is known as 

mu.(;t,i.)., eM olt ..tn..tegJta.t.ed n.av..tgat...ton. J.J yJ.J.tem. 

In this thesis we develop methods for software compensation of 

gyrocompass errors. These methods are useful in integrated navigation 

systems, for the real-time calculation of the Eot~os correction in marine 

gravimetry, etc. In this chapter we describe the problem, outline the 

treatment of the problem, and summarize the main contributions made in 

this thesis. 

1.1 Problem Description 

Heading of the ship is a basic navigation parameter, and is 

used in manual, automatic and computer-oriented applications. 

The gyrocompass is the primary instrument used to provide 

heading reference on board ship. Alternatives might be to measure the 

azimuth of the ship's head by astronomical means (a time consuming, 

weather dependent, and less accurate technique); to use two raqioposition­

ing receiving antennae (along the fore-aft axis of the ship) interfero­

metrically; or to use two acoustic transducers along the keel interfero­

metrically. These last two alternatives are not self-contained, as the 

gyrocompass is, requiring radio or acoustic reference beacons. Such 

systems have been proposed, but none is presently in wide use. 
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Characteristic of the classical dead-reckoning function (i.e., 

the estimation of ship's position and velocity from observations of ship's 

speed and heading) is the monotonically increasing magnitude of the 

position error with time [G~nt 7976]. The contribution of the gyro­

compass errors to this position error can be significant, especially 

during ship's manoeuvres and/or high latitude operations. 

In many practical applications, the approach to gyrocompass­

error compensation methods appears to be oversimplified. The provisions 

made by the manufacturer for manual compensation procedures are often 

used as the only means of the system's reliable performance. For 

example, in G~ [ 7976] it is stated that over a short time interval 

(e.g., less than 10 minutes) the ship's log and gyrocompass provi.de smoothe;:­

estimates of ship's velocity than estimates derived from Loran-C. 

Therefore, the classical dead-reckoning function was used to provide 

information during ship's manoeuvres to reduce the influence of the 

Loran-e measurement noise on Loran-e positions [G~at 1976]. But, gyro­

compass observations are in error, this being especially true during 

ship's turns, when the gyrocompass can exhibit undesirable oscillations. 

Hence, the gyrocompass information may be "worthless" in evaluating 

another system's performance, since by itself it is unreliable if its 

behaviour is not adequately modelled and its deviations properly accounted 

for. Another example is an actual, measured gyrocompass error in Lancaster 

Sound in 1972 [Eaton 19 82]. A maximum error of 6° in css "Baffin" gyro­

compass was measured after 180° turns at 13.5 knots. Such gyrocompass 

errors might also give trouble in running sounding lines on a survey. 
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In computing the real-time Eotvos correction for precise marine 

gravimetry, gyrocompass deviations may introduce errors larger by a 

factor of two than the current gravimeter measurement accuracies. When 

ship's log and gyrocompass provide velocity information for calculating 

a satellite navigation fix, gyrocompass errors are important. It is 

also noted here that the performance capabilities of the current 

commercial marine gyrocompasses approach their operational limits as 

latitude increases. The reasons are increased instability of the gyro­

compass (long natural period of free oscillations, no Schuler tuning) 

and increased bias errors. These reasons will be examined in the 

subsequent chapters in more detail. 

In view of the above stated problems, our objective is to 

develop mathematical models that make the best use of the strenghts of 

the gyrocompass, and at the same time compensate for its weaknesses in 

order to minimize the influence of the gyrocompass errors on the indicated 

headings. Specifically, in this study we examine the gyrocompass perfor­

mance as a function of ship's motion and as a function of latitude. The 

particular problem addressed in this thesis is to specify an algorithm to 

compensate for errors in gyrocompass indicated headings under the follow­

ing conditions: 

i. the gyrocompass has a manual speed and latitude compensator, 

ii. the gyrocompass must continue to operate normally (but not as 

well compensated) when the software compensation is not used, and 

iii. the software compensation continues to be useful at high latitudes. 
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1.2 Outline of Treatment 

In Chapter 2 the basic definitions related to the fundamental 

principles of gyroscopic theory are given, along with a description of 

the reference frames which will be used in this study. A brief intro­

duction to gyroscopic theory and its numerous applications is included. 

The particular application of the gyroscope as a gyrocompass is outlined. 

Chapter 3 presents the principles of gyrocompass operation 

as well as its history ru1d evolution to the present. A short desc~iption 

of some current systems is presented. 

The gyrocompass equations of motion and their solutions are 

developed for a stationary, uniformly moving, and manoeuvring vessel, 

and at high latitudes, in Chapters 4 through ?,respectively. 

The performance of these various mathematical. models is 

evaluated using a compute.r simulation of the performance ot a typical 

gyrocompass. To evaluate the effect of certain inputs and approximations 

on the output error in indicated heading of the gyrocompass, a computer 

program was developed and the numerical results obtained are illustrated 

diagramatically in Chapter 8. The simulation study enables us to 

determine the gyroco~pass response under different dynamic conditions. 

In Chapter 9 the software compensation of gyrocompass errors is 

described and possible alternatives for the high latitude behaviour are 

proposed. The relative advantages and disadvantages of the open-loop 

software compensation procedure are examined. 

The last chapter assesses the results obtained and discusses 

their importance to the navigational problem. Conclusions are drawn and 

recommendations are made for continuing the present work. Alternatives 
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and extensions to this work are discussed. 

Appendices contain all the lengthy, but necessary, mathematical 

derivations used to arrive at the final expressions presented in the main 

body of the text. Also supplementary reference and explanatory material 

is given. 

1.3 Contributions Made in This Thesis 

The main contributions made in this study are: 

i. the development of _an open-loop software compensation algorithm to 

account for the gyrocompass errors, both transient and steady-state, 

ii. the application of this algori thrn to ·the high latitude behaviour of 

the gyrocompass problem, thus improving its performance considerably, 

iii. the formulation and solution of the _gyrocompass equations of motion 

for any arbitrary track of the ship using a discrete-time model~ 

iv. the formulation and solution of the gyJ;ocompass equations of motion 

for a circular path of the manoeuvring ship. 

The above contributions are the direct result of .the application 

of the theory of linear dynamic systems in a simple, straightforward way. 

The clear, concise, and consistent formulation of the equations of motion 

of the gyrocompass is due to the use of the Lagrangian approach. The 

uniform notation followed through the whole study helps to avoid misunder­

standing and misinterpretations. Finally, an extensive bibliography 

was compiled. 



CHAPTER 2 

BASIC DEFINITIONS - INTRODUCTION TO GYROSCOPIC THEORY 

AND ITS APPLICATIONS 

In this chapter the basic terms used in gyroscopic theory are 

defined. Applications of the gyroscope are presented briefly. The 

application of the gyroscope as a gyrocompass is discussed. 

2.1 Definitions 

VynamiC6 relate the motion of a physical body to its inter­

actions with its surroundings, (i.e. , the response of the physical body 

in its environment). 

Galiieo showed that there are preferred reference systems in 

which the deviation of a body from uniform motion (or rest) is always 

attributable to external influences. These preferred reference systems 

are called IneJztia.l or Ga.Uf.ean Sy.&:tern6. In such a reference system we 

can speak of absolute acceleration and absolute angular velocity, but 

neither velocity nor position can be considered absolute. 

-7-
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Ine4tlal Space is a reference space in which Newton's laws of 

motion are valid. It is considered to be non-rotating with respect to 

the 11 fri..xed .6:t.a.ll/.) 11 , whose positions for navigational purposes appear to 

be fixed in space. 

The following reference frames may be defined: 

a. Ir.ertial frame; it is earth-centred, non-rotating with respect to 

inertial space, 

b. Earth frame; it is geocentric, non-rotating with respect to the earth, 

c. Navigational frame; centred at any point on the earth's surface 

(topocentric), non-rotating with respect to the local vertical, 

d. Body frame; fixed relative to the body in a preferable manner. 

The frames defined above have been identified by their lack of 

rotation, but they have not been specifically oriented to the direction 

of certain individual axes. This allows the choice of a specific coordi­

nate frame later to suit the problem treated. 

The peculiar motions of spinning bodies have always fascinated 

mathematicians, physicists, and engineers [MagnUh 7974]. In the broad 

literature relating to problems 0f spinning bodies the tenn gy~o is used 

to describe, quite generally, a rotating rigid body. 

A very common definition of a gy~o.6cope specifies a rotating 

rigid body at a large angular velocity about an instantaneous axis, 

which always passes through a fixed point. This fixed point may be the 

centre of gravity of the body, or it may be any other point. This broad 

definition can be made more specific under the following simplifications: 
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-the axis of rotation is both a principal axis and an axis of symmetry, 

- the ratio between angular speeds along the spin-axis and the transverse 

axes is infinitely large. 

Therefore, a gyroscope is a rigid body that rotates at high angular 

velocity about one of its principal axes of inertia, and of which the 

rotations about axes perpendicular to the gyro-axis (spin-axis) are very 

slow compared to the main rotation. The following two definitions are 

coming as an immediate result of the theory of rotating rigid bodies. 

Angu.talt Mome.nt:um (or moment: o6 mome.nt:um) is a vector property 

of any physical body that is spinning with respect to inertial space 

about an axis. 

Tokque. is the rotational effect of an applied force about an 

axis. In the absence of an applied torque an angular momentum vector 

maintains a fixed orientation in an inertial space, thereby providing a 

~e.ctional ~e.6e.~e.nee.. By applying a calibrated torque to a spinning 

body one can command the angular momentum vector to rotate relative to 

inertial space in a known and prescribed manner. 

2.2 Brief Introduction to Gyroscopic Theory and Its Applications 

The device which has proved most suitable to indicate a reference 

direction is the gyroscope. Two gyroscopic principles are the direct con­

sequence of the preceded definitions namely, gy~o~eopie ~ne.4tia and gy~o­

~eopie p~e~~~on. Gyroscopic inertia is that property of the gyroscope 

which makes it try to keep the spin-axis parallel to its original position. 
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Gyroscopic precession is that property of the gyroscope that causes the 

spin-axis to change direction when a torque is applied to it. 

For an angular reference, it would be sufficient to have a 

device which was held fixed in angular position in inertial space in 

spite of any angular or linear acceleration, or velocity of the support 

structure. 

F~ee gy~ is any gyroscope on which no external moments act to 

change its motion's character. The angular momentum and the kinetic energy 

of rotation of a free gyro remain constant. 

The overall objective in the design of an angular-reference 

device is to create an instrument which will respond to angular-rotation 

inputs. The gyroscope serves the function of an instrument that will 

respond to angular-rate-inputs, i.e., angular velocity. Depending upon 

its own internal characteristics (or those arising from external circuits) 

and equipment coupled to the gyroscope, it can respond in such a way as 

to [Wkigley eta£. 1969]: 

a. measure the input angular velocity (providing a signal proportional 

to it), or 

b. maintain a reference angular attitude (independent of the input 

angular velocity) , or 

c. measure the integral of the angular velocity input. 

Although the apparent effect of the earth's rotation on gyroscopes 

was first shown by Leon Foucault in 1852, the ability to construct suffi­

ciently accurate units did not exist until the beginning of the twentieth 

century. 
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For many applications in guidance and control it is necessary 

to have available certain directional references. These references, 

which serve as the basis for obtaining nav~gational data, or for ~tabii­

~zation of a vehicle, or some of its equipment, must be maintained 

despite various interferences. 

Specific applications of the gyroscope include the gyrocompass, 

rate-measuring gyroscopes, direction-indicators for aircrafts, artificial­

horizons, autopilots, inertial navigation units, ship's motion stabilizers, 

gyroscopic vibration absorbers, etc. 

2.3 Gyroscope on Gimbals -The Gyrocompass 

In the previous section two important principles of gyro­

scopic theory were defined, i.e., gyroscopic inertia and gyroscopic 

precession. 

Gyroscopic inertia depends upon angular velocity, mass, and 

radius of gyration, i.e., upon angular momentum. 

Gyroscopic precession can be caused only~a force attempting 

to tilt or turn the spin-axis about another axis. A torque about the 

spin-axis cannot cause precession. Any torque about either one of the 

other two transverse axes will cause the gyroscope to precess about an 

axis at right angles to that about which the torque acts. Precession 

will continue as torque acts, but will cease when the torque is removed. 

If the plane in which the torque is acting remains unchanged, the gyro­

scope will precess until the plane of the spin is in the plane of the 

torque. Analytically, it is represented by 



where; 

+ 

~ X prec 
+ 
H 

+ 
M 

-12-

(2 .1) 

w prec 
is the angular velocity of precession of the gyroscope 

angular momentum with respect to inertial space, 

+ 
H: is the angular momentum along the gyroscope spin-axis, 

and 

+ 
M: is the applied torque. 

Physically, this equation means that the gyro-axis angular 

+ 
momentum vector H, precesses relative to inertial space in an attempt 

+ 
to align itself with the applied torque M. 

The gy~ocompao~ is a navigational instrument which accurately 

seeks the direction of ~ue no4th under the combined effect of gravity 

and the earth's daily rotation [W4igiey et ai. 7969]. 

True north is the direction represented by a horizontal line 

in the plane of the meridian, or, the intersection of the horizontal plane 

and the local meridian. 

To make a gyroscope into a gyrocompass the gyroscope has to seek 

and maintain the true north direction. A gyrocompass is a gimballed 

~pinning wheel. The gyroscope is so mounted that the wheel-axle (gyro-

axis) has freedom of angular motion. The number of gimbal rings, or the 

nature of the support determines the type of the gyroscope. A two-degree-

of-freedom gyroscope has one gimbal ring (or equivalent support) in addition 

to the gyro-element gimbal ring. (The gyro-element consists of the spinning 

rotor, the drive mechanism and the spin-axis support.) It should be noted 

here that the term "two-degree-of-freedom" gyroscope does not account 

for the freedom in spin of the gyro-wheel itself, which provides it with 
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one more degree-of-freedom that is usually omitted in the literature. 

We will keep this convention in here, and we will talk about a "two­

degree-of-freedom" gyroscope referring actually to the degrees-of­

freedom that the support structure provides. 

As originally constructed the gyrocompass had a two-degree­

of-freedom gyroscope with a mass attached to it, that gave the gyro­

compass a pendulocity, and therefore providing by some means of vertical 

stabilization. 

In conclusion, the gyrocompass tracks true north by attempting 

to align the gyro-axis with the horizontal component of the earth's 

angular velocity. In the next chapter the history and development of 

the gyrocompass will be presented together with a brief description of 

some current gyrocompass designs. 



CHAPTER 3 

BASIC PRINCIPLES OF GYROCOMPASS OPERATION 

This chapter is devoted to the particular application of the 

gyroscope, the gyrocompass. A historical review of the gyrocompass 

development is presented. A short description of some current systems 

in commercial use is then given. 

The principles of operation of a Sperry-type gyrocompass are 

introduced since this is the system in which we are interested in the 

present analysis. 

An outline of the errors associated with the gyrocompass is 

given. The main sources of errors are identified in an attempt to 

examine their influence on gyrocompass readings. 

3.1 The Gyrocompass as a Heading Indication Sensor - Historical Review 

and Development 

The history and development of the gyrocompass are closely 

related to the history of this unique device, the gyroscope. It is in 

this respect that the use of the gyroscope as a heading indication sensor 

is examined to provide historical information about the evolution.of the 

gyrocompass. 

-15-
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In 1752 the first written statement on a gyroscopic device was 

published in the London Philo~ophieal T~~actio~ [So~g 7976]. Sorg, 

studying the history of the gyroscope, gives a fascinating list of liter­

ature on the subject. This is the source from where most of the material 

appearing in this section is drawn. 

The first scientists who tried to apply the theory of spinning 

bodies in directional instruments were S~on and Lomono~~OW. Their 

efforts were concentrated on the design of an a4ti6£eial-ho4izon by 

employing a spinning top. In a lecture given at the Russian Academy of 

Sciences in 1759 entitled "InveAtigalio~ about beti:eJt. aeeUil.aey o6 .the. 

~e.a-~uteA", Lomonossow proposed a spinning top to create an artificial­

horizon device on a rocking ship. 

Serson's interests inclined mostly towards the design of an 

artificial-horizon device for use in sextant observations at sea at 

'dmes when there was fog around the sea-horizon. Such an instrument was 

ultimately tested onboard a British Admiralty yacht in 1743 and its 

function was favourably reported upon. 

In 1817 there is a publication in the "Tue.b-i.nge.n Bla.eti:eJt. 6ue.~ 

Na;tUIWJ~.6e.~eha6.t und A~zneik.unde.", (translation: "TUbingen Letters for 

Natural Sciences and Medicine"), by Bohne.nb~eJt. from the University of 

Tlibingen, Germany. In this publication, the first gyro with a C~dan­

.6U6pe.~-i.on was shown, (Fig. 3.1). With this model Bohnenberger could 

demonstrate the laws of the gyroscope and he also could show that the 

spin-axis, acted upon no external forces, does not change its direction 

in space. However Bonhenberger did not know anything about the value 

of this principle as being used in direction indicating devices. In 
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the same publication it was stated that the mathematical treatment of 

this type of device was done by the French Po~~on in 1813. 

The man who created the word gy4o~eope was the French scientist 

Leon Foucault. In his memoir read before the Academy of Sciences in 

Paris (1852) Foucault describes his experiments relating to the movement 

of the earth and he concludes: 

"Comme toU6 e~ phtnom(!.n~ dependent du movement de. la. 
TVlJLe. e.t e.n ~ont d~ ma.rU.6~tati.o~ vOJr.i..€.~, je. p40pMe. 
de. nomine.4 gyM~ cope. l.' .i.~.tllume.nt urU.que qui m' a. .t:;e.4v.i. 
a .e.~ CO~ta.nte4. II 

In this manner the word "gyroscope" was first introduced. 

Its etymology from Greek means an a.ppMa.tU6 a.l.l.ow.i.ng to v.i.ew 4otation. 

Today it denotes a variety of mechanisms used to measure angles, cmg~lar 

velocities, accelerations, or to indicate north. 

In one of his experiments, Foucault found that with a gyroscope 

one can find north, using proper gimbal structure and damping so that the 

spin-axis will settle to a direction which coincides with the direction 

of the horizontal component of the earth's-rotation vector. The idea of 

the gyrocompass was born. But Foucault had no great success with his 

device mainly due to lack of technical means to provide gyro-wheel spinning 

for a long period of time with high speed. 

It was TMuve who designed in 1865 the gyro-wheel as the rotor 

of an electric motor. 

, 
Two improtant improvements were made by Trouve: an electric motor 

to drive the gyro-wheel fast enough and the constraint of the spin~axis 

to the horizontal plane by using the force of gravity. The first practical 

gyrocompass had been developed. Trouve's gyrocompass, developed for 
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correcting magnetic compasses onboard ships, but only in harbors, is 

shown in Figure 3.2. 

Similar devices to Trouve's gyrocompass were built by the Ameri­

can physicist Hopkin6 in 1878 and by the Frenchman Vubo~. 

The next step in the gyrocompass development was made by Lo~ 

Kelvin (Sir William Thomson) in 1884. He proposed, for avoiding the 

friction of the bearings on the gimbals, to suspend the gyro by a to~ion-

6~ee ~e, or if possible to use a 6loated-~U6pen6ion instead of the 

Cardan-suspension. Lord Kelvin's second proposal was applied by the 

Dutch scientist Van den Bo~ in 1885 for his gyrocompass. This patent 

was bought by the German company Siemens & Halske and some devices were 

built. 

At the beginning of the twentieth century the gyrocompass devel­

opment was forced along by the German He4man ~chUtz-Kaemp6e. In 1900 

he was planning a trip to the north pole in a submarine, but he was 

frustrated by the total absence of reliable navigation equipment. His 

idea was to develop a direction-keeping instrument, but the trials were 

not successful. This led him to undertake the development of a north­

seeking instrument. The result of his efforts was the famous Anschutz 

gyrocompass, patented in 1904 [Sokg 7976]. 

Although Anschutz is acknowledged as the inventor of the first 

sea-worthy gyrocompass the date of its actual production is somewhat vague. 

From a brief review of the literature, W~gley et at. [7969] dates the 

first ever produced gyrocompass by AnschUtz as 1908. Pearson CGy~o~, 

1965, Pape~ 5, pp. 7-77] dates it as 1910. So~g [1976] states implicitly 
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that already in 1910 the German Navy was equipped with Anschutz gyro­

compasses undergoing extended sea-trials. G,hu:m,t [7967] says that about 

1914 Anschiitz-Kaempfe and Sperry simultaneously developed "what might 

be termed the first good gyros suitable for navigation purposes". 

In 1906 the young German scientist Ma~an Schute~ saw the 

work of Anschutz and he also started to work in the field of gyroscopes. 

His first proposal resulted in a gyrocompass which had a rotor driven by 

an a-c current at high speed [So~ 7976], and is shown in Figure 3.3. 

During the second decade of the twentieth century several 

designs of gyrocompasses existed. In 1911 Elm~ Spe44y in the United 

States produced a gyrocompass that was easier to manufacture [W4igley 

e~ al. 1969]. In 1912 a third type of gyrocompass appeared, built by 

S.G. B~own and John Pe44y in London [So~g 7976-77). Anschlitz-Kaempfe 

and his staff, including Schuler, were working in Kiel and they came up 

with a new design, a three-gyroscope sensitive element. It was later 

followed by a two-rotor gyrocompass, a system in use now for more than 

fifty years. 

But the most significant advancement was made by Maximilian 

Schuler in his paper written in 1923, where he showed that a pendulous 

system of the proper frequency stays vertical when moving around the 

earth. 

In this paper, entitled "The V.i6~Wtbanc.e o 6 Pendulum and GyJto­

.6c.op.i.c. Appa.Jta:CU6 by the Ac.c.el~ation o6 :the Vehicle", Schuler stated in 

the introduction: ••• "I asked myself the question: would this sort of 

acceleration error be capable of elimination by an appropriate construc­

tion?" ••• "The answer is yes. And the solution is almost trivial." ••• 
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Finally, Schuler concluded in his paper: 

••• "An oscillatory mechanical system, on whose centre 
of gravity a central force acts, will not be forced 
into oscillations by any arbitrary movement over a 
spherical surface about the centre of force, if its 
period of oscillation is equal to that of a pendulum 
of the length of the sphere's radius in the applied 
force field" [Sc.hul.e!t 7967]. 

This general law, due to Schuler, was the most important 

progression development not only in the gyrocompass theory and design, 

but also in today's inertial technology. 

Henceforth, the development of the gyrocompass was only a 

matter of expanding technology and not a matter of developing new prin-

ciples. However, a great number of ingenious engineers further-developed 

tae existing gyrocompass mechanizations. In Fe~y [7932] and R~ling~ 

[1944] one can find half a dozen gyrocompass designs existing by the 

1940's. 

To complete this survey of gyrocompass evolution some other 

names of devoted scientists should be mentioned, such as those of 

Ma!Lti.e~~ en and Gec.k.el.e.tc.. Martienssen, as early as 1906, computed the 

N-S acceleration error of a gyrocompass, thus inspiring Schuler later 

on to arrive at his unique contribution, Schuler's period of 84 minutes. 

Geckeler came up with a modified Anschutz-type gyrocompass 

design, which has received particular attention in soviet literature, as 

can be seen from the extended list of references provided in the biblio-

graphy at the end of this thesis. 

To conclude this section it is necessary to refer to the recent 

advancements in gyrocompass development. The new technology attempts to 

substitute the conventional gyroscopes by ~e.tc.-gy.tc.o~. The same general 
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principles of rotational motion are used, but the mechanization is 

completely different. It has been proven feasible to construct laser­

gyros and to use them as heading indication sensors, but they are.still 

in the trial process. Until a low-cost, reliable laser-gyro for marine 

use becomes available on the market, the conventional gyrocompass .design 

will be perhaps the primary instrumentation for a heading indication 

sensor onboard surface ships. 

Recapitulating, today the most common types of commercial gyro­

compasses are those of Sperry, Anschutz and Arma-Brown. Descriptions of 

these systems are given briefly in the next section. Particular atten­

tion is given to the Sperry-type gyrocompass. 

3.2 Description of Some Present Systems 

The previous section contains the history of the development of 

the gyrocompass. We now turn to consideration of the actual instruments 

which are to be found in service on the world's navy and .me.rchant ships. 

Only the most common types will be presented here namely·, the Anschutz, 

the Arma-Brown and the Sperry designs. The description of these systems 

will be intentionally limited. However, for· details the interested 

reader can refer to the operational manuals of the systems. The major 

sources of information used here are; Rawling~ [1944], Annold and 

Maundell. [1961], Gtjli.O.& [79651, Ktink.eJL:t [1964], Opell.ation and Sell.v-i.c.e. 

Manua..l o6 Spe.Mtj MK 37 Mod 1 Gtjll.oc.ompa-6.6 Equipme.rr..t [ 79 7 51. 

The first Anschutz gyrocompass design (due to Max Schuler in 

collaboration with the Anschutz firm) presented in the previous section 

(Figure 3.3), uses a single gyroscope hanging from a hollow ring-shaped 
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steel float resting on mercury. Before many of these single-rotor 

Anschutz compasses had been made, it was discovered that they were 

subject to large errors due to the rolling motion of the ship especially 

on intercardinal directions [Rawling~ 1944]. 

The next design, intended to overcome the above imperfections, 

employed a triple-rotor gyrocompass. A schematic diagram [after Rawling~] 

is shown in Figure 3.4. 

We will discuss this design because it is the predecessor of 

today's Anschutz compasses, which are a modification of this triple­

rotor system. 

The compass has three separate and similar gyroscopes suspended 

from a frame F, carrying the compass card (or dial) c. The frame is 

supported from a hollow steel-ball B, floated in a bowl of mercury M. 

The gyroscopes are situated at the corners of an equilateral triangle 

whose apex is under the 180° mark of the compass card. The whole 

arrangement is pendulous and north-seeking. The gyroscope at the south 

corner, which is the principal meridian-seeking element, is fixed so that 

the north-south (N-S) line of the card lays parallel to its spin-axis. 

The other two gyro-casings have their vertical axes mounted in ball­

bearings BB in the frame. They are free to move in azimuth independently 

of the compass card, except for a pair of light springs which keep their 

spin-axes normally at an angle of 30° with the meridian. 

These two gyroscopes are linked toge~~er in such a manner as 

to ensure that the intersection of their spin-axes always lies under 

the N-S diameter of the compass card. These two gyroscopes therefore 
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contribute something to the north-seeking effect of the south-gyroscope 

and at the same time exert a stabilizing effect which resists displace­

ment of the east-west (E-W) diameter of the compass card from the 

horizontal position. 

Although the apparatus just described, enjoyed the reputation 

of being one of the most successful gyrocompasses on the market for 

twenty years, mechanical defects occurred, which prevented the very 

high degree of accuracy which its designer Anschutz had set as his 

ideal. 

Anschutz sought to remedy all the drawbacks of previous design 

in one stroke by redesigning his compass. The principal innovation 

consists of enlarging the float so, as to make it large enough to include 

everything in a gyro-sphere (i.e. the gyroscopes, the damping trough, 

etc.). 

The gyro-sphere is entirely submerged in liquid. The whole 

assembly is centralized in the outer sphere by a system of coils produc­

ing an alternating magnetic field, thus generating Foucault currents, 

thereby producing a repulsion effect which centralizes the ball both 

laterally and vertically. The triple-rotor arrangement is now substi­

tuted by a two-rotor meridian-seeking component. The south-gyroscope is 

not necessary any more, and the two oblique gyroscopes are set at a 

smaller, but equal angle, with the meridian. 

The Arma-Brown gyrocompass system combines what is called a 

directional gyro with a gyrocompass [Klinke4t 1964). The Arma gyrocompass 

is a modification of a double-rotor Anschutz gyrocompass. The Brown 

gyroconpass is a single-rotor Sperry-type gyrocompass system. The Arma­

Brown design is a completely different mechanization. It is a floating 
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two-degree-of-freedom gyroscope, supported at neutral buoyancy, free 

of mechanical gimbal pivots or ball-bearings. In Figure 3.5 the struc­

ture of an Arma-Brown gyrocompass equipment is shown, [after D. Barnett 

Gy4oh 1965, Pape4 12, pp. 159-165]. 

The gyro-wheel is mounted in an hermetically sealed container 

which is substantially spherical, but has a deep circular recess to 

accommodate a floating gimbal-ring. The gyro-sphere, containing the 

gyro-rotor assembly, is completely supported by the floatation fluid 

of the outer tank. It is centred by two successive pairs of fine. wire 

filaments, referred to as Zo46ion wi4eh. One pair of these wires, 

diametrically opposed, connects the gyro-sphere to the floating gimbal­

ring, whose plane is at right angles to the spin-axis, hence permitting 

the gyro-sphere to tilt about one gimbal axis. The second pair of these 

torsion wires, at right angles to the first pair, connects the gimbal­

ring to opposite points inside the tank that holds the floatation fluid, 

providing the gyroscope with one more degree-of-freedom. The torsion 

wires and associated gimbal mounting are more clearly shown in the 

following Figure 3.6 [after Klink~ 1964]. Gravity reference is 

obtained by a small pendulum which is fixed to the outer tank, which i~ 

supported in a set of gimbals which are connected to the binnacle 

housing. 

The third and last gyrocompass design treated here is the 

recent Sperry-type gyrocompass system. This system deserves our atten­

tion since it is the one that is used in the whole analysis of the present 

work. 
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The main parts are the Gyro-sphere, the Phantom Yoke and the 

Binnacle Assembly. The gyro-sphere containing the gyro-rotor is immersed 

in silicone fluid and it is designed and adjusted to have neutral buoy­

ancy. Its essential features are illustrated diagramatically in Figure 

3.7, [after AAnotd and MaundeA 1961]. 

The complete instrument is supported through the gimbal a, and 

is pi voted about axes 0 'x ', 0 'y '· It is therefore free to assume a vertical 

position irrespective of the motion of the supports. The compass assembly 

rests on bearing b, and consists of the compass card e and phantom ring 

d, together with inner ring e, in which the rotor and casing are mounted. 

The inner ring assembly is carried by a wire suspension 6, 

which passes through a tube and is fixed at the upper end to e. Due to 

the directive force on the rotor the ring e tends to move relative to d 

in order to align its axis with the meridian. Any such .movement, however, 

is sensed by a servo-system which immediately rotates the phantom ring 

by means of the azimuth motor g to keep both ringsd and e coincident. 

The gravity reference is obtained by using a·mercury ballistic 

h instead of a pendulous mass as in the elementary gyrocompass design. 

The mercury ballistic consists of a frame pivoted about the E-W axis 

of the phantom ring, to which are attached two pairs of bottles ~. 

containing mercury. Each N-S pair is interconnected by a pipe j of 

small bore which allows the mercury to flow from one to the othe~. 

A link-arm k attached to the frame engages with the rotor 

casing {gyro-sphere) l through a pin m, which is offset to the east by 

an angle y. 
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NOMENCLATURE: 

a gimbal suspension 

b bearing 

c compass card 

d phantom ring 

e inner ring 

f wire suspension 

g azimuth motor 

h mercury ballistic 

_,_ bottle 

connecting tube 

k link arm 

rotor casing 

m connecting pin 

l meta centric height 

'Y offset angle 

Fig. 3.8 
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The gyro-sphere l is the north-seeking part of the gyrocompass. 

Inside the gyro-sphere is the gyro-wheel. 

The basic design of three modern gyrocompasses has been 

described. Figure 3.9 summarizes the principal differences among the 

mechanical arrangements employed to seek north. 

3.3 Principles of Gyrocompass Operation and Associated Errors 

In the following we shall attempt to describe the underlying 

theory of the gyrocompass and give a summary of the errors associated 

with its operation. 

The physical behaviour of a gyrocompass, which consists essen­

tially of a gyroscope whose motion is controlled by the combined action 

of the ea4th'~ ~o~ation and the moment produced by a gkav~at£onal 6o~ee, 

is examined. 

The gyroscopic principles outlined in the previous chapter are 

used to demonstrate the gyrocompass application. 

Lets consider a gyro-wheel suspended at its centre of mass and 

free to adopt any position in space (Figure 3.10). Let also the rotor, 

spinning around its axis of symmetry, be placed initially at the equator 

with its spin-axis horizontal and pointing a few degrees east of north. 

In the course of a day the spin-axis would remain motionless relative to 

inertial space (i.e., gyroscopic inertia, or equivalently, a property 

known as ~g~dLty o6 the gy~o~eope). 

But for an observer on the earth, the spin-axis would appear 

to rise in the east and set in the west. For example, suppose that the 

spin-axis were set pointing East at 12 o'clock midnight, and the earth-
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observer were left to study its motion during the succeeding 24 hours. 

At 6 a.m. he would find the spin-axis pointing North with its tip tilted 

upward above the horizontal plane. At 12 o'clock noqn the spin-axis 

would point West and laying on the horizontal plain again, while at 

6 p.m. it would point North, but tilted downward below the horizontal 

plane. Finally, at midnight the spin-axis would have returned to its 

original position. The spin-axis would thus appear to the earth­

observer to be describing a cone at an angular velocity equal to that 

of the earth but in an opposite direction. The phenomenon just described 

is the second most important gyroscopic property, the gy~o~eopie 

p~e.eeA-6-i.on. 

The next step in making a gyroscope into a gyrocompass is to 

make the gyro-wheel seek the meridian. To do this, a weight mg is added 

to the bottom of the vertical gimbal, which causes the gimbal to be 

pendulous about the horizontal axis Oy. 

To find what actually occurs we allow the earth to rotate and 

we combine the two actions : .the. e.cvr.,th '~ ~ota.U.on and .the gJta.vUa.U.onai. 

to~que.. We trace the path of the spin-axis as we did before, letting 

the spin-axis to point initially east of the meridian. While the earth 

rotates, the spin-axis tilts up, but now there is a horizontal torque 

directed westward due to the pull of gravity on the pendulous mass. The 

spin-axis precesses about the vertical axis toward the meridian, continu­

ing to rise because of the earth's rotation, until finally the meridian 

is reached. At this point tpe pendulous torque is maximum. This 

resulting path is the superposition of the two motions the spin-axis 

performs. One is the precession due to the earth's rotation,. the other 

being the precessional motion imposed by the applied pendulous torque. 
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As the spin-axis continues to precess through the meridian 

the earth's rotation causes it to set, thus reducing the amount of .tilt 

and consequently the pendulous torque. Since tilt becomes less, the 

speed of precession in azimuth decreases and finally the spin-axis 

becomes horizontal. The pendulous weight causes no torque. At this 

point the gyro-axis has precessed as far west of the meridian as it 

was east originally. While the earth continues to rotate, the gyro­

axis continues to set. This causes it to dip below the horizon and 

the gravitational torque produced due to the tilt has now the opposite 

direction than previously (i.e. an eastward direction). Hence, the 

spin-axis precesses toward the meridian again. Eventually, the spin­

axis precesses past the meridian and back to its starting position, 

where this whole process is repeated. Because the precessional speed 

is directly proportional to the amount of tilt~ the spin-axis is 

tracing out an ellipse about the meridian and the horizon, (Figure 3.11). 

The rotor and pendulous weight described above form the 

essential elements of a gyrocompass. For the gyrocompass to operate 

properly, it is necessary that the oscillation be damped out so that 

the gyro spin-axis can settle on the meridian and not keep passing 

through it. Damping an oscillator involves changing its energy states, 

one way to do this.being the change of its velocity. 

There are several ways to illustrate the damping action on 

the oscillations of the gyrocompass. One way is to add a small weight 

to the east of the vertical gimbal as it is described in the Op~ational 

and S~v.ic.e Manual o6 SpVI.IUJ MK 37 GyJtoc.ompa.6.6 Equ.i.pmeYLt 1975, pp. 1-15 

~o 1-16]. A second approach is to employ some kind of mechanical 
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arrangement of interconnected tanks filled with a viscous fluid and 

attached to the vertical gimbal as it is described in W~gley et al. 

[7969,: pp. 187]. Both ways result in anti-pendulous action while the 

spin-axis is tilted, therefore reducing the azimuthal precessional 

motion in every successive oscillation of the gyrocompass. Thus the 

elliptical path followed by the spin-axis is changed into a spiralling­

in motion toward the meridian, where finally it settles. The same 

action (damping) can be illustrated by offsetting the pendulous mass 

to the east by a small angle y, a configuration which produces an 

identical effect (spiral path) as the two previously mentioned procedures. 

Figure 3.12 summarizes in an illustrative way what has been described 

so far, [after W~gley et al. 7969]. 

Although the universal use the gyrocompass at sea is a 

testimony of its unique ability to provide directional reference 

with respect to true north, it is also subject to several errors. Some 

of these are persistent while others are temporal. Using so~ewhat 

different terminology, they can be characterized as a steady-state 

and transient errors. Gyrocompass errors may be systematic or non­

systematic. Some of these can be eliminated or offset in the design of 

the compass, while others require manual or ~o6tw~e adjustment for 

their correction. 

The total eomb~ned e~o~ (i.e., the resultant error) at any 

time is called gy~ ~o~ (GE) and is expressed in degrees east or west 

of the meridian to indicate the direction in which the spin-axis is 

offset from true north. 
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The gyrocompass associated errors are of three kinds: those 

associated with the way damping is accomplished: those associated with 

the motion of the transporting vehicle: and those associated with the 

design of the mechanical suspension. 

The damping error applies only to those gyrocompasses in 

which damping is achieved.by offsetting the point of application of 

the gravity force. It depends on latitude, increasing as tan $. 

The errors introduced by the motion of the transporting 

vehicle are related to velocity and acceleration inputs. Velocity 

introduced errors occur to all compasses that use the earth's rotation 

as a directional datum. They are independent of the instrument's 

design and they are predictable. Acceleration-induced er~ors on the 

other hand, belong in part to the way in which the instrument is 

constructed and to the dynamic response of the gyrocompass. In 

general, they are less predictable and not so easy to compensate for. 

In most of the cases, they introduce temporary (transient) errors in 

the compass readings. 



CHAPTER 4 

EQUATIONS OF MOTION OF A STATIONARY GYROCOMPASS 

In the previous chapters the basic definitions and opera­

tional principles related to the gyrocompass were outlined. In this 

chapter we develop the equations of motion of the gyrocompass. In 

particular, we are interested in laying out the equations of motion of a 

stationary gyrocompass, that is, a gyrocompass on a fixed base on the 

earth's surface. 

The specific gyrocompass design we deal with in this study is 

the Sperry gyrocompass. As it was described in the previous chapter the 

modern Sperry gyrocompasses make use of the ballistic-mercury design to 

produce the necessary gravitational torques. However, the mechanization 

of the equations of motion in the present analysis refers to a more 

elementary design, the pendulous-mass gyrocompass. 

Two main reasons led us to this choice. The first is that, in 

terms of analysis, both designs - i.e. the mercury-ballistic and the 

pendulous gyrocompass - are equivalent. The second reason is that, there 

is not available information for the exact actual design of the Sperry 
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gyrocompass. Furthermore, the analysis in terms of the mercury-ballistic 

design introduces additional theoretical complications. Our concern is 

not to develop something new in the field of gyrocompass theory and design, 

but, conversely, to try to make the best use of the existing information 

in the most efficient and beneficial way. 

It is instructive to mention.here two basic assumptions that 

will be used in the whole course of the present work. A spherical earth 

-5 is assumed, rotating with constant angular velocity n = 7.29-x 10 

-1 
rad·sec • Also constant acceleration of gravity g 

-2 = 9.81 m·sec is 

supposed. Other approximations that will be used to a certain extent 

are approximations in physical modelling leading to mathematical simplifi-

cations, such as those presented in Table 4.1. 

The approach chosen for the mathematical analysis is that ~f 

physical dynamic system analysis, since the objective of the investigation 

is to understand and predict the dynamic behaviour of the given system. 

Whatever the particular physical system under study is, the 

procedure for analytical investigation usually incorporates each of the 

following stages [Cannon, 7967j: 

I. - specify the system to be studied and assign to it a simple 

physical model whose behaviour will be sufficiently close to 

the behaviour of the actual system, 

II. - derive a mathematical model to represent the physical model, 

i.e. evaluate the differential equations of motion of the physical 

model, and 

III. - study the dynamic behaviour of the mathematical model, by solving 

the differential equations of motion. 



Table 4.1. 

APPROXIMATION MAT HEM AT ICA L SIMPLIFICATION 

neglect small effects 
I reduces the number and complexity of the 

~differential equations 

assume linear relationships~ makes equations linear, allows superposition of solutions 

assume constant parameters ,L leads to differential equations with constant coefficients 

neglect uncertainty 

and noise 

all quantities have definite values that are known 

precisely thus leading to a deterministic approach , 

. it simplifies the analysis by avoiding the need for 

~ statistical treatment , therefore dynamical effects of 

uncertainty and response to random disturbances are 

ignored. 

I 
+:­
ln 
I 
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A fourth possible stage can be the selection of the physical parameters 

of the system so that it will behave as desired, but that goes beyond the 

scope of the present work since our aim is not to improve the actual 

design of the gyrocompass. 

In this work, we shall present the Lagrangian approach to the 

formulation of the equations of motion because this method circumvents, 

to sorre extent, the difficulties found in the direct application of 

Newton's laws of motion. The reasoning behind this, is that the Lagrangian 

approach involves scalar quantities, while Newton's laws of motion 

involve vectorial treatment. Furthermore, the use of Lagrange's equations 

presents the equations of motion in a standa.rd, convenient form .. 

Another important concept in the description of a dynamic system 

is that of deg~ee6 o6 6~eedom. In general, the number of degrees of 

freedom is equal to the number of coordinates which are used to specify 

the configuration of the system minus the number of independent equations 

of constraint [G~enwood 1965]. In the case of the gyrocompass two 

CO()rdinates are necessary to specify at any time the position of the 

spln-axis; the tilt angle B with respect to the horizontal plane and the 

azimuth deviation a with respect to the meridian. 

In summary, the equations of motion of a pendulous gyrocompass 

design are developed. In a further step, the combined pendulocity and 

damping action is formulated and the dynamic response of a stationary 

gyrocompass is evaluated. Finally, the initial conditions of the motion 

are examined. 
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4.1 Equations of Motion with Pendulocity 

We now proceed to analyze the motion of a gyrocompass, which 

consists essentially of a spinning rotor with a horizontal axis supported 

in a frame free to turn about a vertical axis. 

Figure 4.1 illustrates the earth which rotates about its polar 

axis at angular velocity n in a direction from west (W) to east (E) . 

Figure 4.2 shows the geometry of the gyroscope assembly as 

well as the components of angular displacement of the gyrocompass. 

The gyroscope assembly is fitted with a pendulous mass m. For 

the rotor, the principal axes are chosen to be O~;n and the principal 

moments of inertia C, B, A. For a symmetrical rotor A = B. Axes O~;n 

may also be arranged to be the principal axes of the rotor casing whose 

principal moments of inertia are C', A', B'. The inner ring is assumed 

to have principal 'moments of inertia A", B", C" about axes 0~' I; 'n', where 

On' is vertical and O~· is horizontal. Let us consider the gyroscope of 

Figure 4.2 at a latitude $ on the earth's surface, as shown in Figure 4.1, 

(also consult Figure 3.8 for the gyrocompass arrangement .and nomenql~ture). 

The z-axis in this case is not an inertial axis, but coincides with the 

local vertical at all times. The direction of the gyrocompass spin-axis 

0~ is defined by a rotation a about the Z-axis and a rotation S about the 

;•-axis. A rotation w about the ~-axis results to the final Ozxy frame shown 

in Figure 4.2. By inspection it is easy to find the relation between the 

rotation angles a, S, 1jl and the Etd.e.JL.i.a.n a.nglu. The earth's angular 

velocity n is resolved into two components about axes N and z, respectively, 

so that the gyroscope precession consists of the components n sin ~ and 

a. -To provide the torque about the horizontal axis 01; necessary for 
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The Earth's Angular Rotation 

Fig.4.1 
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Gyroscope Geometry 

Fig. 4.2 
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producing the precession n sin ~. a pendulous weight mg is attached at 

the point (t;, C n) = (0, 0 ,-.R.) of the rotor casing. 

In view of the above definitions the angular velocity components 

of the inner ring are 

wz;;, Q cos ~ cos Cl 

WE;' -n cos 4> sin a (4.1) 

w 
n' 

n sin 4> + ~ 

whereas the angular velocity components of the rotor casing are 

WI;; n cos ~ cos a cos s-en sin ~+a) sin s 

Wf; -n cos ~ sin a + s (4.2) 

w w 
n 

sin <P+a)cos s + n cos <P cos a sin s 

Finally, the angular velocity components of the rotor (spinning wheel) 

about system Ol;;f;n are 

. 
nz;; w +tjJ z;; 

nc; we; ( 4. 3) 

f2 w 
n n 

So far, following the procedure outlined in the introduction of 

this chapter, we have specified the system to be studied by. assigning the 

simple physical model shown in Figure 4.2, and now we are ready to evaluate 

the mathematical model to represent it. Again, it is pointed out that 

the approach to evaluate the equations of motion is Lagrange's equations, 

which involve the kinetic and potential energies of the body (system) at 

some chosen instant. 
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The kinetic energy of a system may be expressed in terms of 

the motion of the centre of mass, and of the particles relative to the 

centre of mass. In the general case, when both translational and 

rotational motion are present, we have, for the kinetic energy, the 

well known expression 

T 
1 2 1 
2 MvG + 2 ( 4. 4) 

where G is the centre of mass of the system, M is the mass of the sys~em, 

vG the linear velocity of the centre of mass, w the instantaneous angular 

velocity about G, and IG is the moment of inertia about the axis of w. 

If, however, we stipulate that the axes of rotation are fixed to the body 

and their origin coincides with the centre of mass G, and in addition 

they are the principal axes of the body, then eqn. (4.4) becomes 

T 1 2 1 2 2 2 - Mv + (Aw. + Bw. + Cw.-) 
2 G 2 ~ J K 

(4.5) 

where A, B, and Care the principal moments of inertia at G, and w., w., wk 
~ J 

+ + + 
are the angular velocity components along the directions i, j, k, (i.e. 

along the principal axes of the body). 

Since here \ole examine a stationary gyrocompass with respect to 

the earth's surface, then its centre of mass, (point 0 in Fig. 4.2), 

does not have translational motion. That is, the first term in eqn. (4.5) 

drops out because vG= 0. Hence, the kinetic energy of our physical model 

(gyrocompass) assumes the form 
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T =.!.{{cw> 2 
2 1',; 

+ a<n >2 + A(n >2]+ 
E;. n 

+ [C' (w ) 2 + A' (w ) 2 + B'(w ) 2 ] + 
1',; E;. n 

+ [A" (w ,) 2 + B"(wE;.,) 2 + C" (w ) 2]} (4. 6) 
z;; n' 

The potential energy of our physical model is simply 

u = mgR. (1-cos a> ( 4. 7) 

Now we define the Lagrangian function £ as follows [G~eenwood 

7965]: 

.C= T - U (4. 8) 

Then Lagrange's equations of motion assume the form [Landau 

and U..~hilz 19 76 J 

d <a~ > 
dt aq. 

l. 

ClL 
aq. 

l. 

0 (i=l,2, ..• ,n) (4.9) 

where the symbol a denotes partial differentiation, qi and qi are the 

generalized velocities and coordinates respectively, and i.= 1, 2, ••. , n 

the degrees of freedom of the system. 

Lagrange's equations (4.9) are the equations of motion of the 

system and they constitute a set of n second-order equations for n 

unknown functions q. (t). The general solution of these equations contains 
l. 

2n MbiliMy c.on.&ta.n.U [Landau and U..~hi.tz 1976]. !n order to determine 

these constants and thereby to define uniquely the motion of the system, 

it is necessary to know the initial conditions which specify the state 

of the system at some given instant, for example the initial values of 

all the coordinates and velocities. 
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From the analysis of our physical model, namely eqns. (4.6) 

and (4.7), it is obvious that except the gravitational force, mg, no 

other force is acting on the system. Furth~rmore, the potential 

function U is only a function of position, i.e., U = U(q.). Therefore, 
~ 

equations (4.9) reduce to the expression 

d ,a~ > 
dt aq. 

~ 

aT --= 

aq. 
~ 

au 
aq. 

~ 

(4.10) 

Equations (4.10) were used to evaluate the analytical expres-

sions for the differential equations which describe the two modes of 

motion of the gyrocompass namely, the motion in azimuth a and the motion 

in tilt e. The assumptions listed in Table 4.1 were used and the lengthy 

mathematical derivations are presented in Appen~x 1. The final expres-

sions for the equations of motion are: 

0 li + E S + G 1 1 la 0 (4 .11) 

and 

(4.12) 

where the parameters o1 , E1 , G1 , o2 , E2 , G2 and F2 are given in their 

explicit form in Appendix I. 

In summary, the equations of motion of a stationary pendulous 

gyrocompass have been developed using well known principles of mechanics 

and postulated mathematical assumptions. Once the Lagrangian function 

is found, the procedure for obtaining the equations of motion is straight-

forward. 
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4.2 Equations of Motion with Pendulocity and Damping 

As it was described in section 3.3 and shown in Figures 3.12 

and 3.13, the pendulocity causes the gyrocompass to oscillate, the spin­

axis following an elliptical path. 

The oscillation of the gyrocompass is an undesirable effect, 

as the instrument is expected to indicate true north. This oscillation 

can be damped by displacing the pendulous mass at an angle y to the east. 

This configuration is also illustrated in Figure 3.8. 

The kinetic energy associated with the system is given by 

the same equation (4.6). The potential energy is again given by eqn. 

(4.7). But the displaced mass m has an additional effect. It produces 

a torque about then-axis (Fig. 4.2). 

The new equations of motion of the stationary gyrocompass 

with pendulocity and damping are derived in Append£x II. The final 

expressions are 

0 (4.13) 

and 
( 4. 14) 

where the coefficients o 1 , E1 , G1 , o2 , E2 , G2 , F2 and F1 have the 

explicit forms given in Appendix II. The motion that the spin-axis is 

now performing is a spiraling-in motion toward the meridian, as was 

pointed out in section 3.3. 
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4.3 oynamic Response of the Gyrocompass 

So far we have examined the first two of the three stages of 

a dynamic investigation. We have derived the mathematical model, i.e., 

a set of equations of motion, for the physical model. 

We now come to our principal concern, stage III, to determine 

how the physical model will behave and what motions it will have. In 

general, this is done by solving the differential equations of motion. 

In the previous section we found that the equations (4.15) 

and (4.16) are Une..a!t cii.66eJte.nti..a1. e..quatiol'lll w.Uh c.ol'lll.:ta.n.,t c.oe.66.i.cie.n.t6, 

an important fact, which allows us to study their solutions in view of 

the theory of ordinary linear differential equations. 

Specifically, we shall find that when a linear, constant­

coefficient dynamic system is disturbed by some 6o~cing 6unc.:C.ion the 

resulting motion is the sum of two distinct components: 

(i) a 6o~c.e.d ~~pon6e.. which resembles in character the forcing 

function, and 

(ii) a na.:t~ mo.:t.<.on whose character depends only on the physical 

characteristics of the system itself and not upon the forcing 

function. 

In formal mathematical language the above are known as 

(i) the particular solution, and 

(ii) the homogeneous or complementary solution. 

Further, it will be found that the na.:t~ mo.:tion of a linear, 

constant-coefficient system is made up of some combination of two elemen­

tary motion patterns, an exponential decay and a sinusoidal motion. 
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Investigation of the above basic elements forms the core of 

almost all of our future study of the gyrocompass behaviour because, as 

we shall see in subsequent chapters, all of the possible motions can 

always be computed by .6upeJtpo.6.i.ng ;the Jte.6pOY1..6e.6 of our dynamic system 

to several dynamic inputs. In Appendix III the Su.peJtpo-6.-i.;t.i.on Plt.i.nc.i.pl.e 

(or Superposition Theorem) is presented in detail. 

In our investigation we will also make use of some complex-

number algebra to ease computations. 

A function of the form e.6t will be used to describe mathemati-

cally the types of motion by letting, in general, .6 be a complex number. 

The Laplace technique is, of course, also a convenient method 

for solving differential equations. It constitutes a powerful alterna­

st tive to the procedure of assuming a solution of the form e . However, 

it will not be used in here. 

The following concepts concerning the dynamic response ·.::>f 

physical systems which are represented by linear, ordinary differential 

equations with constant coefficients are introduced [Cannon 79671: 

a. superposition of time responses is valid, 

b. the total response will consist of two distinct parts, the 

natural motion and the forced motion, 

c. the forced motion will have the same character as the forcing 

function, and its magnitude will be proportional to the magnitude 

of the forcing function, 

st d. the natural motion will be always of the form ke where s 

depends only on the physical system, and k is a constant, 
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e. the ch~~acte~tlc eq~on is an algebraic equation in s, whose 

roots are the values of s which make the expression kest a correct 

solution to the homogeneous differential equation, 

f. the solution of the homogeneoU6 equation (unforced motion) is 

usually designated as the complemen~~y 6unctlon, while the 

solution of the 6o~ced motion is called the p~cul~ ~nteg~al. 

Both solutions constitute the compl~e oolution of the differential 

equation. 

4.4 Natural Motion Alone - Transient Response 

The gyrocompass can be considered as a ~ne~, dru~ped, oecond-

a~e~ oyo~em. The equations of motion are given by 

(4.15) 

(4.16) 

These equations can be rewritten, ignoring the terms o1a, o2s, 

1nd E16 and using the explicit forms of the rest of the coefficients, as: 

-Cn6 + Cnn cos ~ a - mgiy6 = 0 (4.17) 

md . 
Cna + mgi6 -cnn sin ~ (4.18) 

The assumption that the terms o1 a, o2i3 are small and therefore 

:an be ignored is based on: 

i. the two motions, namely, the motion in azimuth and the motion in 

tilt are small enough and therefore their second derivatives 

assume even smaller values, 

ii. these derivatives combined with the coefficients o1 , o2 are small 

terms as compared to the remaining ones, especially since o1 , o2 
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are functions of A, A', B' and C" (see Appendix I or II) which 

are by definition much smaller than C (C is the moment of inertia 

of the gyro-wheel) , 

iii. the motion in tilt a is much smaller than the motion in azimuth a, 

and in addition the term (2A+A'+B'-C').Q cos~ is much smaller 

than Cn, 

iv. since the two motions are not independent, there is need to 

further simplify the governing equations of motion to be able 

to uncouple the two motions. 

Combining eqns. (4.17) and (4.18) we have the following 

expressions 

mgR.y.Q sin <b 

Cn 

,~~z 

sin 2~ 
2 

(4 .l9a) 

(4.19b) 

Equations (4.19~ and (4.19b) are the equations of motion of 

the gyrocompass that will be used in succeeding sections. Since the 

motion in azimuth is our major interest, the rest of the analysis will 

be confined to eqn. (4.19a) 

If we designate the following short-hand definitions 

2a =~ 
Cn 

mgR. .Q cos t 
Cn 

(4.20) 

then the governing differential equation of motion (4.19a) assumes the 

form 

2 = - mg!y Q sin ~ a + 2a a + f a - -
o en 

(4.21) 
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Since in this section we only consider the case of unforced 

motion (natural motion) the right-hand side of eqn. (4.21) is set to 

zero. Thus, we examine the response of the gyrocompass using the 

homogeneoUh pant of the governing equation, namely 

(en)a + (mgiy)~ + (mgi n cos $)a= o (4. 22) 

We assume a solution to the above equation of the form 

A st a=D'te 

Substituting eqn. (4.23) in eqn. (4.22) we have 

Provided that 

we obtain the dt~ct~tiQ equation of the system 

2 (en)s + (mgiy)s + (mgi Q cos $) = 0 

(4.23) 

(4. 24) 

The characteristic equation contains s but noto4. and thereby 

represents completely the dynamic characteristics of the system. 

The roots of the characteristic equation are 

sl = -(~) + ~(~)2 - (m21 n cos ~) 
2en - 2en en 

(4.25a) 

or 

51 -(~) 
2en ~ ~· for ill ~ 0 and 

= -(~) + j ~( mgi n cos ce, (~)2 
52 -2en - en 2en 

(4.25b) 

or 

52 = -(~) + j rr;;, for Ll > 0 2en - 2 
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The roots of the system's characteristic equation are called 

e.A..genvai.ue-6 OIL chM.acteliM.tA.Cl> of the system, and are given in two forms 

depending on the relative magnitude of the coefficients (Cn), (mgiy), 

and (mgi n cos~). 

Because we will use the above expressions frequently in the 

future we extend the short-hand definitions to simplify the algebraic 

operations introducing the terms 

and 

and ~ = a 
f 

0 

Hence, the roots of eqn. (4.24) assume the forms 

sl = (-crl, -a2) 

s = -cr + jf 
2 -

-cr ( 1 + h - ~) , for ~ > 1 , 
~ 

, for ~ < 1, 

(4. 26a) 

(4.26b) 

Substitution of these eigenvalues into the assumed solution (eqn. (4.23)) 

yields the following expressions for the motion in azimuth: 

-cr 1 t -cr 2t 
a = c1e + c2 e for ~ > 1 (4. 27a) 

and 

or 

-crt 
a= c3 e cos(ft-~), for ~ < 1 (4. 27b) 

Before proceeding any futher, the dynamic characteristics 

implied by the above equations and a brief explanation of. all the 

mathematical syribols will be given. 
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The sumbol j represents the factor ~- Equation (4.27b) is 

derived from the preceeding equation using what is known as Eule~'6 

equation, i.e., 

·e 
eJ = cos e + j sin e 

The C's in eqns. (4.27a) and (4.27b) are constants. Formally, 

the homogeneous solution to a linear differential equation of order r 

must contain r constants c. Therefore, in the present case we have, for 

a second-order differential equation, two integration constants namely, 

c1 and c2 , or c3 and W· 

The quantity f is called the undumped nat~al 6~equeney and is 
0 

thE frequency at which the same gyrocompass would oscillate if damping 

were absent (i.e., the frequen~' at which the gyrocompass would oscillate 

if only pendulocity were considered). The quantity f is called the 

damped nat~ 6~equeney. 

The constant a is called the damp~ng eoe66~~ent, whereas the 

quantity 1/o is called the damp~ng time eon6tant of the system and 

indicates the time required for the motion to damp to (1/e)th its 

original value. 

The parameter ~ implies the relative damping of the system, 

i.e., the rate of damping with respect to the rate of oscillation and 

is commonly called the damp~ng ~~o. In particular, if ~ is negative 

the system is unstable (the motion grows without bound); if~ is zero, 

the system is just neutrally stable (the motion neither grows nor decays) ; 

if ~ is increased toward 1, the relative damping increases and the system 

becomes asymtotically stable (the system, once disturbed, overshoots but 

as time increases it tends to become stable)[Cannon 1967]. 
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Finally, we refer to equations (4.27) as representing the 

nCLtUJI.Jl.l lte6poMe. of the system. The solution to the homogeneous 

equation is also known as the tltano~e.nt ~olution and the response of 

the system (i.e., the natural response) as the t/tan¢~ent lte6poMe 

(GJtee.nwoo d 7 96 5 1 • 

It is also noted here that the constants c1 and c2 , or c3 

and ~ are evaluated from the conditions at time t = 0, but not until 

the forced motion solution is known [Giteenwood 7965]. 

It is noted that in the case of the gyrocompass the quantity ~ 

is, in general, greater than zero and less than one (in extremely special 

cases it also assumes the values of 1 and infinity). Hence, the suitable 

equation to represent the gyrocompass transient response is eqn. (4.27b) 

and we will use from now on only this expression. In the time domain 

this equation represents a damped ~~U6o~dat motion. 

4.5 Forced Motion Alone - Steady-State Response 

To find the dynamic response of the gyrocompass we begin with 

eqn. (4.19). For convenience we rewrite it as 

·· • 2 nn a + Da + F a =~(t) ( 4. 28) 

where~(t), in general, is the 6oltcing 6unction, or in particular, is 

the applied ~o~~.que to the gyrocompass. The forcing function ~(t) may 

assume the general form 

jj,Ct) = M 
st 

e (4.29) 

where M and s may be, in general, complex numbers. This allows us to 

investigate many types _.of possible forcing functions depending on the 
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values that M and s assume. For example for M being real we have 

constant Ji= M (s 0) 

exponential Ji= M -ot (s -o) , ( 4. 30) e 

sinusoid Jf.RI:M e 
jwt (s jw) , 

damped sinusoid jj,Re =M e 
-o+jwt (s -o+jw) , 

where Re means ".the Jtea..R.. pa.l!-t o 6''. 

Also the forcing function may be a ramp, a parabola, a periodic 

random function, or a non-periodic random function, but these cases are 

not actually considered in here. We state again that the choice of the 

exponential function (est) is a very convenient one because the output 

of our system will be of the same form since it is a linear dynamic 

system (est retains the same variable part upon differentiation). 

Another very useful procedure to obtain the solution of the 

forced motion is the method of undet~ted coe66~cient6 (or Lagltange'~ 

muttipti~) which is described in detail in any standard textbook on 

differential equations. This method will be used in later sections. 

Returning to eqn. (4.28) and assuming that the forced response 

has the form of eqn. (4.29), substitution leads to 

and 

J. 2 st . A st 1 st en [ ~ s e ) + mg R. y [ C1'lr s e ) + mg R. n cos ~ [ 0\o e ] = Mest 

or 
2 

{ (Cn) s + (mgR.y) s + (mgR. S'l cos ~)} oo\- = M 
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or 

,A= M 

2 (Cn)s + (mgiy)s + (mgi Q cos $) 

and finally 

st 
Me 

2 (Cn)s + (mgiy)s + (mgi Q cos $) 

But from eqn. (4.19) we have 

~(t) = -mgiy Q sin $ = M = constant 

hence from eqns. (4.30) follows that s = 0. 

Ultimately the fcrced response becomes 

(4.31) 

(4.32) 

The solution of the forced motion is also known as the ~teady-~tate 

~olution and the corresponding response as the ~teady-~tate ~~po~e, 

and in the above case it persists with undiminished magnitude. This 

implies that the gyrocompass after the oscillations have ceased (transient 

response), points to a direction af from the true north, thus introducing 

a systematic error commonly known as the damplng (o~ latitude) ~o~. 

It is obvious from eqn. (4.32) that the damping error is latitude dependent 

and is also a function of the offset angle y which is used for introducing 

the damping action on the gyrocomp.'l.SS. The direct dependence of the 

damping coefficient a on y provides a useful property (alteration of the 

damping percentage) which will be discussed in Chapter 7 in more detail. 

In the next section the total dynamic response of the gyro-

compass will be examined in view of the initial conditions of the motion. 



-65-

4.6 Initial Conditions 

We now turn to the problem of finding the two integration 

constants of the natural motion. We want to find c1 and c2 , or c3 

andt/J in eqn. ( 4. 27b) in terms of the initial conditions a (0) and 

a co> . We recall that in the case of the gyrocompass the parameter ~ 

(damping ratio) is less than 1, which implies that the gyrocompass is a 

.tJubeJU,ti_ea.U.y damped or undeAdampe.d .61j-!!.t.e.m [Cannon 1967; GJte.e.nwood 7965]. 

We consider a(t) and a(t) at t = 0 and the alternative form of 

eqn. (4. 27b) is 

a (t) = c (-cr+jf) t c (-cr-jf) t 
1 e + 2 e (4.33) 

and 

or for t = 0, 

(4. 34) 

a(O) = c1 (-cr+jf) + c2 (-cr-jf) 

Simultaneous solution of eqns. (4.34) yields 

a (0) [a;jif] + a(O) 

( 4. 35) 

c2 = a(O) [-~;~fl + a(O) 

We rewrite eqn. (4.33) in the form 
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and using Euler's equation (e~je = cos 6 + j sin 6) we have 

a (t) 

and finally using equations (4.34) we obtain 

a(t) = e-at{a(O) cos ft + 1 [a a(O) + a(O) ]sin ft} 
f 

or, alternatively, the transient response has the form 

where 

a (t) -at 
a e cos(ft-lJI) 

m 

-1 a 1 • 
lJ! =tan {[f a(O) + f a(O)]/a(O)} 

(4. 36) 

(4.37a) 

(4.37b) 

(4.37c) 

Using the principle of superposition the total dynamic response 

of the gyrocompass is the sum of the transient and steady-state responses: 

( 4. 38) 

where 

aT is given by eqns. (4.37), and 

ass is given by eqn. (4.32). 

Recapitulating, the equations of motion of a stationary gyro-

compass with pendulocity and damping have been developed. The solutions 

of the equations of motion were found and they are expressed in transient 

and steady-state terms. Once the transient motion ceases the gyrocompass 

indicates in a direction off true north computed by eqn. (4.32). This 

systematic error is called damping error and varies as tan ~-



CHAPTER 5 

EQUATIONS OF MOTION OF A UNIFOR!-lLY MOVING GYROCOMPASS 

The last equations in the previous chapter namely, eqns. 

(4. 32) and (4. 37) , or equivalently eqn. (4. 38) , define the gyrocompass 

behaviour in an insufficient way, since until now we have not considered 

at all the motion of the transporting vehicle. Everything we discussed 

referred to a stationary gyrocompass with respect to the earth's surface. 

In this chapter we discuss the gyrocompass equations of 

motion and its dynamic response when it is mounted on a moving platform. 

In particular, the dynamic analysis of a gyrocompass moving on the earth's 

surface at a latitude ~ with constant speed v in a certain direction H 

with respect to true north is examined. The analysis follows t.he same 

procedure as in the previous chapter. The transient and steady~qtate 

response is evaluated as previously. The only difference is the equations of 

motion. In the present case the gyrocompass directive force is altered 

because of the motion of the ship on the earth's surface. This motion has 

an additional effect on the settling position of the spin-axis,. thus 

introducing an additional error in the gyrocompass indicated h~adings. 

Another important topic examined at the end of this chapter is 

the necessary and sufficient conditions for a gyrocompass to be Sehule~ 
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~uned, that is, the conditions for which the motion of a gyrocompass is 

not affected by accelerations introduced by the ship which is circum-

navigating the earth. Finally, a summary of the gyrocompass errors is 

given. 

5.1 Equations of Motion of a Gyrocompass Mounted on a Moving Vehicle 

Before we proceed in the details of the dynamic analysis in 

this section a few important definitions are stated. 

On a moving vehicle on ~he eo.JLth '~ ~Wt6ac.e, :the inelltiai.. angul.aJt 

ve.tocay o6 :the iC"c.ai.. na.v-i..gationai.. 6Jta.me c.o~~u o6 .the ~um o6 ~he 

e~h·~ a.ngul.aJt vetocay and ~he a.ngul.cvz. ve.tocay o6 ~he .toc.ai.. na.viga.­

.tionai.. 6Jta.me .~te.ta;t.i_ve. ~o ~h.e e~h. 

The horizontal c•.Jmponent of the inertial angular velocity of the 

local navigational frame defines the direction of dynamic. noJtth. 

The local navigational frame is a reference frame whose axes are 

oriented toward the true north and east directions, the third axis being 

along the local vertical and positive such that the coordinate system is 

left-handed. 

If the ship is steaming at constant speed v and on a course 

making an angle H with the meridian, the northerly and easterly velocity 

components are respectively (in magnitude) 

VN = V cos H and v = v sin H 
E 

The inertial angular velocity of the ship is 

Q* = Q + >. 

(5.1) 

(5.2) 
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where n is the inertial angular velocity. of the earth and ~ is the 

angular velocity of the ship with respect to the earth's surface, i.e., 

it is the time rate of change in longitude at a latitude ~o and is 

given by the formula: 

R cos ~ 

v sin H 
R cos ~ 

Figure 5.1 illustrates the above described situation. 

(5. 3) 

The gyrocompass is thus, in effect, mounted on a horizontal 

plane which has an inertial angular velocity Q* given by eqn. (5.2). It 

is obvious that the gyrocompass is incapable of distinguishing the sources 

that produce Q*. It only senses the resultant inertial angular velocity. 

As a consequence of the above the angular velocity components of the rotor 

(eqn. (4.3)) about system O~~n (Fig. 4.2) are changed. Therefore the 

equations of motion developed in Chapter 4 are not valid. They have to 

be re-evaluated to include the new situation. 

Equations (4.1), (4.2), and (4.3) can be rewritten by substitut-

ing n with Q* from eqn. (5.2). In that case, the kinetic energy of the 

physical model in hand assures the form 

T ~ {(A+ A I) 
2 

[8-Q*cos ~ sin a] + 

(A+B') [(Q*sin ~+a)cos 8 + Q*cos ~ cos a sin 81 2 + 

• • 2 
C[Q*cos ~ cos a cos 8 - (Q*sin ~+a)sin 8 + t1 + 

C' [Q*cos ~ cos a cos 8 - (Q*sin ~+~)sin 81 2 + 

A" [Q*cos ' cos a] 2 + 

( 5. 4) 



TRUE 
DYNAMIC NORTH 
NORTH 

\ 
\ 
\ .'\0 

\ VN 
\ 
\ 

v 

-70-

apparent linear velocity 

I 
I 
I 
I 
I 

of moving vehicle 

Linear Velocity Diagram 

Fig.5.1 



-71-

The potential energy is given by 

U = mg*i(l-cos S) ( 5. 5) 

where g* is the apparent gravity sensed by the gyrocompass, and is .given 

in detail in Appen~x IV. This makes a small change in the directive 

force on the compass, but not in its angular position. In addition to the 

above we have also assumed constant gravitational acceleration g (which 

in reality varies with latitude). Therefore, the equations of motion are 

only affected by the change of the inertial angular velocity Q into rl*. 

Pursuing the Lagrangian formulation as before, the final forms 

of the equations of motion are given here: 

Cna + mgiS + mui -Cnrl*sin <P (5. 6a) 

and 

-Cn(S+<P) + Cnrl*cos <P a - mgiyS - muiy = 0 (5.6b) 

where u is the resultant absolute acceleration along the rotor axis 

resulting from the motion of the vehicle, and rl* is the apparent angular 

velocity of the earth as judged by the gyrocompass. The term (S+<P) 

indicates the actual tilt of the gyroscope spin-axis due to the motion of 
. 

the ship, and <P is the time rate of change in latitude, given by the 

expression 

VN V COS H 
-= 

R R 
(5.7) 

After some algebraic operations the equation of motion in 

azimuth becomes 
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mgt ~ - rngiyQ*sin P - Q*sin ~-n*$ cos ~ 
en en 

(5.8) 

It is shown from eqn. (5.8) that the inclusion of the accelera-

tion terms along the rotor spin-axis in the equations of motion does 

not affect the final result. 

Also, it is obvious from eqn. (5.7) t~at for ship's speeds not 

. 
exceeding, for instance, 15 knots the terms f and Q* are both small 

quantities, and for uniform motion of the ship on t~e earth's surface ~ 
. 

and A can be considered constant. 

Equation (5.8) describes the motion of the gyrocompass in a 

complete and sufficient way. It constitutes the governing differential 

equation of the gyrocompass mounted on a uniformly moving ship. We seek 

now the solution of eqn. (5.8) in the same way as we did in Chapter 4. 

5.2 Dynamic Response of the Gyrocompass 

We will examine the dynamic response of the gyrocompass ag~in 

in terms of the natural (unforced) , and forced motion. It is noted here 

that, since the motion of the ship is a uniform motion, the coefficients 

of the differential equation (5.8) are considered constant, thus allowing 

us to use the theory of ordinary linear differential equations with 

constant coefficients. The total dynamic response will be the sum of 

the transient and steady-state responses. 

The procedures described in Chapter 4, namely sections 4.4, 4.5, 

and 4.6 will be used for that purpose. Only the final equations will be 

given. 
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Also in the proceeding solution the last two terms in eqn. 

(5.8) are neglected. The reason is that, n* is small compared with 

n*~, and since (mgt/Cn) is many times larger than n* we may safely 

neglect those two terms. 

5.3 Natural Motion Alone -Transient Response 

The homogeneous equation of motion is deduced from eqn. (5.8) 

and has the form: 

(Cn)a + (mgty)a + (mgtn*cos ~)a = 0 

Assuming that the solution is of the form 

a=cA st 
e 

the transient response of the gyrocompass is given by 

-crt 
aT = c3 e cos (ft-w) 

(5.9) 

(4.27b) repeated 

The constants c3 and w are evaluated in their analytic form 

later. 

The above solution was obtained under the "loose" assumption that 

[n*cos ~] or [(n+A)cos ~] is constant. This assumption enables us to 

obtain an "approximate" straightforward solution for the transient response 

of the gyrocompass, otherwise the solution would be extremely difficult. 
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5.4 Forced Motion Alone - Steady-State Response 

Now we proceed to examine the resulting response of the gyro~ 

compass to the forced motion alone. Recalling the right-hand side terms 

of eqn. (5.8) we note that under the assumptions of very slowly varying 

latitude and longitude and uniform motion, the following are valid: 

mgR. . 
en 4> 

is constant, 

m9:R.rQ*sin <P is constant, 
Cn 

. 
(m9:R.) Q* < Q*<j> and Q*<j> << 

Cn 

v = ct and H = ct. 

Using the procedure outlined in section 4.5, the steady-state 

response of the gyrocompass is 

(5.10) 

The first term on the right-hand side of eqn. (5.10) is recog-

nized as the damping error. The second term is a function of the ship's 
. . 

velocity since it contains the quantities 4> and A. It is commonly known 

as the 6peed-and-co~e e~o~ and it is a universal error for any type of 

gyrocompass. It is obvious that the speed-and-course errqr assumes its 

smallest value (zero degrees) when sailing in an easterly course (H=90°) 

and its largest value when sailing in a northerly direction. Its signi-

ficance and its great importance is examined in later sections. 
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5.5 Initial Conditions 

The initial conditions for the gyrocompass transient response 

are evaluated following the procedure in section 4.6. The totGl dynamic 

response of a gyrocompass mounted on a uniformly moving platform is 

a (t) -ot a e cos(ft-~) - y tan$ + tan 6 
m 

where; 

am= {[a(0)]2 + [% a(O) + i ~(0)]2}1/2, 
-1 (j 1 . 

~=tan { [f a(O) + f a(O)]/a(O)} , 

(j = ~ 
en 

f 

. 
p 

f = {mgin*cos P}l/2 
o en ' 

v cos H 
tan 6 

n*cos $ nR cos $+v sin H ' 

(5.11) 

(a) 

(b) 

(c) 

(d) 

(e) 

A clear look at eqn. (5.lle) shows what was already pointed 

in Figure 5.1. Angle 6 is the angle that the direction of dynamic north 

makes with the direction of true north. In other words, -the gyrocompass 

mounted on a moving vehicle tracks the dynamic north instead of true 

north. The question now arises, is the gyrocompass capable of following 

the changing dynamic north as the vehicle moves on the surface of the 

eart:.'l? 
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5.6 Conditions for a Schuler Tuned Gyrocompass 

When gyroscopic instruments are mounted on moving vehicles 

they are liable to be disturbed by the motions of the vehicle. 

In the previous section the velocity-induced error 6 was found 

to affect the equilibrium (steady-state) position of the gyrocompass, 

thus causing it to indicate dynamic north instead of true nor~h (in 

the absence of the damping error). Errors are also introduced by the 

acceleration of the vehicle. In fact, even for a uniform motion on 

the earth's surface, the vehicle is subject to an acceleration. (Appe.ncii.x. 

V) due to the earth's curvature. Thus, the equilibrium position of 

the gyrocompass, once reached, will be disturbed at any time because of 

vehicle's motion. 

Equation (S.lle) gives the equilibrium position of the gyro-

axis for any speed and course of the ship when the damping error does 

not occur (e.g., at the equator). To ease the analysis in this section 

we will disregard the damping error as affecting the equilibrium position 

(steady-state) of the gyrocompass, since it does not.play any role in 

the investigation which follows. 

The rate of change of 6 from equilibrium (under the as~umptio~ 

of small angles tan 6 =sin 6 = o, and regarding the fact that (nR CQS ~) 

<< (v sin H) for moderate latitudes) is given by 

. do VN ~ 
6 = <dt>= nR cos ~ = nR cos ~ (5.12) 

When the point of suspension of the gyrocompass is given a 

northward acceleration ~· the inertia of the pendulous weight mg resists 

such acceleration by the inertia force m~ and this exerts a moment m~~ 
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about the point of suspension and in the plane of the meridian. 

Since the vector representing this moment points toward the 

west, the gyroscope spin-axis precesses toward the west with an angular 

velocity w in the plane elevated at an angle a above the horizon. 
prec 

Hence from eqn. (2.1) we have 

w Cn = mR. u__ 
prec N 

(5 .13) 

If there is to be no disturbance in the indication of the 

gyrocompass, the precessional angular velocity of the angular momentum 

vector must be equal to the rate of change of the speed-and-course error 

. 
o. Hence from eqn. (5.13) using eqn. (5.12), we have 

UN 
cp Cn mR.~ QR cos 

or 

mR.QR cos cp Cn 

or 

mgWR cos cp g Cn 

and finally 

mszW cos~ .9. (5.14) Cn R 

We recall two important facts at this stage. First, that the 

period of oscillation of a pendulum whose leng.th is ~qual to the earth 

radius R is equal to 

T 21T ~~ 
g 

and second, that the period of the free oscillations of the gyrocompass 

(the period of the natural undamped oscillation) is, by virtue of the 

second equation of (4.20) and the definition of page 61, 
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2u / __ c_n __ _ 
mgR.Q cos <1> 

(5.15) 

Then condition (5.14) indicates that the natural undamped period of the 

gyrocompass T0 is equal to the period of a pendulum having a length equal 

to the earth's radius. This period is, for nominal values of R = 6371 km 

-2 
ang g = 9.8 m sec , equal to 84.4 m~nut~. 

A pendulum having a period of oscillation equal to 84.4 minutes 

will remain vertical over the earth's surface under any arbitrary accel-

eration of the carrier vehicle. 

Equivalently, a gyroscope which is held in its equilibrium 

position through the force of gravity, will not move out of its equili-

brium position under any arbitrary movement over the earth's surface if 

it possesses the period of 84.4 minutes. Therefore, the gyrocompass 

would indicate dynamic north regardless of the motion of the ship on 

which it is mounted. 

This is the most important contribution made by Schuler, after 

whom the period of 84. 4 minutes is called SchuleJL p~od. Any instrument 

possessing su~h a natural period of oscillation is to be said Schu!eJL 

tuned. Similarly, Sehu.te~ t~ng is the process of assigning the appro-

priate values to the physical parameters of a system to meet the necessary 

and sufficient condition (5.14), if the system is required to function 

independently of acceleration disturbancies. 

From eqn. (5.15) it can be seen that in the case of the 

gyrocompass Schuler's period is latitude dependent. For <1> = 90° (or 

very close to 90°) the period of precession of the gyrocompass becomes 

infinite. That means, once the instrument is disturbed it precesses 
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with a practically infinite period. Thus the operation of the gyro­

compass becomes critical as latitude approaches 90°. 

In connection with the damping ratio ~. it means that ~ tends 

to infinity, which indicates that, once the gyrocompass is disturbed, 

several hours are needed for the spin-axis to come to rest at the north 

direction. 

5.7 Error Budget of The Gyrocompass 

Until now we have seen the development of the equations of motion 

of the gyrocompass, their solution using linear system dynamics analysis, 

and two major sources of errors, namely the damping action and the motion 

of the transporting vehicle. We have examined the two response .motions 

of the gyrocompass, i.e., the transient response and the steady-state 

response. The nature of the transient response is a damped sinusoidal 

motion in the time domain, (or, a spiraling-in motion toward the meridian 

along the meridian-horizon axes), with starting initial conditions a(O) 

and a(O). The steady-state response implies that the gyrocompass in its 

equilibrium position (transient motion has ceased) is offset from the 

meridian by an amount equal to the algebraic sum of the damping and speed­

and-course error, (see eqn. (5.11)). Also, we have show~ that if the 

gyrocompass is Schuler-tuned then only velocity-induced errors occur, 

accelerations not affecting the equilibrium position, and thus, resulting 

to a gyrocompass which exhibits negligible dynamics in the measurement 

of the heading of the vessel with respect to true north •. 
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The gyrocompass spin-axis remains at equilibrium unless it is 

subject to other external disturbance torques about its horizontal and 

vertical axes. In the following we will examine the possible sources of 

additional errors instead of their analysis because, they are closely 

related to the actual design of the gyrocompass, and the means by which 

the manufacturer seeks their elimination during the design. 

Possible sources of gyrocompass errors include the rolling and 

pitching motion of the vessel, the gimbal suspension, the offset of the 

centre of gravity of the gyrocompass assembly from the proper position, 

and finally random disturbances. The above, result in what are known 

as the: tr.oWng etr./taJz., g-i.mba.LU.ng etr.tr.otr., qua.dtr.anta.l etr.tr.otr., and tr.a.ndom 

etr.tr.otr. respectively, [Ame~.ean Ptr.a.etiea.i Na.v-i.gatotr. 1977, Atr.notd and 

Ma.undetr. 1961, RawlingJ 1944, Manual o6 .the Adm<.tr.a.Utj Gytr.o-CompM~ 7953]. 

Most of these errors are treated in details in the references listed 

above and we will not discuss them any further in this work. However, it 

is our belief that most of them (except of the random occurring errors) 

have been eliminated through the appropriate mechanical design as that 

was implicitely stated in the personal communication with the chief 

engineer of the Sperry firm. 

In the previous section we stated the necessary and sufficient 

condition for a gyrocompass to be Schuler tuned (eqn. (5.14)). ~lso we 

found that Schuler's period (eqn. (5.15)) is latitude dependent. The 

careful mechanical design of the gyrocompass requires the appropriate 

selection of the gyrocompass design characteristics namely, the angular 

momentum of the spin-axis Cn and the pendulocity moment mgi, such that 

the gyrocompass natural undamped period T has the designated value of 
0 
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84.4 minutes at a certain latitude ~ 0 • Since the operational latitude 

of the gyrocompass is varying, the above nominal value of 84.4 min. has 

to be maintained for all possible latitudes. Therefore, the design 

characteristics should vary in order to fulfill the Schuler condition. 

In actual compass designs, Schuler tuning is maintained by either 

adjusting the pendulous weight mg (i.e., varying the mass), or by 

adjusting the angular momentum en (i.e., varying the rotational speed 

of the gyro-wheel). The first way is followed by the Sperry firm 

[Rawting6, 1944], where the use of the mercury-ballistic is easily 

provjding the necessary effective pendulous weight. The second pro-

cedure is followed in the Arrna and Anschutz designs. 

If, however, the gyrocompass is mistuned (i.e., the natural 

undamped period of the gyrocompass is not the Schuler period, or in 

practice, is not close enough to the Schuler period), then the acceler-

ations due to the vessel's motion affect the gyrocompass indicated 

headings. These accelerations may result either from the uniform ship's 

1 motion over the spherical earth (earth's curvature R), or, from changes 

in speed and/or course of the vessel. Then, the precessional angular 

velocity of the disturbed spin-axis will not equal to the rate of change 

of dynamic north and therefore the gyrocompass will indicate false 

headings. This situation is especially critical during ship's manoeuvres 

and is discussed in detail in the next chapter. 

The acceleration errors occurring are commonly known as .the 

b~tie de6teetion and balli6tie tilt errors, referring to the 

azimuthal and tilt motion of the gyrocompass, respectively. They may 
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exhibit large values and degrade considerably the performance of the 

gyrocompass, introducing temporary deviations of few degrees. They 

depend upon both, the dynamics of the problem and the response of the 

gyrocompass, i.e., the kind and persistance of the acceleration inputs 

and the dynamic characteristics of the gyrocompass. Table 5.1 summarizes 

the gyrocompass errors, their sources and possible compensation techniques 

used to account for their influence on gyrocompass indicated headings. 

In conclusion, gyrocompass errors may severely degrade its 

performance, unless they are accounted for. These errors might be 

systematic or random. In this study only the systematic effects are 

considered. Some of the systematic errors are easier to compensate for 

(e.g. damping and speed-and-course errors), while others are less 

predictable (e.g. acceleration-induced errors), and they may vary 

rapidly with time. 



Table 5.1.: Sperry-type, single-rotor Gyrocompass Error Budget 

Gyrocompass error Source of error Compensation Technique 

• damping 
damping 0 mechanical (preset latitude ,rp~) 

error 
action ® software . compensation 

speed-and-course ship's northerly 0 mechanical (preset speed , uc) 
• velocity ® software compensation error 

ballistic deflection 0 Schuler tuning for a specific latitude 
acceleration • error ® software compensation 

roll-and-pitch roll and pitch 
0 eliminated through the mechanical design • motion of the ship errors 

• gimballing errors suspension type 0 eliminated through designing 

• random errors random torques 0 software compensation only 
-

I 
00 
w 
I 



CHAPTER 6 

EQUATIONS OF MOTION OF A GYROCOMPASS UNDER SHIP'S MANOEUVRES 

In the previous chapter we investigated the dynamic response 

of the gyrocompass when mounted on a ship sailing under uniform motion, 

i.e., v = const. and H = const. But, this is hardly the real situation. 

The ship often performs changes in course and speed and manoeuvres. Our 

objective is to model the gyrocompass performance by modelling the ship's 

motion in a realistic and adequate way. Thus, errors introduced to the 

gyrocompass due to ship's arbitrary motion can be predicted and, if 

properly assessed, provide correct heading information. 

Under these circumstances the inertial angular velocity of the 

local navigational frame Q* is varying with time, since it depends on >.. 

which is now a function of time. Therefore, the equations of motion resume 

the same form as before, but now the solution is completely different. A 

special model devised to represent the ship's track h~lps to overcome the 

difficulties encountered, due to the fact that the different.ial equation 

of motion has now time-dependent coefficients. The dynamic response of 

the gyrocompass is again computed using techniques of linear dynamic 

systems analysis. In view of the above, the transient response of.the 
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gyrocompass assumes particular interest. The transient response is 

examined by finding the appropriate initial conditions. 

A special case is investigated under the assumption that the 

ship's track is a circular one. The time-dependent coefficient in the 

differential equation of motion takes a particular form. It becomes peri-

odic and the solution involves elements of the general perturbation theory. 

In this chapter the most useful and important properties of 

linear systems' analysis are used. The general method of modelling the 

ship's track can be applied to any particular path conf~guration and 

allows the gyrocompass response to be evaluated under the most complicated 

situations. 

6.1 Equations of Motion Under Ship's Manoeuvres 

When a ship travels along an arbitrary track the apparent 

angular velocity of the earth n*, which the gyrocompass senses, is given 

by the expression 

S]* (t) 
v(t) sin [H (t)] n + ~~------~~~ 
R cos [$ (t)] 

{6. 1) 

where v(t) is the instantaneous speed of the ship and H(t) the instantaneous 

course. From eqn. (6.1) we see that the inertial angular velocity of the 

local navigational frame is time-dependent. 

The equation of motion of the gyrocompass is the same as eqn. 

(5.8) but now we substitute n* by n*(t)' which yields 

Da + Ea + G(t)a 
4 
E 

i=l 
F. (t) 
~ 

(6.2) 
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where D Cn, mgR. ¢1 {t) , 

E = mgR.y, -mgR.yrl*{t) sin[¢1{t)) 

G{t) mgU2* { t) cos ¢1 , -rl*{t) sin[cj>{t)) , 

F4 {t) = -rl*(t) cj>{t) cos[cj>(t)] . 

Equation (6.2) is a linear, second-order differential equation 

with a time-dependent coefficient and time-dependent forcing functions. 

6.2 General Modelling of Ship's Track During a Manoeuvre 

When a ship starts to manoeuvre we need to model its motion in 

an expressed functional way, so the time-dependent coefficient G(t) in 

eqn. {6.2) assumes a form which is easier to cope with. 

We will examine here the most general case which involves both 

change in speed and change in heading. During a turn the ship's track 

becomes uncertain owing to the characteristics of the vessel, the load, 

wind conditions, currents, etc. When a vessel moves in a curved path 

there is an acceleration towards the centre of path, due to the centri-

petal force. In a ship the centripetal force is the resultant of all 

the lateral forces acting on the hull and rudder. From the literature 

related to the study of ship's motions, the following conclusions are 

drawn: 

i. each vessel has its own turning characteristics, 

ii. its behaviour during manoeuvres is unique, and usually it is 

obtained after sea-trials, 

iii. there is not a general model which can provide valuable information 

. 
to model the longitude and latitude rates of change, A and ¢1 

respectively, as the vessel performs course and speed changes, and 
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iv. it is extremely difficult, if not impossible, to calculate disturbing 

torques applied to the gyrocompass due to ship's manoeuvring. 

In Appe.nd<.x. VI useful information related to the above problem 

is provided. It is difficult though to make use of this .information. The 

reasons are stated in the same Appendix. A different approach is 

suggested as an alternative to cure the problem of modelling the ship's 

track. Since on board ship there are speed and course sensors, the 

motion of the vessel can be sampled at any desirable, discrete time 

instant. Thus, the time dependent-terms in eqn. (6 .. 2) can be evaluated 

from these observations, namely from v(t.) and H(t.). In this case, we 
~ ~ 

can assume that we are sampling the motion at small time intervals 6tk, 

thus the velocity vector is supposed to have a discrete change from 

timet. to timet., and in addition to remain constant during the 
~ J 

interval 6tk. The apparent angular velocity of the earth Q*(t) is again 

given by eqn. (6.1), but now it can be evaluated at the discrete instants 

t. and t., remaining constant through the interval 6tk. Therefore, the 
~ J 

differential equation which governs the motion in azimuth of the gyro 

spin-axis takes the form 

.. . 
Da + Ea + G (t.) a 

J 

4 
E 

i=l 
F. (t.) (6. 3) 
~ J 

where G(t.) and F. (t.) are not time-dependent, but assume different 
J ~ J 

values at the discrete instants tj. Hence at each. time 6tk we have one 

complete solution of equation (6.3). 
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6.3 Gyrocompass nynamic Response 

The solution of eqn. (6.3) is given in the same form as the 

solution of eqn. (5.8) with the only difference being that it should be 

evaluated at every sampling interval L\tk. The complete solution is given 

by the expression 

a (t.) = a I 
J m t 

-crtj 
e cos(ft.+~(t.)) - y tan~.+ tan o. 

J J J J 
(6.4) 

j 

or, in the simple form 

where aT(tj) is the transient response of the gyrocompass at the sampling 

instant tj and valid over the interval L\tk until the next sample is 

obtained, and a55 (tj) is the steady-state response of gyrocompass during 

the same interval L\tk. The amplitude a I and the phase angle ~(t.) of 
m J t. 

the transient response are again evaluatedJfrom the initial conditio~s 

a(O) and a(O) at each discrete sampling instant t. and we assume that 
J 

they remain valid until the next sampling instant t. 1 , i.e., they remain 
]+ 

valid over the interval ~tk. 

Before proceeding in the investigation of the initial conditions 

a(O), a(O) at each sampling instant, we will spend some time on the 

particulars of the dynamic response. 

A dynamic system is said to be in the 4~eady-¢~ate when the 

variables describing its behaviour are either ~nvaniant with time, or are 

(sections of) pe!Uodic. 6unc..t.i.oM o6 time, [Ga!tdneJt and Ba!tnM 1942]. From 

a physical point of view, it may be said that a tAaM~e~ ~~ate exists in 
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a physical system while the energy conditions of one steady-state .are 

being changed to those of a second steady-state, [Gandne~ and Banne6 

1942]. 

We define the unit ~~ep 6unction as a forcing function of unit 

magnitude applied to a dynamic second-order linear system at time t = 0 

[G~eenwood 7965) 

F(t) = u(t) (6.6) 

where the unit step function u(t) is shown in Figure 6.1. 

If we write the differential equation of a linear, damped, 

second-order dynamic system as 

mx + ex + kx = F(t) (6. 7) 

then the steady state solution for F(t) u ( t) is. simply 

(6.8) 

Assuming that the initial velocity and displacement of the above mass-

spring damper system (eqn. (6.7)) are zero for the complete solution, we 

can immediately solve for the initial conditions on the transien~ portion 

of the solution. 

-xss(O) 

"T(O) -xss (O) 0 

1 
k 

(6. 9) 

It is seen that they are just the negative of the steady-state 

values at t = 0, for this particular example of the unit step forcing 

function. So, we can write the transient solution directly from the 

results obtained previously as 
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u(t) 

1 
-----+--~~--------~----~--~t 

0 

Unit Step Function 

Fig. 6.1 
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( 6. 10) 

where c3 and ~ are evaluated, as it was shown in the previous chapters, 

. 
from xT(O) and xT(O). Figure 6.2 shows the corresponding response of 

an underdamped system to a unit step input. 

Concluding, the response of a linear, underdamped, second-order 

dynamic system to a step function looks very similar to the transient 

response except that the initial slope (i.e., x(O)) is zero. Actually, 

the application of a constant force can be thought of as simply changing 

the static equilibrium position of the system [Hal6man 1962]. With a 

redefined fupi..a.c.emen:t c.ooJtdina.te, the response to the step function becomes 

merely the transient response to a negative initial displacement [Hai6man 

1962]. If we have a series of step functions, since we are dealing with 

a linear system, we can find the response to each step separately, ~~d 

then apply the superposition principle to get the total response [Hai6maft 

1962]. 

Bearing in mind the definitions and properties just described 

above we treat the gyrocompass case in a similar fashion. At each 

sampling instant the steady-state of the gyrocompass is changing. The 

difference of the steady-state values is viewed as a step forcing 

function resulting in a response similar to the transient one. The 

starting initial conditions at the beginning of a manoeuvre are as 

described in eqn. (6.9). The series of the step functions is resulting 

in the total gyrocompass dynamic response, which is a damped sinusoidal 

oscillation about the continuously changing equilibrium position. Since 

the gyrocompass is a mechanical system and as such it cannot exhibit 

abrupt changes either in "displacement" (a) or in "velocity" (a) by any 



x(t) 

--

-92-

--
------

----- -------

Response of an Underdamped System 

to a Unit Step Function 

Fig. 6.2 



-93-

finite torque input [Cannon 1967, pp. 201-202], the following constraints 

are imposed on the initial conditions (after the disturbance has started) 

for two time instants t 1 and t 2 

+ 
at (0 ) = 

2 

where 

and 

at (0) + {y(tan ~ 2 -tan ~ 1 ) - (tan 62-tan 61)} 
2 

'\ (0 
2 

+ 
at (0 ) = 

2 

where 

(6.11) 

( 6.12) 

In the preceding analysis, the last two terms in the right-hand 

side of equation (6.2) (or, eqn. (6.3)) have been neglected because they 

are very small. 

6.4 Special Case - Circular Arc Approxi~ation 

In addition to the general case of modelling the ship's motion 

in discrete time intervals described in the previous section, a special 

case is investigated. The assumption we adopt is that the turn of the 

ship can be treated as a circular arc, which is probaqly reasonable for 

favourable sea conditions [Ro~e 7974]. 

Equation (6.1) is rewritten in the form 

n*(t) = n + v sin[H(t)] 
R cos ~ 

(6.13) 



where 

v 
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constant and H(t) = H -wt 
0 

H is the initial heading at the beginning of the turn 
0 

w is the circular frequency of the turn. 

(6.14) 

In order to ease calculations we start from a northern course (H0 0°) 

and for a left circulation we have 

H(t) = -wt and n* <t> 
v sin wt n -

R cos 41 

Thus, the term (.mgO*cos 41) ;en from eqn. (5. 8) becomes 

but 

mgR.O*cos <f> 

en 

mgR.O cos <P 

en 

mgR.O cos 41 _ mgR.v sin wt 
en R en 

and mgR. = 2cr 
en y 

and therefore eqn. (5.8) becomes 

a + <m6~Y)~ + (f~ - 2~ sin wt)a 

mgR. 41 _ mgR.yO*sin <f> 

en en 

(6.15) 

(6. 16) 

if we ignore the last two terms in the right-hand side of eqn. (5. 8). 

As we did before, we will examine the natural and forced 

motions separately and we will combine the results, since our sys.tem is 

linear and the superposition principle is applied. 

We write the homogeneous part of eqn. (6.16) as 

a + 2crv 
sin wt)a = 0 

Ry 
(6.17) 
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This is a linear differential equation of second-order with a periodic 

coefficient. The theory of ordinary linear differential equations which 

we followed in the analysis previously is not applicable any more. We 

will seek the solution of the above equation in a different way. Thus 

we rewrite eqn. (6.17) in a more handy form: 

a + 2cra + (f2 - 2crv sin wt)a = 0 
0 Ry 

(6.18) 

We proceed further by changing the dependent variable a using the linear 

transformation 

-crt 
a = e y (6.19) 

where y is the new dependent variable. From eqn. (6.19) we have upon 

differentiation with respect to t the expressions 

and 

-crt -crt. 
a = -cre y + e y 

2 -crt 
a = cr e y 

-crt· -crt·· 
2cre y + e y 

which back substituted in eqn. (6.18) give the expression 

y + [(f2-cr2) - 2crv sin wt]y = 0 
o Ry 

(6. 20) 

A careful look at eqn. (6.20) indicates that it is an equation 

of the Ma.:t.YU.eu :type. We perform some rearrangement of terms of the above 

eCLuation which leads to 

= (2crv sin wt)y 
Ry 

(6. 21) 

where k 2 = f2 - cr2 = f2, and now we change the independent variable 
0 

through a new linear transformation 

wt = T (6.22) 



-96-

Let 

d 1 d 
-= 
dT W dt 

and 

then the differential equation (6.21) assumes the form 

or 

• .... here 

2av . -- s~n T y 
Ryw 2 

d2y + 2 n y = E sin T y 
dT 2 

2 
n = and £ _ 2av 

- Ryw2 

(6. 23) 

Equation (6.23) is more easily recognised as the Mathieu 

equation. 2 
The magnitude of ~he parameters n and E is approximately 

2.2 x 10-3 and 5.5 x 10-S respectively. 

Without any further details of the problem we seek the solution 

of eqn. (6.23) using a gen~ p~unbational ¢Oiution in the form 

[Sbw.bie and F iuc.heJt 19 6 2 l 

where each of Y, p, y1 , y2 , ..• , yN is a variable. Then the first order 

solution of (6.23) is given by 

y(T) 
y y 

= Y cos(nT-p) - d 2 (2n+l) cos[(n+l)T-p] - 2 ( 2n-l) cos[(n-l)T-p]} 

(6.24) 

The details and the necessary conditions for the above solution can be 

found in S~ubie and FietcheJt {1962). By applying the inverse trans-

formation using eqn. (6.22) we arrive at 
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cos ( ft-p) -d 
y f 

+ 1) wt-p] y (t) y cos [ (- -
f w 

2(2 -+ 1) 
w 

y r c! - l)wt-p]} cos 
f w 

2(2 1) 

(6. 25) 

w 

and 

-crt 
a'I. (t) = e y (t) (6.26) 

Questions such as of ~tab~y o6 motion have been already 

answered in Stnuble and Fletche4 (7962) 1 but also are obvious from eqn. 

(6.26). 

Assuming that the initial conditions are· a(O) and a(O) 1 the 

final form of the gyrocompass transient response is 

-crt. 
A e {cos (ft-p ) -

m m 
(6. 27) 

where; 

2 cr 1 . 2 l/2 (f a(O) + f a(O) 

A = 
a(O) 

+ (a) 
m e:w2 e:w2 } (1 + ) (1 -

4f2-w2 4f2-w2 

(1 + 
e:w2 

) 

-1( 4f2-w2 [~ !0(0)J) p = tan f + f a(O) m e:w2 
(1 - ) 

4f2-w2 

(b) 

and 

2crv f2 f2 - cr 2 1 

2Tt 
e: = , w =-

Ryw2 0 T 
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Some remarks are necessary at this point. First of all, the 

gyrocompass transient response is a function of the circular frequency w 

with which the ship is circulating. Secondly, if the circular motion 

ceases (i.e., w = 0 and H = H 
0 

constant) the transient response will 

assume the same expression as in eqns. (5.11), which is the expression 

of the transient response of the gyrocompass mounted on a uniformly 

moving platform, a fact that is expected. Thirdly, the effect of the 

circular ship's motion is reflected in the transient response as a 

slight modification of the magnitudes of the amplitude and the phase 

angle of the response, and as a slight modification of the sinusoidal 

part of the motion of the spin-axis. 

The steady-state response of the gyrocompass is given by 

ass = -y tan ~j + tan 6j 

evaluated at any specific time instant j. 

(6.28) 

The complete dynamic response of the gyrocompass is the sum of 

the responses namely, 

a(t) ( 6. 29) 

In conclusion, the dynamic response of the gyrocompass was 

found in the case of an arbitrary motion of the transporting vessel over 

the earth's surface. The general model employed to represent the motion 

of the vessel indicates potential superiority over the simpler model of 

the circular arc approximation. The equations of motion of the gyro­

compass do not change form from the previously used equations, but their 

solution involves a considerable amount of mathematical complication due 

to the presence of the time-dependent coefficient. 
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It is important to note here that the dynamic response of 

the gyrocompass using the general model of the ship's track is valid 

for any case, irrespective of the fact that the ship is either execut­

ing a manoeuvre or is sailing along a straight line. This fact 

indicates that even the smallest changes in course and/or speed can be 

modelled in a straightforward way and, hence, correct gyrocompass 

heading information is obtainable. 



CHAPTER 7 

HIGH LATITUDE BEHAVIOUR OF THE GYROCOMPASS 

Three basic questions are asked and answered in this chapter. 

First, what is meant by the term high latitude? Second, why are we 

concerned with high latitude navigation? And, finally, how does the 

gyrocompass perform at high latitudes? 

High .ta;t,Ltude. in this study is defined as the geographic location 

beyond the parallel of 70°. In recent years, the ~rctic are~s of the world 

have been of tremendous interest for both, the scientific and economic 

society. Understanding the physical processes and phenomena of the arc.tic 

areas guides the scientific society. National priorities in energy 

resources exploration leads the interests of the economic society to new 

virginal areas of the planet, such as the Arctic. 

The increased demand for exploration activities in these are.as is 

the reason for l~gh latitude nav-<.gat-<.on. The unique environmental conditions 

of the arctic constitutes the primary limitation in accurate and reliable 

navigation. The environmental factors imposing limitations in navigation 

are remoteness and isolation, severe weather conditions, ice-covered seas 

and low-lying ice-covered coast-lines [Am~ean P~actiea.t Nav-<.gato~ 7977]. 

-100-
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In addition, the high latitude places restrictions on the performance of 

navigation sensors. The operation of north-seeking gyroscopes is severely 

affected because the directive force (earth's horizontal component.of 

angular velocity Q cos ~) is greatly reduced. The present satellite 

navigation system (NNSS) also has degraded performance at high latitudes 

[W~ and G~ant 1981]. Coverage by either traditional or modern electronic 

aids to navigation is limited [Am~Qan P~actiQal Nav~gato~ 1977]. Ice­

covered seas and lands severely attenuate radio navigation signals [W~~ 

and G~nt 1987]. Celestial navigation is impaired by the arctic weather. 

Under these conditions it is important to use the full strength and potential 

of all available navigation sensors,including the gyrocompass, to.provide 

acceptable navigational accuracy and reliability [W~ and G~aJ~ 1981]. 

The performance of the gyrocompass degrades with latitude. The 

damping error is increased as tan ~- Speed-and-course error increases too. 

In Chapter 5 we discussed the Schuler-tuning as the appropriate function 

for reducing the acceleration-induced errors, and also it was shown that 

the undamped natural period of the gyrocompass (Schuler-period) is latitude 

dependent. 

increases, 

It was stated there, that as latitude increases the period T 
0 

thus, instability of the gyrocompass becomes the critical factor. 

All the above statements make necessary the study of the gyro­

compass behaviour at navigable high latitude waters (70° to 80° latitude). 

In this chapter the equations of motion of the gyrocompass are investigated 

in view of high latitude operations. The problems associated with high 

latitude and the functional limitations of the gyrocompass are explored. 

The mathematical models developed in the previous sections are examined 

under the new conditions. Finally, considerations are given to the possible 
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mechanical adjustments and/or compensation techniques required to reduce 

the problems due to high latitude degraded performance of the gyrocompass. 

7.1 Equations of Motion 

The gyrocompass depends, for its directive property, on the 

horizontal component of the earth's angular velocity Q cos ~ and, thus, it 

becomes less satisfactory in high latitudes where this component is greatly 

reduced. 

The equations of motion developed in Chapter 5, namely eqn. (5.8), 

are still valid. The proposed general modelling of the ship's track is 

applicable and the gyrocompass response is as given in eqns. (5.11). 

7.2 Problems and Limitations Imposed by High Latitude - Mechanical Adjustments 

and Compensation Techniques 

Recall eqn. (5.15) which gives the period of undamped natural 

oscillations of the gyrocompass 

T 
0 

2'11 I ( en > 
mgH"2 cos ~ 

An increase in latitude increases the undamped natural period of free 

oscillations of the gyrocompass. However, we have seen in section 5.6, that 

in order to avoid acceleration effects it is necessary to retain the value 

of 84.4 minutes for T , either by adjusting the pendulous moment mgt, or by 
0 

changing the angular momentum en of the gyro-wheel varying its rotational 

speed n. In the Sperry instruments this is achieved by varying mgt as .6e.c. ~-

But practical difficulties are involved since the value of mgt at latitude 

$ = 85° requires to be 11.5 times its value at the equator. To overcome 
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this problem the manufacturer has devised a small adjustable weight, 

called latitude 4ide~, which is added to the gyro-casing to assist the 

normal precession at high latitudes (Sperry-type gyrocompass) [A~110id a.nd 

MaundVI. 1961, Manua..C o6 The. Admbc.a.l;ty Gy~oc.ompMJ.J 1953]. If this 

additional weight m'g is situated at a distance l' along the horizontal 

axis (northern-axis), then it will provide a torque which results in a 

precession in azimuth at right angles to it, and by adjusting £' it is 

possible to make the precession rate (m'gl')/Cn ~ Q sin$, which is the 

required precession at latitude cp [A~noid and Maundell. 1961]. Altbough 

the above procedure results in a definite improvement of the gyrocompass 

performance at high latitudes, its practicality and adaptabi.lity i$ some­

what questionable for the following reasons: 

i. the latitude rider is set for a specific latitude, and in order to 

adjust it in other latitudes manual mechanical intervening by 

experienced personnel is required, 

ii. the maximum setting of the latitude rider is for latitude of 70° 

approximately [Manual o6 the Admi.AaUtj GtjMc.ompM!> 1953], 

iii. specific knowledge of the gyrocompass design is required. Therefore, 

possible mathematical analysis is limited due to lack of particular 

information (m', l', location of m'g), 

iv. manuals of recent gyrocompass models (e.g. Op~on and SVI.v~c.e. 

Man~e o6 the. Sp~tj MK37 Gy~oc.ompM!> Eq~pment [197711 do not 

include any information about the subject, 

v. the commercial gyrocompass designs are intended for operation up to 

65°-70° latitudes. Appropriate functioning beyond these latitudes 

being subject to special adjustments, or special gyrocompass systems. 
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Under these circumstances, the possiblity of examining the new 

conditions, in view of high latitude modified equations of motion of the 

gyrocompass, becomes severely minimal. 

so, in effect, in the analysis carried out here, no such 

mechanical adjustments were considered and the undamped natural period of 

oscillations of the gyrocompass T (and consequently the damped period T) 
0 

were considered in the most general case. 

A further effect to be examined is what happens with the relative 

damping, i.e., the damping ratio~- If~ assumes the value of 1 then 

a = f and the period of damped oscillations T becomes infinite. Thus, if 
0 

T is to be retained at reasonable levels not differing from 84.4 minutes 
0 

by much, the damping ratio must be kept less than 1. This can be achieved 

only by reducing the magnitude of a, (recall that a = (mgty/2Cn)). So a 

trade off must be found between the relative magnitudes of mg, y, and f . 
0 

Thereby, the offset angle y is usually decreased to allow reasonable operation 

of the gyrocompass at high latitudes. The latter (smaller y) has a 

positive effect on gyrocompass error budget. Smaller y values reduce the 

damping error (i.e., -y tan~) which is expected to be l~rge at high 

latitudes. 

However, reducing the value of y involves once again human inter-

vening and mechanical adjustment. Thus, when a gyrocompass is to be used 

in latitudes higher than 70° the necessary mechanical adjustments have to 

be performed, if possible, before sailing. On return to lower latitudes 

the adjusted quantities and parameters should return to their normal 

values. This creates a complex operating procedure. The situation becomes 

even more complex if the ship is supposed to sail back and forth in high. 
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and lower latitudes for some time, thus continually adjusting the correspond­

ing parameters. 

Finally, we have to note that at high latitudes the speed-and­

course error and the ballistic deflection error are considerable. It is 

obvious that the ballistic deflection (which is the movement of the gyro 

spin-axis resulting from vehicle acceleration), is receiving most of our 

attention because Schuler tuning is not likely to exist at high latitudes. 

This source of error (i.e., ship's acceleration) becomes even more critical 

when manoeuvring of the vessel is involved. Then the only means by which 

acceleration-induced errors can be predicted and accounted for is compu­

tational. In addition velocity-induced errors, a~though predictable, they 

become larger and larger as latitude increases because the corresponding 

linear velocity component of the earth QR cos ~ decreases. Therefore, 

the errors encountered at high latitudes become excessively large and the 

gyrocompass performance degrades rapidly. 

In summary, there are two main reasons that cause the performance 

of a gyrocompass to degrade, the increased bias errors and the increased 

instability due to lack of Schuler tuning. 



CHAPTER 8 

SIMULATION STUDIES AND RESULTS 

In order to test the mathematical models developed in the 

previous chapters and evaluate the dynamic response of the gyrocompass, 

simulation studies were carried out. 

These simulation studies include the assumptions made for the 

physical model, the evaluation of the system's behaviour, the performance 

characteristics, and the results obtained. 

The goals to be achieved are two-fold. The first is to apply 

the modelling methods of the ship's track developed in the previous 

sections and test their validity. The second is to obtain the dynamic 

response of the gyrocompass as a function of time, and compare it with 

existing information to assure the ability in predicting the gyrocompass 

deviations from true north under different dynamic inputs. 

The simulations are referred to a particular gyrocompass, the 

Sperry MK V gyrocompass, for which the following constants .are the 

design parameters [from AltnoR.d and Maund~ 1961: 
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Cn 

mgR. 

207 ft lb sec 

6.3 ft lb 
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(angular momentum of the gyro-wheel) 

(the pendulous moment) 

y 1~55 (or 0.02705 radians), (the offset angle). 

A FORTRAN program is designed to perform the computations. It 

is based on the mathematical models presented in Chapters 5 and 6. 

The different dynamic inputs include various types of manoeuvres 

(90°, 180°, 270° and 360°), at different speeds (5, 10, and 15 knots), 

and latitudes (30°, 60°, 75°, and 80°). 

The program computes the transient response of the gyrocompass 

based on the appropriate initial conditions and the steady-state values. 

The ballistic deflection is incorporated into the program computations 

(Appendix V) . 

8.1 Simulation Results Using the General Modelling of the Ship's Track 

In this part of the simulation study eqns. (6.4), (6.5), (6 • .11) 

and (6.12) are used and the transient response of the gyrocompass is 

computed. 

The first concern is to examine the effect of the dynamic ~nputs 

(speed, manoeuvre characteristics) on the magnitude of the initial ampli­

tude of the oscillations and the corresponding time to damp out their 

influence on the indicated headings. The second goal is to examine the 

above as a function of latitude. 

Various sampling time intervals ~tk were tested. It is noted 

here that the sampling interval must be less than (or, equal to) the 

time within the manoeuvre is completed, otherwise spurious results may 
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be obtained. The interval ~tk can be as small as the sampling interval 

for v and H (ship's speed and course indication). In this manner, more 

accurate estimates of the changing equilibrium (steady-state) position of 

the gyrocompass can be determined. Consequently, more accurate estimates 

of the transient errors of the compass can be computed. However, the 

~tk interval may assume various values depending on the particular 

application. For general navigation purposes that interval may be as 

long as the intervals associated with speed and/or course changes. For 

precise sea-gravimetry using ~eal-thne Eotvo~ eo~e~on that interval 

should be as small as one second (ls) [We~ and G~ant 1981). 

Figures 8.1 to 8.10 show the gyrocompass transient re.sponse 

for two different latitudes 30° and 60° and for different manoeuvring 

characteristics. The gyrocompass is tuned for 45° latitude and the 

initial heading at the beginning of the manoeuvre is H = 0°. Several 
0 

rates of turn are also used. From the results obtained it i.s concluded 

that the transient errors are significant immediately after the.comple-

tion of the manoeuvre. In general, the magnitude of the transient 

errors tapers off an hour after the manoeuvre has ended. During this 

interval their influence on the knowledge of the actual ship's heading is 

obviously prominent. 
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8.2 Simulation Results for a Special Case of The Ship's Track -The 

Circular-Arc Approximation 

In this part of the simulation study the circular-arc approx­

imation of the ship's track is examined. Equations (6.2.7), (6.28) and 

(6.29) were programmed and the transient response of the gyrocompass 

\olas computed. Two different cases are examined, and are given in 

Figures 8.11 and 8.12. The gyrocompass is tuned for latitude of 45° 

and different amount of damping is used. The manoeuvre characteristics 

a::-e included in the legends of the figures. 

8.3 Simulation Results Using The General Modelling of The Ship's Track· 

in High Latitudes 

Particular attention is devoted in the simulation studies carried 

out for high latitudes, because of the increased instability of the gyro­

compass and the large magnitude of the steady-state errors. 

The gyrocompass is tuned for 45° latitude. Different 

manoeuvres are simulated at different rates of turn .. From Figures .8.13 to 

8.19 it is seen that the period of oscillations of the gyrocompass is 

increasing as latitude increases. The transient errors assume values 

larger than 10° immediately after the end of the manoeuvre. An error of 

1° after 90 minutes is still present. 
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CHAPTER 9 

SOFTWARE COMPENSATION OF GYROCOMPASS DEVIATIONS 

In the previous chapters the major elements of dynamic analysis 

of the gyrocompass were discussed from the standpoint of their character­

istics and contribution to the overall system's behaviour. 

We have established that the dynamic characteristics of the 

physical system can be described by mathematical equations, although, as 

always, such mathematical models are only an approximation of the dynamic 

behaviour of a physical system. 

In this chapter use of these mathematical models for software 

compensation of the gyrocompass deviations is treated as an example of a 

control problem. 

Control systems can be classified as either open-loop or closed­

loop. In open-loop control, the output has no influence on the system 

dynamics. In closed-loop control the output does influence the system 

dynamics cMo~an 1978]. 

Open-loop control is only effective when the response of the 

system is known. In a closed-loop control system feedback of the output 

is implied. 
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In this thesis the open-loop software compansation of gyro-

compass errors is proposed. The reasons are: 

i. the problem of open-loop compensation becomes a simple software 

processing problem, 

ii. no specialized hardware is needed, and 

iii. no interference with the actual gyrocompass operation is necessary. 

Therefore, the gyrocompass will physically still deviate from true north, 

but the software compensation algorithm computes the correct heading for 

use as a directional reference. 

Inputs for the software compensation are the indicated heading 

H from the gyrocompass together with data from other devices (such as 

ship's speed log) sampled at discrete time intervals. The ~ampling time 

interval depends on the particular requirements of the navigation function. 

The speed and heading information, together with latitude and longitude 

information are necessary to evaluate the gyrocompass dynamic response at 

any time instant tj, as is seen from equations (6.4), (6.5), (6.11), (6.12) 

and equation (V-20) from Appendix V. The design parameters of.the gyro-

compass of interest have to be known, namely the angular momentum of the 

spinning wheel (Cn) , the pendulous torque (mgi) and the offset angle (y) 

which is used to introduce the damping action. Once again it is noted 

that all the above are applicable for the Sperry-type gyrocompass only. 

Then the following equations are programmed to give the gyrocompass 

response: 

a (t.) 
J 

= a I rn 
t. 

J 

-ot. 
e Jcos(ft.+~(t.)-y tan~-+ tan o. 

J J J J 
(9.1) 
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where the parameters a and~ are given from eqns. (5.11) with initial 
m 

conditions 

+ 
at (0 ) 

j+l 
a (O 
tj+l 

+ {y(tan ~. 1-tan ~.)-(tan o. 1-tan o.)} (9.2) 
]+ J J+ J 

where 

and 

where 

at (0 
j+l 

+ 
at (0 ) 

j+l 

llt. 
J 

= a(t. 
J 

Lit . 1} J-

= a(t. = llt. 1> 
J J-

t.-t. 1 
J J-

(9. 3) 

(9.4) 

(9. 5) 

The term {y(tan ~. 1-tan ~.)-(tan o. 1-tan o.)} represents the changing 
J+ J J+ J 

steady-state error of the gyrocompass between instants t. 1 , t.. In the 
J+ J 

general case of a gyrocompass which is not Schuler tuned equation (V-20) 

is used to compute the ballistic deflection error (Appendix V). 

The true heading (HTRUE)of the vessel is the indicated heading 

(HIND) plus the gyrocompass response (i.e., the gylto-e.:vwlt GER) as 

computed from equation (9.1) 

(9. 6) 

The above described gyrocompass response corresponds to the 

discrete-time general model of the ship's track developed in section 6.2. 

The above presented analysis is better depicted in the following block 

diagram (Figure 9.1). 
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There are relative advantages and disadvantages of an open-

loop compensation technique. They are summarized in a point form below. 

Advantages: 

i. Software compensation is superior than the mechanical compensation 

provided by the manufacturer. The compensation units (settings for 

latitude ~o and speed v ) have limited capabilities. Latitude can 
c c 

be preset for up to 70°. The gyrocompass room, where the compensa-

tion units are installed on the ship, is not easily accessible. Thus, 

t.he mechanical compensation settings are not appropriately and 

frequently updated as it is required. Usually the navigator adjusts 

the compensation settings every 3-5 degrees of latitude and retains 

the speed setting in the normal cruising speed. Changes therefore, 

either in latitude or speed, are not incorporated in the mechanical 

compensation procedure. This is not the situation with the soft-

ware approach. All the changing dynamic inputs are taken into 

account and the accuracy of the heading information is improved 

considerably. 

ii. Software compensation (open-loop control) is easily implemented in 

a digital computer and it does not require complex interfaces and 

additional electronics, as it does in the case of a closed-loop 

control structure. 

iii. Open-loop software compensation does not influenee the dynamics of 

the system. Thus it eliminates the risk of a spurius feedback input 

which can create considerable problems in the behaviour and perfor-

mance of the dynamic system (e.g., a wrongly computed torque input in 
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the feedback loop can cause the gyrocompass to exhibit dynamic 

instability, and affect its settiing for a considerable time before 

the system is again capable in indicating true north). 

Disadvantages: 

i. Using the open-loop control structure the gyrocompass may exhibit 

large deviations which, although they are accounted for through the 

software program, may degrade the performance of the system by 

making it more susceptible to external disturbances. This case 

is better understood when manoeuvring at high latitudes, where 

northerly accelerations can not be accommodated by the Schuler 

tuning (mistuned gyrocompass, excessive natural undamped period), 

and large gyrocompass deviations occur. In the above case 

(manoeuvres at high latitudes) the open-loop control may improve 

the gyrocompass performance, but its behaviour still remains critical 

(increased bias errors, increased instability). 

A trade-off between the open-loop control (i.e., software 

compensation) and manual mechanical compensation is the most feasible 

approach for marine gyrocompasses operating at high latitudes. The 

approach proposed here includes: 

(a) manually set the mechanical compensation units of the gyrocompass to 

the maximum value for latitude and at a nominal speed that the ship is 

liekly to retain, 

(b) use the software compensation program, modified as shown below to 

incorporate the partial mechanical compensation, 

(c) compute the "JtU-idua.i" 9!flt0 eMOJt (RGER) to obtain the true heading of 

the vessel. 



-135-

In this case, if the manual mechanical compensation settings are $ and 
c 

v , then the residual gyrocompass error (RGER) is computed by 
c 

RGER = cl(t.) - { -y tan <P + tan o } 
J c c 

where a(t.) is given by equation (9.1) and 
J 

tan o 
c 

v cos H 
c IND 

!1R cos </> 
c 

(9. 7) 

(9. 8) 

This approach proposed in here is illustrated in. Figure 9.2. 

From the diagram it is seen that the residual transient gyrocompass error 

immediately after the manoeuvre is of the order of 1° at a latitude of 

75° as opposed to approximately 6° when no manual mechanical compensation 

is used. The particular characteristics of the rnanoeuvre and the 

mechanical compensation settings are given in the legend of Figure 9.2. 

The gyrocompass is tuned for a latitude of 45°, and the simulation is 

referred to the Sperry MK V design. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

The objectives of this research are summarized into the follow­

ing: develop mathematical models for a gyrocompass; evaluate these 

models to obtain the gyrocompass behaviour; model as many of the gyro­

compass errors as possible, thus making it possible for predicting what 

kind of response should be expected and of what magnitude; consider 

particular applications where the above modelling may contribute in 

reducing the heading errors involved, hence augmenting the performance of 

several other navigation functions. 

The equations of motion of the gyrocompass were derived using 

Lagrange's method. 

The theory of linear dynamic systems analysis is a powerful tool 

in obtaining the response functions of a dynamic system. It was presented 

here in its simplest form. 

To test the derived response functions, simulations involving a 

real gyrocompass were performed. 
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Software algorithms were developed to compensate for the gyro­

compass deviations. 

The high latitude behaviour of the gyrocompass was considered as 

a special case of the software compensation procedure developed here. 

The general discrete-time model of ship's track, devised here 

is proven a realistic and workable procedure. 

Before proceeding to the interpretation and significance of the 

simulation results a few more conclusions are drawn. 

If the gyrocompass is supposed to assist specific and precise 

navigation functions, an understanding of its dynamic characteristics is 

required. More specific information about its design characteristics and 

parameters should be known. This will lead to the important fact that 

software compensation procedures will recover completely all the gyro­

compass bias errors (e.g., damping error, speed-and-course error) and at 

least most of the not so easily predictable errors (e.g. transient errors 

due to ballistic deflection). 

Software compensation procedures are by far better and more 

accurate than the mechanical compensation settings provided by the manu­

facturer. The latter are probably sufficient for general navigation when 

cruising in constant speed and heading for long periods of time in low 

latitudes, but they are inadequate for special navigation requirements. 

10.1 Interpretation of The Results and Their Significance 

The gyrocompass behaviour is described by two response functions. 

The steady-state response is of less importance than the transient response, 

because it is well known and its magnitude varies according to a prescribed 
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way. On the contrary, the transient response is more crucial. It 

introduces temporal errors, the magnitude of which is a function of 

the particular dynamics of the problem and it can be predicted only if 

mathematical modelling is available. As far· as transient errors are 

concerned, there is not other means but software procedures in correcting 

compass indicated headings. 

In real situations when frequent changes in course and/or speed 

occur, the gyrocompass exhibits oscillations which are undesirable, because 

they introduce errors in the compass readings thus providing false infor­

mation about the direction of travel with respect to true north. 

If continuous disturbances occur in the gyrocompass, it is 

more likely that the oscillations will become critical for the system~ 

performance. These oscillations will require a very long time for the 

gyrocompass to settle to an equilibrium position again, hence degrading 

its effectiveness as a valuable heading-sensor. 

The results from the simulation study are consistent with an 

actual gyrocompass deviation reported in 1972 in Lancaster Sound [Eaton 

1982]. An error of 6° was measured in the gyrocompass (Sperry MK 37) after 

a 180° turn at 13.5 knots at a latitude approximately of 72°. 

The significance of the gyrocompass computed transient response 

(Chapter 8) is very important. Transient errors of the order of few 

degrees occur. Such large transient errors might result in velocity 

estimates of the vessel with an error of close to 1 knot in the north­

south component. This in turn could introduce an error in a transit 

satellite fix of about 0.5 nautical miles [Stanoell 1978]. 
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Offshore hydrographic cruises are in fact multidisciplinary in 

nature, combining bathymetric, seismic, gravity and magnetic measurements. 

Navigation requirements are extremely demanding in this respect. The new 

generation of sea-gravimeters is capable of providing marine gravity 

accuracies of the order of + 1 mgal. The major drawback in obtaining this 

accuracy is the knowledge of the Eotvos correction. Navigation uncertain­

ties can produce EotvBs correction errors from 1 to 10 mgals [Ro~e 7974]. 

Gyrocompass errors of the order of few degrees may introduce as 

much as 2 mgals in the determination of the Eotvos correction. The situation 

becomes more critical if a ship, having similar errors in heading informa­

tion, performs the crossing-tracks for the gravity survey. The two errors, 

if combined, could easily show an error of more than 3-4 mgals in the 

Eotvos correction just due to the gyrocompass deviations. 

The situation is of paramount importance when the real-time Eotvos 

correction is calculated and fed back to the observed gravity. In this 

case software compensation of the gyrocompass errors is absolutely necessary. 

Maximum transient gyrocompass errors can be as large as 10 to 

15 degrees at high latitudes. This limits any of the navigation functions 

that require directional information. These errors certainly affect the 

navigation accuracy requirements. Since integration of navigation sensors 

is meant to improve reliability, accuracy, and consistency of navigation 

[W~ and G~ant 7987), gyrocompass errors might degrade the performance of 

such a multisensor system considerably. 
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10.2 Further Developments and Recommendations 

This work can be extended to include more recent gyrocompass 

designs, such as Sperry MK 37 Gyrocompass equipment. 

Mathematical models that involve random disturbances in the 

gyrocompass will augment the performance of the system, since more 

error sources can be included not necessarily having an explicit func­

tional form. The mathematical treatment can be merged with the statist­

ical one. 

The mathematical models and response functions developed here 

need an independent check at sea to evaluate their effectiveness. These 

independent checks might also help in the improvement of these models. 

Ways to provide external means of ship's azimuth (azimuth of the fore-

aft axis) may include underwater acoustic navigation systems, or precise 

radio navigation systems, both requiring two sensitive elements positioned 

along the ship's longitudinal axis. 

A very important and necessary element in evaluating the gyro­

compass response is the knowledge of the design characteristics. This 

allows the development of the necessary mathematical models and the 

response functions. A close collaboration with the manufacturer will 

certainly improve the knowledge of the particular gyrocompass behaviour 

and performance. 

This is especially true when the high latitude performance of 

a gyrocompass is investigated. For example, in the case of ice-breaking 

operations when navigating in the arctic, what is the effect of sudden 
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disturbances, for a prolonged time, on the gyrocompass indications 

[Canadian Coa.o:t GUAA.d, 19 81 l? 

How can the stability conditions (Schuler tuning) be improved 

at high latitudes with less mechanical adjustments? 
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APPENDIX I 

LAGRANGIAN FORMULATION OF THE EQUATIONS OF MOTION 

OF AN UNDAMPED STATIONARY GYROCOMPASS 

In this Appendix Lagrange's equations of motion are used to 

derive the differential equations which describe the two modes of motion 

of the gyrocompass, namely, the motion in azimuth and the motion in 

tilt. 

Recall equations (4.6) and (4.7) 

[C'(w l 2 + B'(w ) 2 + A'(w )2 + 
1;; E;, n 

( I-1) 

and 

U = mg£(1- cos Sl (I-2) 

We rewrite the above equation (I-1) using equations (4.1) 1 

(4.2) and (4.3) 1 and after some rearrangement of terms we have 



-151-

2T (A+A') [S - n cos 4> sin a] 2 + 

(A+B') [ (11 sin cj>+a) cos f3 + (n cos 4> cos a) sin f3] 2 + 

c [(Q cos 4> cos a)cos f3 

C' [(Q cos ¢ cos a) cos f3 - (Q sin cj>+a)sinf3]2 + 

A"[Q cos 4> cos a]2 + 

B"[Q cos 4> sin a] 2 + 

c"[(Q sin cj>+a)J2 (I-3) 

Recall equations (4.10) 

d (~) aT au --- = -dt aq. 
aq. aq. 

l. l. 
l. 

(I-4) 

Using equations (I-4) we have 

2 aT 2(A+B'){(Q sin cj>+a)cos f3 + W cos 4> cos a)sin S}cos 13--= 
a& 

2C{ W cos • cos a) cos f3 w sin cj>+a)sin f3 + ~}sin f3 -

2C'{ W cos • cos a) cos f3 - w sin cj>+a)sin S}sin f3 + 

2C"{(Q sin ¢+&>} (I-5) 

or 

aT 2 a&= (A+B'){(n sin ¢+a)cos f3 + n cos. cos a sin B cos S}-

c {n cos 4> cos a sin f3 cos f3 - (Q sin cj>+a)sin2S + ~ sin S} -

c•{n cos 4> cos a sin f3 cos f3 - (n sin ¢+a)sin2f3} + 

C"{(Q sin¢+ a)} (I-6) 
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By applying the mathematical simplifications listed in Table 4.1 we have, 

for small angle approximation, 

cos £ ~ 1 and sin £ = £ (I-7) 

thus 

aT (A+B I) { ()1 sin <I> + 0:) + w cos <t>lS} aO: = 

c { (Q cos <t>lS - w sin <I> + &>s 2 + $s} 

C'{W cos <t>lS - w sin <I> + <x>s 2 l + 

C"{(Q sin <t> + al} (I-8) 

buts is small and s 2 is even smaller, thus ~s 2 << and as 2 << (because 

they are second order terms). These terms can be safely neglected and, 

after some rearrangements, we have 

()T aa = (A+B'+C") W sin <f>+a)+[(A+B'-C')~ cos <f>-CW cos <f>+$)JS (I-9) 

but 

(Q cos <1> + ~) - $ = n (I-10) 

where $ is the rotational speed of the gyro-wheel which is many orders of 

magnitude larger than the earth's horizontal rate (Q_ cos <f>). Thus 

C(Q cos <1> + $> ~ en = constant (I-ll) 

within the assumptions postulated. The term (On) expresses the angular 

momentum of the gyro-wheel, which can be considered constant for all 

purposes in this analysis. 

Finally, we have 
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ClT 
Cla = eA+B'+C') en sin $ + a) + [A+B'-C') n cos $ - Cn]B 

and 

eA+B'+C")a + [eA+B'-C' )n cos $ - Cn]S 

The term ClT/Cla is evaluated now 

2 
ClT 

2eA+A'){[S- n cos Cla $ sin a] [-n cos 4J cos a]} + 

2 eA+a • > f r en sin 4> + a)cos B + en cos cj> cos a)sin 13] 

[-n cos 4> sin a sin BJ} + 

2C £ [en cos cj> cos a) cos B - en sin $ + a)sin B 

[-n cos 4> sin a cos Bl} + 

2C' {[ W cos cj> cos a cos B - en sin $ + a)sin 8] 

[-n cos $ sin a cos 13]}+ 

2A"{ en cos $ cos a) e-n cos $ sin a)} + 

2B"{en cos$ sin a) en cos$ cos a)} 

and using the assumptions of eqn. (I-7) and eqn. er-10) 

ClT 
Cla -eA+A'l{S-en cos ct>la}n cos 4> 

-eA+B'l{en sin$+ a) + en cos $lB}en cos cj>)al3 

-en{ (!2 cos cfl) a} 

- C'{n cos cj>- en sin cj> + a)B}en cos cj>)a 

-A"W cos $) W cos $)a 

+B II w cos $) ( n cos $ ) a 

+ $1 

(I-12) 

(I-13) 

(I-14) 

(I-15) 
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aT 
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(A+A')~ cos ~{S-(~ cos ~)a}+ 

(A+B')~ cos~{(~ sin¢+ a) +~cos ~}aS+ 

Cn~ cos <j> a + 

c·~ cos ¢{~cos ¢ - (~ sin ¢ + a)S}a + 

(A" + B " ) ( ~ cos <j> ) 2 a 

neglec:t:ed and the final expression is 

3T 
-- = a a 

[(A+A')~ cos ~](:3 + [Cn~ cos ~]a 

Using the same procedure as above we have 

3'i.' 
(A+A') [S-W cos <j>)a] 

and 

(A+A')S- [(A+A')~ cos ~]a 

ar:d 

2 
aT 2 (A+B I){ [ w sin ¢ + a)cos 8 (~ ¢ a) sin -as= + cos cos 

[~ cos ~ cos a cos B-W sin <I> + a)sin s 

2C{ [ (n cos ~ cos a) cos (:3 - w sin ~ + a)sin 8 + 

[-~ cos ~ cos a sin (:3 - w sin ~ + a)cos 

2C' { W cos <I> cos a)cos(:3 - w sin ~ + a)sin (:3] 

[-~ cos ~ cos a sin B- W sin ~ + a) cos S] } 

(I-16) 

(I-17) 

(I-18) 

(I-19) 

6) 

, 
+ J 

~] 

6 l} + 

(I-20) 
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or, 

aT as= (A+B'){ [(Q sin 4> +a) + (Q cos cf>)S] [(Q cos <f>) - (Q sin 4> + a)SJ}-

Cn{(Q cos cf>)B + (Q sin 4> +a)} 

C'{[(Q cos cf>)-(Q sin 4> + a)BJ[(Q cos cf>)S + (Q sin 4> + a)]}(I-21) 

or, 

aT -as= -(A+B'-C'){ [(Q cos <f>) - (Q sin 4> + a)BJ 

or, 

or, 

aT 
as 

[(Q cos <t>>B + (Q sin <t> + a)J} + 

+ Cna + CnQ sin <t> + [CnQ cos <t>lB 

-(A+B'-C'){(Q cos ¢)28 + (Q cos <f>) (Q sin <f> +a) -

-(Q cos ¢) (Q sin <t> + a)B 2 - (Q sin <t> + a)2B} + 

+ cna + cnn sin <t> + [CnQ cos <t>lB 

- ~~ :-(A+B'-C') W2cos2¢B + n2sin <t> cos <t> + Q cos¢ a-

-n2sin <t> cos ¢8 2 - Q cos <t> &s2 - n 2sin2<t>B -

-a2B - 2n sin <t>aB} + cna + cnn sin <t> + 

+[CnQ cos <t>lB 

or, 

aT -as= -(A+B'-C'){Q cos ¢a}+ Cna + CnQ sin <f> + 

- (A+B I -c·) n2sin ¢ cos ¢ + [CnQ cos ¢1 B 

(I-22) 

(I-23) 

(I-24) 

(I-25) 

after neglecting the second order terms, such as, n2a, n2s2, n&s2, a2S, 

n&a, 
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or, 

aT -as= -[(A+B'-C')n cos ~-Cn]a + [cnn cos ~]8 + 

-[(A+B'-C')n cos ~-cn]n sin~ 

But 

(A+B'-C')Q cos ~ << Cn 

Therefore, 

aT - as= Cna + [CnQ cos ~]B + cnn sin ¢ 

From eqn. (I-2) and eqn. (I-4) we have 

or, 

au 
- = 0 a a 

au - = -mgR. sin B as 

au - as = mgR.S 

The equations of motion are written as 

d (:~) aT au 
0 - --- -= 

dt a a a a 

d <a~> aT au 
0 - --- -= 

dt a a a a a a 

(I-26) 

(I-27) 

(I-28) 

(I-29) 

(I- 30) 

(I-31) 

(I-32) 

and using the expressions from eqns. (I-13) , (I-17) , (I-28) and (I-19), 

(I-27) , (I-30) we have 

(A+B'+C")a + [(A+B'-C')n cos ~-Cn]S + [(A+A')Q cos 4118 + 

[cnn cos 4~Ja = o (I-33) 

and 

(A+A')S- [(A+A')Q cos 4l]a + Cna + [CnQ cos 41]8 + 

+ enn sin 41 + mg£8 = o (I-34) 
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which reduce to 

(A+B'+C")& + [(2A+A'+B'-C')Q cos ·-Cn]B + [CnQ cos .]a 0 (I-35) 

and 

(A+A')B- [(A+A')n cos¢-Cn]a + [Cnn cos • + mgl]B = -cnn sin¢ (I-36) 

In eqn. (I-36) the term (CnQ cos •> is approximately three orders of 

magnitude smaller than (mgi) thus, it can be neglected without any 

significant loss. 

The final expressions for the equations of motion of an undamped, 

stationary gyrocompass are 

o1a + ElS + G1a 0 (I-37) 

D2S + E2a + G2B l;' 

-2 (I-38) 

where: 

Dl A+B'+C" 

El (2A+A'+B'-C')Q cos • - en 

Gl CnQ cos • 
02 (A+A') (I-39) 

E2 -(A+A')Q OS • - Cn 

G2 mgi 

F2 CnQ sin •· 
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APPENDIX II 

LAGRANGIAN FORMULATION OF THE EQUATIONS OF MOTION 

OF A DAMPED STATIONARY GYROCOMPASS 

In the analysis presented in Appendix I the system analyzed 

(undamped gyrocompass) was a conservative mechanical system (i.e., a 

system in which the total mechanical energy - potential plus kinetic 

energy- remains constant). That is, no work is done on the sy~tem by 

external forces, and no mechanical energy is "ci.i.J.>-6-i.pa;ted". Lagrange's 

equations of motion, namely eqn. (4.10) or eqn. (I-4) in Appendix I, 

are the equations of motion derived for a conservative system. 

In this Appendix the equations of motion of a damped gyrocompass 

are developed. Damping the oscillations of the gyrocompass involves 

dissipation of energy, and the mechanical system in turn becomes non-

conservative. Therefore, Lagrange's equations of motion become 

d <a~ > 
ClL 

Q. = dt aqi dO. ~ 
~~ 

(II-1) 

or 

d <a: > 
aT au 

Qi ----dt aqi aq. qi 
~ 

(II-2) 

where, assuming that all the forces derivable from the potential function 

are accounted for in the Lagrangian, we denote the nonpotential forces 

simply by Q .• In our case, the potential function U does not depend 
~ 

explicitly on time, and Q. coincides with the nonconservative forces 
~ 

associated with q .. 
~ 
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In the case of the damped gyrocompass the pendulous weight mg 

is displaced at an angle y to the east. This would provide a torque 

opposing the motion in azimuth a, thus decreasing the azimuthal preces-

sian of the spin-axis in each consecutive swing about the equilibrium 

position. Therefore, the generalized force Q. in eqn. (II-2) is associated 
~ 

with the motion in azimuth. Then Lagrange's equations have the form 

aT au 
--- -= aa aa (II-3) 

d ,aT> aT au 
dt ae - as - as = 0 (II-4) 

Equation (II-4) is the same as eqn. (I-32) in Appendix I. Equation 

(II-3) is the same as eqn. (I-31) in Appendix I, except the term Q on 
a 

the right-hand side. 

The generalized force Q is nothing else but the additional 
a 

torque applied to the gyrocompass about the n-axis due to the displaced 

mass m. It is given by the expression 

Q . = M = mgR.yS a a 
(II-5) 

The equations of motion in azimuth and tilt are written as 

0 (II-6) 

(II-7) 



-160-

where: 

01 A+B'+C" 

E1 (2A+A'+B'-C' HI cos ¢-en 

G1 CnQ cos cp 

F1 -mg£y (II-8) 

02 (A+A') 

E2 ·-(A+A')Q cos ¢-Cn 

G2 mg£ 

F2 Cn\1 sin ¢ 



-161-

APPENDIX III 

THE SUPERPOSITION PRINCIPLE 

The p~ncip£e o6 ~up~po~~on can be stated as follows 

[GJteenwood 7965]: 

"If x1 (t) is the response of a linear system to an 

input Fl(t) for initial conditions xl(O) I xl (0) I and 

so on, and if x2 (t) is the response of the same system 

to an input F2(t) for initial conditions x2(0) I x2(0) I 

and so on, then x1 (t) + x2 (t) is the response of that 

system to the input F1 (t) + F2 (t), assuming the initial 

conditions are xl(O) + x2(0) I xl (0) + x2(0) I and 

so on." 

The superposition principle can be extended to more than two 

inputs or forcing functions. 

The superposition principle applies to any system which is 

described by lineaJt differential equations. It encourages the process 

of finding general solutions. It is because of the additive property 

of the superposition principle that linear systems are so easily 

analyzed. For nonlinear systems this principle does not apply and it 

is not possible to talk in terms of general solutions, even in relatively 

simple cases. 

A very important property of the superposition principle is 

that a general input or output function can be considered to be composed 

of a sequence of small superimposed functions. Also it implies that the 

differentiation of a general input to a linear system results in the 

differentiation of the output. Such an example is the unit impulse 

function which is the time derivative of the unit step function. 
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Finally, it is noted that the principle of superposition allows 

us to obtain the complete solution to a differential equation as the 

sum of the transient and steady-state solutions. 
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APPENDIX IV 

MOTION AROUND A ROTATING SPHERE 

In this Appendix the linear accelerations of a point P moving 

around a rotating sphere are derived in the local navigational frame. 

Let the point P move around a rotating sphere of radius R. 

At any instant the position of P may be defined by its radial distance 

h from the surface of the sphere, the angle of latitude 4> and the angl!i! 

of longitude >... 

We define the coordinate system OXYZ tc be fixed in space and 

the sphere to rotate around the OZ-axis with angular velocity 

0 =constant (Figure 1). 

The cylindrical coordinates of P are 

r = (R+h) cos 4> 

e >.. + nt 

z = (R+h) sin 4> 

(IV-1) 

(IV-2) 

(IV-3) 

The acceleration components in the instantaneous coordinate 

system Oxyz are (P lies on the Oxz plane) 

a r + 62 (IV-4) 
X 

a re + 2r6 (IV-5) 
y 

a = z (IV-6) 
z 
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Z z' 

Motion Around a Rotating Sphere 

Fig.l 
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But, 

r h cos q, - (R+h)$ sin q, 

hq,.sin - hq, sin q, 
. 2 

sin q,] :r h cos q, - q, - (R+h) [q, cos q,+4> 

. 
e A + r. 

e A 

z h sin q, + (R+h)~ cos q, 

z = h sin q, + hq, cos ¢l + h$ cos q,-(R+h) f~ 2cos q,-$ sin q,]. 

Thus, 

- (R+hl { [~ 2 + <i+nl 21 cos q, + ~ 
.. 

a sin q,}-2h¢l sin q, + h cos q, 
X 

{IV-7) 

a {R+h)X cos q, + 2C~+n>{h cos q, - {R+h)<P sin q,} 
y 

{IV-8) 

a (R+h){~ cos q,-$2sin q,} + 2h4> cos 4> + h sin q, z 
{IV-9) 

At point P, the corresponding acceleration components in the 

local navigational frame are 

~-w = a 
y 

{IV-10) 

~-s a cos 4> - a sin q, z X 
(IV-ll) 

a a sin 4> + a cos 4> r z X 
(IV-12) 

After some algebraic operations the final expressions are 

aE-W {R+h)A cos 4> + 2(~+n){h cos 4> - (R+hl¢ sin 4>} (IV-13) 

(IV-14) 

(IV-15) 

Equations (IV-13) , (IV-14) , (IV-15) are rewritten in the following form 

for h = 0 (IV-16) 
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aE-W R{A cos tjl-2cj> (A.H2) sin tjl} (IV-17) 

a 
N-S 

R{~ + 6-+rn 2 cos <P sin <P} (IV-18) 

a -Rf<F + (~+ll) 2 cos 2 cp} (IV-19) 
r 

The velocity components of P in the same respective directions 

are 

VE-W (R+h)A. cos ¢> (IV-20) 

VN-S (R+h)lj> (IV-21) 

v h (IV-22) 
r 

~~~~~~~-~~~~~ Navigation Along a Parallel of latitude cj> 0 • 

When navi-gating on the surface of the earth along a parallel 

of latitude cj> 0 (Figure 2), the apparent gravitational acceleration 

sensed is 

g* = (g + a ) = g + a cos cp 
r 

where a is the centripetal acceleration. 

(IV-23) 
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z 
normal 

X 

Navigation along a Parallel 

Fig.2 
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APPENDIX V 

BALLISTIC DEFLECTION 

The movement of the gyrocompass spin-axis resulting from the 

vessel's acceleration is called b~ti~ de6le~on. Acceleration 

induced errors are less predictable than those due to velocity, since 

they may vary rapidly with time. Acceleration errors are especially 

likely to occur during ship's manoeuvres. However, it is essential for 

a gyrocompass to conti~ue operating during manoeuvres or alterations of 

ship's course and/or speed. 

If we suppose that the ship is at a point P on the earth's 

surface and it moves with respect to the earth, then the acceleration 

components of the ship in the local navigational frame (defined by the 

east, north, and radial directions and earth fixed) will be (from Appendix 

IV, eqns. (IV-17), (IV-18), (IV-19)) 

aE-W R6 cos 
.. 

¢-24> (>..+)1) sin ¢} (V-1) 

a 
N-S 

R{~ + (~+m 2 cos cp sin cp} (V-2) 

a = -R{~2 + ( ~+m 2cos2cp} (V-3) 
r 

The latitude and longitude rates of change of the ship's position 

as a function of the course and speed are obtained from Appendix IV, eqns. 

(IV-20), (IV-21), (IV-22) and (IV-16) 

. UN-S v cos H cp = or, ¢ 
R R 

(V-4) 

u 
sin E-W . v H 

A cp I 
or, A 

R cos R cos ¢> 
(V-5) 



and 

(v cos H 
R 

VH sin H} 
R 
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2 
fv sin H + vH cos H + ~ tan ~ sin H cos H} 

R cos cjJ R cos .p 

(V-6) 

(V-7) 

Substitution of the expressions for <j>, >.., <j>, >.. in eqns. (V-1), (V-2), 

and (V-3) yields 

a 
E-W 

v sin H + vH cos H -

a 
N-S 

v cos H - vH sin H + 

+ 2Q sin <P v sin H 

a 
r 

0 . 

2 
v 

tan <P sin H cos H-2Q sin <j>v cos H 
R (V-8) 

2 
v 

tan <P sin2 H+Q2 R cos <P sin <P + 
R 

(V-9) 

(V-10) 

If we consider the result of the added acceleration, we need 

only consider those terms which contain v and H because the terms which 

contain v and H have already been accounted for in the gyrocompass response 

analysis. Thus, the resulting residual acceleration would cause the gyro 

spin-axis to precess during any alteration of speed and/or course, intra-

ducing temporal (transient) errors in the compass readings. If the resultir.~ 

precessional velocity were of the proper magnitude, it would cause the 

compass to precess during the time the velocity of the ship is changing 

from the resting position proper to the speed-and-course and latitude 

error at the beginning of the acceleration, to the resting position 

proper to the speed-and-course and latitude error at the end of the accel-

eration. Under this condition, there would be zero ballistic deflection 

error. This condition is fulfilled when the gyrocompass is Schuler tuned. 

The spin-axis of the gyrocompass will then move without oscillation to the 
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resting position appropriate to the new speed, course, and latitude. In 

this case the gyrocompass is said to be ape1Uocii.c_ or de.ad-be.a.,t. 

The ballistic deflection depends only on the compass constants 

and the linear acceleration of the ship. 'l'he ballistic deflection error 

and the speed-and-course error are in the same direction. 

Below the dynamic response of a gyrocompass, which is not 

Schuler tuned, is investigated under acceleration inputs. 

At the beginning of the acceleration the compass is pointing in 

a direction ON' (Figure l), 

where; 

-y tan 

tan 

£ -y tan ¢1 + tan 0 

£ is the gyrocompass total error 

¢1 is the latitude error 

0 is the speed-and-course error. 

The residual accelerations are 

( ) res 
aE-W 

(a )res 
N-S 

v sin H + vH cos H 

v cos H - vH sin H . 

(V-ll) 

(V-12) 

(V-13) 

But only forces due to acceleration perpendicular to the 

phantom ring can be transmitted to the gyrocompass, thus we only deal 

with the N-S component of the induced acceleration. 

1 . ( ) res res Ana yz1ng a and (a ) into two components 
N-5 E-W 

along 

the ON'-axis and perpendicular to it, we obtain 

. 
(v cos H-vH sin H)cos £ + (v sin H+vH cos H)sin £ 

(V-14) 

This acceleration a , , causes the spin axis to precess in azimuth with a 
N -s 

rate given by 
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N 

w~--------~--~~------------~E 
(3E-w)res Q 

Residual acceleration components 

Fig. 1 
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(V-15) 

The changing resting postion of the spin-axis is 

d { -1 ( v cos H cp} 
dt tan QR cos ¢1+v sin H)-y tan 

and the ballistic deflection error is given by 

d 
t2 

Jt (£-a )dt 
1 a 

where; d is the ballistic deflection error 

(V-16) 

(V-17) 

t 1 , t 2 are the time instants at the beginning and end of the 

acceleration. 

From eqn. (V-16) it follows that 

d { -1( v cos H }-ysec2cp cp s = tan 
dt QR cos cf> + v sin H 

or, 

1 d v cos H 
~ £ = {QR H}-ysec2 ~ 

) 2 dt cos ~+v sin 
l + fnR 

v cos H 
cos <P+v sin H 

or 

£ = 
(QR 

but 

d 
dt{QR 

Thus, 

(QR cos cj>+v sin H)2 d v cos H 
H}-y sec2 cp dt{QR cp 

cj>+v sin H) 2+(v cos H)2 cos .P+v sin cos 

v cos H } = v cos H-vH sin H 
cos cp + sin H QR cos cp + v sin H 

v cosH 
~~~~~~--~--~ [v sin H+vH cos H-QR + sin cp] • 
(QR cos ~+v sin H)L 
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(nR cos ~+v sin H) 2 
(a ) res 

N-S 

(nR cos ~+v sin H) 2+(v cos H) 2 (nR cos ~+v sin H) 

v cosH [(a )res_ nR"' } 2 ------------------T " ~ sin ~] -y sec $ $ (nR cos ~+v sin H)L E-W 

or finally, after some rearrangement of terms, 

£ 

(a )res+o(a )res+no sin¢ v cosH 
N-S E-W _ y sec2$ v cos H 

(nR cos $+v sin H) + ov cos H R 

and 

(£-a ) 
a 

where; 

(1-k) [(a )res_o(a )res] + k(a )res Y tan~ 
N-S E-W E-\"i' 

k 

(nR cos ~ + v sin H) 

mg~ (nR cos $+v sin H) 
g Cn 

(a ) res 
N-S 

v cos H - vH sin H 

( a )res= v sinH+ vH cosH 
E-W 

0 = v cos H 
(nR cos ~+v sin H) 

(V-18) 

(V-19) 

The ballistic deflection error is then obtained from equations 

(V-17) 

or, 

d 

where; 

and (V-19). The expression is 

d 
t2 

<£-a. )dt ft 
1 

a 

(1-k) 
{v 2cos H2-v1 cos Hl} + n*R cos $ 

+ [2o tan ~ - 6(1-k) 
$] {v 2sin H2 -v:1 n*R cos 

2o 
mgiy 

en 
and 

sin Hl} (V-20) 
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APPENDIX VI 

MODELLING METHODS OF SHIP'S TRACK 

Modelling the track of a manoeuvring ship presents difficul­

ti=s. There is no unified or general approach. However, there are 

several ways to treat this problem. They are briefly lis-ted below. 

The advance and ~an66e~ method. When the rudder is first put over, a 

resultant force acts on the hull and the rudder of the ship. This is a 

centripetal force (the result of all the lateral forces acting on the 

ship) • thus causing the ship to follow a curved path. The centre of 

gravity of the ship will move in a spiral path which is known as the 

turning circle. In Figure 1 the instantaneous position of the ship 

during a turn is shown. 

Fi g.l 
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The angle w between the fore-aft axis and the tangent is 

known as the drift angle. The point where the drift angle is zero is 

called the pivoting point. This point is moving along the fore-aft 

axis at any given instant. The gyrocompass platform is usually .not far 

from the pivoting point when the ship is moving ahead. 

Figure 2 shows a typical turning circle. The advance, A, is 

the maximum distance the centre of gravity G of the ship travels in the 

direction of the original course from the time the rudder was put over 

[Attwood and Pengelly 1967]. The transfer,T, (or, sometimes called 

tactical diameter) is the maximum distance the centre of gravity G moves 

at right angles to the original course [Atti~ood and Pengei~y 1967]. 

A 

Fig. 2: Turning 

I .. , 

Circle 
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The advance and transfer characteristics are not greatly 

influenced by speed except at high speeds when the transfer increases 

considerably. They are determined usually by earring out systematic 

turning trials at sea in order to provide manoeuvring information. 

Rose [1974] proposes that the proper way to treat a turn 

would be to use the advance and transfer characteristics of the ship. 

The ciAc.ui.all. a!I.C. appltouma:Uon. The turn of a ship can be approximated 

by a circular arc. This is reasonable because in calm and moderate seas 

the ship's turn is not strongly affected by the waves. For a circular 

arc, the radius of turn ,R, in nautical miles is given by [Ro~e 1974]: 

-
R 

V L'ltm 6 
(VI-1) 

-where; Vis the mean speed during the turn, 

L'ltm is the duration of the turn in minutes, and 

L\6 is the angle of turn in degrees. 

Ma..th.emat.<.c.a1. Modelling o6 SIU.p Manoeuv!U.ng. In Gill [1979] a general and 

a special mathematical model describing the performance of a manoeuvring 

ship are discussed. The equations of motion are developed and the response 

is computed. Most of the external forces acting on the ship are accounted 

for. This mathematical modelling may help in providing useful information 

for modelling the ship's track during manoeuvres. 
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Random Manoe.uviung. In some instances, a ship may manoeuvre in a 

"random" manner, Figure 3. Consider the following ship manoeuvre models: 

a. The ship maintains a constant speed v 0 and changes heading at 

b. 

times t 1 , t 2 , t 3 , ... Between these times, changes in the heading 

are held constant. The discrete values of heading at times t 1 , t 2 , 

t3, ... namely, Hl, H2, H3, ... , are known. 

The ship changes speed and heading simultaneously 

t3, ... , both of which remain constant between the 

Their discrete values are known at any instant. 

N 

I 
I 

I 

' 

I 
I 

I 

Fig.3 

at times tl, t2, 

time changes. 

c. In the absence of exact knowledge of the ship's path, both speed 

and heading can be treated as random processes with associated prob-

ability density functions. They can be correlated or not in 

time and space. 
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APPENDIX VII 

RECO~~NDATION ON 

PERFORMANCE STANDARDS FOR GYROCOMPASSES 

This is an extract from the Inte~-Gove~nmental M~me 

Conouttative Okga~ation,(I.M.c.o.), publication under the title 

ment". 

The Foreword of the above publication states: 

"Following the adoption by the IMCO Assembly of amendments 
to Chapter V of the International Convention for the 
Safety of Life at Sea, 1960, related to the mandatory 
carriage of radar, radio-direction finder, gyro-compass 
and echo-sounding devices, and to the use of automatic 
pilots, the Maritime Safety Committee of the Organisation 
decided that international performance standards for 
shipborne navigational equipment should be established." ... 

. . • "Subsequently, the Sub-Committee on Safety of 
Navigation prepared the following Recommendations 
which were approved by the Maritime Safety Committee 
and adopted by the Assembly:" ..• 

. . . "(e) Performance standards for gyrocompasses (Resolution 
A. 2 80 (viii) ) ; " ... 
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CHAPTER V - GYRO COMPASSES 

RECOMMENDATION ON PERFORMANCE STANDARDS FOR GYRO-COMPASSES 

1. Introduction 

1.1 The gyro-compass required by Regulation 12 of Chapter V, as 
amended,should determine the direction of the ship's head in 
relation to geographic (true) north. 

1.2 In addition to the general requirements contained in 
Chapter I of this publication, the gyro-compass should comply 
with the following minimum performance requirements: 

2. Definitions 

For the purpose of this Recommendation, the following definitions 
apply: 

2.1 The term "gyro-compass" comprises the complete equipment 
and includes all essential elements of the complete design. 

2. 2 The "true heading" is the horizontal angle between the 
vertical plane passing through the true meridian ffild the 
vertical plane passing through the ship's fore and aft 
datum line. It is measured from True North (000°) clockwise 
through 360 o • 

2. 3 The compass is said to be "settled" if any three readings 
taken at intervals of 30 minutes. (when the compass is on a 
stationary base) are within a band of 0.7 degrees. 

2.4 The "settle point heading" is the average value of three 
readings taken at 30 minute intervals after the compass has 
settled. 

2.5 The "settle point error" is the c1i£'ference between settle 
point heading and true heading. 

2.6 The errors to which the gyro-compass is subject are 
considered to have a probability of 68.3 per cent, where the 
errors are taken as differences between the observed values 
and their mean value. 

The "maximum error" is understood as triple. the above error and 
has a probability of 99.7 per cent. 
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3. Method of presentation 

The compass card should be graduated in equal intervals of one 
degree or a fraction thereof. A numerical indication should be 
provided at least at every ten degrees, starting from 000° 
clockwise through 360°. 

4. Accuracy 

4 .l Set;Ung time. o 6 e.q£.Upme.nt 

The compass should settle within six hours of switching on 
in latitudes of up to 70°. 

4. 2 Pe.,'l6oJunanc.e. UYZ.de.JL ope.Jta.;tiona.t c.oncit;t,i_oM 

(a) The maximum value of one settle point error of the 
master compass should not exceed .:!:_ 2° in the general 
conditions mentioned in paragraphs 3.1 and 4 of Chapter 1 
and including variations in magnetic field likely to 
be experi2nced in the ship in which it is installed. 

(b) The maximum error of the master compass in latitudes up to 
70° should not exceed: 

(i) + 1° when the ship is travelling on a straight course 
at a constant speed in conditions of calm sea; 

(ii) + 2.5° due to a rapid alteration of course of 180° 
at speeds up to 20 knots; 

(iii) + 2° due to a fast alteration of speed of 20 knots; 

(iv) .:!:_ 3° when rolling and pitching with any period 
between 3 and 15 seconds, a maximum angle of 22.5° 
and a maximum horizontal acceleration of 3 m/s 2 . 

(c) The maximum divergence in reading between the master 
compass and repeaters should not exceed.:!:_ 0.3° under 
the conditions mentioned in sub-paragraph 4.2(a). 

Note.: When the compass is used for purposes other than steering 
and bearing, a higher accuracy might be necessary. 

To ensure that the maximum error referred 
4.2 (b) (iv) is not exceeded in practice, 
to pay particular attention to the siting 
compass. 

to in sub-paragraph 
it will be necessary 
of the master 
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5. Construction and installation 

5.1 The master compass and any repeaters used for taking visual 
bearings should be installed in a ship with their fore and aft datum 
lines parallei to the ship's fore and aft datum line to within+ 0.5°. 
The lubber line should be in the same vertical plane as the centre 
of the card of the compass and should be aligned accurately in 
the fore and aft direction. 

5.2 Means should be provided for correcting the errors induced 
by speed and latitude. 

5.3 An automatic alarm should be provided to indicate a major 
fault in the compass system. 

5.4 The system should be designed to enable heading information 
to be provided to other navigational aids such as radar, radio 
direction-finder and automatic pilot. 
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