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ABSTRACT

Heading information is a fundamental parameter in ship's naviga-
tion. Traditionally a gyrocompass is used as the primary sensor to
provide heading reference on board ship. However, gyrocompass indicated
headings are subject to a number of errors, which are functions of the
ship's motion and of the latitude of operation.

The objective of this thesis is to investigate the gyrocompass
behaviour, study its deviations under different conditions of operation
and develop suitable algorithms for the software compensation of these
deviations. To meet this objective, mathematical models déscribing the
gyrocompass behaviour are developed using different dynamic considerations.
In particular, the gyrocompass equations of motion and their solutions
are developed for the cases of a stationary, uniformly moving, and manoeuv-
ering ship. A general discrete-time model as well as a special model to
represent a manoeuvering ship are developed. Specific attention is drawn
to the problem of high latitude behaviour of the gyrocompass.

Simulation studies of the gyrocompass dynamic response are
carried out using the mathematical models developed in this study. The
simulation results indicate that transient errors of 1° are expected at
latitudes of 30°, while errors in excess of 10° are likely to occur at
latitudes beyond 70°. These errors may degrade considerably not only the
gyrocompass performance, but also the performance of a multi-sensor

integrated navigation system (e.g. introducing as much as 0.5 nautical
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miles error in a satellite fix), or they may introduce an error of as
much as 2 mgals in real-time E3tvds correction calculations in precise sea
gravimetry.

An open-loop software compensation procedure of gyrocompass
errors is proposed as an alternative to manual mechanical compensation
traditionally used, to improve the gyrocompass performance. The algorithm
developed in this thesis is a function of the gyrocompass design parameters
and of the particular dynamics of the ship's motion.

Finally, recommendations for future work include sea-trials of
the developed software compensation algorithm, extension of the mathema-
tical models to incorporate random disturbing forces, and evaluation of
the dynamic response of modern marine gyrocompasses, such as, the Sperry

MK 37 Gyrocompass Equipment.
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CHAPTER 1

INTRODUCTION

Navigation is the art of finding the position of a ship at sea,
and conducting it safely from place to place [Adminalty Manual of Navi-
gation 1964). The process of navigation, in general, consists of
defining the route, conducting the craft along it, and finding -the
vessel's position from time to time to check its progress [Encyclopaedia
Baittanica 1970].

The above definition addresses navigation from the traditional
viewpoint. Modern navigation relies more and more upon mechanical and
electronic devices. This framework is supplemented by more and more
sophisticated high-speed digital computers.

The essential sensors in modern navigation may be summarized
as: ship's log and gyrocompass (representing the classical dead-reckoning
function) ; electronic aids to navigation, such as, radionavigation systems .
(Omega, Loran, VLF and VHF systems, etc.); satellite navigation systems
such as, the Navy Navigation Satellite System (NNSS) and the Global Posi-
tioning System (GPS); inertial navigation systems, and acoustic navigation

systems.



The multiplicity and diversity of the navigation systems avail-
able today open a new era in navigation. It is no longer purely an "art",
but also a definite scientific function of applied research and technology.
This new era calls for evaluation and use of the full potential of any
navigation component sensor on board ships, leading to what is known as
multisenson integhated navigation system.

In this thesis we develop methods for software compensation of
gyrocompass errors. These methods are useful in integrated navigation
systems, for the real-time calculation of the Edtu0s correction in marine
gravimetry, etc. In this chapter we describe the problem, outline the
treatment of the problem, and summarize the main contributions made in

this thesis.

1.1 Problem Description

Heading of the ship is a basic navigation parameter, and is
used in manual, automatic and computer-oriented applications.

The gyrocompass is the primary instrument used to provide
heading reference on board ship. Alternatives might be to measure the
azimuth of the ship's head by astronomical means (a time consuming,
weather dependent, and less accurate technique); to use two radioposition-
ing receiving antennae (along the fore-aft axis of the ship) interfero-
metrically; or to use two acoustic transducers along the keel interfero-
metrically. These last two alternatives are not self-contained, as the
gyrocompass is, requiring radio or acoustic reference beacons. Such

systems have been proposed, but none is presently in wide use.



Characteristic of the classical dead-reckoning function (i.e.,
the estimation of ship's position and velocity from observations of ship's
speed and heading) is the monotonically increasing magnitude of the
position error with time [Grant 1976]. The contribution of the gyro-
compass errors to this position error can be significant, especially
during ship's manoeuvres and/or high latitude operations.

In many practical applications, the approach to gyrocompass-
error compensation methods appears to be oversimplified. The provisions
made by the manufacturer for manual compensation procedures are often
used as the only means of the system's reliable performance. For
example, in Grant [1976] it is stated that over a short time interval
(e.g., less than 10 minutes) the ship's log and gyrocompass provide smoother
estimates of ship's velocity than estimates derived from Loran-C.
Therefore, the classical dead-reckoning function was used to provide
information during ship's manoeuvres to reduce the influence of the
Loran-C measurement noise on Loran-C positions [Grnat 1976). But, gyro-
compass observations are in error, this being especially true during
ship's turns, when the gyrocompass can exhibit undesirable oscillations.
Hence, the gyrocompass information may be "worthless" in evaluating
another system's performance, since by itself it is unreliable if its
behaviour is not adequately modelled and its deviations properly accounted
for. BAnother example is an actual, measured gyrocompass error in Lancaster
Sound in 1972 (Eaton 1982]. A maximum error of 6° in CSS "Baffin" gyro-
compass was measured after 180° turns at 13.5 knots. Such gyrocompass

errors might also give trouble in running sounding lines on a survey.



In computing the real-time EStvds correction for precise marine
gravimetry, gyrocompass deviations may introduce errors larger by a
factor of two than the current gravimeter measurement accuracies. When
ship's log and gyrocompass provide velocity information for calculating
a satellite navigation fix, gyrocompass errors are important. It is
also noted here that the performance capabilities of the current
commercial marine gyrocompasses approach their operational limits as
latitude increases. The reasons are increased instability of the gyro-
compass (long natural period of free oscillations, no Schuler tuning)
and increased bias errors. These reasons will be examined in the
subsequent chapters in more detail.

In view of the above stated problems, our objective is to
develop mathematical models that make the best use of the strenghts of
the gyrocompass, and at the same time compensate for its weaknesses in
order to minimize the influence of the gyrocompass errors on the indicated
headings. Specifically, in this study we examine the gyrocompass perfor-
mance as a function of ship's motion and as a function of latitude. The
particular problem addressed in this thesis is to specify an algorithm to
compensate for errors in gyrocompass indicated headings under the follow-
ing conditions:

i. the gyrocompass has a manual speed and latitude compensator,
ii. the gyrocompass must continue to operate normally (but not as
well compensated) when the software compensation is not used, and

iii. the software compensation continues to be useful at high latitudes.



1.2 Outline of Treatment

In Chapter 2 the basic definitions related to the fundamental
principles of gyroscopic theory are given, along with a description of
the reference frames which will be used in this study. A brief intro-
duction to gyroscopic theory and its numerous applications is included.
The particular application of the gyroscope as a gyrocompass is outlined.

Chapter 3 presents the principles of gyrocompass operation
as well as its history and evolution to the present. A short description
of some current systems is presented.

The gyrocompass equations of motion and their solutions are
deve;oped for a stationary, uniformly moving, and manoeuvring vessel,
and at high latitudes, in Chapters 4 through 7, respectively.

The performance of these various mathematical models is
evaluated using a computer simulation of the performance of a typical
gyrocompass. To evaluate the effect of certain inputs and approximations
on the output error in indicated heading of the gyrocompass, a computer
program was developed and the numerical results obtained are illustrated
diagramatically in Chapter 8. The simulation study enables us to
determine the gyrocompass response under different dynamic conditions.

In Chapter 9 the software compensation of gyrocompass errors is
described and possible alternatives for the high latitude behaviour are
proposed. The relative advantages and disadvantages of the open-loop
software compensation procedure are examined.

The last chapter assesses the results obtained and discusses
their importance to the navigational problem. Conclusions are. drawn and

recommendations are made for continuing the present work. Alternatives



and extensions to this work are discussed.
Appendices contain all the lengthy, but necessary, mathematical
derivations used to arrive at the final expressions presented in the main

body of the text. Also supplementary reference and explanatory material

is given.

1.3 Contributions Made in This Thesis

The main contributions made in this study are:
i. the development of an open-loop software compensation algorithm to

account for the gyrocompass errors, both transient and steady-state,

ii. the application of this algorithm to the high latitude behaviour of
the gyrocompass problem, thus improving its performance considerably,

iii. the formulation and solution of the gyrocompass equatipns of motion
for any arbitrary track of the ship using a discrete-time model,

iv. the formulation and solution of the gyrocompass equations of motion
for a circular path of the manoeuvring ship.

The above contributions are the direct result of .the application
of the theory of linear dynamic systems in a simple, straightforward way.
The clear, concise, and consistent formulation of the equations of motion
of the gyrocompass is due to the use of the Lagrangian approach. The
uniform notation followed through the whole study helps to avoid misunder-
standing and misinterpretations. Finally, an extensive bibliography

was compiled.



CHAPTER 2

BASIC DEFINITIONS - INTRODUCTION TO GYROSCOPIC THEORY

AND ITS APPLICATIONS

In this chapter the basic terms used in gyroscopic theory are
defined. Applications of the gyroscope are presented briefly. The

application of the gyroscope as a gyrocompass is discussed.

2.1 Definitions

Dynamics relate the motion of a physical body to its inter-
actions with its surroundings, (i.e., the response of the physical body
in its environment).

Galileo showed that there are preferred reference systems in
which the deviation of a body from uniform motion (or rest) is always
attributable to external influences. These preferred reference systems
are called Ineatial or Galilfean Systems. In such a reference system we
can speak of absolute acceleration and absolute angular velocity, but

neither velocity nor position can be considered absolute.



Inential Space is a reference space in which Newton's laws of
motion are valid. It is considered to be non-rotating with respect to
the "fixed stans", whose positions for navigational purposes appear to
be fixed in space.

The following reference frames may be defined:

a. Irertial frame; it is earth-centred, non-rotating with respect to
inertial space,

b. Earth frame; it is geocentric, non-rotating with respect to the earth,

c. Navigational frame; centred at any point on the earth's surface

(topocentric), non-rotating with respect to the local vertical,
d. Body frame; fixed relative to the body in a preferable manner.

The frames defined above have been identified by their lack of
rotation, but they have not been specifically oriented to the direction
of certain individual axes. This allows the choice of a specific coordi-
nate frame later to suit the problem treated.

The peculiar motions of spinning bodies have always fascinated
mathematicians, physicists, and engineers [Maghus 1974]. 1In the broad
literature relating to problems of spinning bodies the temm gy40 is used
to describe, quite generally, a rotating rigid body.

A very common definition of a gynroscope specifies a rotating
rigid body at a large angular velocity about an instantaneous axis,
which always passes through a fixed point. This fixed point may be the
centre of gravity of the body, or it may be any other point. This broad

definition can be made more specific under the following simplifications:



- the axis of rotation is both a principal axis and an axis of symmetry,
- the ratio between angular speeds along the spin-axis and the transverse
axes is infinitely large.
Therefore, a gyroscope is a rigid body that rotates at high angular
velocity about one of its principal axes of inertia, and of which the
rotations about axes perpendicular to the gyro-axis (spin-axis) are very
slow compared to the main rotation. The following two definitions are
coming as an immediate result of the theory of rotating rigid bodies.

Anguwlan Momentum (or moment of momentwn) is a vector property
of any physical body that is spinning with respect to inertial space
about an axis.

Torque is the rotational effect of an applied force about an
axis. In the absence of an applied torque an angular momentum vector
maintains a fixed orientation in an inertial space, thereby providing a
dinectional neference. By applying a calibrated torque to a spinning
body one can command the angular momentum vector to rotate relative to

inertial space in a known and prescribed manner.

2.2 Brief Introduction to Gyroscopic Theory and Its Applications

The device which has proved most suitable to indicate a reference
direction is the gyroscope. Two gyroscopic principles are the direct con-
sequence of the preceded definitions namely, gyroscopic {inertia and gyro-
Acopic precession. Gyroscopic inertia is that property of the gyroscope

which makes it try to keep the spin-axis parallel to its original position.
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Gyroscopic precession is that property of the gyroscope that causes the
spin-axis to change direction when a torque is applied to it.

For an angular reference, it would be sufficient to have a
device which was held fixed in angular position 1in inertial space in
spite of any angular or linear acceleration, or velocity of the support
structure.

Free gyno is any gyroscope on which no external moments act to
change its motion's character. The angular momentum and the kinetic energy
of rotation of a free gyro remain constant.

The overall objective in the design of an angular-reference
device is to create an instrument which will respond to angular-rotation
inputs. The gyroscope serves the function of an instrument that will
respond to angular-rate-inputs, i.e., angular velocity. Depending upon
its own internal characteristics (or those arising from external circuits)
and equipment coupled to the gyroscope, it can respond in such a way as
to [Wrigley et al. 1969):

a. measure the input angular velocity (providing a signal proportional
to it), or

b. maintain a reference angular attitude (independent of the input
angular velocity), or

c. measure the integral of the angular velocity input.

Although the apparent effect of the earth's rotation on gyroscopes
was first shown by Léon Foucault in 1852, the ability to construct suffi-
ciently accurate units did not exist until the beginning of the twentieth

century.
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For many applications in guidance and control it is necessary
to have available certain directional references. These references,
which serve as the basis for obtaining nauvigational data, or for stabil-
Lzation of a vehicle, or some of its equipment, must be maintained
despite various interferences.

Specific applications of the gyroscope include the gyrocompass,
rate-measuring gyroscopes, direction-indicators for aircrafts, artificial-
horizons, autopilots, inertial navigation units, ship's motion stabilizers,

gyroscopic vibration absorbers, etc.

2.3 Gyroscope on Gimbals - The Gyrocompass

In the previous section two important principles of gyro-
scopic theory were defined, i.e., gyroscopic inertia and gyroscopic
precession.

Gyroscopic inertia depends upon angular velocity, mass, and
radius of gyration, i.e., upon angular momentum.

Gyroscopic precession can be caused onlymb force attempting
to tilt or turn the spin-axis about another axis. A torgque about the
spin-axis cannot cause precession. BAny torque about either one of the
other two transverse axes will cause the gyroscope to precess about an
axis at right angles to that about which the torque acts. Precession
will continue as torque acts, but will cease when the torque is removed.
If the plane in which the torque is acting remains unchanged, the gyro-
scope will precess until the plane of the spin is in the plane of the

torque. Analytically, it is represented by



-12-

apreg H=M (2.1)

where;

¥

wprec: is the angular velocity of precession of the gyroscope

angular momentum with respect to inertial space,

is the angular momentum along the gyroscope spin-axis,

a3 2

and

ﬁ: is the applied torque.

Physically, this equation means that the gyro-axis angular
momentum vector ﬁ, precesses relative to inertial space in an attempt
to align itself with the applied torque M.

The gyrccompasd is a navigational instrument which accurately
seeks the direction of thue noath under the combined effect of gravity
and the earth's daily rotation [Waigley et al. 1969].

True north is the direction represented by a horizontal line
in the plane of the meridian, or, the intersection of the horizontal plane
and the local meridian.

To make a gyroscope into a gyrocompass the gyroscope has to seek
and maintain the true north direction. A gyrocompass is a g{mbatfled
spinning wheel. The gyroscope is so mounted that the wheel-axle (gyro-
axis) has freedom of angular motion. The number of gimbal rings, or the
nature of the support determines the type of the gyroscope. A two-degree-
of-freedom gyroscope has one gimbal ring (or equivalent support) in addition
to the gyro-element gimbal ring. (The gyro-element consists of the spinning
rotor, the drive mechanism and the spin-axis support.) It should be noted
here that the term "two-degree-of-freedom" gyroscope does not account

for the freedom in spin of the gyro-wheel itself, which provides it with
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Precession of the Gyroscope

Fig. 2.1
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one more degree-of-freedom that is usually omitted in the literature.
We will keep this convention in here, and we will talk about a "two-
degree-of-freedom" gyroscope referring actually to the degrees-of-
freedom that the support structure provides.

As originally constructed the gyrocompass had a two-degree-
of-freedom gyroscope with a mass attached to it, that gave the gyro-
compass a pendulocity, and therefore providing by some means of vertical
stabilization.

In conclusion, the gyrocompass tracks true north by attempting
to align the gyro-axis with the horizontal component of the earth's
angular velocity. 1In the next chapter the history and development of
the gyrocompass will be presented together with a brief dgscription of

some current gyrocompass designs.



CHAPTER 3

BASIC PRINCIPLES OF GYROCOMPASS OPERATION

This chapter is devoted to the particular application of the
gyroscope, the gyrocompass. A historical review of the gyrocompass
development is presented. A short description of some current systems
in commercial use is then given.

The principles of operation of a Sperry-type gyrocompass are
introduced since this is the system in which we are interested in the
present analysis.

An outline of the errors associated with the gyrocompass is
given. The main sources of errors are identified in an atterpt to

examine their influence on gyrocompass readings.

3.1 The Gyrocompass as a Heading Indication Sensor - Historical Review

and Development

The history and development of the gyrocompass are closely
related to the history of this unique device, the gyroscope. It is in
this respect that the use of the gyroscope as a heading indication sensor
is examined to provide historical information about the evolution of the
gyrocompass.

-15-



-16-

In 1752 the first written statement on a gyroscopic device was
published in the London Philosophical Transactions [Sorng 1976). Sorg,
studying the history of the gyroscope, gives a fascinating list of liter-
ature on the subject. This is the source from where most of the material
appearing in this section is drawn.

The first scientists who tried to apply the theory of spinning
bodies in directional instruments were Serson and Lomonossow. Their
efforts were concentrated on the design of an artificial-horizon by
enploying a spinning top. In a lecture given at the Russian Academy of
Sciences in 1759 entitled "Investigations about betten accuracy of the
sea-noutes", Lomonossow proposed a spinning top to create an artificial-
horizon device on a rocking ship.

Serson's interests inclined mostly towards the design of an
artificial-horizon device for use in sextant observations at sea at
cimes when there was fog around the sea-horizon. Such an instrument was
nltimately tested onboard a British Admiralty yacht in 1743 and its
function was favourably reported upon.

In 1817 there is a publication in the "Tuebingen Blaetter fuer
Natwwissenschaft und Anznelkunde", (translation: "Tilbingen Letters for
Natural Sciences and Medicine"), by Bohnenberger from the University of
Tilbingen, Germany. In this publication, the first gyro with a Cardan-
suspension was shown, (Fig. 3.1). With this model Bohnenberger could
demonstrate the laws of the gyroscope and he also could show that the
spin-axis, acted upon no external forces, does not change its direction
in space. However Bonhenberger did not know anything about the value

of this principle as being used in direction indicating devices. 1In
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the same publication it was stated that the mathematical treatment of
this type of device was done by the French Podsson in 1813.

The man who created the word gytoscope was the French scientist
Léon Foucault. In his memoir read before the Academy of Sciences in
Paris (1852) Foucault describes his experiments relating to the movement
of the earth and he concludes:

"Comme tous ces phénomenes dependent du movement de La
Terre et en sont des mandfestations varniles, fe propose
de nominen gynroscope L'instrument unique qui m'a servi
a Les constanten."

In this manner the word "gyroscope" was first introduced.

Its etymology from Greek means an apparatus allowing to view rotation.
Today it denotes a variety of mechanisms used to measure angles, angular
velocities, accelerations, or to indicate north.

In one of his experiments, Foucault found that with a gyroscope
one can find north, using proper gimbal structure and damping so that the
spin-axis will settle to a direction which coincides with the direction
of the horizontal component of the earth's-rotation vector. The idea of
the gyrocompass was born. But Foucault had no great success with his
device mainly due to lack of technical means to provide gyro-wheel spinning
for a long period of time with high speed.

It was Thouvé who designed in 1865 the gyro-wheel as the rotor
of an electric motor.

Two improtant improvements were made by Trouvé; an electric motor
to drive the gyro-wheel fast enough and the constraint of the spin~axis
to the horizontal plane by using the force of gravity. The first practical

gyrocompass had been developed. Trouvé's gyrocompass, developed for



-19-

correcting magnetic compasses onboard ships, but only in harbors, is
shown in Figure 3.2.

Similar devices to Trouvé's gyrocompass were built by the Ameri-
can physicist Hopkins in 1878 and by the Frenchman Dubodis.

The next step in the gyrocompass development was made by Lord
Kelvin (Sir William Thomson) in 1884. He proposed, for avoiding the
friction of the bearings on the gimbals, to suspend the gyro by a forsLon-
§ree wirne, or if possible to use a floated-suspension instead of the
Cardan-suspension. Lord Kelvin's second proposal was applied by the
Dutch scientist Van den Bos in 1885 for his gyrocompass. This patent
was bought by the German company Siemens & Halske and some devices were
built.

At the beginning of the twentieth century the gyrocompass devel-
opment was forced along by the German Heaman Anschiitz-Kaempge. 1In 1900
he was planning a trip to the north pole in a submarine, but he was
frustrated by the total absence of reliable navigation equipment. His
idea was to develop a direction-keeping instrument, but the trials were
not successful. This led him to undertake the development of a north-
seeking instrument. The result of his efforts was the famous Anschiitz
gyrocompass, patented in 1904 [Song 1976].

Although Anschitz is acknowledged as the inventor of the first
sea-worthy gyrocompass the date of its actual production is somewhat vague.
From a brief review of the literature, Wiigley et al. [1969] dates the
first ever produced gyrocompass by Anschiitz as 1908. Pearson [Gynros,

1965, Paper 5, pp. 1-11] dates it as 1910. Sorg [1976) states implicitly
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that already in 1910 the German Navy was equipped with Anschiitz gyro-

compasses undergoing extended sea-trials. Grant [1967] says that about
1914 Anschiutz-Kaempfe and Sperry simultaneously developed "what might

be termed the first good gyros suitable for navigation purposes".

In 1906 the young German scientist Max{mifian Schuler saw the
work of Anschilitz and he also started to work in the field of gyroscopes.
His first proposal resulted in a gyrocompass which had a rotor driven by
an a-c current at high speed [Sorg 1976), and is shown in Figure 3.3.

During the second decade of the twentieth century several
designs of gyrocompasses existed. In 1911 Efmer Sperry in the United
States produced a gyrocompass that was easier to manufacture (Wrigley
et al. 1969]. 1In 1912 a third type of gyrocompass appeared, built by
S.G. Brown and John Perry in London [Song 1976-77). Anschiitz-Kaempfe
and his staff, including Schuler, were working in Kiel and they came up
with a new design, a three-gyroscope sensitive element. It was later
followed by a two-rotor gyrocompass, a system in use now for more than
fifty years.

But the most significant advancement was made by Maximilian
Schuler in his paper written in 1923, where he showed that a pendulous
system of the proper frequency stays vertical when moving around the
earth.

In this paper, entitled "The Disturbance of Pendulum and Gyro-
scopic Apparatus by the Acceleration of the VehiclLe", Schuler stated in
the introduction: ..."I asked myself the question: would this sort of
acceleration error be capable of elimination by an appropriate construc-

tion?"..."The answer is yes. And the solution is almost trivial."...
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Finally, Schuler concluded in his paper:

..."An oscillatory mechanical system, on whose centre
of gravity a central force acts, will not be forced
into oscillations by any arbitrary movement over a
spherical surface about the centre of force, if its
period of oscillation is equal to that of a pendulum
of the length of the sphere's radius in the applied
force field" (Schulen 1967].

This general law, due to Schuler, was the most important
progression development not only in the gyrocompass theory and design,
but also in today's inertial technology.

Henceforth, the development of the gyrocompass was only a
matter of expanding technology and not a matter of developing new prin-
ciples. However, a great number of ingenious engineers further-developed
the existing gyrocompass mechanizations. 1In Ferry [1932) and Rawfings
[1944] one can find half a dozen gyrocompass designs existing by the
1940's.

To complete this survey of gyrocompass evolution some other
names of cdevoted scientists should be mentioned, such as those of
Mantienssen and Gechefer. Martienssen, as early as 1906, computed the
N-S acceleration error of a gyrocompass, thus inspiring Schuler later
on to arrive at his unique contribution, Schuler's period of 84 minutes.

Geckeler came up with a modified Anschiitz-type gyrocompass
design, which has received particular attention in soviet literature, as
can be seen from the extended list of references provided in the biblio-
graphy at the end of this thesis.

To conclude this section it is necessary to refer to the recent

advancements in gyrocompass development. The new technology attempts to

substitute the conventional gyroscopes by fasen-gynos. The same general
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principles of rotational motion are used, but the mechanization is
completely different. It has been proven feasible to construct laser-
gyros and to use them as heading indication sensors, but they are.still
in the trial process. Until a low-cost, reliable laser-gyro for marine
use becomes available on the market, the ccnventional gyrocompass design
will be perhaps the primary instrumentation for a heading indication
sensor onboard surface ships.

Recapitulating, today the most common types of commercial gyro-
compasses are those of Sperry, Anschiitz and Arma-Brown. - Descriptions of
these systems are given briefly in the next section. Particular atten-

tion is given to the Sperry-type gyrocompass.

3.2 Description of Some Present Systems

The previous section contains the history of the development of
the gyrocompass. We now turn to consideration of the actual instruments
which are to be found in service on the world's navy and merchant ships.
Only the most common types will be presented here namely, the Anschiitz,
the Arma-Brown and the Sperry designs. The description of these systems
will be intentionally limited. However, for details the interested
reader can refer to the operational manuals of the systems. The major
sources of information used here are; Rawlings [1944), Awold and
Maunden (19611, Gyros (19651, Klinkent [1964), Operation and Service
Manual of Sperry MK 37 Mod 1 Gyrocompass Equipment [1975].

The first Anschitz gyrocompass design (due to Max Schuler in
collaboration with the Anschiitz firm) presented in the previous section

(Figure 3.3), uses a single gyroscope hanging from a hollow ring-shaped
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steel float resting on mercury. Before many of these single-rotor
Anschutz compasses had been made, it was discovered that they were
subject to large errors due to the rolling motion of the ship especially
on intercardinal directions [Rawfings 1944].

The next design, intended to overcome the above imperfections,
employed a triple-rotor gyrocompass. A schematic diagram [after Rawlings]
is shown in Figure 3.4.

We will discuss this design because it is the predecessor of
today's Anschiitz compasses, which are a modification of this triple-
rotor system.

The compass has three separate and similar gyroscopes suspended
from a frame F, carrying the compass card (or dial) C. The frame is
supported from a hollow steel-ball B, floated in a bowl of mercury M.

The gyroscopes are situated at the corners of an equilateral triangle
whose apex is under the 180° mark of the compass card. The whole
arrangement is pendulous and north-seeking. The gyroscope at the south
corner, which is the principal meridian-seeking element, is fixed so that
the north-south (N-S) line of the card lays parallel to its spin-axis.
The other two gyro-casings have their vertical axes mounted in ball-
bearings BB in the frame. They are free to move in azimuth independently
of the compass card, except for a pair of light springs which keep their
spin-axes normally at an angle of 30° with the meridian.

These two gyroscopes are linked together in such a manner as
to ensure that the intersection of their spin-axes always lies under

the N-S diameter of the compass card. These two gyroscopes therefore
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contribute something to the north-seeking effect of the south-gyroscope
and at the same time exert a stabilizing effect which resists displace-
ment of the east-west (E-W) diameter of the compass card from the
horizontal position.

Although the apparatus just described, enjoyed the reputation
of being one of the most successful gyrocompasses on the market for
twenty years, mechanical defects occurred, which prevented the very
high degree of accuracy which its designer Anschitz had set as his
ideal.

Anschilitz sought to remedy all the drawbacks of previous design
in one stroke by redesigning his compass. The principal innovation
consists of enlarging the float so, as to make it large enough to include
everything in a gyro-sphere (i.e. the gyroscopes, the damping trough,
etc.).

The gyro-sphere is entirely submerged in liquid. The whole
assembly is centralized in the outer sphere by a system of coils produc-
ing an alternating magnetic field, thus generating Foucault currents,
thereby producing a repulsion effect which centralizes the ball both
laterally and vertically. The triple-rotor arrangement is now substi-
tuted by a two-rotor meridian-seeking component. The south-gyroscope is
not necessary any more, and the two obﬁéque gyroscopes are set at a
smaller, but equal angle, with the meridian.

The Arma-Brown gyrocompass system combines what is called a
directional gyro with a gyrocompass [K&inkent 1964). The Arma gyrocompass
is a modification of a double-rotor Anschiitz gyrocompass. The Brown
gyrocompass is a single-rotor Sperry-type gyrocompass system. The Arma-

Brown design is a completely different mechanization. It is a floating
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two-degree-of-freedom gyroscope, supported at neutral buoyancy, free

of mechanical gimbal pivots or ball-bearings. In Figure 3.5 the struc-
ture of an Arma-Brown gyrocompass equipment is shown, [after D. Barnett
Gynos 1965, Paper 12, pp. 159-165].

The gyro-wheel is mounted in an hermetically sealed container
which is substantially spherical, but has a deep circular recess to
accommodate a floating gimbal-ring. The gyro-sphere, containing the
gyro-rotor assembly, is completely supported by the floatation fluid
of the outer tank. It is centred by two successive pairs of fine wire
filaments, referred to as fons{on wines. One pair of these wires,
diametrically opposed, connects the gyro-sphere to the floating gimbal-
ring, whose plane is at right angles to the spin-axis, hence permitting
the gyro-sphere to tilt about one gimbal axis. The second pair of these
torsion wires, at right angles to the first pair, connects the gimbal-
ring to opposite points inside the tank that holds the floatation fluid,
providing the gyroscope with one more degree-of-freedom. The torsion
wires and associated gimbal mounting are more clearly shown in the
following Figure 3.6 [after K&inkent 1964). Gravity reference is
obtained by a small pendulum which is fixed to the outer tank, which is
supported in a set of gimbals which are connected to the binnacle
housing.

The third and last gyrocompass design treated here is the
recent Sperry-type gyrocompass system. This system deserves our atten-
tion since it is the one that is used in the whole analysis of the present

work.
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The main parts are the Gyro-sphere, the Phantom Yoke and the
Binnacle Assembly. The gyro-sphere containing the gyro-rotor is immersed
in silicone fluid and it is designed and adjusted to have neutral buoy-
ancy. Its essential features are illustrated diagramatically in Figure
3.7, lafter Atnold and Maunder 1961]).

The complete instrument is supported through the gimbal a, and
is pivoted about axes 0'x'0'y'. It is therefore free to assume a vertical
position irrespective of the motion of the supports. The compass assembly
rests on bearing b, and consists of the compass card ¢ and phantom ring
d, together with inner ring ¢, in which the rotor and casing are mounted.

The inner ring assembly is carried by a wire suspension §,
which passes through a tube and is fixed at the upper end to C¢. Due to
the directive force on the rotor the ring ¢ tends to move relative to d
in order to align its axis with the meridian.. Any such movement, however,
is sensed by a servo-system which immediately rotates the phantom ring
by means of the azimuth motor g to keep both ringsd and e coincident.

The gravity reference is obtained by using a mercury ballistic
h instead of a pendulous mass as in the elementary gyrocompass design.
The mercury ballistic consists of a frame pivoted about.the E-W axis
of the phantom ring, to which are attached two pairs of bottles L,
containing mercury. Each N-S pair is interconnected by a pipe § of
small bore which allows the mercury to flow from one to the other.

A link-arm k attached to the frame engages with the rotor
casing (gyro-sphere) £ through a pin m, which is offset to the east by

an angle Y.
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The gyro-sphere £ is the north-seeking part of the gyrocompass.
Inside the gyro-sphere is the gyro-wheel.

The basic design of three modern gyrocompasses has been
described. Figure 3.9 summarizes the principal differences among the

mechanical arrangements employed to seek north.

3.3 Principles of Gyrocompass Operation and Associated Errors

In the following we shall attempt to describe the underlying
theory of the gyrocompass and give a summary of the errors associated
with its operation.

The physical behaviour of a gyrocompass, which consists essen-
tially of a gyroscope whose motion is controlled by the combined action
of the eanth's notation and the moment produced by a gravitational fonrce,
is examined.

The gyroscopic principles outlined in the previous chapter are
used to demonstrate the gyrocompass application.

Lets consider a gyro-wheel suspended at its centre of mass and
free to adopt any position in space (Figure 3.10). Let also the rotor,
spinning around its axis of symmetry, be placed initially at the equator
with its spin-axis horizontal and pointing a few degrees east of north.
In the course of a day the spin-axis would remain motionless relative to
inertial space (i.e., gyroscopic inertia, or equivalently, a property
known as aigidity of the gyroscope).

But for an observer on the earth, the spin-axis would appear
to rise in the east and set in the west. For example, suppose that the

spin-axis were set pointing East at 12 o'clock midnight, and the earth-
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observer were left to study its motion during the succeeding 24 hours.
At 6 a.m. he would find the spin-axis pointing North with its tip tilted
upward above the horizontal plane. At 12 o'clock noon the spin-axis
would point West and laying on the horizontal plain again, while at‘

6 p.m. it would point North, but tilted downward below the horizontal
plane. Finally, at midnight the spin-axis would have returned to its
original position. The spin-axis would thus appear to the earth-
observer to be describing a cone at an angular velocity equal to that

of the earth but in an opposite direction. The phenomenon just described
is the second most important gyroscopic property, the gynoécopéc
precession.

The next step in making a gyroscope into a gyrocompass is to
make the gyro-wheel seek the meridian. To do this, a weight mg is added
to the bottom of the vertical gimbal, which causes the gimbal to be
pendulous about the horizontal axis Oy .

To find what actually occurs we allow the earth to rotate and
we combine the two actions: <the earth's retation and the gravitational
tonque. We trace the path of the spin-axis as we did before, letting
the spin-axis to point initially east of the meridian. While the earth
rotates, the spin-axis tilts up, but now there is a horizontal torque
directed westward due to the pull of gravity on the pendulous mass. The
spin-axis precesses about the vertical axis toward the meridian, continu-
ing to rise because of the earth's rotation, until finally the meridian
is reached. At this point the pendulous torque is maximum. This
resulting path is the superposition of the two motions the spin-axis
performs. One is the precession due to the earth's rotation,. the other

being the precessional motion imposed by the applied pendulous torque.
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As the spin-axis continues to precess through the meridian
the earth's rotation causes it to set, thus reducing the amount of tilt
and consequently the pendulous torque. Since tilt becomes less, the
speed of precession in azimuth decreases and finally the spin-axis
becomes horizontal. The pendulous weight causes no torque. At this
point the gyro-axis has precessed as far west of the meridian as it
was east originally. While the earth continues to rotate, the gyro-
axis continues to set. This causes it to dip below the horizon and
the gravitational torque produced due to the tilt has now the opposite
direction than previously (i.e. an eastward direction). Hence, the
spin-axis precesses toward the meridian again. Eventually, the spin-
axis precesses past the meridian and back to its starting position,
where this whole process is repeated. Because the precessional speed
is directly proportional to the amount of tilt, the spin-axis is
tracing out an ellipse about the meridian and the horizon, (Figure 3.11).

The rotor and pendulous weight described above form the
essential elements of a gyrocompass. For the gyrocompass to operate
properly, it is necessary that the oscillation be damped out so that
the gyro spin-axis can settle on the meridian and not keep passing
through it. Damping an oscillator involves changing its energy states,
one way to do this.being the change of its velocity.

There are several ways to illustrate the damping action on
the oscillations of the gyrocompass. One way is to add a small weight
to the east of the vertical gimbal as it is described in the Uperational
and Senvice Manual of Sperny MK 37 Gyrocompass Equipment 1975, pp. 1-15

Zo 1-16). A second approach is to employ some kind of mechanical
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arrangement of interconnected tanks filled with a viscous fluid and
attached to the vertical gimbal as it is described in Waigley et al.
[1969,. pp. 1871. Both ways result in anti-pendulous action while the
spin-axis is tilted, therefore reducing the azimuthal precessional
motion in every successive oscillation of the gyrocompass. Thus the
elliptical path followed by the spin-axis is changed into a spiralling-
in motion toward the meridian, where finally it settles. The same
action (damping) can be illustrated by offsetting the pendulous mass
to the east by a small angle y, a configuration which produces an
identical effect (spiral path) as the two previously mentioned procedures.
Figure 3.12 summarizes in an illustrative way what has been described
so far, [after Wnigley et al. 1969).

Although the universal use the gyrocompass at sea is a
testimony of its unique ability to provide directional reference
with respect to true north, it is also subject to several errors. Some
of these are persistent while others are temporal. Using somewhat
different terminology, they can be characterized as a steady-state
and transient errors. Gyrocompass errors may be systematic or non-
systematic. Some of these can be eliminated or offset in the design of
the compass, while others require manual or 4o04iware adjustment for
their correction.

The total combined enror (i.e., the resultant error) at any
time is called gyro enon (GE) and is expressed in degrees east or west
of the meridian to indicate the direction in which the spin-axis is

offset from true north.
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The gyrocompass associated errors are of three kinds: those
associated with the way damping is accomplished; those associated with
the motion of the transporting vehicle; and those associated with the
design of the mechanical suspension.

The damping error applies only to those gyrocompasses in
which damping is achieved.by offsetting the point of application of
the gravity force. It depends on latitude, increasing as tan ¢.

The errors introduced by the motion of the transporting
vehicle are related to velocity and acceleration inputs. Velocity
introduced errors occur to all compasses that use the earth's rotation
as a directional datum. They are independent of the instrument's
design and they are predictable. Acceleration-induced errors on the
other hand, belong in part to the way in which the instrument is
constructed and to the dynamic response of the gyrocompass. In
general, they are less predictable and not so easy to compensate for.
In most of the cases, they introduce temporary (transient) errors in

the compass readings.



CHAPTER 4

EQUATIONS OF MOTION OF A STATIONARY GYROCOMPASS

In the previous chapters the basic definitions and opera-
tional principles related to the gyrocompass were outlined. In this
chapter we develop the equations of motion of the gyrocompass. 1In
particular, we are interested in laying out the eguations of motion of a
stationary gyrocompass, that is, a gyrocompass on a fixed base on the
earth's surface.

The specific gyrocompass design we deal with in this study is
the Sperry gyrocompass. As it was described in the previous chapter the
modern Sperry gyrocompasses make use of the ballistic-mercury design to
produce the necessary gravitational torques. However, the mechanization
of the equations of motion in the present analysis refers to a more
elementary design, the pendulous-mass gyrocompass.

Two main reasons led us to this choice. The first is that, in
terms of analysis, both designs - i.e. the mercury-ballistic and the
pendulous gyrocompass - are equivalent. The second reason is that, there

is not available information for the exact actual design of the Sperry

-43-
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gyrocompass. Furthermore, the analysis in terms of the mercury-ballistic
design introduces additional theoretical complications. Our concern is
not to develop something new in the field of gyrocompass theory and design,
but, conversely, to try to make the best use of the existing information
in the most efficient and beneficial way.

It is instructive to mention here two basic assumptions that
will be used in the whole course of the present work. A spherical earth
is assumed, rotating with constant angular velocity = 7.29 x l()_5
rad°sec-1. Also constant acceleration of gravity g = 9.81 m'sec"2 is
supposed. Other approximations that will be used to a certain extent
are approximations in physical modelling leading to mathematical simplifi-
cations, such as those presented in Table 4.1.

The approach chosen for the mathematical analysis is that of
physical dynamic system analysis, since the objective of the investigation
is to understand and predict the dynamic behaviour of the given system.

Whatever the particular physical system under study is, the
procedure for analytical investigation usually incorporates each of the
following stages [Cannon, 1967]:

I. - gpecify the system to be studied and assign to it a simple
physical model whose behaviour will be sufficiently close to
the behaviour of the actual system,
II. - derive a mathematical model to represent the physical model,
i.e. evaluate the differential equations of motion of the physical
model, and
III. - study the dynamic behaviour of the mathematical model, by solving

the differential equations of motion.



Table 4.1,

APPROXIMATION MATHEMATICAL SIMPLIFICATION

reduces the number and complexity of the
differential equations

neglect small effects

assume linear relationships 3 makes equations linear, allows superposition of solutions

assume constant parameters Y leads to differential equations with constant coefficients

all quantities have definite values that are known

precisely thus leading to a deterministic approach,

neglect uncertainty it simplifies the analysis by avoiding the need for
and noise statistical treatment , therefore dynamical effects of

uncertainty and response to random disturbances are
ignored.

_907_.
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A fourth possible stage can be the selection of the physical parameters
of the system so that it will behave as desired, but that goes beyond the
scope of the present work since our aim is not.to improve the actual
design of the gyrocompass.

In this work, we shall present the Lagrangian approach to the
formulation of the equations of motion because this method circumvents,
to some extent, the difficulties found in the direct application of
Newton's laws of motion. The reasoning behind this, is that the Lagrangian
approach involves scalar quantities, while Newton's laws of motion
involve vectorial treatment. Furthermore, the use of Lagrange's equations
presents the equations of motion in a standard, convenient form.

Another important concept in the description of a dynamic system
is that of degrees 04 freedom. In general, the number of degrees of
freedom is equal to the number of coordinates which are used to specify
the configuration of the system minus the number of independent equations
of constraint [Greenwood 1965). 1In the case of the gyrocompass two
coordinates are necessary to specify at any time the position of the
spin-axis; the tilt angle B with respect to the horizontal plane and the
azimuth deviation o with respect to the meridian.

In summary, the equations of motion of a pendulous gyrocompass
design are developed. In a further step, the combined pendulocity and
damping action is formulated and the dynamic response of a stationary
gyrocompass is evaluated. Finally, the initial conditions of the motion

are examined.
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4.1 Equations of Motion with Pendulocity

We now proceed to analyze the motion of a gyrocompass, which
consists essentially of a spinning rotor with a horizontal axis supported
in a frame free to turn about a vertical axis.

Figure 4.1 illustrates the earth which rotates about its polar
axis at angular velocity @ in a direction from west (W) to east (E).

Figure 4.2 shows the geometry of the gyroscope assembly as
well as the components of angular displacement of the gyrocompass.

The gyroscope assembly is fitted with a pendulous mass m. For
the rotor, the principal axes are chosen to be 0zfn and the principal
moments of inertia C, B, A. For a symmetrical rotor A = B. Axes 0g&n
may also be arranged tc be the principal axes of the rotor casing whose
principal moments of inertia are C', A', B'. The inner ring is assumed
to have principal moments of inertia A", B", C" about axes 0z'E'n', where
On' is vertical and Oz' is horizontal. Let us consider the gyroscope of
Figure 4.2 at a latitude ¢ on the earth's surface, as shown in Figure 4.1,
(also consult Figure 3.8 for the gyrocompass arrangement and nomenclature).
The Z-axis in this case is not an inertial axis, but coincides with the
local vertical at all times. The direction of'the gyrocompass spin-axis
Ot is defined by a rotation a about the Z-axis and a rotation B about the
E'-éxis. A rotation y about the f-axis results to the final Ozxy frame shown
in Figure 4.2. By inspection it is easy to find the relation between the
rotation angles a, B, ¥ and the Eulenian angles. The earth's angular
velocity Q is resolved into two compénents about axes N and Z, respectively,
so that the gyroscope precession consists of the components Q sin ¢ and

a. -To provide the torque about the horizontal axis Of necessary for
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producing the precession Q sin ¢, a pendulous weight mg is attached at
the point (¢, &, n) = (0, 0,-2) of the rotor casing.
In view of the above definitions the angular velocity components

of the inner ring are

wc,w  cos ¢ cos o
wg, =1 -Q cos ¢ sin « (4.1)
w0 Q sin ¢ + §

whereas the angular velocity components of the rotor casing are

wc Q cos ¢ cos a cos B-(Q sin ¢+a)sin B
wg =| - cos ¢ sin a + é (4.2)
wn (Q sin ¢+&)cos B+ N cos ¢ cos a sin B

Finally, the angular velocity components of the rotor (spinning wheel)

about system 0Og&n are

QcT wc+@

- 4.3
Qg w6 ( )
Q W
n n

So far, following the procedure outlined in the introduction of
this chapter, we have specified the system to be studied by assigning the
simple physical model shown in Figure 4.2, and now we are ready to evaluate
the mathematical model to represent it. Again, it is pointed out that
the approach to evaluate the equations of motion is Lagrange's equations,
which involve the kinetic and potential energies of the body (system) at

some chosen instant.
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The kinetic energy of a system may be expressed in terms of
the motion of the centre of mass, and of the particles relative to the
centre of mass. In the general case, when both translational and
rotational motion are present, we have, for the kinetic energy, the

well known expression

2

.1..2

1
T = > Mv G

where G is the centre of mass of the system, M is the mass of the system,
Ve the linear velocity of the centre of mass, w the instantaneous angular
velocity about G, and IG is the moment of inertia about the axis of w.

If, however, we stipulate that the axes of rotation are fixed to the body

and their origin coincides with the centre of mass G, and in addition

they are the principal axes of the body, then ean. (4.4) becomes

- l,_ 2 __L 2 2 2 4 5
+ + B <+ -
T = 2 Mv (Aw. w? ka) ( )

2

where A, B, and C are the principal moments of inertia at G, and WS wj, W
. . . T T 7 .
are the angular velocity components along the directions i, j, k, (i.e.
along the principal axes of the body).
Since here we examine a stationary gyrocompass with respect to
the earth's surface, then its centre of mass, (point O in Fig. 4.2),
does not have translational motion. That is, the first term in eqn. (4.5)

drops out because A 0. Hence, the kinetic energy of our physical model

(gyrocompass) assumes the form
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-1 2 2 2
T = 2“C(QC) +B(R) 2 + alQ) 2]+
+ [C'(w;)2 + A'(wg)2 + B‘(wn)zl +
+ A" ? B (wg )% + c"(mn,)zl} (4.6)

The potential energy of our physical model is simply
U = mgl(l-cos B) (4.7)

Now we define the Lagrangian function £ as follows [G&eenWood
1965) :
£=T-1U (4.8)
Then Lagrange's equations of motion assume the form [Landau

and Ligshitz 1976]

d_ L AL o
at (—) - =0 (i=1, 2, ..., n) (4.9)

3qi i

where the symbol 9 denotes partial differentiation, éi and q; are the
generalized velocities and coordinates respectively, and i.=1, 2, ..., n
the degrees of freedom of the system.

Lagrange's equations (4.9) are the equations of motion of the
system and they constitute a set of n second-order equations for n
unknown functions qi(t). The general solution of these equations contains
n anbithany constants [Landau and Lifshitz 1976]1. 1In order to determine
these constants and thereby to define uniquely the motion of the system,
it is necessary to know the initial conditions which specify the state
of the system at some given instant, for example the initial values of

all the coordinates and velocities.
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From the analysis of our physical model, namely egns. (4.6)
and (4.7), it is obvious that except the gravitational force, mg, no
other force is acting on the system. Furthermore, the potential
function U is only a function of position, i.e., U = U(qi). Therefore,

equations (4.9) reduce to the expression

a4 T oT U (4.10)

ac T

9q;  dq; 9q;

Equations (4.10) were used to evaluate the analytical expres-
sions for the differential equations which describe the two modes of
motion of the gyrocompass namely, the motion in azimuth « and the motion
in tilt B. The assumptions listed in Table 4.1 were used and the lengthy
mathematical derivations are presented in Appendix I. The final expres-

sions for the equations of motion are:

. + pe = .
D& + EB + Ga=0 (4.11)
and
D28 +Eja+ st =F, (4.12)
where the parameters Dl' El, Gl' D2, E2' G2 and F2 are given in their

explicit form in Appendix I.

In summary, the equations of motion of a stationary pendulous
gyrocompass have been developed using well known principles of mechanics
and postulated mathematical assumptions. Once the Lagrangian function
is found, the procedure for obtaining the equations of motion is straight-

forward.
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4.2 Equations of Motion with Pendulocity and Damping

As it was described in section 3.3 and shown in Figures 3.12
and 3.13, the pendulocity causes the gyrocompass to oscillate, the spin-
axis following an elliptical path.

The oscillation of the gyrocompass is an undesirable effect,
as the instrument is expected to indicate true north. This oscillation
can be damped by displacing the pendulous mass at an angle y to the east.
This configuration is also illustrated in Figure 3.8.

The kinetic energy associated with the system is given by
the same equation (4.6). The potential energy is again given by egn.
(4.7). But the displaced mass m has an additional effect. It produces
a torque about the n-axis (Fig. 4.2).

The new equations of motion of the stationary gyrocompass
with pendulocity and damping are derived in Appendix II. The final

expressions are

D&+Elé+c

1 o + FlB =0 (4.13)

1

D26 + E.a + GZB = F2 (4.14)

2
where the coefficients Dl' El, Gl’ D2, E2, G2, F2 and Fl have the
explicit forms given in Appendix II. The motion that the spin-axis is
now performing is a spiraling-in motion toward the meridian, as was

pointed out in section 3. 3.
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4.3 Dynamic Response of the Gyrocompass

So far we have examined the first two of the three stages of
a dynamic investigation. We have derived the mathematical model, i.e.,
a set of equations of motion, for the physical model.

We now come to our principal concern, stage III, to determine
how the physical model will behave and what motions it will have. 1In
general, this is done by solving the differéntial equations of motion.

In the previous section we found that the equations (4.15)
and (4.16) are Linean differential equations with constant coefficients,
an important fact, which allows us to study their solutions in view of
the theory of ordinary linear differential equations.

Specifically, we shall find that when a linear, constant-
coefficient dynamic system is disturbed by some joicing function the
resulting motion is the sum of two distinct components:

(i) a forced nesponse which resembles in character the forcing
function, and
(ii) a natural moticn whose character depends only on the physical
characteristics of the system itself and not upon the forcing
function.
In formal mathematical language the above are known as
(i) the particular solution, and
(ii) the homogeneous or complementary solution.

Further, it will be found that the natwrwal motion of a linear,

constant-coefficient system is made up of some combination of two elemen-

tary motion patterns, an exponential decay and a sinusoidal motion.
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Investigation of the above basic elements forms the core of
almost all of our future study of the gyrocompass behaviour because, as
we shall see in subsequent chapters, all of the possible motions can
always be computed by Aduperposing the nesponses of our dynamic system
to several dynamic inputs. In Appendix III the Superposition Principle
(or Superposition Theorem) is presented in detail.

In our investigation we will also make use of some complex-
number algebra to ease computations.

A function of the form eét will be used to describe mathemati-
cally the types of motion by letting, in general, A be a complex number.

The Lapface technique is, of course, also a convenient method
for solving differential equations. It constitutes a powerful alterna-
tive to the procedure of assuming a solution of the form eSt. However,
it will not be used in here.

The following concepts concerning the dynamic response of
physical systems which are represented by linear, ordinary differential
equations with constant coefficients are introduced ([Cannon 1967]:

a. superposition of time responses is valid,

b. the total response will consist of two distinct parts, the
natural motion and the forced motion,

c. the forced motion will have the same character as the forcing
function, and its magnitude will be proportional to the magnitude
of the forcing function,

d. the natural motion will be always of the form kest where s

depends only on the physical system, and k is a constant,
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e. the chawacteristic equation is an algebraic equation in s, whose
roots are the values of s which make the expression keSt a correct
solution to the homogeneous differential equation,

f. the solution of the homogeneous equation (unforced motion) is
usually designated as the complementary §unction, while the
solution of the forced motion is called the particwlar integral.
Both solutions constitute the complete sofution of the differential

equation.

4.4 Natural Motion Alone - Transient Response

The gyrocompass can be considered as a £Linear, damped, second-

onden system. The equations of motion are given by

Dla + ElB + Gla + Fls =0 (4.15)

DZB + E a + G2B = F (4.16)

2 2
These equations can be rewritten, ignoring the terms Dla, Dzé,

ind Blé and using the explicit forms of the rest of the coefficients, as:

-CnB + CnQ cos ¢ a - mgly8 = 0 (4.17)

ind .
Cna + mglB8 = -Cnf) sin ¢ (4.18)

The assumption that the terms D &, D2§ are small and therefore

1
ran be ignored is based on:

i. the two motions, namely, the motion in azimuth and the motion in
tilt are small enough and therefore their second derivatives
assume even smaller values,

ii. these derivatives combined with the coefficients Dl’ D2 are small

terms as compared to the remaining ones, especially since Dl’ D2
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are functions of A, A', B' and C" (see Appendix I or II) which
are by definition much smaller than C (C is the moment of inertia
of the gyro-wheel),

iii. the motion in tilt B is much smaller than the motion in azimuth «,
and in addition the term (2A+A'+B'-C')Q cos ¢ is much smaller
than Cn,

iv. since the two motions are not independent, there is need to
further simplify the governing equations of motion to be able
to uncouple the two motions.

Combining egns. (4.17) and (4.18) we have the following

expressions
Gk (mgly)& . (mng cos ¢)a - - mgfy sin ¢ (4.19a)
Cn Cn Cn
» _ mgly, - mg cos ¢ .. _ _ 0% _.
B -( Cn VB + ( = 1B = 5~ sin 2¢ (4.19b)

Equations (4.19%9a) and (4.19b) are the equations of motion of
the gyrocompass that will be used in succeeding sections. Since the
motion in azimuth is our major interest, the rest of the analysis will
be confined to eqn. (4.19a)

If we designate the following short-hand definitions

_ mgly 2 _ Mgk @ cos ¢
20 cn ! fo on (4.20)

then the governing differential equation of motion (4.19%) assumes the

form

&+20&+f§a=-w (4.21)

Cn
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Since in this section we only consider the case of unforced
motion (natural motion) the right-hand side of egn. (4.21) is set to
zero. Thus, we examine the response of the gyrocompass using the

homogeneous part of the governing equation, namely

(Cn)a + (mgly)a + (mgl Q cos ¢)a = O (4.22)

We assume a solution to the above equation of the form

a =& eSt (4.23)

Substituting egn. (4.23) in eqn. (4.22) we have
Cn(#A szeSt] + mgly [c"seSt] + mg? Q cos ¢[a¢eSt] =0
Provided that

ket 7 0

we obtain the characteristic equation of the system
(Cn)s2 + (mgly)s + (mgf Q cos ¢) = O (4.24)

The characteristic equation contains s but notdl, and thereby
represents completely the dynamic characteristics of the system.

The roots of the characteristic equation are

_ _ Mgy ngly 2 _ Mgl Q cos ¢
51 o) 2V . ) (4.25a)
or
- _ mgly
sy (2Cn ) * /Zq, for Al > 0 and
2
- _(gly J mgl Q cos ¢, _ ,mgly
S2 Gen? £ 3V om0 T T (4.25b)
or
o - (MgLy .
s, = (2Cn)i3 8,, for A, >0 .
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The roots of the system's characteristic equation are called
eigenvalues or characternistics of the system, and are given in two forms
depending on the relative magnitude of the coefficients (Cn), (mgly),
and (mgfl Q cos ¢).

Because we will use the above expressions frequently in the
future we extend the short-hand definitions to simplify the algebraic

operations introducing the terms

£f°" = £ - 02 and y = %—
o

Hence, the roots of egn. (4.24) assume the forms

(2]
1]

1
1 = ¢ Oyr =0,) = -0(1 + /1 - uz), for py>1, (4.26a)

52 = -0 + jf , for p < 1, (4.26b)

Substitution of these eigenvalues into the assumed solution (egn. (4.23))

yields the following expressions for the motion in azimuth:

-0 lt ~02t
o = Cle + C2 e , for u > 1 (4.27a)
and
o = e-ot (c eth +C e-th)
1 2
or
-0t
a=C_e cos(ft-y), for u < 1 (4.27b)

3
Before proceeding any futher, the dynamic characteristics
implied by the above equations and a brief explanation of. all the

mathematical symbols will be given.
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The sumbol j represents the factor /-1. Equation (4.27b) is
derived from the preceeding equation using what is known as Ewlen's
equation, i.e.,

eje = cos 6 + j sin 8

The C's in egns. (4.27a) and (4.27b) are constants. Formally,
the homogeneous solution to a linear differential equation of order r
must contain r constants C. Therefore, in the present case we have, for
a second-order differential equation, two integration constants namely,

C, and C2, or C_ and y.

1 3

The quantity f_is called the wrdumped natural grequency and is
the frequency at which the same gyrocompass would oscillate if damping
were absent (i.e., the frequency at which the gyrocompass would oscillate
if only pendulocity were considered). The quantity f is called the
damped natural grequency.

The constant ¢ is called the damping coefficient, whereas the
quantity 1/0 is called the damping time constant of the system and
indicates the time required for the motion to damp to (1l/e)th its
original value.

The parameter p implies the relative damping of the system,
i.e., the rate of damping with respect to the rate of oscillation and
is commonly called the damping hatic. 1In particular, if p is negative
the system is unstable (the motion grows without bound); if u is zero,
the system is just neutrally stable (the motion neither grows nor decays) ;
if y is increased toward 1, the relative damping increases and the system
becomes asymtotically stable (the system, once disturbed, overshoots but

as time increases it tends to become stable) [Cannon 1967].
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Finally, we refer to equations (4.27) as representing the
natwwl responde of the system. The solution to the homogeneous
equation is also known as the transient soclution and the response of
the system (i.e., the natural response) as the thansient nesponse
(Greenwood 1965).

It is also noted here that the constants C, and C_, or C

1 2 3

and Y are evaluated from the conditions at time t = 0, but not until .
the forced motion solution is known [Greenwood 1965].

It is noted that in the case of the gyrocompass the quantity u
is, in general, greater than zero and less than one (in extremely special
cases it also assumes the values of 1 and infinity). Hence, the suitable
equation to represent the gyrocompass transient response is egn. (4.27b)
and we will use from now on only this expression. In the £ime domain

this equation represents a damped sinusodldal motion.

4.5 Forced Motion Alone - Steady-State Response

To find the dynamic response of the gyrocompass we begin with

egqn. (4.19). For convenience we rewrite it as
. . 2
a + Do + Foa =t (4.28)

where fJ(t), in general, is the forcing function, or in particular, is
the applied torque to the gyrocompass. The forcing function //(t) may

assume the general form

Hw) = et (4.29)
where M and s may be, in general, complex numbers. This allows us to

investigate many types of possible forcing functions depending on the
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values that M and s assume. For example for M being real we have

constant ﬂ= M (s =0) ,
: -0t
exponential M= M e (s = -0), (4.30)
sinusoid ‘[yng oJwt (s = o),
damped sinusoid hZZEEM e-o+3wt (s = -o+jw) ,

where Re means ''the neal part of".

Also the forcing function may be a ramp, a parabola, a periodic
random function, or a non-periodic random function, but these cases are
not actually considered in here. We state again that the choice of the
exponential function (eSt) is a very convenient one kecause the output
of our system will be of the same form since it is a linear dynamic
system (eSt retains the same variable part upon differentiation).

Another very useful procedure to obtain the solution of the
forced motion is the method of undeteumined coefficients (or Lagrange's
multipliers) which is described in detail in any standard textbook on
differential equations. This method will be used in later sections.

Returning to egn. (4.28) and assuming that the forced response

has the form of egn. (4.29), substitution leads to

_ st
G.f —qu

and

Cn [AszeSt] + mgly[As eSt]+ mgl Q cos ¢[ale5t-] = MeSt

orx

{(cn)s? + (mgy)s + (mg Q cos ¢)}eb= M
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or

A = M
(Cn)s2 + (mgly)s + (mgl Q cos ¢)

and finally

st
a, = Me (4.31)

£ (Cn)52+ (mgly)s + (mgl Q cos ¢)

But from egn. (4.19) we have

Jl(t) = -mgly Q sin ¢ = M = constant
hence from eqns. (4.30) follows that s = O.

Ultimately the fcrced response becomes

ag = -y tan ¢ (4.32)

The solution of the forced motion is also known as the steady-state
s0fution and the corresponding response as the 4teady-sfate nesponse,

and in the above case it persists with undiminished magnitude. This
implies that the gyrocompass after the oscillations have ceased (transient

response), points to a direction a_ from the true north, thus introducing

f
a systematic error commonly known as the damping (orn Latitude) ernron.

It is obvious from egn. (4.32) that the damping error is latitude dependent
and is also a function of the offset angle y which is used for introducing
the damping action on the gyrocompass. The direct dependence of the
damping coefficient o on y provides a useful property (alteration of the
damping percentage) which will be discussed in Chapter 7 in more detail.

In the next section the total dynamic response of the gyro-

compass will be examined in view of the initial conditions of the motion.



-65-

4.6 Initial Conditions

We now turn to the problem of finding the two integration
constants of the natural motion. We want to find Cl and C2, or C3
and ¢ in egn. (4.27b) in terms of the initial conditions a(0) and
a(0). We recall that in the case of the gyrocompass the parameter yu
(damping ratio) is less than 1, which implies that the gyrocompass is a
suberitically damped or underdamped system [Cannon 1967; Greemwood 1965].

We consider a(t) and &(t) at t = 0 and the alternative form of

eqn. (4.27b) is

a(t) = ¢ + o elT0mibIE (4.33)

and

(-c+35£)t (-0-jf)t

a(t)

Cl(—0+jf)e + C2(-0-jf)e
or for t = O,

a(0) =C, + C

1 2
(4. 34)
a(0) = Cl(-0+jf) + C2(-c—3f)
Simultaneous solution of egns. (4.34) yields

= ot 3f, , 1

< a(0) [ 25F 1 + a(0) [2jf]
(4.35)

- -0+jf . -1

C, a(0) [ 23 € ]+ a(0) [3;;

We rewrite egn. (4.33) in the form

a(t) = e-Ot (C let + C

-jft
1 2 ¢

]
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+4
and using Euler's equation (e—-Je = cos 6 + j sin 6) we have
(t) = e °F[(c.+C.) cos ft + 3(C,-C.) sin ft]
attr = ¢ 1772 17 ’

and finally using equations (4.34) we obtain

alt) = e °%a(0) cos ft + % lo a(0) + a(0)])sin ft} (4.36)

or, alternatively, the transient response has the form

a(t) = ol e-ctcos(ft—w) (4.37a)
where
— 2 g 1- 2,1/2
a, = {[“(0)] + [F a(0) + £ a(0)) } (4.37b)
-1, © 1.
Y = tan {lg'a(o) + E=a(0)]/a(0)} (4.37¢c)

Using the principle of superposition the total dynamic response

of the gyrocompass is the sum of the transient and steady-state responses:

a(t) = aT + GSS (4.38)

where
o is given by egns. (4.37), and

Agq is given by egn. (4.32).

Recapitulating, the equations of motion of a stationary gyro-
compass with pendulocity and damping have been developed. The solutions
of the equations of motion were found and they are expressed in transient
and steady-state terms. Once the transient motion ceases the gyrocompass

indicates in a direction off true north computed by egn. (4.32). This

systematic error is called damping error and varies as tan ¢.



CHAPTER 5

EQUATIONS OF MOTION OF A UNIFORMLY MOVING GYROCOMPASS

The last equations in the previous chapter namely, egns.
(4.32) and (4.37), or equivalently egn. (4.38), define the gyrocompass
behaviour in an insufficient way, since until now we have not considered
at all the motion of the transporting vehicle. Everything we discussed
referred to a stationary gyrocompass with respect to the earth's surface.

In this chapter we discuss the gyrocompass equations of
motion and its dynamic response when it is mounted on a moving platform.
In particular, the dynamic analysis of a gyrocompass moving on the earth's
surface at a latitude ¢ with constant speed v in a certain direction H
with respect to true north is examined. The analysis follows the same
procedure as in the previous chapter. The transient and steady-state
response is evaluated as previously. The only difference is the equations of
motion. In the present case the gyrocompass directive force is altered
because of the motion of the ship on the earth's surface. This motion has
an additional effect on the settling position of the spin-axis,  thus
introducing an additional error in the gyrocompass indicated headings.

Another important topic examined at the end of this chapter is

the necessary and sufficient conditions for a gyrocompass to be Schuler

-67~
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twuned, that is, the conditions for which the motion of a gyrocompass is
not affected by accelerations introduced by the ship which is circum-
navigating the earth. Finally, a summary of the gyrocompass errors is

given.

5.1 Equations of Motion of a Gyrocompass Mounted on a Moving Vehicle

Before we proceed in the details of the dynamic analysis in
this section a few important definitions are stated.

On a mouving vehicle on the eanth's sunface, the inertial angular
velocity of the Lccal navigational grame consists of the sum of the
earnth's angulan velocity and the angufarn velocity of the Local naviga-
tional grame nefative to the eanth.

The horizontal component of the inertial angular velocity of the
local navigational frame defines the direction of dynamic north.

The local navigational frame is a reference frame whose axes are
oriented toward the true north and east directions, the third axis being
along the local vertical and positive such that the coordinate system is
left-handed.

If the ship is steaming at constant speed v and on a course
making an angle H with the meridian, the northerly and easterly velocity

components are respectively (in magnitude)

VN = v cos H and VE = v sin H (5.1)

The inertial angular velocity of the ship is

Qx = Q + A (5.2)
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where Q is the inertial angular velocity. of the earth and A is the
angular velocity of the ship with respect to the earth's surface, i.e.,
it is the time rate of change in longitude at a latitude ¢° and is
given by the formula:

v .
A = E _ v.sin H (5.3)

" Rcos ¢ R cos ¢

Figure 5.1 illustrates the above described situation.

The gyrocompass is thus, in effect, mounted on a horizontal
plane which has an inertial angular velocity Q* given by egn. (5.2). It
is obvious that the gyrocompass is incapable of distinguishing the sources
that produce Q*. It only senses the resultant inertial angular velocity.
As a consequence of the above the angular velocity components of the rotor
(egqn. (4.3)) about system OZEn (Fig. 4.2) are changed. Therefore the
equations of motion developed in Chapter 4 are not valid. They have to
be re-evaluated to include the new situation.

Equations (4.1), (4.2), and (4.3) can be rewritten by substitut-
ing  with Q* from egn. (5.2). In that case, the kinetic energy of the

physical model in hand assumes the form

T -% {(A+A') [B-Q*cos ¢ sin al’+

(A+B') [(R*sin ¢+&)cos B + Q*cos ¢ cos a sin B]2 +
C[Qi*cos ¢ cos a cos B - (N*sin ¢+&)sin B + @Jz +
C'[Q*cos ¢ cos a cos B - (Q*sin ¢+&)sin B]2 +

A" [Q*cos ¢ cos a]2 +

B" [Q*cos ¢ sin al® + C" [Q*sin ¢+a]°} (5.4)
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The potential energy is given by

U = mg*2(l-cos B) (5.5)

where g* is the apparent gravity sensed by the gyrocompass, and is .given

in detail in Appendix IV. This makes a small change in the directive

force on the compass, but not in its angular position. In addition to the

above we have also assumed constant gravitational acceleration g (which

in reality varies with latitude). Therefore, the equations of motion are

only affected by the change of the inertial angular velocity § into Q*.
Pursuing the Lagrangian formulation as before, the final forms

of the equations of motion are given here:

Cné + mglBf + muf = -CnQ*sin ¢ (5.6a)
and

-Cn(é+$) + CnQ*cos ¢ a - mglyB - muy = O (5.6b)

where u is the resultant absolute acceleration along the rotor axis
resulting from the motion of the vehicle, and Q* is the apparent angular
velocity of the earth as judged by the gyrocompass. The term (é+$)
indicates the actual tilt of the gyroscope spin-axis due to the motion of
the ship, and & is the time rate of change in latitude, given by the

expression

vN v cos H
—E = (5.7)

¢ = R

After some algebraic operations the equation of motion in

azimuth becomes
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- mgly, * mgift*cos ¢ - mgf . mglyQ*sin ¢ C owes %
a + cn Yo + ( en Yo o ¢ on Q*sin ¢-Q*¢ cos ¢
(5.8)

It is shown from egn. (5.8) that the inclusion of the accelera-
tion terms along the rotor spin-axis in the equations of motion does
not affect the final result.

Also, it is obvious from egn. (5.7) that for ship's speeds not
exceeding, for instance, 15 knots the terms & and é* are both small
guantities, and for uniform motion of the ship on the earth's surface $
and ). can be considered constant.

Equation (5.8) describes the motion of the gyrocompass in a
complete and sufficient way. It constitutes the governing differential

equation of the gyrocompass mounted on a uniformly moving ship. We seek

now the solution of eagn. (5.8) in the same way as we did in Chapter 4.

5.2 Dynamic Response of the Gyrocompass

We will examine the dynamic response of the gyrocompass again
in terms of the natural (unforced), and forced motion. It is noted here
that, since the motion of the ship is a uniform motion, the coefficients
of the differential equation (5.8) are considered constant, thus allowing
.us to use the theory of ordinary linear differential equations with
constant coefficients. The total dynamic response will be the sum of
the transient and steady-state responses.

The procedures described in Chapter 4, namely sections 4.4, 4.5,
and 4.6 will be used for that purpose. Only the final equations will be

given.
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Also in the proceeding solution the last two terms in eqn.

neglected. The reason is that, Q* is small compared with

Q*&, and since (mgR/Cn) is many times larger than Q* we may safely

neglect those two terms.

5.3 Natural Motion Alone - Transient Response

The homogeneous equation of motion is deduced from egn.  (5.8)

and has the form:

(Cn)& + (mglv)& + (mgef*cos ¢)a = O (5.9)

Assuming that the solution is of the form

o = &°°

the transient response of the gyrocompass is given by

later.

[Q*cos
obtain

of the

(4.27b) repeated

a_ = C3 e_Otcos (ft-¢)

The constants C3 and y are evaluated in their analytic form

The above solution was obtained under the "loose" assumption that

¢] or [(Q+i)cos ¢) is constant. This assumption enables us to

an "approximate" straightforward solution for the transient response

gyrocompass, otherwise the solution would be extremely difficult.



-74-

5.4 Forced Motion Alone - Steady-State Response

Now we proceed to examine the resulting response of the gyro-
compass to the forced motion alone. Recalling the right-hand side terms
of eqn. (5.8) we note that under the assumptions of very slowly varying

latitude and longitude and uniform motion, the following are valid:

mgl .
—g; ¢ is constant,
m *si
AY@'sin is constant,
Cn

Q* < Q*  and Q% << (Egi'-) ,

v = ct and H = ct.
Using the procedure outlined in section 4.5, the steady-state

response of the gyrocompass is

o = -y tan ¢ + (5.10)

Ss Q* cos ¢

The first term on the right-hand side of egn. (5.10) is recog-
nized as the damping error. The second term is a function of the ship's
velocity since it contains the quantities $ and i. It is commonly known
as the speed-and-counse enor and it is a universal error for any type of
gyrocompass. It is obvious that the speed-and-course error assumes its
smallest value (zero degrees) when sailing in an easterly course (H=90°)
and its largest value when sailing in a northerly direction. Its signi-

ficance and its great importance is examined in later sections.
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5.5 Initial Conditions

The initial conditions for the gyrocompass transient response
are evaluated following the procedure in section 4.6. The total dynamic

response of a gyrocompass mounted on a uniformly moving platform is

alt) = a e %cos(ft-y) - y tan ¢ + tan & (5.11)
where;
a = {[a(012 + £ a(0) + % a(0)12}?, (a)
b= tan (& al0) + 1 a(0)1/a(0)) (b)
o - MY, ¢ . (maifitcos 43172 (e)
n o] Cn 4
£= (£2 - g2}/2 (d)
O
tan § = —2 - _VvcosH (e)

Q*cos ¢ NR cos ¢+v sin H '

A clear look at egn. (5.1le) shows what was already pointed
in Figure 5.1. Angle § is the angle that the direction of dynamic north
makes with the direction of true north. In other words, the gyrocompass
mounted on a moving vehicle tracks the dynamic north instead of true
north. The question now arises, is the gyrocompass capable of following
the changing dynamic north as the vehicle moves on the surface of the

earth?
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5.6 Conditions for a Schuler Tuned Gyrocompass

When gyroscopic instruments are mounted on moving vehicles
they are liable to be disturbed by the motions of the vehicle.

In the previous section the velocity-induced error § was found
to affect the equilibrium (steady-state) position of the gyrocompass,
thus causing it to indicate dynamic north instead of true north (in
the absence of the damping error). Errors are also introduced by the
acceleration of the vehicle. 1In fact, even for a uniform motion on
the earth's surface, the vehicle is subject to an acceleration (Appendix
V) due to the earth's curvature. Thus, the equilibrium position of
the gyrocompass, once reached, will be disturbed at any time because of
vehicle's motion.

Equation (5.11le) gives the equilibrium position of the gyro-
axis for any speed and course of the ship when the damping error does
not occur (e.g., at the equator). To ease the analysis in this section
we will disregard the damping erxrror as affecting the equilibrium position
(steady-state) of the gyrocompass, since it does not. play any role in
the investigation which follows.

The rate of change of § from equilibrium (under the assumption
of small angles tan 6 = sin 6§ = §, and regarding the fact that (QR cos ¢)

<< (v sin H) for moderate latitudes) is given by

. _ 46 VN "N

§ = (EE = QR cos ¢ = IR cos ¢

(5.12)

When the point of suspension of the gyrocompass is given a
northward acceleration U/ the inertia of the pendulous weight mg resists

such acceleration by the inertia force mu and this exerts a moment mluN
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about the point of suspension and in the plane of the meridian.
Since the vector representing this moment points toward the
west, the gyroscope spin-axis precesses toward the west with an angular

velocity w rec in the plane elevated at an angle B above the horizon.

Hence from egn. (2.1) we have

mprech = mluN (5.13)

If there is to be no disturbance in the indication of the
gyrocompass, the precessional angular velocity of the angular momentum
vector must be equal to the rate of change of the speed-and-course error

§. Hence from egn. (5.13) using eqn. (5.12), we have

u

N
QR cos ¢ Cn = miug
or
meQR cos ¢ = Cn
or
mgifdR cos ¢ = g Cn
and finally
mglil cos - g (5.14)
Cn R .

We recall two important facts at this stage. First, that the.
period of oscillation of a pendulum whose length is equal to the earth

radius R is equal to
T = 27 ¢5
9

and second, that the period of the free oscillations of the gyrocompass
(the period of the natural undamped oscillation) is, by virtue of the

second equation of (4.20) and the definition of page 61,
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Cn
= —_—_— .15
To 2m mgifl cos ¢ (5 )

Then condition (5.14) indicates that the natural undamped period of the
gyrocompass To is equal to the period of a pendulum having a length equal
to the earth's radius. This period is, for nominal values of R = 6371 km
ang g = 9.8 m sec—z, equal to 84.4 minutes.

A pendulum having a period of oscillation equal to 84.4 minutes
will remain vertical over the earth's surface under any arbitrary accel-
eration of the carrier vehicle.

Equivalently, a gyroscope which is held in its equilibrium
position through the force of gravity, will not move out of its equili-
brium position under any arbitrary movement over the earth's surface if
it possesses the period of 84.4 minutes. Therefore, the gyrocompass
would indicate dynamic north regardless of the motion of the ship on
which it is mounted.

This is the most important contribution made by Schuler, after
whom the period of 84.4 minutes is called Schufer period. Any instrument
possessing such a natural period of oscillation is to be said Schufen
tuned. similarly, Schuler tuning is the process of assigning the appro-
priate values to the physical parameters of a system to meet the necessary
and sufficient condition (5.14), if the system is required to function
independently of acceleration disturbancies.

From egn. (5.15) it can be seen that in the case of the
gyrocompass Schuler's period is Latitude dependent. For ¢ = 90° (or
very close to 90°) the period of precession of the gyrocompass becomes

infinite. That means, once the instrument is disturbed it precesses
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with a practically infinite period. Thus the operation of the gyro-
compass becomes critical as latitude approaches 90°.

In connection with the damping ratio u, it means that u tends
to infinity, which indicates that, once the gyrocompass is disturbed,
several hours are needed for the spin-axis to come to rest at the north

direction.

5.7 Error Budget of The Gyrocompass

Until now we have seen the development of the equations of motion
of the gyrocompass, their solution using linear system dynamics analysis,
and two major sources of errors, namely the damping action and the motion
of the transporting vehicle. We have examined the two response motions
of the gyrocompass, i.e., the transient response and the steady-state
response. The nature of the transient response is a damped sinusoidal
motion in the time domain, (or, a spiraling-in motion toward the meridian
along the meridian-horizon axes), with starting initial conditions a(O)
and &(O). The steady-state response implies that the gyrocompass in its
equilibrium position (transient motion has ceased) is offset from the
meridian by an amount equal to the algebraic sum of the damping and speed-
and-course error, (see egn. (5.11)). Also, we have shown that if the
gyrocompass is Schuler-tuned then only velocity-induced errors occur,
accelerations not affecting the equilibrium position, and thus, resulting
to a gyrocompass which exhibits negligible dynamics in the measurement

of the heading of the vessel with respect to true north.
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The gyrocompass spin-axis remains at equilibrium unless it is
subject to other external disturbance torques about its horizontal and
vertical axes. In the following we will examine the possible sources of
additional errors instead of their analysis because, they are closely
related to the actual design of the gyrocompass, and the means by which
the manufacturer seeks their elimination during the design.

Possible sources of gyrocompass errors include the rolling and
pitching motion of the vessel, the gimbal suspension, the offset of the
centre of gravity of the gyrocompass assembly from the proper position,
and finally random disturbances. The above, result in what are known
as the: #rolling erton, gimballing ernron, quadrantal ernch, and random
eon respectively, [Amealican Practical Navigator 1977, Awold and
Maunden 1961, Rawlings 1944, Manual of the Adminalty Gyro-Compass 1953].
Most of these errors are treated in details in the references listed
above and we will not discuss them any further in this work. However, it
is our belief that most of them (except of the random occurring errors)
have been eliminated through the appropriate mechanical design as that
was implicitely stated in the personal communication with the chief
engineer of the Sperry firm.

In the previous section we stated the necessary and sufficient
condition for a gyrocompass to be Schuler tuned (egn. (5.14)). Also we
found that Schuler's period (egn. (5.15)) is latitude dependent. The
careful mechanical design of the gyrocompass requires the appropriate
selection of the gyrocompass design characteristics namely, the angular
momentum of the spin-axis Cn and the pendulocity moment mgf, such that

the gyrocompass natural undamped period TO has the designated value of
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84.4 minutes at a certain latitude ¢°. Since the operational latitude
of the gyrocompass is varying, the above nominal value of 84.4 min. has
to be maintained for all possible latitudes. Therefore, the design
characteristics should vary in order to fulfill the Schuler condition.
In actual compass designs, Schuler tuning is maintained by either
adjusting the pendulous weight mg (i.e., varying the mass), or by
adjusting the angular momentum Cn (i.e., varying the rotational speed
of the gyro-wheel). The first way is followed by the Sperry firm
[Rawlings , 1944), where the use of the mercury-ballistic is easily
providing the necessary effective pendulous weight. The second pro-
cedure is followed in the Arma and Anschiitz designs.

If, however, the gyrocompass is mistuned (i.e., the natural
undamped period of the gyrocompass is not the Schuler period, or in
practice, is not close enough to the Schuler period), then the acceler-
ations due to the vessel's motion affect the gyrocompass indicated
headings. These accelerations may result either from the uniform ship's
motion over the spherical earth (earth's curvature %), or, from changes
in speed and/or course of the vessel. Then, the precessional angular
velocity of the disturbed spin-axis will not equal to the rate of change
of dynamic north and therefore the gyrocompass will indicate false
headings. This situation is especially critical during ship's manoeuvres
and is discussed in detail in the next chapter.

The acceleration errors occurring are commonly known as the
ballistic deflection and ballistic tilt errors, referring to the

azimuthal and tilt motion of the gyrocompass, respectively. They may
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exhibit large values and degrade considerably the performance of the
gyrocompass, introducing temporary deviations of few degrees. They
depend upon both, the dynamics of the problem and the response of the
gyrocompass, i.e., the kind and persistance of the acceleration inpgts

and the dynamic characteristics of the gyrocompass. Table 5.1 summarizes
the gyrocompass errors, their sources and possible compensation techniques
used to account for their influence on gyrocompass indicated headings.

In conclusion, gyrocompass errors may severely degrade its
performance, unless they are accounted for. These errors might be
systematic or random. In this study only the systematic effects are
considered. Some of the systematic errors are easier to compensate for
(e.g. damping and speed-and-course errors), while others are less
predictable (e.g. acceleration-induced errors), and they may vary

rapidly with time.



Table 5.1.:  Sperry-type, single-rotor Gyrocompass Error Budget

Gyrocompass error

Source of error

Compensation Technique

e damping error

damping
action

mechanical (preset latitude,®2)
software compensation

speed-and-course
error

ship’s northerly
velocity

mechanical (preset speed,u.)
software compensation

ballistic deflection

¢ error

acceleration

Schuler tuning for a specific latitude
software compensation

roll-and-pitch
errors

roll and pitch
motion of the ship

eliminated through the mechanical design

o gimballing errors

suspension type

eliminated through designing

e random errors

random torques

ONONNORECSIONCIOINCIO)

software compensation only

_€8_



CHAPTER 6

EQUATIONS OF MOTION OF A GYROCOMPASS UNDER SHIP'S MANOEUVRES

In the previous chapter we investigated the dynamic response
of the gyrocompass when mounted on a ship sailing under uniform motion,
i.e., v = const. and H = const. But, this is hardly the real situation.
The ship often performs changes in course and speed and manoeuvres. Our
objective is to model the gyrocompass performance by modelling the ship's
motion in a realistic and adequate way. Thus, errors introduced to the
gyrocompass due to ship's arbitrary motion can be predicted and, if
properly assessed, provide correct heading information.

Under these circumstances the inertial angular velocity of the
local navigational frame Q* is varying with time, since it depends on i
which is now a function of time. Therefore, the equations of motion resume
the same form as before, but now the solution is completely different. A
special model devised to represent the éhip's track helps to overcome the
difficulties encountered, due to the fact that the differential equation
of motion has now time-dependent coefficients. The dynamic response of
the gyrocompass is again computed using techniques of linear dynamic

systems analysis. In view of the above, the transient response of. the

-84~
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gyrocompass assumes particular interest. The transient response is
examined by finding the appropriate initial conditions.

A special case is investigated under the assumption that the
ship's track is a circular one. The time-dependent coefficient in the
differential equation of motion takes a particular form. It becomes peri-
odic and the solution involves elements of the general perturbation theory.

In this chapter the most useful and important properties of
linear systems' analysis are used. The general method of modelling the
ship's track can be applied to any particular path configuration and
allows the gyrécompass response to be evaluated under the most complicated

situations.

6.1 Equations of Motion Under Ship's Manoeuvres

When a ship travels along an arbitrary track the gpparent
angular velocity of the earth Q*, which the gyrocompass senses, is given

by the expression

_ v(t) sin [H(t)]
Q*(t) = Q + R cos [6(8)] (6.1)

where v(t) is the instantaneous speed of the ship and H(t) the instantaneous
course. From egn. (6.1) we see that the inertial angular velocity of the
local navigational frame is time-dependent.

The equation of motion of the gyrocompass is the same as eqn.

(5.8) but now we substitute Q* by Q*(t), which yields

4
Da + Ea + G(t)a = I F, (t) (6.2)
i=1
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where D = Cn, Fl(t) = mgl $(t),
E = mgly, F2(t) = -mglyQ*(t) sin[¢(t)] ,
G(t) = mgQ*(t) cos ¢, F3(t) = -Q*(t) sin[¢(t)] ,

-Q*(t) $(t) cosld(t)] .

]

F4(t)

Equation (6.2) is a linear, second-order differential equation

with a time-dependent coefficient and time-dependent forcing functions.

6.2 General Modelling of Ship's Track During a Manoeuvre

When a ship starts to manoeuvre we need to model its motion in
an expressed functional way, so the time-dependent coefficient G(t) in
egqn. (6.2) assumes a form which is easier to cope with.

We will examine here the most general case which involves both
change in speed and change in heading. During a turn the ship's track
becomes uncertain owing to the characteristics of the vessel, the load,
wind conditions, currents, etc. When a vessel moves in a curved path
there is an acceleration towards the centre of path, due to the centri-
petal force. 1In a ship the centripetal force is the resultant of all
the lateral forces acting on the hull and rudder. From the literature
related to the study of ship's motions, the following conclusions are
drawn :

i. each vessel has its own turning characteristics,
ii. its behaviour during manoeuvres is unique, and usually it is
obtained after sea-trials,
iii. there is not a general model which can provide valuable information
to model the longitude and latitude rates of change, i and &

respectively, as the vessel performs course and speed changes, and
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iv. it is extremely difficult, if not impossible, to calculate disturbing
torques applied to the gyrocompass due to ship's manoeuvring.

In Appendix VI useful information related to the above problem
is provided. It is difficult though to make use of this information. The
reasons are stated in the same Appendix. A different approach is
suggested as an alternative to cure the problem of modelling the ship's
track. Since on board ship there are speed and course sensors, the
motion of the vessel can be sampled at any desirable, discrete time
instant. Thus, the time dependent-terms in egn. (6.2) can be evaluated
from these observations, namely from v(ti) and H(ti). In this case, we
can assume that we are sampling the motion at small time intervals Atk,
thus the velocity vector is supposed to have a discrete change from
time ti to time tj' and in addition to remain constant during the
interval Atk. The apparent angular velocity of the earth Q*(t) is again
given by egn. (6.1), but now it can be evaluated at the discrete instants
ti and t., remaining constant through the interval Atk’ Therefore, the
differential equation which governs the motion in azimuth of the gyro

spin-axis takes the form

(6.3)

1]
I ™M
Lo}
[N
t

Da + Eq + G(tj)a

where G(tj) and Fi(tj) are not time-dependent, but assume different
values at the discrete instants tj. Hence at each time Atk we have one

complete solution of equation (6.3).
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6.3 Gyrocompass Dynamic Response

The solution of egn. (6.3) is given in the same form as the
solution of egn. (5.8) with the only difference being that it should be
evaluated at every sampling interval Atk. The complete solution is given

by the expression

_ -otj _ .
a(tj) = aml e cos(ftj+¢(tj)) Y tan ¢j + tan Gj (6.4)

t.
J

or, in the simple form

a(tj) = aT(tj) + ass(tj)

where aT(tj) is the transient response of the gyrocompass at the sampling
instant tj and valid over the interval Atk until the next sample is

obtained, and a S(t:j) is the steady-state response of gyrocompass during

S

the same interval Atk. The amplitude @ and the phase angle w(tj) of
t.

the transient response are again evaluated?from the initial conditions

a(0) and &(0) at each discrete sampling instant tj and we assume that

they remain valid until the next sampling instant tj+l' i.e., they remain

valid over the interval Atk.

Before proceeding in the investigation of the initial conditions
a(0), &(O) at each sampling instant, we will spend some time on the
particulars of the dynamic response.

A dynamic system is said to be in the 4feady-state when the
variables describing its behaviour are either {nvariant with time, or are
(sections of) perlodic functions of time, [Gardner and Barnes 1942). From

a physical point of view, it may be said that a transient state exists in
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a physical system while the energy conditions of one steady-state .are
being changed to those of a second steady-state, [Gardner and Barnes
1942).

We define the wut step function as a forcing function of unit
magnitude applied to a dynamic second-order linear system at time t = O
[Greenwood 1965)

F(t) = u(t) (6.6)

where the unit step function u(t) is shown in Figure 6.1.

If we write the differential equation of a linear, damped,

second-order dynamic system as

mx + cx + kx = F(t) (6.7)
then the steady state solution for F(t) = u(t) is simply
1
*ss T k (6.8)

Assuming that the initial velocity and displacement of the above mass-
spring damper system (eqn. (6.7)) are zero for the complete solution, we
can immediately solve for the initial conditions on the transient portion

of the solution.

1
]

—xss(O)

I

xT(O)
(6.9)

.

;T(O) -xSS(O)

]
o

It is seen that they are just the negative of the steady-state
values at t = 0, for this particular example of the unit step forcing
function. So, we can write the transient solution directly from the

results obtained previously as
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Unit Step Function

Fig. 6.1

>t
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-st
xT(t) = C3 e cos (ft-y) (6.10)

where C3 and y are evaluated, as it was shown in the previous chapters,
from xT(O) and QT(O). Figure 6.2 shows the corresponding response of
an underdamped system to a unit step input.

Concluding, the response of a linear, underdamped, second-order
dynamic system to a step function looks very similar to the transient
response except that the initial slope (i.e., i(O)) is zero. Actually,
the application of a constant force can be thought of as simply changing
the static equilibrium position of the system [Haffman 1962). With a
redefined displacement coordinate, the response to the step function becomes
merely the transient response to a negative initial displacement [Halg§man
19621. 1f we have a series of step functions, since we are dealing with
a linear system, we can find the response to each step separately, and
then apply the superposition principle to get the total response [Haff§man
1962].

Bearing in mind the definitions and properties just described
above we treat the gyrocompass case in a similar fashion. At each
sampling instant the steady-state of the gyrocompass is changing. The
difference of the steady-state values is viewed as a step forcing
function resulting in a response similar to the transient one. The
starting initial conditions at the beginning of a manoeuvre are as
described in egn. (6.9). The series of the step functions is resulting
in the total gyrocompass dynamic response, which is a damped sinusoidal
oscillation about the continuously changing equilibrium position. Since
the gyrocompass is a mechanical system and as such it cannot exhibit

abrupt changes either in "displacement" (a) or in "velocity" (&) by any
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Response of an Underdamped System
to a Unit Step Function

Fig.6.2
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finite torque input [Cannon 1967, pp. 201-202), the following constraints
are imposed on the initial conditions (after the disturbance has started)

for two time instants t, and t

1 2
at2(0+) = atZ(O-) + {y(tan ¢2-tan ¢1) - (tan 62-tan 61)] (6.11)
where
a, (0 ) = a(tl = Atl)
2
and
+ - .
at (0) = oy (0) = a(tl = Atl) (6.12)
2 2
where

In the preceding analysis, the last two terms in the right-hand
side of equation (6.2) (or, egn. (6.3)) have been neglected because they

are very small.

6.4 Special Case - Circular Arc Approximation

In addition to the general case of modelling the ship's motion
in discrete time intervals described in the previous section, a special
case is investigated. The assumption we adopt is that the turn of the
ship can be treated as a circular arc, which is probably reasonable for
favourable sea conditions [Rode 1974].

Equation (6.1) is rewritten in the form

v sin[H(t)]

R cos ¢ (6-13)

Q*(t) = Q +
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where

v = constant and H(t) = Ho~wt (6.14)

Ho is the initial heading at the beginning of the turn
w is the circular frequency of the turn.
In order to ease calculations we start from a northern course (Ho = 0°)

and for a left circulation we have

= - x(t) = g - ysin wt
H(t) wt and *(t) = Q R cos ¢ (6.15)
Thus, the term (mgQ*cos ¢)/Cn from egn. (5.8) becomes

mgiQ*cos ¢ _ mgR cos ¢ _ mgiv sin wt
Cn Cn R Cn

but

mgifl cos ¢ _ f2 and mgl _ 20
Cn o Cn Y

and therefore eqn. (5.8) becomes

a + (EE&I)& + (£f2 - 20V sin wt)a =
Cn o
- ko
_ gl o - mglyQ*sin ¢ (6.16)

Cn Cn

if we ignore the last two terms in the right-hand side of eqn. (5.8).
As we did before, we will examine the natural and forced

motions separately and we will combine the results, since our system is

linear and the superposition principle is applied.

We write the homogeneous part of egn. (6.16) as

o+ (P04 (£2 - 2% ginwt)a = 0 (6.17)
Cn (o} Ry
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This is a linear differential equation of second-order with a periodic
coefficient. The theory of ordinary linear differential equations which
we followed in the analysis previously is not applicable any more. We
will seek the solution of the above equation in a different way. Thus

we rewrite egn. (6.17) in a more handy form:

& + 208 + (f2 - 20v sin wt)a = 0 (6.18)
o Ry

We proceed further by changing the dependent variable a using the linear
transformation

a=e %% (6.19)
where y is the new dependent variable. From egn. (6.19) we have upon

differentiation with respect to t the expressions

a=-ge y+e oy
and
a = cze-og - 2oe-0t§ + e_0t§

which back substituted in egn. (6.1€) give the expression
5 2_52y - 29V . -
y + [(fo g<) Ry sin wtly 0 (6.20)

A careful look at egn. (6.20) indicates that it is an equation
of the Mathieu type. We perform some rearrangement of terms of the above

equation which leads to
- 2. _ 20V .
y + ky = (—E; sin wt)y (6.21)

where k2 = fg - 62 = £2, and now we change the independent variable

through a new linear transformation

wt =71 (6.22)



Let

2 2
a7y + k2 y = 20V sin T y
dr? w? RYw2
or
a2y 2 .
+ny=¢€¢sinrty (6.23)
dt
where
2 k.2 20v
= —_ £ =
n (=) and R_Y;z

Equation (6.23) is more easily recognised as the Mathieu
equation. The magnitude of the parameters n2 and € is approximately

2.2 x 1073

and 5.5 x 10“5 respectively.
Without any further details of the problem we seek the solution
of eqn. (6.23) using a general perturbational so0fution in the form
(Strwble and Fletcher 1962)
= Y cos (nT-p) + ey, + €2y + ... + eNy
Y 1 2 N

where each of Y, p, yl, yz, ey yN is a variable. Then the first order

solution of (6.23) is given by

cos[(n-1)1-p1}
(6.24)

cos[ntl)t-p] - ETEE:ET

y(t) = Y cos(nt-p) - E{ETEEIET

The details and the necessary conditions for the above solution can be
found in Strubfe and Fletcher (1962). By applying the inverse trans-

formation using egn. (6.22) we arrive at
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y(t) = Y cos(ft-p)-ef Y cos[(f + l)wt-p)} -
2(2 £ + 1)
w
- ——;L—————-cos [(g - wt-pl} (6.25)
202 £ -1
w
and

o, (t) = e % (v) (6.26)

Questions such as of sZability of motion have been already
answered in Struble and Fletchen (1962), but also are obvious from eqn.

(6.26).

Assuming that the initial conditions are a(0) and &(O), the

final form of the gyrocompass transient response is

an(t) = A e %% cos (ft-p ) - (6.27)
€, W w
2((2f-w) cos[(f+w)t pm] (ZE-0) cos[(f-w)t pm])}
where;
2 [ 1l- 2\1/2
(f a(0) + : a(0)
A a(0) + (a)
m sz E(Dz
(1 + ) (1 - )
4£2-42 4£2-4?
2
(l + ﬂ_—) .
_ -1 4£2-(2 g . 1 a(0)
p, = tan w, [f * £ 200 (b)
(1 - )
4£2-42
and
- 20v 2 _ 2 _ 2 _ 2
€ , f< = fo oc , w= T

Ryw
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Some remarks are necessary at this point. First of all, the
gyrocompass transient response is a function of the circular frequency w
with which the ship is circulating. Secondly, if the circular motion
ceases (i.e., w = 0 and H = Ho = constant) the transient response will
assume the same expression as in egns. (5.11), which is the expression
of the transient response of the gyrocompass mounted on a uniformly
moving platform, a fact that is expected. Thirdly, the effect of the
circular ship's motion is reflected in the transient response as a
slight modification of the magnitudes of the amplitude and the phase
angle of the response, and as a slight modification of the sinusoidal
part of the motion of the spin-axis.

The steady-state response of the gyrocompass is given by

agg = Y tan ¢j + tan 6j (6.28)

evaluated at any specific time instant j.
The complete dynamic response of the gyrocompass is the sum of

the responses namely,

a(t) = aT(t) + Ugg (6.29)

In conclusion, the dynamic response of the gyrocompass was
found in the case of an arbitrary motion of the transporting vessel over
the earth's surface. The general model employed to represent the motion
of the vessel indicates potential superiority over the simpler model of
the circular arc approximation. The equations of motion of the gyro-
compass do not change form from the previously used equations, but their
solution involves a considerable amount of mathematical complication due

to the presence of the time-dependent coefficient.
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It is important to note here that the dynamic response of
the gyrocompass using the general model of the ship's track is valid
for any case, irrespective of the fact that the ship is either execut-
ing a manoeuvre or is sailing along a straight line. This fact
indicates that even the smallest changes in course and/or speed can be
modelled in a straightforward way and, hence, correct gyrocompass

heading information is obtainable.



CHAPTER 7

HIGH LATITUDE BEHAVIOUR OF THE GYROCOMPASS

Three basic questions are asked and answered in this chapter.
First, what is meant by the term high latitude? Second, why are we
concerned with high latitude navigation? And, finally, how does the
gyrocompass perform at high latitudes?

High Latitude in this study is defined as the geographic location
beyond the parallel of 70°. 1In recent years, the arctic areas of the world
have been of tremendous interest for both, the scientific and economic
society. Understanding the physical processes and phenomena of the arctic
areas guides the scientific society. National priorities in energy
resources exploration leads the interests of the economic society to new
virginal areas of the planet, such as the Arctic.

The increased demand for exploration activities in these areas is
the reason for high Latitude navigation. The unigque environmental conditions
of the arctic constitutes the primary limitation in accurate and reliable
navigation. The environmental factors imposing limitations in navigation
are remoteness and isolation, severe weather conditions, ice-covered seas

and low-lying ice-covered coast-lines [American Practical Navigator 1977].
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In addition, the high latitude places restrictions on the performance of
navigation sensors. The operation of north-seeking gyroscopes is severely
affected because the directive force (earth's horizontal component of
angular velocity @ cos ¢) is greatly reduced. The present satellite
navigation system (NNSS) also has degraded performance at high latitudes
[Wells and Grant 1981}. Coverage by either traditional or modern electronic
aids to navigation is limited [Amerdican Practical Navigatorn 1977). 1Ice-
covered seas and lands severely attenuate radio navigation signals [Wells
and Grant 1981]1. cCelestial navigation is impaired by the arctic weather.
Under these conditions it is important to use the full strength and potential
of all available navigation sensors,including the gyrocompass, to-provide
acceptable navigational accuracy and reliability [Welfs and Grant 1981].

The performance of the gyrocompass degrades with latitude. The
damping error is increased as fan ¢. Speed-and-course error increases too.
In Chapter 5 we discussed the Schuler-tuning as the appropriate function
for reducing the acceleration-induced errors, and also it was shown that
the undamped natural period of the gyrocompass (Schuler-period) is latitude
dependent. It was stated there, that as latitude increases the period TO
increases, thus, instability of the gyrocompass becomes the critical factor.

All the above statements make necessary the study of the gyro-
compass behaviour at navigable high latitude waters (70° to 80° latitude).
In this chapter the equations of motion of the gyrocompass are investigated
in view of high latitude operations. The problems associated with high
latitude and the functional limitations of the gyrocompass are explored.

The mathematical models developed in the previous sections are examined

under the new conditions. Finally, considerations are given to the possible
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mechanical adjustments and/or compensation techniques required to reduce

the problems due to high latitude degraded performance of the gyrocompass.

7.1 Equations of Motion

The gyrocompass depends, for its directive property, on the
horizontal component of the earth's angular velocity Q cos ¢ and, thus, it
becomes less satisfactory in high latitudes where this component is greatly
reduced.

The equations of motion developed in Chapter 5, namely egn. (5.8),
are still valid. The proposed general modelling of the ship's track is

applicable and the gyrocompass response is as given in eqns. (5.11).

7.2 Problems and Limitations Imposed by High Latitude - Mechanical Adjustments

and Compensation Techniques

Recall egn. (5.15) which gives the period of undamped natural

oscillations of the gyrocompass

Cn

= T / —_—_—
To 2m (ngQ cos ¢

)

An increase 1in latitude increases the undamped natural period of free
oscillations of the gyrocompass. However, we have seen in section 5.6, that
in order to avoid acceleration effects it is necessary to retain the value
of 84.4 minutes for Tyr either by adjusting the pendulous moment mg{, or by
changing the angular momentum Cn of the gyro-wheel varying its rotational
speed n. In the Sperry instruments this is achieved by varying mgf as 4ec ¢.
But practical difficulties are involved since the value of mgf at latitude

¢ = 85° requires to be 11.5 times its value at the equator. To overcome
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this problem the manufacturer has devised a small adjustable weight,

called Latitude nlden, which is added to the gyro-casing to assist the

normal precession at high latitudes (Sperry-type gyrocompass) [Arnold and

Maundern 1961, Manual of The Admiralty Gyrocompass 1953). 1If this

additional weight m'g is situated at a distance %' along the horizontal

axis (northern-axis), then it will provide a torque which results in a

precession in azimuth at right angles to it, and by adjusting £' it is

possible to make the precession rate (m'gl')/Cn < Q sin ¢, which is the
required precession at latitude ¢ [Arnold and Maunden 1961). Although
the above procedure results in a definite improvement of the gyrocompass
performance at high latitudes, its practicality and adaptability is some-
what questionable for the following reasons:

i. the latitude rider is set for a specific latitude, and in order to
adjust it in other latitudes manual mechanical intervening by
experienced personnel is required,

ii. the maximum setting of the latitude rider is for latitude of 70°
approximately (Manual of the Admirnalty Gyrocompass 1953,

iii. specific knowledge of the gyrocompass design is required. Therefore,
possible mathematical analysis is limited due to lack of particular
information (m', &', location of m'g),

iv. manuals of recent gyrocompass models (e.g. Operation and Serv.dce
Manual of the Sperrny MK37 Gyrocompass Equdipment [19771) do not
include any information about the subject,

v. the commercial gyrocompass designs are intended for operation up to
65°-70° latitudes. Appropriate functioning beyond these latitudes

being subject to special adjustments, or special gyrocompass syStems.
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Under these circumstances, the possiblity of examining the new
conditions, in view of high latitude modified equations of motion of the
gyrocompass, becomes severely minimal.

So, in effect, in the analysis carried out here, no such
mechanical adjustments were considered and the undamped natural period of
oscillations of the gyrocompass To (and consequently the damped period T)
were considered in the most general case.

A further effect to be examined is what happens with the relative
damping, i.e., the damping ratio p. If p assumes the value of 1 then
g = fo and the period of damped oscillations T becomes infinite. Thus, if
To is to be retained at reasonable levels not differing from 84.4 minutes
by much, the damping ratio must be kept less than 1. This can be achieved
only by reducing the magnitude of o, (recall that ¢ = (mgly/2Cn)). So a
trade off must be found between the relative magnitudes of mg, Yy, and fo.
Thereby, the offset angle Yy is usually decreased to allow reasonable operation
of the gyrocompass at high latitudes. The latter (smaller y) has a
positive effect on gyrocompass error budget. Smaller y values reduce the
damping error (i.e., -y tan $) which is expected to be large at high

latitudes.

However, reducing the value of y involves once again human inter-
vening and mechanical adjustment. Thus, when a gyrocompass is to be used
in latitudes higher than 70° the necessary mechanical adjustments have to
be performed, if possible, before sailing. On return to lower latitudes
the adjusted quantities and parameters should return to their normal
values. This creates a complex operating procedure. The situation becomes

even more complex if the ship is supposed to sail back and forth in high
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and lower latitudes for some time, thus continually adjusting the correspond-
ing parameters.

Finally, we have to note that at high latitudes the speed-and-
course error and the ballistic deflection error are considerable. It is
obvious that the ballistic deflection (which is the movement of the gyro
spin-axis resulting from vehicle acceleration), is receiving most of our
attention because Schuler tuning is not likely to exist at high latitudes.
This source of error (i.e., ship's acceleration) becomes even more critical
when manoeuvring of the vessel is involved. Then the only means by which
acceleration-induced errors can be predicted and accounted for is compu-
tational. 1In addition velocity-induced errors, although predictable, they
become larger and larger as latitude increases because the corresponding
linear velocity component of the earth QR cos ¢ decreases. Therefore,
the errors encountered at high latitudes become excessively large and the
gyrocompass performance degrades rapidly.

In summary, there are two main reasons that cause the performance
of a gyrocompass to degrade, the increased bias errors and the increased

instability due to lack of Schuler tuning.



CHAPTER 8

SIMULATION STUDIES AND RESULTS

In order to test the mathematical models developed in the
previous chapters and evaluate the dynamic response of the gyrocompass,
simulation studies were carried out.

These simulation studies include the assumptions mace for the
physical model, the evaluation of the system's behaviour, the performance
characteristics, and the results obtained.

The goals to be achieved are two-fold. The first is to apply
the modelling methods of the ship's track developed in the previous
sections and test their validity. The second is to obtain the dynamic
response of the gyrocompass as a function of time, and compare it with
existing information to assure the ability in predicting the gyrocompass
deviations from true north under different dynamic inputs.

The simulations are referred to a particular gyrocompass, the
Sperry MK V gyrocompass, for which the following constants are the

design parameters [from Awold and Maunder 1961 :
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207 ft 1lb sec , (angular momentum of the gyro-wheel)

Cn =
mgg = 6.3 ft 1lb , (the pendulous moment)
y = 1255 (or 0.02705 radians), (the offset angle).

A FORTRAN program is designed to perform the computations. It
is based on the mathematical models presented in Chapters 5 and 6.

The different dynamic inputs include various types of manoeuvres
(90°, 180°, 270° and 360°), at different speeds (5, 10, and 15 knots),
and latitudes (30°, 60°, 75°, and 80°).

The program computes the transient response of the gyrocompass
based on the appropriate initial conditions and the steady-state values.
The ballistic deflection is incorporated into the program computations

(Appendix V).

8.1 Simulation Results Using the General Modelling of the Ship's Track

In this part of the simulation study eqns. (6.4), (6.5), (6.1l1)
and (6.12) are used and the transient response of the gyrocompass is
computed.

The first concern is to examine the effect of the dynamic inputs
(speed, manoeuvre characteristics) on the magnitude of the initial ampli-
tude of the oscillations and the corresponding time to damp out their
influence on the indicated headings. The second goal is to examine the
above as a function of latitude.

Various sampling time intervals Atk were tested. It is noted

here that the sampling interval must be less than (or, equal to) the

time within the manoeuvre is completed, otherwise spurious results may
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be obtained. The interval Atk can be as small as the sampling interval
for v and H (ship's speed and course indication). In this manner, more
accurate estimates of the changing equilibrium (steady-state) position of
the gyrocompass can be determined. Consequently, more accurate estimates
of the transient errors of the compass can be computed. However, the
Atk interval may assume variocus values depending on the particular
application. For general navigation purposes that interval may be as
long as the intervals associated with speed and/or course changes. For
precise sea-gravimetry using freaf-time Eotvis comnrection that interval
should be as small as one second (ls) Wells and Grant 1981].

Figures 8.1 to 8.10 show the gyrocompass transient response
for two different latitudes 30° and 60° and for different manoeuvring
characteristics. The gyrocompass is tuned for 45° latitude and the
initial heading at the beginning of the manoeuvre is Ho = 0°. Several
rates of turn are also used. From the results obtained it is concluded
that the transient errors are significant immediately after the.comple-
tion of the manoeuvre. In general, the magnitude of the transient
errors tapers off an hour after the manoeuvre has ended. During this

interval their influence on the knowledge of the actual ship's heading is

obviously prominent.
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8.2 Simulation Results for a Special Case of The Ship's Track - The

Circular-Arc Approximation

In this part of the simulation study the circular-arc approx-
imation of the ship's track is examined. Equations (6.27), (6.28). and
(6.29) were programmed and the transient response of the gyrocompass
was computed. Two diffe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>