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PREFACE

The purpose of these notes is to give the theory and use of
scame methods of camputing the geodetic positions of points on a
reference ellipsoid and on the terrain. Justification for the first
three sections of these lecture notes, which are concerned with the
classical problem of "camputation of geodetic positions on the surface
of en ellipsoid" is not easy to come by. It can only be stated that
the attempt has been to produce a self contained package, containing
the complete development of some representative methbds that exist in
the literature. The last section is an introduction to three dimensional
computation methods, and is offered as an alternative to the classical
approach. Several problems, and their respective solutions, are
presented.

The epproach taken herein is té perform complete derivstionms,
thus staying awey from the practice of giving a list of formulse to use
in the solution of a problem. It islhoped that this epproach will give
the reader an appreciation for the foundation upon which the formulae
are based, and in the end, the formulae themselves.

The notes evolved out of lecture notes prepared by E.J.
Krakiwsky and from research work performed by D.B. Thomson over recent
years at U.N.B. The authors acknowledge.the use of idesas, contained in the
lecture notes, of Professors Urho A. Uotila and Richard H. Rapp of the
Department of Geodetic Science, The Ohio State University, Columbus,
Ohio. Other sources used for important details are referenced within
tﬁe text.

The authors wish to acknowledge the contribution made by the

Surveying Engineering undergraduate class of 1975 to improving these



notes by finding typographicel errors. Mr. C. Chamberlain is particularly
acknowledged for his constructive criticism, and assistance in preparing

the manuscript for publication.

E.J. Krakivsky

D.B. Thomson

February 14, 19Tk
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INTRODUCTION

The first three sections of these notes deal with the com-
putation of geodetic positions on an ellipsoid. In_chapter one, a
review of ellipsoidal geometry is given in order that the development
of further formulae can be understood fully. Common to all of the
classical ellipsoidal computations is the necessity to reduce geodetic
observations onto the ellipsoid, thus an entire chapter is devoted to
this topic. |

Two classical geometric geodetic computation problems are
treated; they are called the direct and ihverse geodetic problems.
There are various approaches that can be adopted for solving these
problems. Generally, they are classified in terms of "short", "medium",
and "long" line formulae. Each of them involve different spproxima-
tions which tend to restrict the interstation distance over which some
formulese are useful for a given accuracy.

The last section of the notes deals with the camputation of
geodetic positions in three dimensions. Fifst, the direct and inverse
problems are developed, then two special problems -- those of azimuth
and spatial distance intersections -- are dealt with. These solutions
offer en alternstive to the clessical approach of geodetic position

computations.



SECTION I: ELLIPSOIDAL GEOMETRY

1. The:Ellipsoid . of Rotation

Since an ellipsoid of rotation (reference ellipsoid) is
generally considered as the best approximation to the size and shape

of the earth, it is used as the surface upon which to perform terrestrial

geodetic computations. Immediately bBelow we study several geometric properties of
an ellipsoid of rotation that are of special interest to geodesists.
In particular, the radii of curvature of points on the suface of the

ellipsoid, and some curves on that surface, are described.

1.1 Ellipsoidal Parameters

figure 1 shows an ellipsoid of rotation. The éarameters of
a reference ellipsoid, which describe its size and shape, are:
i) the semi-major axis, a,
ii) the semi-minor axis, b.
The equation of any meridian curve (inte;section of a meridian plane with the

ellipsoid surface,(Figure 1), is

x2 z2
‘—2+—2-=l. (1)
a b

The surface of an ellipsoid-of rotation is given by .

2,2 2
=L+ EH=1. (1a).

o

a



Figure 1

THE ELLIPSOID OF ROTATION



The points F and F' in Figure 1 are the focii of the meridian
ellipse through points P, E', P', E. The focii are equidiétanjt from the
geometric centre (o) of the ellipse. The distances PF and PF' are equal
to the semi-major axis a. This information is now used to help describe
further properties of an ellipsoid.

The ellipsoidal (polar) flattening is given by

= &b

Two other important properties, which are described for a

meridian section of . the ellipsoid are.the first eccentricity

2.2
PO v 'Z , (3)
a
and the second eccentricity ‘
2.2 '
e?=222 (4)
b

As an example of the magnitudes of these paranieters for a.'
geodetic reference elli_péoid, we present here the values for the Clarke
1866 ellipsqid, which 1is pre;ently. used for most North American geodetic
position computations [Bomford,. 1971, p L45S0]: |

a = 6378206.} m, ‘

b = 6356583.8 m.
Using (2),

£ = 0.00339007 ...

which is often given in the form 1/f, which in this case is

1/t = 294.97869. ..
Usi»ngv (3) an&*(-’&) .respectively, we get ;

&% = 0.00676865. .. ,

e'2 = 0.00681478...
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The four parameters &, b, e (or e') and £, and the relationships
emong them, are the principal ones used to develop further geodetic

formulae.

1.2 Radii of Curvature

On the surface of an ellipsoid, an infinite number of planes
can be drawn through a point on the surface which contains the normal at
this point. Theée planes é.re known as normal planes. The curves of
intersection of the normal planes and the surface of the ellipsoid ar;
called normal sections. At each point, there are two mutually perpen- '
dicular normal sections whose curvatures are maximum and minimum, which
are called the principal normal sections. - These principal sections are
the meridian and prime vertical normal sections, and their radii of
curvature are denoted by M and N respectively (Figures 2 and 3). In
Figure 2, it can be seen that the meridian radius of-curva.ture increases
from the equator to the pole, and the prime vertical radius of curva-
ture behaves similarly (Figure 3). The reasons for this will be seen

shortly onee the formulae for M and N have been developed.

1.2.1 Meridian Radius of Curvature

Consider a meridian section of an ellipsoid of rotatien

(Figure 4) given by

X2 22
FrET (2)
a b

The radius of curvature of this curve, at any point P, is given by

<



Tangent plane

Figure 2

'MERIDIAN NORMAL SECTION SHOWING THE MERIDIAN
RADIUS OF CURVATURE (M)



Figure 3

! PRIME VERTICAL NORMAL SECTION -SHOWING THE PRIME
VERTICAL RADIUS OF CURVATURE (N)



[Philips, 1957 , pp. 194-197]

2 3/2
d
1+ (3))
M=— . | (5)
a2z
de
In the case of a meridian ellipse
4 _ _xp (6)
dx z 2 °
a
and
dz
d.22 b2 z =X o ‘
2o (— ), (1)
dx a z
or
: 2 2 2. 2
a°z _ _b° =, B
5= - 22(z+z 2). (Ta)
dx az a

From Figure L, we can also see that the slope of the tangent to P is

giw-ren vy ta.n(90+¢)=g§ =~ cot ¢ . ‘ (8)
Equating (6) and (8) gives
2
—cot § = - 22 (9)
a
or
3.2 'z>
tan ¢ = =5 - (9a)
'b,
Substituting
b = a.(l‘-ez)l/z (9v)
in (92T, yields
z = x(l—e‘e) tan ¢ . (10)

Then, after replacing b and z in (1) with (9b) and (10) respectively,

same simple manipulation results in



" Figure 4

MERIDIAN RADIUS OF CURVATURE (M)
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g cos ¢
172 - (1)

x =
(l—e2s1n2¢ )

Substituting the above expression for x in equation (10) gives the

formula
a.(l-eg)sin 3
(1-e“sin“¢)
Finally, replacing x and z in (6) and (Ta), and placing these
2
values in (5) for %;_ and Q-__;, s the expression for the meridian radius
dx
of curvature becomes
2
l-e
wa—ollee) (13)
(l—ezsin2¢)3/2

In equation (13), the only variable parsmeter is the geodetic

latitude ¢, thus at the equator (¢ = 0°),

M = a(1-e?), (132)
and at the pole. (¢ = 90°),
M= a./(l-ez)l/2 . (13b)

~&% The meridian radius of curvature increases in length as the point

on the meridian moves from the equator to the pole.

1.2.2 Prime Vertical Redius of Qurvature -

From Figure 5,

cos ¢ ==, (o)

=11

or

X
N=-= 7 (1ka)




Parallel of Latitjude

oen o o owm come owe emm

| Figure _5“

PRIME VERTICAL RADIUS OF CURVATURE (N)
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Substituting the expression for x (11) in (1ka) yields the

. expression for the radius of curvature in the prime vertical,

- 2 ‘ :
N = (1-e?s1n2s)i/2 (15)

Since the only variable parameter in (15) is ¢, N -then varies with .¢. When
¢ = 0° (equator), N = a, and when ¢ = 90° (poles),
N = a/(2-e2)2=u . (152)
An important quantity that is used very often in geametrie

geodetic computations is the Gaussian Mean Radius of Curvature, which is

given by

R=/My . | (16)

In meny instances, the mean radius is sufficiently accuraste for position
camputations. | '

Another radius of curvature that may be needed from time to
time is that of a parallel of latitude. Any parallel of latitude,
viewed from the north pole of the ellipsoid (z axis), describes a
circle. Its radius, as can be seen in Figure 5, is equal to the x-
coordinate (in the meridian plane zﬁ-z system). Then, from eqnaﬁion

(1ka), the radius of curvature of a parallel of latitude is given by

R¢‘= N cos ¢ . (17)

' 0
It is easily seen that when ¢ = O (equator), R

= N, thus R, = a (since

$ ¢
N=gaat ¢ = dﬁ, and at either pole (¢ = 90°), cos ¢ = 0 and the radius

disappears.
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1.2.3 Radius of Curveture in Any Azimuth

As has been shown in Sections 1.2.1 and 1.2.2, the maximum and
minimum radii of curvature of any point P on the surface of an ellipsoid
of rotation lie in the meridien and prime vertical planes,

In some instances, geodetic computations require the radius of curva-
ture in e plane other than the principal ones (Figure 6). The normal
section in some azimuth o has & radius of curvature at any point P

designated by R,. It is solved for using Euler's Theorem [Lipschutz,

1969, pg. 196], and is called Euler's radius of curvature.

In Figure 6, the point P at which the radius R, is required,
is shown on the normal section PP'. Only a differentisl part of the
normal section curve (ds) is shown, since the azimuth a of this small
section is equivalent to the azimuth of a normal section of any length.

Euler's theorem is solved as follows. At the point P, we
draw a tangent plane, and parallel to it, another plane (Figure T)
that intersects the surface of the ellipsoid. The latter plane,

_viewed; along the normal through P, forms an ellipse in the plane BB'
where the tangent plane intersects the ellipsoid surféce. The elements
of this "indicatrix" are shown in Figure 7. If we view this pla.nev
through the point P', in the azimuth a, the resulting sectioz;‘ is Figure

8. Recall that the equation of an ellipse is

2 2
+L2=1 . (1)
& b

WMIN



-’i'Ficure 6

' NORMAL SECTION AT ANY AZIMUTH o
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Figure 7>

'INDICATRIX FOR SOLUTION

OF Ry



Figure 8

SECTION ALONG PP' (&) FOR SOLUTION OF Ry
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From Figure 7,

x =4ds sin a
(17)
y=4ds cos o ,
~ Then (1) becomes
2 .2 2 2
ds Zln e, ds cgs o _ 1. (18)
m n
Using Figure 9, we can write
sin 6=§ R (19)
and
1
> c
sin 8 = R (20a)
o
which results in
c2 | .
z=5 - (21)
o

Sipce PP' is a very small differential distance, then C z ds, and we

can write
2
_ ds
a
When a = 0°, s equals n and
2

zz%ﬂ, (23)

and when o = 90°, s equals m and

z = = | ' (2k)

2
n2=g'-s—-M (25)
R
Q .
wnd 2 as®
m =-1-:—-N . ' (26)
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&/

Figure 9

SOLUTION OF Z FOR SOLUTION OF Regt
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Substituting n2 and m2 in (18) gives

2 2
Ru sin o Ra cos a

= + = =1. (27)

Finally, after rearranging the terms of (27), we get the expression for

the Euler radius of curvature,

R = —M8 N (28)

@ M sinzc + N coszu

1.3 Curves on the Surface of an Ellipsoid

There are two principal curves on the surface of an ellipéoid
that are of special interest in geometric geodesy. They are the normal

section and geodesic curves.describedvbelow.

1.3.1 The Hormal Section

In Section 1.2, the normel section was defined as the line of
intersection of & normal plane (at a point P) and the surface of the
ellipsoid. Consider two points on the surface of an ellipsoid (Pl and
P2) which are on different meridians, and are at different latitudes.

The normel section from Pl to P2 (direct normel section), is not
coincident with the normal section from P, to Py (inverse normal section)
(Figure 10).

The normel plane of the direct normal section, containing the

points P,, n. and P2, contains the normel at P,, and the inverse normal

1’71

plane, P2n2Pl’ contains the nénmél at.P2 end the point P.. If the normal sec~

1

tions P1P2 and P2Pl were coincident, then the normals-'Plnl and P2n2, in their
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- Figure 10

RECIPROCAL NORMAL SECTIONS



respective meridian planes, would intersect the minor axis at the same
point. It can be shown that the intersection point z, of any ellip~-
soidal normal section intersects the minor axis at:[Zakatov, 1953; p. 39-40]
2
ae sin ¢P

R (29)

A

If two points have different-longitudes, amd ¢, < ¢, (Figure

1 2
10), then an < Zne, and the normals plnpl and pznp2 do not lie in the
same plane. They are said to be skew-normels. However, if ¢Pl equals

s, the direct and inverse normal sections are coincident.

¢P2

-For two points on the same meridian, the ellipsocidal normals
do not intersect at the same point on the minor axis. They are, however,
in the same plane (the common meridian plane), thus the normal sections
P,P, and P,P. ere coincident. | |
The result of the aforementioned is jbha:b on the surface of the
eliipscid, the normal section does not give a unique line between two
points. Thus, an ellipsoidal triangle is not uniquely defined by-
normal sections. In Figure 11, the direct normal section from A to B,
AsB, is not coincident 'wit;h the inverse normai -section BbA.

Thus, the geodetic azimuth a, does not refer to the same curve as does
‘ Gpe Similar problems exist for the a.zimuths A to C, B to C, ete.

We now look briefly at the magnitude of the separation between
direet and inverse. normal sections. In Figure 12, this separation is
shown as the angle A. The formula for the solution of A is given by
[Zekatov, 1953, p. 51]

1l 22 2
A" = p" (5 e“06"cos” ¢_sin 20y, ) . (30)
4 o 12
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" " Figure 11

RECIPROCAL NORMAL SECTION TRIANGLE'



Figure 12

ANGULAR SEPARATION BETWEE.N RECIPROCAL NORMAL SECTIONS
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where
o -+ ¢
_ P Py (
by = —3 31)
and
s
U = E-. 9
m
and
N, + N
_ 1 2

For example, a line P1P5, which is 200 km in length, and for maximum
conditions (¢mm= 0° and aP2 = 45°), A = 0"36. Since most traverse or
triangulation lines are shorter than this, and since the maximum situation
will not always occﬁr, the value of 4 is generally quite small, and in

most instances, practically negligible.

1.3.2 The Geodesic

The geodesic, or geodetic line, between any two_points on the
surface of an ellipsoid, is the unique surface curve between the two
points. At every point along the geodesic, the principal radius of
curvature vector is coincident with the ellipsoidal‘nonnal. The
geodesic (Figure 13), between two points Pl’ P2, is the shortest surface
distance between these two points. The position of the geodesic with
respect to the direct and inverse normai sections is shown in Figure 13.

To describe the geodesic mathematically, we will develop the
differentiel equations for geodetic linez OB & surface of rotation.

The basic differential geometry required:for this can be found in
4:f&dﬁli@é'Eiéé}j?;@gi;ihschﬁt;;tiQEQJErhe general equation for a surface

of »otation can be expressed as



a5

- Figure 13

GEODESIC
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Flx, vy, z) =0 . (32)

The parametric equations for s geodesic on this surface are

X = fl (s) 3
y=1, (s) , (33)
z = f3 (s) . |

The direction cosines of the normal to the surface are

3F 3F 3F
_ 9x _ 3y . _ 9z .
cos By = 5~ 3 cos B, = o~ 3 cos 83 =35 (34)
where
- (3Ey2 , (3Fy2, (3F,3)1/2
The direction cosines of the principal normal to the curve (33) are
2 2
cosBN =R%;cossn=3%;
1 ds’ 2 ds
2
cos By =R Q—% 5 (36)
3 ds

where R is the principal radius of curvature of the surface.

In the definition of the geodesic, it was stated that at
every point on the curve, the normal to the surface and the principal
radius vector (principal normal) are to be coincident. To satisfy

this, we equate (34) and (36), which reduces to

3F 9F 3F
d2x day daz

d32 d52 d82

Since we are dealing with an ellipsoid of rotation, the sur-

face of which can be represented by the equation



27

x° + y2 +f(z) =0. (38)
Then
-az--- -?l— \ -Q.E— 1
a'x = 2x, ay - zy’ az =T (Z) s (39)

which when placed in (37) yields

d2x dzx
ds ds '
Integration of (40) yields
ydx - xdy = Cds , (k1)

where C is th. constant 6f integration.

In Figure 14, the line PP’ reprgsents a differential part of
a geodesic on the surface of the ellipsoid. Having the Cartesian coor-
dinates of P (x, y, z), we can compute the coordinates of P',
(x'+ a&x, y + dy, z + dz), since ds is a very small distance. The
coordinates of A (projection of P' into the plane of the parallel of
latitude of P) are then x + dx, y + dy, 2. The radius of this parallel

is denoted by r. The area of triangle CPA is

Area CPA = %-(ydx - xdy) (42)
and the area of the sector PP"C is

Area PP"C = %'rds sin a . (h3)

When ds is very small,

Area CPA = Area PP"C ,

thus
1 1 .
5’(de - xdy) = 5 rds sin o , (4k)

and substituting (41) in (L) yields
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..

} o
’ .
(x +dx, y +dy, z +dz)

Fiéure: 14 '

"DIFFERENTIAL EQUATION OF A'_'GEODESIC ON'THE SURFACE
OF AN ELLIPSOID OF ROTATION



Cds = r sin ads , (45)
or .
rsina=C. (L6)

Finally, substituting (17) in (46), we find that

Ncos ¢ sina=C | , (L7)

for any poiﬁt along & geodesic on the surface of an ellipsoid of rota-
tion.

In geometric ge'pdetic computations, it is necessary to define
our direct and inverse azimuths with respéct to the same surface curve,
end not with respect to the two normel sections. Thus we need the
separation between the normal section and geodesic curves. The sepa-

ration, stated here without proof, is given by [Zakatow, 1953, pp 41-k45]

A
s=% (48)

vhere § is thé angle between the direct normal section and the geodesic
et any point, and A is the angle between the reciprocal normal sections
- between two points. Further development of this, a.nd the epplication of
appropriate corrections, are gi‘ven in 2.1.1.

Further, the distance s between two points on the surface of
an ellipsoid is different if one uses a normal ’sec’cion rather than the

geodesic. The difference ‘is given by [Zekatov, 1953, p. 51]

L

As = g—z—a sin22a12cosh¢m_as . | (49)

which for & line 600 km in length amounts to epproximately 9 x 1076 m, "

which is obviously negligible for all practical purposes.
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Figure - 15 -

SEPARATION BETWEEN NOQMAL SECTION AND GEODESIC
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SECTION II. REDUCTION OF TERRESTRIAL GEODETIC OBSERVATIONS

2. Reduction to the Surface of the Reference Ellipsoid

Geodetic measurements (terrestrial directions, distances,
zenith distances) are made on the surface of the earth. Cléssical computations
of geodetic positions are made on the reference ellipsoid. Therefore,
meesurements must be reduced from the surface of the earth to the
reference ellipsoid. When reducing measured quantities, there are two
sets of effects to be cﬁnsidered - geometric effects and the effect of‘
the variations in the earth's gravity field.

It should be noted that the reéuctions developed herein can be
applied in an inverse fashion. That is, camputed geodetic ellipsoidal
quantities (distances, for instance) can be "feduced" up to the earth's
surface (2.4).

2.1 Reduction of Horizontal Directions (or Angles)

When we measure directions on the surface of the earth, we
level the instrument to ensure that the vertical axis is coincident with
the locel gravity vector. We know that the local gravity vector and the
normal to the ellipsoid are not generslly coincident. To réfer directions
to the ellipsoidal normal, a correction for the deflection of the vertical
is needed.

Two othér considerations are those of ellipsoidal geometry.
First, the normals at two points on an ellipsoid ere "skewed" to each
other, thus when a target is above the ellipsoid, this point is not in

the same plene as the normal projection of the target onto the ellipsoid.
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The correction associated with this phenomenon is called the skew-normal
correction. Secondly, we wish to have geodesic directions, and not normal

section directions, thus a normal section-geodesic correction is needed.

2.1.1 Geometric Effects

Figure 1€ shows the situation on the earth's surface for
direction measurements, after the effects of gravity have been removed

(2.1_.2). In this figure, Pi is the measuring station, which is on the

normal Plnl. Point Pé is the target at height hyabove the ellipsoid

point P2. It h2= 0, the direction measured (shown here as an azimuth,
i.e. a5 = d12 + Zioe where z,, is the assumed known orientation par-

ameter) would be between planes Plznl, and PlPan’ that is a12’ '.the

direct normal section azimuth. Since h # 0 in practice, the measured

direction 25 must be corrected. The reduction for this effect,
meas

called the skew normal or height of target reduction, must be applied.

Fram (29)
nn, = ae’ (¢2-¢l) cos ¢ » (50)
and
s cos a
(6mt,) = ——2 ©(51)
m .
+ M
where Mm = EI__Q_Z_ s tfe get
2 s
n,n, = ae” g~ COS a,,COS o (52)
m

where s is the arc length Ple.

Now to derive the reduction §, -we.proceed as follows. First,

campute
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B8, cos ¢,

2 8
= ge T cos ¢
Mm 12

2,
cos 4, (53)
where ¢m has been replaced by ¢2 since the differeice will give a

negligible effect. Then, the angle at Pé is given by

2 2
ae s cos ala cos ¢2
da = -, (54)

Now, if we approximate the lehg’th P2R by the semi-major axis a, (5k4)

becames

cosa¢2 . ‘ | (55)

da =e2§-cos a

Mn 12

We now compute PZP; by using (55) as

PPy = h2e2 -:g cos alzcosacpa . (55a)

Then for triangle PIPZP'a' we can write, (assuming a plane triangle)

sin & P.pP"
B .22 | (56)

sin( a21:180° ) s

which finally gives us, after some manipulation, the final formula for

the skew-normal correction

| w2 2 ' eog?
8, = o' (e sim @ yeosap,c087¢,) .| (5T)
- m :

When ¢, = 45°, and hy= 200 m,. ad 1000 m, 6, equals 07008 and 005,
respectively. Obviously, there will be instances where the
effect is significant, and must be taken into account. This is

particularly true for higher order geodetic position computation work.



35

The second geometric effect to consider in direction measure-
ment reduction is that of the difference between the normal section, to
which we have now reduced our measurement, and the geodesic. This
correction, which is derived simply by combining equations (30) and (48)

is expressed as

e252c652¢ms in 2a

12
&' = p" ( —=) . (58)
& 12 sz

where s is in metres."
When ¢_ =0, a
m

10 = L5°, and s = 200 km, 100 km and 50 km,

8 is o"12, 0702 and 0Y006. This effect couldibe .significant and should be
taken into account for geodetic work.

Same final points regarding these geometric effects are noted
immediately below: |

1) In equation (57), the ellipsoidal height h may be replaced
by the orthometric height H with no significent effect on sh.

2) In most cases, §, and 68 will be of epproximstely equal
magnitude and opposite in sign. They should be camputed, however,
particularly for precise geodetic position computationms.

3) Equations (57) and (58) are often expressed in other ways,
all of which give equivalent results, but which mey include further

approximations. As an example, (57) may be expressed as [Bomford, 1971,

p 122]

2 |
. Bet 2
511 = —g— sin 2a12 cos” ¢ (59)

and (58) as [Bomford, 1971, p 12L]

skm2

Too) sin Z%é‘.os%m . (60)

§" = 0.028 (
s .
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Rotation Axis of Reference Ellipsoid
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2.1.2 Gravimetric Effects

A theodolite is levelled with respect to the local gravity
vector and not to the ellipsoid normesl. A correction for the angle
(deflection of the vertical) between the gravity vector and the ellip-
soid normal is necessary. Figure 17 depicts the correction that must
be applied. This topic is coveréd in dépth in [Vanicek, 1972, pp 164-
166]. We only state the reduction formula here as |

Ge = -e-cot Z,
= -félsin @, 57N, COS -12) cot z , (61)
vhere § is the meridian component of the deflection of the vertical, n
is the prime vertical component of the deflection of the vertical, and
z is the zenith distance. The effect of this reduction can vary from
an insiginfiéant amount (if 6 = 0 or if z = 90°) to velues of the magni;.
tude 2" - 3" when for instance 6 = 20" and z = 80°.

To apply this gorrection, and that required in 2.2, fhe
deflections of the vertical at eachiﬁoint are requirea. These can be
obtained in various ways. A rigorous approach -is to observéﬁéhe astronomic
coordinates:(é, A) at each station, which would be a difficult task.
Alternately, one may utilize the results of a contemporary geoid computation

technique [Vanicek and Merry, 1973], and compute £ and n at each point.

2.2 Zenith Distances

The only effect on a zenith distance measurement is that of
variations in the gravity field — that is, the deflections of the
vertical. As in 2.1.3, we will only state the reduction formulae

here &as
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g =z + (Elccs P sin o (62)

R 1271 12) >
Where zm is the measured value of the zenith distance.
This topic is covered in [Vanicek, 1972, p 170, and Heiskanen

and Moritz, 1967, pp 173=-175], and will not be discussed further here.

2.3 Spatial Distances

In this section we treat the reduction of a2 measured spatial
distance, on the surface of the earth, to the surface of the ellipsoid.
After having made various instrumental and atmospheric corrections to
the measured e.d.m. distance, we are left with a straight line spatial
digtance L (Figureila). This spatial distance is then reduced to the
ellipsoid. The reduction is derived as follows.

First, compute

R, + Ry -
where R, and R, are the Euler radii of curvature (eqn. 28). Then, from
triangle P{P0, the cosing law &ields

2 2 2
2% = (R+h, )< + (R+h,) - 2(R+h2)(R+h1) cos P, (64)
where
h, =H, + N

MR TN |
(65)
h, =H, + N

2 2 2° .
which are ellipsoidal heights, and are equal the sum of their respective
orthometric heights (H1 and 32) and geoid heights (Nl and Nz). Replac-
ing

cos y =1 ~ sin® %‘ (66)

in (64), and rearranging terms yields



Figure '18

SPATIAL DISTANCE REDUCTION



ko

hl h

R

2 2 2 2 2 ¥
[ (ha-hl,) +2R° (1 + )(l+R)sin 5 -

(67)

From triangle P,P_0, the cosine law and half-angle formulae yield

12

zo=2asin§,

or
3

v=231n'lE§- .
Setting

by by
(67) beccmes

h
2=+ (14 )1+ D) 2,

R R

which when rearranged is

- 2 .2 1/2
’~°=(-—§-=Alh—-) .

51 2
(14-—3')(1-!—3)
Now,
12
g sR?éaaﬂsin- -53‘% .

(68)

(68e)

(69)

(T0)

(12)

(12)

. Thus, using (T1) and (72), we can reduce a spatial distance to the sur-

face of the ellipsoid. These formulae are'sufriciently rigorous for

current geodetic work [Thamson and Vanicek,;l973]o

Note that for a rigorous distance reduction

the geoid

height N is needed. There are variocus methods of computing N, one of

which is that developed at U.N.B. [Vanicek and Merry, 1973].

No mention has been made here regarding precise base lines.

The reason for this ommisgion is that precise base lines are not being

measured much any more, except for EDM instrument calibration for which

reduction to the ellipsoid is not necessary.
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Finelly, it should be noted that there are many distance
reduction formulae in use, some of which have been developed for spec-

ific reference ellipsoids, or regions of countries.

2.4 Reduction of Computed Geodetic Quantities to the Terrain

The situation often occurs in practice where computed geodetic
quantities, namely distances and angles, must be measured on the terrain.
These can not generally be .compared directly with the computeg. values
since the latter are usually given on the surface of the reference
ellipsoid, thus they must be "reduced" to the terrain.

In.order to reducé the required angles, one proceeds as
follows. First, compute the directions (azimuths) between the points
involved. Then, using equations (57), (58) and (61), compute the

8
applied to the computed direction am, with signs opposite to those

quantities &I, 62 eand 68" respectively. These corrections are then

ﬁsed for reduction to the ellipsoid, to obtain the direction that should

be measured, amz? .

direction (or engle) exactly since it, and the measurement taken, will

Obviously, one would not be able to measure this

have some standard deviations. A similar procedure is used for distance

reduction. A simple rearrangement of terms in equation (72) yields

L, = 2R sin 5= , (722)

and similarly (T1) gives

hy h 1/9

' 2
v =p2 @+ 3@+ ) +b0?] . (T12)

Thus, we can compute the terrain spatial distance £ given the ellip-

soidal distance s . Once again, as with the directions, it should be
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noted that both the computed spatial distance and the measured one will
have some standard deviation meaning that an exact duplication of the
computed distance by remeasurement will not be probable.

It has been shown that the reduction of geodetic angles and
distances to the terrain is a straightforward process. Thus, when
faced with the problem of checking measurements on the terrain which
are given on the reference ellipsoid, some preliminary computations

enables one to carry out the remeasurement task.
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SECTION III. COMPUTATION OF GEODETIC POSITIONS
OF THEE REFERENCE ELLIPSOID.

3i?Pﬁissan$'s.Formul&‘fmshorﬁ Lines

v

3.1 Introduction

These formulea are named after the French m;thematician who
is credited with their development. Their derivation is based on &
spherical epproximation, thus they are generally considered to be
correct to 1 ppm at 100 km, beyond which they break down rapidly (4O
ppm at 250 km when ¢ = 60°) [Bemford, 1971, p 134]. Thus, we say that

" Puissant's Formulas is & "short" line formula.

3.2 Direct Problem

Given a?e the geodetic quantities ¢,, A;, 5,, and a,, (Figure 19).
We are required to compute the quantities ¢2, 12 and @y -

In this derivation, we first compute,¢2. We obtain, for the
spherical epproximation, from spherical trigoncmetry (cosine law)

sin ¢, = sin ¢, cos (PlPé) + cos ¢, sin(PlPa) cos a (73)

s.
. 22 = - e s .
But Pl 5 = Nl , and ¢2 = ¢l + d¢, and é = alglsince it is stipulated
that the meridians are in the same plane. Then
510 12
sin(¢l+d¢) = sin ¢l cos —§I+ cos ¢1 51n‘-§; cos @, (Th)

Whet is required now is to get an expression for d¢. From equation (TL),
we can expfess the left hand side by

sin (¢l+d¢) = sin ¢, cos d¢ + cos ¢l sin d¢. (75)
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Sphere

Ellipsoid

. ?3 (¢21)~2)

" Figure 19

PUISSANT'S FORMULA FOR DIRECT PROBLEM

L ]
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Expanding cos d¢ and sin d¢ in series (using the first two

terms only), we write

2
cos d¢=1--§9-2- eee o
- (76),
and :
as®
Sin d¢ = d¢ - 6 eee 9
then (75) becames
2 3 .
(sin ¢l+.d¢) = sin ¢l-sin cbl Q%_ + cos ¢ld.¢ - cos) ¢ i%— +..(7T7)
. 1o 515
Taking the right hand side of (75), we expand cos -5 end sin §~ in
' 1 1
a series (first two terms only):
s2
cos o— =1 = —= ... ,
‘ 5 2N§
aod (78)
s s 3
12 12 s
Sin T— N —— ,“ e e o ®
LN e

Then (T 4) can be rewritten as

2 3
‘sin 4)1 + cos ¢ d¢ - sin ¢l-§—- cos ¢1£‘%-+ .
2
s s
1 23?_
—?2 cos a,, cOs ¢1 + .. (79)

6w

After cancelling appropriate terms, and dividing (80) by cos ¢1» the
. expression for d¢ is _
2 3 2 453 (80)

12 12 aé_ dé
122112 ¢l 6N3ccscn +2ta.n¢l+6+

S

-+712
d¢ = N cos a

e
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The above formula will obviously not yield the required solution since
d¢ appears on the right-hand side of the equation. To begin to solve

this problem, we again use the spherical approximation and set

d¢ = F:Lg- cos a, - ' (81)
1

Substituting (81) in (80) yields
2 3
S
- _AZ_ cos a +

an ¢, 12
: 6y

d¢ =

3
2 dé .
cos a12 tan qsl + 3 + ... (82)

+
7] =]
Bl

From (82) above, we can now get a more precise approximation for d¢

(neglecting terms grea.tér than the second power), namely

2
s s : .
d¢ = -N—lz- cos a,, - 22 ion ¢1 (1- cosza. ) I (83)' ;
1 iy %12 |
which can be written more simply as
%12 2 2 SR
1

Squaring (84), end neglecting terms greaster than the third power yields
2 3

s s
2, 12 2 - _ 12 2 (85)
dé N2 cos a12 ;3—cos alzsin ale tan 4)1 + e
1 1 .
and further
s3 ' _
d¢3 = ;31_2_ cossalz e . (86)
1

Finally,- substituting (85) and (86) in (80), and rearranging terms gives

- us
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2 3 2
512 s12 _512 s 2
d¢ = —==os @5 = ;;E'tan ¢l - -;E-cos u ;;5 cos o tan ¢l
Nl 1 6 1 1
313.2 2 2 532 3
- ;;§-cos 5 sin a5 tan ¢l + —;§'cos @ip F eee (87)
1 » 1
Collecting terms yields
2 3
s s s
. 22 _ 2 2 _ 12 2 2
dé E;_ cos “12 ;;§-tan ¢lsin a12 ;;5 cos alasin alztan ¢l +
3 1 1
,512 5 .
1
Further simplification is attained by settiné
553.2 2 53 2
- ;;g'cos alzsin a12 tan ¢l - g;g cos a sin a12 =
1
53 )
=32 cos a1 sin’a (1 +3 tan2¢ ) : (89)
68> 12 ' 1
1

which, when placed in (88) finally yields -

. 2 - “5‘3’, .
d¢ = 12 cos a tan ¢ sinzu - -EE cos o sinza (143 tan2¢ )+..
Nl 12~ 2R2 1 12 6N3 12 12 1

1 | ~ (90)

Equation (90) is not & rigorous solution since the radius of

curveture along the normal section Pl te P2 is teken to be a constant

value N;, vhen in fact it changes with latitude since N = fl(¢) and
M= f2(¢) (equations (15) and (13) respectively). In order to take this
change in curvature into account, we can write
Ni'
d¢ = = (right-hand side of (90)) , (91)

Y
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where l/Mm replaces l/Nl, and

M
. _Mz_;__g_ _ (92)

m-

Since we do not know ¢2, we must use the approximation

=M +af (93)

in order to compute M,. From (13), we compute

dMl 2 2 2 )‘5/2

T = a(1-e%)(=3/2)(1-¢" sin¢,

e (-2e2 sin ¢l)cos ¢ (9k)

which reduces to

dM1 3e2 sin ¢l cos ¢1

—= = R (95)
d¢ ‘Ml (l-e2 sin2 ¢l) _ .

which when placed in (92) yields

My + 04 +ar) o

M=t (96)
%"Ml*%.l‘ & | (96a)
2
. e 3in ¢, cos ¢ "
Mo=M +3y L1 &, (97)

(1-€° sin® o) P

From (97), :using the binomial series expansion giires

” 2
e sin ¢, cos ¢ as" .
=i-(1-3 L—= RN (98)

1 -
Ml 2 (1-€2 sin® $,)

which when placed in (91) yields the final result

2 2 3 2 2
_ [p"(slzcos P i 12tan ¢;sin"a,, i s,c08 o, 5sin a12(1+3 tan ¢l) .

N o

2
3e " sin ¢, cos ¢ "
—L &, (99)
6,) P

(l- 2
2(1-e” sin




where d¢' in the last term of (99) is computed using equation (90)
(multiplied by o").

Finally, we compute éa by

¢2 = ¢l + d¢ . ' (1.00)
The longitude of P2 can be computed by
A, = Ay +dAr . ‘ (101)

2 1

From Figure 19, using a spherical epproximation the sine law yields

sin @ _ 5B o, (102)
sin290-¢ 5
in 12 2
NZ
or
512
sin d\ = sin ]—3-2- sin ‘o, sec ¢, . | (102a)

Now, approximeting the sine terms on each side of (102a) by a trigonometric

series, we can write (neglecting terms higher than ’the third power)
3 ,

3 s 8
ar - -d—z—-q- e = (-;lg-"é"nsl‘g’")(sin a)psec ¢2) (103)
2 2 :
or
810 &3 a3 (1032)
axr =-l-r—2-—sin @, sec ¢2 -;-3-sin a, ,sec ¢2 T"’ .o
2

Now, from the first two terms of (103a), (neglecting terms greater than

the third power)

3
3_%12 .3 3 ,

ax” = N3 sina,, sec bp * eee s (lqh)

2

which gives us
2
1 wr_12 -

a" =op [ T, sin o, sec 9,(1 --;-%(1 sin> o, sec ¢2))], (105)

which when placed in (101) gives the solution for A,.



k9

21
_derivation for its solutfon is given in the mext section.

Although; a.. is also a part of the direct problem, the

3.3 Inverse Problem

¢

We are given the quantities 4’1" Xl of Pl’ and ¢2, >‘2 of P2
(Figure 20). The quantities required are 8155 %y, and a,,.

We begin by determining o Using a spherical approximation

21"
"< P'P,P, = 360-a,, (106)
and
*%@PH%+<P%§)r§%£%m%ﬁ.‘(mﬂ
aié - e, = da (108)
or
aj, = da + a5, (108a)

‘where da is the term which expresses the convergence of the meridians

between points Pl and Pa. Using Figure 20, we can write

Gy = a]'.2 + 180° ' (109)

and replacing a]'_2 by (108a) gives

Q, =a

o
~ + da + 180 (lQ9a)

12
Then, replacing % in (107) by (1092),

L(ppp +<prpp) =L —3ae180°

5 (<P'P P, + <P'PP)) = 5 (a),+360-a,,-da~180°) - (1120)

or
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p' (sphere)

" Figure:.20

. PUISSANT'S FORMULA FOR INVERSE PROBLEM
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Py ' ' _ 4= (110a)
3 (<p PP, + <P.P291) =90 - 3.

Using spherical trigometry, thé ta.ngént law yields
[(90-¢2) - (90-¢l)]

.- cos =
tm(go-%ﬁscot% . (111)
cos -2- [(90-4’2)» + (90—471)]

which reduces to (invert both sides of (111))

(50 - 12
T4 cos(90 - =
tan g*c-x- = 1 2 tan % (112)
cos 3 (¢l-¢2)
or : 1 (
sin 5 (¢, +
tan &2 = 2_1 2)' tan & . (112a)
2 T __ a2
2

Next we develcp the tangenf terms on both sides of (IlZa)which can

be expressed by (neglecting terms greater than the third power)

3
ta.n%?"lsinqﬁ sec&(g-l-g%i-...) . (113)
and o
3
de du , 4o |
tm 2 au + [ * L ] L 4 (nh)

which gives the final equation

: 3
da" = p" [dAsin ¢m sec & 4 & (sincbmsec g—i- s:i.n3 seca(—i) +..]

24, 12
‘vhere ¢y 1S the mean latitude.

Replacing da in (109a) by (115) gives us the required a,, once we have an
expression for 35 .
The solution for a,, is as follows. Taking equstion (99), and

rearranging terms, we get

(11
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3easin ¢, cos ¢
el 1l 1

o, = 88 1- L (&h)) +
5,08 a4, = 2 (Ml/( 2(1oe2 sin2¢l) p

s2_ ten ¢1sin2u. 83 cos sineula(lﬁ tan2¢1)

- —12 ., 1212 2 (ue)
8y | 6‘5
end using (105), & rearrangement of t;'rms yields
g 3 3,
s, sina,, = _g%;,- . sﬁc¢2 6;2 sin a,, - 632 in3ulzsec by - (117
Now, dividing (117) by (116) ;ves, after some menipulation of terms '
&L (118)

tan Glz = (1.16) .

Since a,, appeers on the right hand side of (118), iteration is
needed. First, begin by obtaining epproximate va.lues for a,, from (118)
by using only the first term in the numerator and denominstar and for 5,5
frem §16)or (L17), again using only the first term on the right hand side
of the equations. More accurste values of ) and s, , a:e,:obt;ﬁned by using
all terms in (118) and (116) or (117),respectively. Iterate until the
changes .‘..nkxzL2 and s,, are negligible. (as < 0.001 m and b, , < 0%001).

3.4 Summary of Equations for the Solution of the Direct and Inverse

Problems Using Puissant's Formulee

The following is an outline of the steps required for the solution
of the direct Problem using Puissant's formulae:
1. compute M, and N, using (13) and (15) ,respectively;
2. compute an approximate d¢" with (9Q).

3. solve for d¢" using (99), and ¢, using (100);
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4. eompute N, with (15);

2
5. solve for d\" with (105) and A, using (101);

6. using (115), compute da" and finally @y, With (109e).
Similarly, we outline the steps required for the solution of
~ the inverse problem as follows:

1. campute M, with (13), and N, and N, using (15);

. 1 2
2. compute a,, with (118);

3. compute da" with (115), then a,.., using (109a);

21

4. using either (116) or (117), compute S1p°

3.5 The Gauss Mid-Latitude Formulae

These formulae were first published in English in 1861.
They are based on a spherical approximation of the earth and should
‘only be used for points separated by less than 4O km at latitudes

less than 80° [Allan et al, 1968]. The formulae are [Allan et al, 1968}

da" = A" sin ¢ , (119)
. - co8 @& .
ag" = " (—1-2-M:——3) © (120)
s.. 8in o
12 m
a" = p" (Nm cos ) . (121)
where ap =a;, + T da (121a)

The similarities of thezabove formulae with the Puissant
formulae are easily seen by comparing (119), (1220), and (121) with the
first terms of (115), (99), and (105} respectively.

In order to solve the direct problem with the mid-latitude
formulae, an iterative procedure must be used. First, d¢" can be approx-

imated using the measured azimuth in place of a s end Ml can be used in
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place of M . Then, 2 first a.pproxima:tio:; of ¢, is obtained using (100),
e first approximation of d\ vie (121) and Ao b‘y (101), thence da is
computed via (119). The iterative procedure can now be continued
using successive approximate values for d¢, da (thus e and tbm) until
the desired limits have been reached. Finally, .d.k" is computed in
order to obtain A2. ‘ |

The inverse problem is computed without iteration since ¢m is
immediately available. Using (119), da is computed. Then, from (121)
12 and a,, (12le). Finally,
can be computed with either (120) or (121).

divided (120), one obtains tan L thence o

the q.ista.nce .512

3.6 Other Short Line Formulsae

There are many short line formulse in use. Some of these
are included in [Bomford, 1971, pp. 133-139], and are called by names
such as "Clarke's Approximate Formula" (1 ppm &t < 150 km), and "Lilli's
Approximste Formule" (15 m st 1000 km). ALl of these types of direct
and inverse foimzlae (short lines) are based on spherical approximations
and are nof as rigorous as those such as Bes'sei-'s 1oﬁg line formula,

developed in L.
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N
= Nemo. |

"4, Bessel's Formulae - Long Lires
k.1 Introduction

The formulae for the direct and inverse geodetic problems
developed below have been credited to Bessel [Jordon, 1962]. The
derivation is based upon the geodesic on the ellipsoid. This fact dis-
tinguishes Bessel's formulae from formulae which are bpased on a spherical
approximation (e.g. Puissant's), or even from formulae which are ellip-
soidal based but use the normal section curve as tpe foundation for the
derivation (e.g. Robbims, 1962).

The accuracy of the Bessel formulae is not limited by the
separation between the two points in question nor by the location of
the points on the earth. The accuracy is simply limited by the number
of terms one wishes to retain in the series development of the various
expressioqs.'

The following derivation begins by developing the relationship
between corresponding élements on the sphere and ellipsoid (not a -
spherical approximation but a rigorous treatment); The solution of an
elliptical infegral is then perfbrméd. Finally the direct and inv;rse

problems are enunciated.

4.2 Fundemental Relationships.

We begin by establishing some rigorous relationships between
parameters on the sphere and parsmeters on the ellipsoid. In section
(1.3.2), we developed the basic property of a geodesic (L4T), which on

a sphere can be expressed as
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cos B sin @ = cos By (122)
where B is the reduced latitude [Krakiwsky and Wells, 1971, p 23], and
B, is called the "turning poiat" reduced latitude (& = 90°). From Figure
lala,:q on the reduced sphere is eqgual to & on the ellipsoid, as are é on
the reduced sphere and B on the ellipsocid, thus we can write for both
cos B sin @ = cos By (122a)
We now develop some differential relationships with the aid of
Figure 21b. From the triangles in the sphericel figures, we can write
ado cos « = adf ,

12 .
end (123)

ado sin a5

a cos B' di,

where a 1s the radius of the reduced sphere (Figure 22), and do is the
angle subtended (at the origin of the sphere) by the normals at P and P°'.
Similerly, ffcm the triangles in the ellipsoidal figure we can write '

ds cos 85 = Md¢

and , | (12k)
ds sin %, = N' cos ¢'dL .
Dividing (12k) by (123) yields
ds _ Md¢ _ ., cos ¢' 42
do 4B N cos B' ax ° (125)

From Figure 22 and equation (17)
N' cos ¢' = a cos B' , (126)

which when substituted in (125) gives

ds _ , 4¢
i . (127)
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Pole

'Reduced Sphere | Ellipsoid

Figure ‘21a

FUNDAMENTAL RELATIONSHIPS FOR THE DEVELOPMENT
'~ OF BESSEL'S FORMULAE

-
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dA | | Tl

;

Ncos$ dl

Reducid Sphere ' Ellipsojd

"Figure 21b

FUNDAMENTAL RELATIONSHIPS FOR THE DEVELOPMENT
| | OF BESSEL'S FORMULAE
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. Figure '22'

REDUCED SPHERE AND ELLIPSOID



60

or

a _ 14 -
dr  sdo ° (27e)
which, from (125) yields
& _Ma ;
ax e a8 (12Tb)
Recalling that [Krakiwsky and Wells, 1971, p 28]
ten B = (l—ee)llztan ¢, (128)
we can differentiate and get
d2§ < (1_92)1/2 a¢ , (129) -
cos B cos ¢
or
. 1 coszg ‘ ' (i29 )
B ———— . _ a
as (1-e2)1/2 cosas
vhich when substituted in (12Tv) gives
2
a M cos ¢ (
- . - (130) .
ax a(l-ez)lla coszB
for any point on the ellipsoid.
Now, we want to get
de/dx = £(8) .
We begin by expréssing
e cos B = -% cos ¢ ' (131) .-
where
V= (1-€° coszs)-lle (132)

and(the curveture at the pole - equation (5a))
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c= 2
3 (133)
Squaring (123), and rearranging terms gives
a2 a 1 :
== —_— (13k)
am Ve " 2172
where
M= (135)
v3
A further reduction of (13%), using (133), (3) and (131)
finally yields
& _1_1lds "
D"V 2d - (136)
Before proceeding further, we will derive (132), . From
(1312)
. _
cos ¢ = (;? V cos 8, (137)
which when squared yields
2
cosZ = ‘b_2 V2cos?8 (137a)
or
cosa¢ = (l-ez) v2 c0528 . ' (13Tw)

Substituting (137%) in (137),

v = l+e'2(1—e2) VZCOSZB s (138)

which reduces to

-

v2 fl-e'a(l-ee) cosze] =1. (1383)

Now, from equations (3) and (4),

(1-e2) (1+e%) = 1 © (139)
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and
e = o2 (l-ez) (139'&) ‘

vhich when substituted in (138a) gives

Vz‘, (1—e200828) =1 (140)

or
vV = (l-ezcosas)-l/2 . (3%0a)-
Returning back to the problem at hand we substitute (3L0oe) in

(136) we get

%i‘ = (1-e2 cosze) 1/2 (141)
and

£ . o1-ePeos?s)t/2, O (1k2)
respectively.

4.3 Bo3ution of the Elliptic Integral

Next we solve ( 1%1) end (1k2), and we do so by imtegratiom.
We begin by solving (143, to get a solution for ds/do. From Figure 23,

we use the sine law of spherical trigonometry and obtain

sin a. . sin 90°
12 = (143)
sin(9c?-so) sin(9@8l) 3
or
cos Bo = sin a,, cOS 61 s (1432)

the fundemental property of a geodesic and great circle. Further, using

Napiers rule of circular parts



63

- - Equator

 Figure 23

. SOLUTION OF Jds.
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cos a,, = cot o, tan B, (1k4)
or
tan Bl
tan Ul = cos u]-2 $ . (1“1‘&)
and another required relﬁtionship
sin 8, = sin (o,+oy) sin B . (145)

We generalize (145) for integration purposes (between points P, and Py
Figure 23) as
sin B = sin (v:::L + o) sin By (145e) .

so that ¢ is variable, reckoned from point Pl. Note that when ¢ = 02 °

B=Bea.ndwhena=0,8=81.
Rewriting (149 eas

ds = a(l—e cos B)l/? do ,. o e . {1k6)

3 "‘:

and ‘then solving for cos 8 from 1k5e by - Sl " grod e '-V,"»‘:"..T"b

cos’8 = 1-s1n" (o szin 8

R

in which we substitute ol = 0, a.nd x = ol+o (a new va.ria.‘bl" vror :Lntegra-

- o :fmfzz—.--
tion), then dx = dc and we rew-ite (11l7 ) as
' cos B =] = sinzx sin® By o (1k7e)- .
which finally gives
ds = a(l-e2+e2 sinZB sin x)1/2 (148)
From (3) and (L),
2
2 ! 2 1
e = and l-e = (1%9)
J_+e'2 l-e’2 '
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which when substituted in (1k8) gives

1 e'2 1/2

ds =2a [ >+ > sin28 sinzx] dx (1482)
1re'S  l+e' °
or
ds = ___a____ (1+e! zsin B sin x)llzdx’ 1ko):
(1eer )1/2 _ (1k9)
Since
D (150)
(1+e'%) .
and setting
¥ = e'? gin? By » (151)
(l_kf!.)ﬁ f£inally becomes
ds =b(1 + kzsinax) ax . (152) .

This expression is now integrated and evaluated for our parbiculér

4

parameters, which yields

(153
ssb Il T( 1/24 ?-)
x=a

l-l-k sin x)

e T

Cw ey wam o coe e st s o

o In ma.éheme.tics this is known as an elliptical integral [Abramawitz ard
.Segmg&nlgéa,_p 389,] The li.mits‘ on x(m ) are

0<aso, , (154)
then when
¢=0,x=0, " (1s5ke)
and when
G = Ops X = 0,40, (15kb)

Solving equation (153), we krow that because k2 is small, then
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6
(1+k2 singx)l/ % 1+ -32" kesinax - % khsinhx + % sinéx - ... (155)
Using the trigoncmetric identities,
sin’x = % (1-cos 2x) (156).

sinhx .= eca e
ete.

and substituting in (155) gives

2
(1+62sin®x)Y/2 = [1 +-kr-g%kh +..] + [-%kz +T:6L—kl‘ +..]Jcos x -

kh
-grocos kx+ . .. . (1552)
Replacing
2 .
Agl*kr-&khq-.... ® (157)
1.2 1.k B
B = r k - Rk | * cesve . 9 (157&)
) L o N
C=3r+ .,
in (153) gives
s cl-I-oT c +0T c’:L'M"I'
T4 J dx - B } cos 2xdx - C / cos hxdx - ... (138)
°1 % %1

Before carrying out the actual integration of (157), we

consider the solution of general integral

0,+0p, . ol+cT
J cos nxdx = = sin ox (159)
0y %

=% [sin (cl+§T) - sin nolJ | (159a)
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Another substitution yields a better form, namely

sin nx - sin ny = 2 cos % (x+y) sin % (x-y) » (160)

which when associated with our problem, we set

1 T
y= °1 . (l6l) v
then
= 161a)
xX+y 20, +0p (
and
x - y = GT °
Now, in (15%9a), the right hand side beccmes
n . n
sin n(cl-boT)- sin no, = 2 cos 3 (2al+cT) sin 3 op (162) _
Now, evaluating (158), we get
/ dx = op (163)
%
! cos. 2xdx ='cos (2ci+c,1,)sin T (163a)
0 .
1
9y %9 _
I cos bxdx = -2-cos(hol+20,1,)sin 20, » (1631p)
51
ete.
Setting
Op = 05=0; s (164%)
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then
201 + Oy = 261 + 0, = 0y (16ke) -
or
20, + oy =0, + 9y s (16kp)”
and '
c, + 0
2_ = -1—2—3 (164¢)
or
2¢3m = 20'1 +0op o (16ka)

When substituted in (163), the solution to (158) is

s - ‘ _c D 35 -
= AUT B cos omsin o cos ham si_n 20, - = cos écmsin 30 cee

b T 2 T 3 6-65 )

From (16k4), we get a solution for o, as

T

Op = 35 * 7 ©08 20 sin o + 2% COS ko sin 20, + ... | (;66)

As l+%--£khq+“.. - ST e T e T ":

Bc%
C=gE+... . (166s)

2 1.k

k--l-s-k +ooo )

k2

"
®
[0}
e
=]
w
L d

This represents the integration of the distance on the ellip-

soid with respect to the distance on the sphere.
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Now we turn our attention tc the solution of %% (1k1).

Rewriting {141), we get

= (1- —e? cos B)l/2 | (1b1a) .
From Figure 2L ,
4\ cos B = do sin a, (167)
or
sin o
ar = 12 45 (1672)
: cos B
Applying the sine law (spherical trigoncmetry)
sin a. .- ‘ ‘
. 12 . sin 90 (168)
sinZQO-Bos sin(90-8
or
cos 8 " o
sin a,, = =——2 . (1682)

12  cos B >

which when substituted in (1613) yields

cos B

dl" ) - do . ’ ,/«,«_(‘lsn)
cos™8 ‘;mf
Substituting for A\ in (J:hla), we getw s
cosB :
de = (l-e 2008 8)1/2 2 do . (169)
cos B
Next we take d¢ minus (167b) which gives
2 2.1/2
(1~e“cos“B) 1
at-dA = cos B _ [— -——ldo . (170) 7"
° c0828 c0528
2 1/2

in a series yields

2 L 6
1/2 =1 - -;- cosas - g—coshs - ;—6 cosss - eee (17]_.)

Expanding (1l-e cosg)

(l-ezcosgﬁ)
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which when divided by c0528 gives

2 L 6
1 e e 2 e L
I= - = == 08B == COS B = ... (1712) .
cosZB 2 8 16

Equation (170) is now
2 b 6

de = d\ - cos Bo[-e—a- + g— cosas + % coshs + ...] do (172)
or
2 &2 s eh L
dz=dl--2-c9s Bo[l+rcoss+8—coss+..]dc. (172a)
For the solution of (172a), we replace cosae, coshB, etc. by
cos®8 = 1 - sins_ sin’x , < (173)
and
coshs =1-2 singsosinzx + siﬁhB o sin’x . (173a)
(x is defined on page 64), which when placed in (172a) yields .

.df.-s a - 93-&55 8L+ e 1-sin®g ‘sin®x) + A (1-2 sin28 sinx +
C 2 o', T‘ ) 8 o T
4 N ' - .
+8in'B sinx) +...] &x . (17h)
The above expression is simplified and set up for iﬁtegration
in much the same manner as was done for the solution of ds/dc. The

results are as follows. The longitude difference on the ellipsoid is

given by
Ly
L= J'L sz , (175)
1
and on the sphere by
A= f}. a . (175a)



Then
2 %0
L=2X=-=5cos Bo[fu (A'+B* cos 2x+C'cos bx + ...) ax], (176)
1
where
2 N 2 L

At =1+-E+e—8--$ja-sin28°-%sinzﬁod-g%ehsinhso-i- ess (1717)

e2 2 eh 2 eh L
B' = g~ sin By + g~ sinB - Tz sinB + ... (1772)
and
ooy
c! =%Esin By + oe . | (177D)

D' = "..'

The result is then given by

- ' BT, ~ c* . :
L=2-3-cos B [A'g, + B_sji\nc::Tc?s 20, +.2 ,s'i‘n 2a,cos h?!n $ eee

+ 2= sinsa cos 60 + ] | :(178)
3 o AtAlete e |

(A=L) = ‘%‘005 BSTA’ O +° *‘c-*sin 20,,c08 ‘f‘hom*‘i“iqi
1
+ 13)—- sin 30 cos Som‘ + e ). S i (179)

Now, with all the necessary relationships developed, we will turn our

attention to the direct and inverse problems.

L.k Direct :Problem L

Recall that for the direct problem we must know the geodetic

-~

coordinates q>l,_ Al of one point P., and the geodetic (geodesic) distance

s and azimuth «

12 12 to another point P», then we solve for ¢2, A2 of P2



and a,,. The steps in the solution are as follows:

1. compute the reduced latitude B,, using (128);

l!
2. compute the azimuth of the gecdesic st the eguator, that

is sin é = gin §12 cos Sl 3 (122a),
3. compute the spproximate spherical arc ¢ fram (166) using

only the first term (e.g. o, = ) then compute o, +l by

B o
Gi-!-l = co + y cos Qcmsin Gi * ocee

where the first iteration, o; = Go’ and recall that

ecml= 201 + ci s

in which o, is solved for by (144aV; this step is repeated until say

loy,q = o;1 < ovo0001;

i+l
L. compute B, by (145), where B, is computed using (143a);

5. ccmpute~¢2 using (128);
6. compute the spherica.l longitud.e difference A using the sine
law (Figure 24), which gives . ' -

o sin ¢ sin a,, .
S s:l.:::%w “7-558_3;—.-_' I (180)

_where the first approximaticn\or o:is given by (181). T
T:hen, using A from (180),*compute a, cos 29, cos hcm, cos 6c using

(184), (185), (185a) and (185b), respectively; using (179), solve for
(x=L); this step is then repea.ted, with L = A - (A-L) (186), until say
i(x-L) - (A-L)[ < 0700001; finally; |

j.:' }.2 11+L.

7). the reverse azimuth is then computed via (186a) or (187a).



4

Figure 25
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-4g5giuverse Problem

In this problem we are given P, (¢l, Al) and P, (¢2, 12)3

from which we compute s , and o

12° %12 21
The first step is to compute B, and 8, (reduced latitudes) using
«-(l28)?§ghégf“fram éh?’iéaﬁcedisPhéféﬁ(Fisﬂre 25) we can compute the arc
length: (0°= 0, )"by using the’cosine’law’of spherical’tiigoncmetry as

cos ¢ = sin Blsin B, + cos B cos B, cosi, (181)

or

sin 0 = [(sin A cos 82)2 + (sin B,cos B, = sin B,cos B,cos A)2]
- (181a)

Since this an iterative problem, (181) is solved first using A = L in the

first approximation. We then compute

(182)

sin A cos 82
i s:If-n.ul?. _8 sin ¢ *

To compute the azimnth of the geodesic at the eqpator, a, we combine
(143a) and (182) which yields

._sin clé'cos B, = sin.a cos 0° (183)
or
sin o
sin @), = 50 s | (183a)

which when replaced in (182) yields

cos B, cos B sin A

s?n a= l_ —Tn s . - (18Y4)

Once again, sin a is only & first epproximation since A = L.

Then compute
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2 sin Bl sin Bg_

cos 20 = cos 0 - =y R (185)
cos a
2

cos ham =2cos20, -1 , (1852)

and
_ 3
cos éqm = L cos 20, - 3 cos 20 (185b2
We then use (179) to compute (A-L). After completing this step,

we compute ' -

A =L+ (L) , (186)
and return to (181) and recompute quantities o, «a, 2qm, hcm, 6qm using

(181), (18k4), (185), (185a) and (185b), respectively. After recomputing

i+l
test passes, we continue to compute @100 Gpy and 8y The forward

(A-L) using (179), we test |(A-L),,, = (A-L);| < 0Y00001. When this

azimuth is computed using (183a), which is rewritten here as

f _sina o imgy
sin'a,, cos 6. 3 (;86)_

and

kN gin o
sin a21 g_cos"Bz .

. Alternstely, the szimiths can be computed by

sin X cos 82

ten a . = — - (187)
12 sin Becos Bl-cos 2 sin Blcos 82

and

sin X cos 8l
tan o, = (187a)
sin B,cos Blcos A - sin Blcos 82

To complete the problem, the distance s,, is camputed using (165).
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4.6 Other Long Line Formulse
Many methods for the solution of the direct and inverse

problems, for widely separated points on & reference ellipsoid, are
evailable in the literature. As with the "short" and "medium" line
formulae, they are generally given the names of their originators. Two
of these, which have been used by the authors, are the methods of
Rainsford [Rainsford, 1955] and Sodano [Sodano, 1963]. Rainsford's
formulae are developed on the same principles as Bessel's. The major
difference_ is tﬁa.t the coefficients of the longitude difference (179)
are developed in terms of f, since they converge more rapidly than
when given as a function of e2. The main difference between Sodano's
method, and those of Bessel and Rainsford, is that both the direct and

inverse problems can be solved in a non-iterative fashion.
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SECTION IV. COMPUTATION OF GEODETIC POSITIONS IN THREE DIMENSIONS

The geodetic position of & terrain point can be described
mathematicelly in terms of a triplet of cartesian coordinates (x,‘y, z),
referred to the average terrestrial, geodetic, local geodetic or local
astronomic coordinate systems, or by geodetic latitude (¢), longitude
(2) and ellipscidal height (h) referred to some reference ellipsoid.

In the previous sections, which presented the classicel two dimensional
position camputations, geodetic positions were described by only two
coordinates, nameiy the geodetic latitude and longitude. The third
component, the ellipsoidal height, was used only for the reduction of
terrestrial measurements to the reference ellipsoid.

Computations of geodetic positions in three dimensions differ
from the classical two dimensional approach in two significant weys.
The first is that.the lstter has its basis in ellipsoidal gecme'tzy,
while :bhe fomer :Ls based-on three dimensional Euclidean. principals

and zmplays vectcr”end matrix -algebra. = Secondly, the cla.ssica.l a;_:proa.ch

remzires;fthe wse 20f:sgeodesic -distences and :azimuths for. rigf»

-putscioms, vline straight line :spatial. aistances ( chords) - and*nomal
section three dimensional azimuths are used in three dimensional com-
putetions. Regarding the azimuth used herein, it should be noted that
it refers to the normal section pessing through the terrain points in
question, and not that section which passes through the points projected
on the reference ellipsoid. In view of the different treatment of
observations in three dimensional position computations, no special
chapter regarding them is presented. Instead, full explanations are,
given, where required, within the context of the development of the
direct, inverse, azimuth intersection and spatial distance intersection

problems.
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5. DIRECT AND INVERSE PROBLEMS IN THREE DIMENSIONS

5.1 Direct Problem

The direct problem can be stated as: Given the coordinates
(xi’ Ty» zi) or (¢i, Ai’ hi) of a point i, and the terrestrial spatial )
distance, azimuth, and vertical angle (or height -d.ifference) to a
second point j, compute the coordinates (xd, ¥y zj) dr (¢J, AJ, h;))'
Two cases of the direct problem may arise, depending on whether the
azimuth and vertical angle are referred to the local geocdetic (ellip-
soid normal) or the local astronomic (gravity vertical) coordinste
systems. We thus denote azimuths and vertical angles in the local geodetic
system by a and a, end likewise the local astronomic system by A and v
respectively (Figure 26).

The simplest method of solution 6f three d:!.ménsional problems
is to use cartesian coordinetes. If the coordinates-which are required

- in'the computations; ere given by (4,4, b), o smpleéiowan‘*‘; rdinate’

":~coordinates. Asm:l.larly, i the *results required- a:r:e* thoumf,laxitude,

 longitude ‘and’ empsoida.l height; ‘then the cartesien s naordim:tes are
‘transformed to (¢, A, h) after the position computations esre completed

[Krakiwsky and Wells, 19T1].

The vector between two terrain points in a geodetic coordinate

system is given by the expression

- - [~ -

| ! x4

(rij)G = |y = Ayi‘1 . (188)
%7 e %14 G
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Now, the position vector of a point j, in the local geodetic

system at i (Figure 26) is given by

4q cos aiJ cos Gid

iJ
(riJ)LG di,j cos a; sin I (189)
. 13 sin aiJ |
and (r,,) can be written
i G
(r“)e = R, (180-A;) R, (90-9,) P, (rﬁ) .1 - (190)

The reflection matrix, P2, and the two rotation matrices, Rg
and R3, transform the topocentric vector from the local geodetic
system into the geodetic system. The position vector of the second
point j, is obtained by vector addition as

() = G+ () (191)

where (rid ) is given by (190), and (r ) 1is the position vector of the
G
given point i. As ha.s been previously mentioned, the geodetic coordi-

nates (4)3, Ag, h ) can 'be obtained vie a simple coordina.te transformation.
- The procedure ror the computation of the direct problem, when
the a.zimrl:h and vercica.l angle are given in the loca.lr astronanic system

,,,,,

(Figure 27) is cmpletely enalogous to that descr!;bed wfth respect to

'the local geodetic systen above. The only d.ifference s in the
expression used to campute the topocentric pdsition vector 51 3 In

this case, it is given by

) = Ry (180-A)R (9o-o)P ( (192)

(ri" G LA

b'\

......

where Qi and Ai

point, and

are the astronomic latitude and longitude of the given
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<=

P
diJ cos vi;) cos A:Lj

) = d,, cos Vv,, sin A
LA ij iJ iJ

diJ sin vij

el =

Note that in this case (192) the position vector is rotated

(T (193)

ri,j

directly from the local astronamic system into the geodetic system. An
alternative transformation is possible via the local geodetic system

using the expression

(EM)G = Ry (180-1,) R, (90-¢,) PaRs(Aia“’ia) R (-E,) R;(?i):fij)m
19

In the above  expression (194), Ai,j and a; are the astro-

nomic and geodetic azimuths respectively, and the quantities £ i and n 1

are the two components of the deflection of the vertical at point i.

5.2 Inverse Problem

In._this case, the triplets of coordinstes (¢, A, h) or (x, ¥, z)

are given for two terra.in points. Required ere the spatial distance

( ) the direct a.nd inverse azimuths °i 3 and a Ji; andzthe vertical

.

an.gltesaﬁa.nda.i P )
The position vectors of the two points i a.nd 3 in the geod.etic

system are given by

'xi' !-(.N +hi) cos ¢, cos A:
(r))g =|{vy| = [(F;+h,) cos ¢, sinry| , (195)
_‘zi_G ;-(Ni(l-ez)d-hi) sin ¢£
end |
-x;' '-(Nj+hj) cos ¢, cos x;
(EJ o = |¥3] = (NJ+hJ) cos ¢ sin Al . (196)
%] e L(Nj(l-ez)-fhj) sin ¢,
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First, the difference vector %?i T in the geodetic system,is

determined by

= — L

::j xi‘ ﬁxi.j
{rié g (rs)G = (ri)G = yj = yi = Ayij e (19?)
“3 e [219] 6

Next, the a’bovs difference vector is rotated into the local
geodetic coordinste system via an expression which is the inverse of
(190), end is given by
Now, to determine the spatiasl distance, and the azimuth and vertical

angle at i, we use the components of the vector (r,.).. in the

iJ°LG
expressions
2 2 2 41/2
a4 = [Axij + bygg + ] R (199)
Ay .
= -1 —-;i : -
Az ;
S E -1 13 . V.o sz ey '
gy sin -~ [ oy . _ » (201)

‘ The correspondiné expressions for detemining the azimrth, .

» and vertical angle, a,., in the local geodetic system at j are
%31 &1

= PR, (¢ 90)3 (A -180) (r..). ‘ (202)

(rji 16 ji'e

; oy :
RS R

and

Az .,
e, = sin T [—il ] . (204)
Ji dij
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6. Intersection Problems in Three Dimensions

The prcblem of determining ‘c;-zé coordinates of & polnt on e
plane using an intersection of two azimuths or distances from two known
(coordinated) points is a straight-forward process [Faig, 1972]. This
type of problem is not generally dealt with for cmég;tations on g ref=
erence gllipsoid. Thé intersection problem for the determination of
the geodetic coordinates (¢, A) can be dealt with quite simply using .
vector algebra. Two cases are presented herein, each of which requires
informstion similar to the_:c which would be required for rigorous two-

dimensional camputations.

6.1 Azimuth In'bez;sec‘tion '

The problem is defined as: Given the tripiets of coordinates
.“i’-‘ A ﬁi) and ('cpd, XJ, hj) for two terrﬁn pcints i and j, end the
terrain normal section azimuths LR and S
the unknown point k, compute the geodetic coordinates ¢k and x.k of the

tron the known points to

‘unknown point k.: Note that the apprcxma.te ellipsoid height hk is

Vrequired for the conputa.ticna. Ty ,,,;wm;i
In oz-der ta besin the solution, 1t is necessary to define a

unit vector in any azimuth. This vector is dencted ta, and is expressed
in terms of the unit vec{crs ﬁx and ﬁy, which are resﬁectively the

north and east directions of the local geodetic system (Figu_re 28).

This is given by the etiua.tion

t,=u cosa+ u, sin a, (205)

_ '-sin ¢ cos ).-
u_ = |-sin ¢ sin A| , (206)

cos ¢ el
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and

=sin A

_

B, =| cos A . | (207)

0 G
Using the expressions for Gx and ﬁy, (205) can be rewritten as

—t;h — sin ¢ cos A cos a - sin A sin a
ty| = |- sin ¢ sin A cos a + cos A sin af . (208)
t cos cos o

-z-Gh ¢ -‘G

Now, a unit vector perpendicular to tiwe ezimuth « is defined by

€a+90 = a_ cos(a+90) + ﬁy sin(a+90°) . (209)

-

In order to solve for ¢k end lk’ two equations must be
formulated wherein these two quantitiés appear explicitly. First, two
dot products are formed, each of which invélves one vgctor in a plane
defined by a pair of terrain points and the origin of the coordinate
;;item, and a second vector that is in an azimuth at 90° to this plane

(Figure 29). The two dot products are

and )
- - 2 -
(rk-;J) T, +90° = o , (211)
Je 7o
where
-sin ¢, cos Ai cos(aik+90)'b sin Ai sin (aik+90
tuik?§0°= -sin ¢, sin A, cos(aik+90) + cos Ay sin (aik+90)(212)
" cos ¢, cos (aik+90)g 1
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Figure 2%

AZIMUTH INTERSECTION IN THREE DIMENSIONS
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L
a—t

-ein ¢, cos A, cos{a, _+90) - sin A, sin(a, +90)
9 b= Jd J

[

t Jkﬁﬁsg -sin ‘éj sin :‘j c@s{@jk%ﬁi + cos kj siﬁ{ajk‘??GE .
cos ¢, cos{a,, +90) -
- § (213)
% "
(;k';i) = T = | 8y , ‘ (21k)
zk-z%-i _Azik__
and '
- e =
%y A% g
(rk-rj) =¥y = Ay sx . (z13)
K3l ,jk

In equaticns (214) and (215), the coordinates for i and J
are taken as given constants, while those for k are given by three

unknown functions [Krakiwsky and Wells, 1971]

X, —;acosskcoslki-hkcos%cos).; ‘
S'k ={a coéﬁsk sin lk + 'h'k cos ¢ sim | . (216)
b sin.g + b sin ¢,

The ﬁ:st terms of (218) give the cocrdinates of k on the surface of

Ty

- -

the e].‘Lipsoid (defined by the semi-mador end semi-minor axes a and b

respectively) in terms of the reduced latitude, By s

tude, k‘k The second terms account for the fact that the terrain point

and geodetic longi-

k is locsted at an ellipsoid height hk above the reference ellipsoid,

and are expressed in terms of the gecdetic latitude, 4’};’ ‘and longitude,

Xk.

Now, equaticns (210) eand (211) can be rewritten as

£ = Axiktxi +’Ayiktyi + Aziktzi =0, (217)
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t, = ijktx:J + Ay Jktyj + Az Jktzj =0. (218)

The unknwon quentities in the &bove equetions are the coordinates of k,
and in terms of these, (217) and (218) are non-linear. The next step
in the solution is to approximate the equaticms (217) and (218) by =
linear Teylor series using appr-ximate values for the reduced latitude

and longitude denoted by B§ -and N respectively. Thus

k
o afl Bf
fl=fl+-5—d.8 +ﬁ;-dx +...=20, (219)
and
o, %5 3%,
f2=f2+-a—8—-d,3k+?i;dlk+ ee =0 (220)
k
where _
o_ ,.0 o . .0
f)=bxp b, byt bzt (221)
i i : i
o _ ,.0 o o
f, = ijk t‘; + ijk tyj + Azdk tzJ . (2_22)

Ax] = & cos Bgcoskz-l-h;'cos ¢; cos)..z-xi,, (223)
o
b

Ayzk = a cos 8]2 sin A; + ; cos ¢§ sin A; - yi : (2?‘*)
Azzk;z b sin 8; + h,; sin ¢§?,- Z; 4(%?5)
Axgk = a cos B; cos J\.ﬁ + h: cos ¢: cos A; - (226)
Aygk = a cos B; sin 1; + hz cos ¢§ sin A; -3y (2271)
Azfj)k =D sin S; + hlz sin ¢§ - z‘j s (228)
f-l- =+t (-& sin B cos x;—h.zsin(bo cos X;)*-
3B, x; k k

+ tyi (-a sin B sin l hk sin ¢k sin Ay ) +

+t, (b cos Blo: + h]c; cos ¢, °y ., (229)

i



af
1_ . o o 9y
Mk = txi (-2 cos 8 sin A hk cos ¢, sin Akj +
+t (& cos S cos 3 + 1 cos 42 cos AO) . (230)
v b X X

Now, rewriting (229) and (230) as

(231)

YRR S S (232)
and

—==t x +t Vgt t, Zg s (233)

xl + t . (234)

It should be noted tha.t in teking the partial derivatives,
the geodetic latitude, ¢ki¥;ra,s taken as being synonomous with the reduced
latitude, &‘ There is no’ loss in accuracy in subsequent computations
due to this treatment. Additicnally, an approximate value of hk,that
is within 100 m of the-tz;ue value is sufficient.

Rewriting (217) and (218), we get

o ,
£, + (x 6t + 7.t *+zgt, ) a8 + (x36, +yt ) ar =0,
1 T8x By Bz X Ay R (g35)

(s}
f2 + (xstxj + ystyd

Equations (235) and (236) are solved in an iterative procedure until

+z,t )d8, + (x,t. +y,t_)d,_=0.
Brzyn Tk AR ATy R T(a36)

the corrections to Bk and kk are negligible (< 0Y0001). The value of

is then solved for by [Krakiwsky and Wells,

the geodetic latitude, ¢k’

1971]



g2

6, = tan™ [ £ten g] . (237)

6.2 Spatial Distance Intersection
The determination of the geodetic latitude (¢k) and longitude

(Ak) of a terrain point, using two terrestrial spatial distances, is
solved in e manner similar to that used for an azimuth intersection (6.1).
Given are the two triplets of coordinates (¢i, )‘i’ hi) and (4:‘1, )‘J’ hj)’
end two terrestrial spatial distances, r ik and r k° from the known
points to the unknown point k. In addition, an approximaste ellipsoid
height, h;:, is required (within 100 m of the value of h, is sufficient).
The key to the solution is the formation of two linear
equations which are expressed in terms of the known and unknown pare-

meters (Figure 30). We begin with the relationships

‘ 2 2 2,1/2

£, = [(xk-xi) + (yk-yi) + (zkfzi) ] - Tyx = 05 (238)

2 5 5 /2

f, = [(xk-xj) + (yk'y:j) + (zk-zJ) ] - Ty = Q, (239)
where (xk, Ty zk) are given by (216). The sbove equations are non-
linear in terms of B, and A, thus they are spproximated by & linear
Taylor series expansion using spproximate values for the reduced
latitude, B;, end geodetic longitude, k;. The linear form of equations

(238) and (239) are given by

- o —1 ———l =
£, = £+ T s, + 33— A+ .. o, (240)
k k
and
o ¥, 3f,
fe‘f2+gs—l:d8k+'é—)§ dlkul' eee =0, (2k1)

where



. Figure 30

SPAfIAL DISTANCE |[INTERSECTION IN THREE

DIMENSIONS



o_ _o
) o
af 3 ENg 2
1l _ o zk k o Zye
3, "o %) 3t (rsy) 5, T () gl (24
ik
of
1 1 °c ] 9 )
=== = [(x%x,) % Yk o 5
3A o VXX + (y%-7,) == + (25%-z,) =1, (245)
ko B L R TWE S N 3y
af 3 3y, 3
—2 o Lo, ) K oy k& o
3, - oo LX) Tt (V) T ATy gg lh (246
jk S .
of 9 0
2 _ 1 o Y Ty
- = == [(x -x,) + (y%-y.) +(z z) (2u7)
3k, O %3 2. X3 . Ak
Jk
Now, the terms in equations (2Lk)-(2L47) are derived froam (216), and are
given by
_3:& = - a sin 8° cos A° - n° sin ¢° cos 2° = x (248)
%, in By cos Ay = by Kk ©%5 A =%
335 = - & gin 8° gin A% - 1° sin ¢° sin ° (249)
%, By sin A - by x S1B A =g
azk
-a-B—; =b cos B; + h.; cos ¢§ =z (250)
fi = - a cos B® sin A0 = 1° cos ¢° sin 2% = x (251)
P Kk k k hk k k A
P, cos B2 cos A° + 1° cos ¢° cos AC = (252)
akk-a skosk ]:\koskc:osk—yA R
dz
k
X _ 4 . (253)
Bkk

As in the case of the sazimuth

intersection, the geodetic

latitude, ¢k’ was taken as being synomomous with the reduced latitude Bk.
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Now, (240) and (241) are rewritten for solution as

s ro (Ax;yxg + by, 7g + B2,2,] A8 + ’r%' [ax; 2y + by 7y 1,
- - (254)
f2=fg+%[Axx+Ayy + Az ]dB +——[Axx + Ay y]d.kk
- J&*B 38 J&°8 -0 32
JE ‘ Jx (255)
The corrections dBk and dAk are solved for using an iﬁeraxive

procedure. When the corrections beccme negligible (< 0Y0001), the final

values of 8, and A are obtained, and ¢, is determined using (237).
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T. CORCLUDING REMARKS

Fram first sppearances, it would seem that the classical
approach of geodetic position computations on the surface on an ellip-
soid of rotation should be sbandoned in favour of the three dimensicnal -
approach. The formulae for the latter are simpler to derive and impli-
ment, and in the case of the direct and inverse problems, sre given in
a closed form. In addition, if the curvalinear coordinates (direct
problem), or the ellipsoidal distance and normal section azimuths
(inverse problem) are required, rigorous transformstion formulaé are
aveilable to obtain them [Krakiwsky and Wells, 1971; Section II].

The major hindrance to the use of the three dimensional
approach lies in the geodetic observables, or the lack thereof. This
is particularly true in the case of the direct problem, or amy problem
where the vertical angle (90°-zenith distance) is required. Due to
refraction problems, the zenith distance can not be obtained to better
then # 1" which on & 10 km line yields & standard deviation in height
of 10 cm [Heiskanen and Moritz, 1967]. This error would obviously
affect the computations of the three dimensionel coordinstes (x, y, z)
or (¢, A, h) of a required point. Tﬁe problem can be overcome by
spirit levelling, but it is unlikely that these observations would be
available in other than exceptionsal cases.

The two intersection problems that have been presented show
how the three dimensional epproach can be used to solve directly for
curvalinear coordinates. It should be obvious that if sufficient
observed information were available (€g. three spatial distances);

the problems could be formulated and solved directly in terms of the

‘three dimensional cartesian coordinates.



Finally, it should be noted that an equivalent smount of
observed information is required for the classical and three dimensional
approaches. The main difference is that for the ellipsoidal computa-
tions, (i.e. direct problem) the ellipsoidal height need not be known
as acuurately as for three dimensional computations. However, no matter
which method is used,  =orous transformations will show hat the results
are equivalent. That is, the cartesian coordinates (x, y, z) will
yield a set (¢, A, h) in which the geodetic 1:“: 2 (¢) and longitude
(1) are equal to those obtain. from classical computai .as. Further,
the spatial distances and terrain normal section azimuths, obtained from
three dimensional computations (inverse problem) and rigorously reduced
to the reference ellipsoid, are equal to the ellipsoidal distances and
geodesic azimuths obtained from the inverse problem solved on the

-

ellipscid.
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