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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



FORWARD 

These lecture notes were written for the graduate students in 

the Department of Surveying Engineering pursuing the studies in geodesy. 

The aim of the notes is to acquaint the student with the physical phenomenon 

of the earth tides and the ways it manifests itselfs. In showing this, it 

was,;;mecessary to make a brief excursion into a realm of geophysics, namely 

in section 2. A separate section is devoted to the barest description of 

tidal observation techniques and the treatment of observations. 

The pertinence of the earth tides manifestations to geodesy is 

shown whenever appropriate. Some attention is also given to other than 

earth-tides phenomena.affecting the tidal records. It was felt that, 

because of the potential of the tidal instrumentation to become a geodetic 

tool, it is advisable for a future geodesist to be at least aware of the 

existence of these causes influencing the observations. 

It would be unwise to regard the notes as complete in any sense 

of this word. They can only serve as a guide and the interested student 

is advised to turn to the listed references for deeper understanding and 

further knowledge. More earth tides literature is given in [Melchior, 

1971]. 

Comments and critism communicated to the author will be highly 

appreciated. 

P. Vanf~ek 
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1) TIDES OF THE RIGID EARTH 

1.1) Tidal Force and Potential 

To begin with, let us try to see how does the gravitation at-

traction of a celestial body, say the moon ((t), affect the earth. To 

trace the influence let us take two points - the center of gravity of the 

- - - -- -----;,-~ - / 
()1 -- / ~- / --./ / 

~/ 
/ 

earth (T) and a point (P) on the 

surface of the earth. We can write 

the formulae for the attracting accel-

erations (in absolute value) in T 

and P as follows: 

(1) 

The acceleration FT, together with similar accelerations 

exC!!erted by other celestial bodies, govern the motion of the earth in 

the space. Formulation of this motion constitutes a topic in celestial 

mechanics and will not be treated here. Our concern in this outline will 

be the difference of the two accelerations FT and Fp that can be regarded 

as the···acceleration associated with the deforming (perturbing) force. It 

provides the tidal strain and stress that try.to deform the earth. The 

strain/stress pattern of the tidal force can be drawn in the following 

diagram. (The deforming force is depicted by thick arrows•) 
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It is usual, to express the tidal accel-

eration in two components horizontal 

(~FH) and vertical (~Fv). The horizontal 

component can be written as the difference 

of the horizontal components of FT and FP' 

i.e. 

sin Z 
-) 

2 p 
(2) 

and similarly the vertical component is given by 

~Fv = v F V 
cos z1 cos z 

Fp = K M( ( 2 ) 
' 

(3) 
T 2 

pl p 

where Z and z1 are zenith distances of the celestial body. 

Considering the earth spherical, in the first approximation, z1 and p1 

are determined uniquely by Z, p and R. Applying the sine law to the triangle 

([TP we get 

sin Z = _e_ sin z. 
l p-

1 

On the other hand, expressing the length PQ twice from the two triangles, 

TQ and PQ, we obtain 

p cos Z - R cos z1 = 
pl 

In order to get rid of p1 in the above formulae, let us express it using 

the cosine law applied to the triangle (TP: 

p2 + R2 - 2pR cos Z. (4) 



This can be rewritten as 

and consequently 

3 

-1 
1/pl = 1/p y 

-1 Here y may be recognized as the. generating function for 

(4a) 

(4b) 

Legendre's polynomials (see [Vanf~ek, 1971], § 2.22) and we can write 

00 

-1 
y = 2: 

m=O 
(B.)m P (cos Z) 
P m 

(5) 

where P (cos Z) are the Legendre's polynomials of li:l"\"th degree. Due to the 
m 

rapid convergence of this series (R/P iso:f·theorde:f!®f 1:L/60:fbr themoon) it 

is quite sufficient for our purpose, to consider only the first two terms. 

The error involved in this truncation is of the order of 2% for the moon 

(and 0.002% for the sun). 

Substituting now for z1 in the original formula expressing ~FV 

we obtain 

~Fv = K M( (p cos Z - R cos z ) . (3a) 
3 2 

pl p 

Expressing here pl in terms of p ' z' R, yields: 

00 

~F V K M(([ 
p cos z - R_ ( 2: (R)m P (cos Z)) 3 - cos z ] = ([ 3 p 111 2 p m=O p 

M([ cos z (l + B. cos z)3 _ ~ (l + R cos z)3 _ cos z ] 
p2 p p3 p. p2 

.= K MC{[ cos2Z (1 + 3 B_p cos Z)- R3 (1 + 3 R cos Z)- co~2z], 
p p p 

( 6F I!V = K M( ?- ( 3 cos2 z - 1) ·1 ( 3b) 
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Note that l'lFV is positive if FPV > FTV' i.e. if the vertical component 

of the tidal force points outward. For the horizontal component we get 

similarly: 

t.F H 
(( 

llF' 
H 

({ 
. 

. z s:m ) 
2 

p 

00 

E (!lf P (cos Z)) 3 - Ein2_2.J 
0 P ll1 

m= P 

[~n ~ (l R ) sjn Z _ K M([ + 3 -- cos Z - --·--2 p 2 
p p 

3R sin z z = K Mer-·- cos ' . 3 
p 

3 H sin 2 z K M( -·-2 3 
(2a) 

p 

We shall note the folJowing points at this stage. First point 

is that the horizontaJ component is directed (in the horizontaJ plane) to-

wards the attracting ceJestial body, i.e. to the moon in our case. Second, 

we can see that the expressions developed above for the moon are valid for 

any other celestial body as well, when we take the appropriate mass, distance 

p and zenith distance z. 'I'hird, it is conceivable that both components, the 

vertical and the horizontal, can be obtained from the expression for the 

(6) 

'rhe reader may prove this by direct computation, i.e. take the derivatives 

of the potential in hori.zontal and vertical sense. 



5 

Let us first consider a second approximation taking the actual 

distance of the surface point from the center of gravity (a) instead of 

the mean radius of the earth (R). We can rewrite the formula for the tidal 

potential as 

3 2 l 
W ="= i+ K M a 3 (cos 2 Z + 3) ( 6a) 

p -

with the understanding that j_f a higher ~precision is needed Legendre's 

polynomials of higher order can be taken into account. Introducing the 

Doodson' s tidal constant 

G (R , C) (7) 

where C is the mean value of the semi-major axis of the orbit of a celestial 

bod.y, we get 

l G(R,c) (cos 2 z + 3 ) ( 6b) 

'l'he ratios a/R and C/p do not deviate from 1 by much and as a f':l.rst approx-

imation, ·we may wr:l. te 

Note that the following equation is satisfied: 

1 W ~ G(a, p) (cos 2Z + 3) 

'J'he value of the Doodson' s constant for the moon is 

G (R, C ) = 26,206 + 84 [cm2 sec-2 ]. 

(7a) 

(6c) 

':rhis value has been derived from various astronomic observations. For the 

sun we get similarly 
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G (R C ) = 0.46051 G(R C ) • 

This means that the attraction of the sun accounts for about 46% of that 

of the moon.. This ratio persists in all the tidal computations. 

Now, we can make a use of the Doodson's constant and write for 

the vertical component of the tidal acceleration: 

This acceleration can be immediately interpreted as the negative contribution 

to the gravity. A brief computation shows that gravity hence varies within 

< -0.054 :mgal, 0.1!)8 mgal > due to the varying, po.siif;:iol:il. of t:he moon and 

ef'f~.ct then a:tll0un].a.lc'to~237,llga1. T:he estimates for other celestial bodies 

show the following orders of magnitudes • 

Venus: 
. -2 . 10-,-c, llSal 

Jupiter: 10-3 jlgal 

Mars: lo-4 llgal 

Gallaxie: -16 10 llgal 

and can therefore be disregarded altogether. 

The tidal variations of gravity. a:re':known ·as t·he gp:a:v:imetric tide. 

that evidently has to be taken into consideration in high-precision grav-

imetric observations. The gravity tide obviously affects the :height of the 

earth equipotential surfaces. The uplift l:IH of these surfaces can be com-

puted from the well known formula, see [Vani~ek, 1972]: 

(8) 
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1.3) Variations of Tidal Potential with Location and Time 

In practice, we are interested not only in the overall magnitude 

of the tides but also in the variations of the tides with the location on 

the surface of the earth and with time. To be able to predict these var-

iations for different points and time let us expres·s the zenith distance 

Z of the celestial body as a function of its position and the point on the 

earth. Using the nautical triangle, we can write 

cos Z = sin ~ sin 8 + cos 8 cos ~ cos t. 

1 
On the other hand, the (cos 2Z + 3-)term in 

the potential can be rewritten as 

cos 2Z + ~ = 2 (cos2 Z - ~) 

Nowwe can try to get the expression for cos2 Z- ~ from the cosine formula 

above. We obtain 

This can 

sin 2 

2 cos z 

again be 

2 cos z 

1 sin 2 
~ sin 2 

8 + 2 sin ~ ~ sin 8 8 t -- = cos cos cos 
3 

2 
~ 

2 
0 

2 1 
+ cos cos cos· t - 3 

rewritten as follows 

1 sin 2 
~ sin 2 

8 
1 . 2 ~ sin 29 t 1 2 - = + 2 Sl.n cos + 2 cos 3 

2 cos 8 (1 + cos 2t) 1 
-3 

1 2 =-cos 
2 

+ sin2 

2 
~ cos 8 cos 2t + ~sin 2 ~ sin 2 S cos t 

~ . 2 8 1 2 ~ 2 8 1 
'I' Sl.n + 2 COS 'I' COS - 3 • 

~ 

The last three terms may be reformulated again, yielding 

~ sin 2 0 + .l (1 . 2 ~) (1 sin28) 1 - Sl.n , -- = 2 3 

sin 2 sin 2 
8 

1 1 2 1 2 
8 

1 . 2 
~ sin 2 

8 
1 

= ~ +-- -sin ~ - -sin + 2 Sl.n --2 2 2 3 



8 

where W is the tidal potential and g is the gravity. The magnitude of the 

uplift due to the moon is within< -17.8 em, 35.6 em> and due to the sun 

from <-8.2 em, 16.4 em>. The total oscilation of the equipotential surfaces 

can thus be as much as 78.0 em. As we shall see later, these changes, in 

case of the actual earth,.are even larger. 

The horizontal component of the tidal force can be understood 

as a shear force. It can be measured in terms of the variations of vertical. 

From the diagram we can see that the deformed gravity 

+ + . vector g + ~F represent1ng the vertical will be tilted 

. + with respect to the updeformed grav1ty vector g by ~E 

for which we can write 

H 
~F /g . (9) 

The tidal effect on the vertical is sometimes called the tidal tilt. The 

maximum tilt will be obviously observed in the vertical plane containing 

the attracting celestial body. Expressing the horizontal component of the 

tidal force using the Doodson .eenstant. we'· obtain 

l (9a) 

Evaluation for the moon gives the value ~E to be within< -0.017", 0.017"> 

and for the sun IJ.E E < -0. 008", 0. 008" >. Hence the maximum variation of 

the vertical due to the attraction of these two bodies is 0.050". The effect 

of other celestial bodies can again be neglected. 

It has to be pointed out that the tilt is a two-dimensional phen-

omenon; its magnitude varies with the direction in the horizontal plane. 

While, for one celestial body, its maximum is seen in the direction towards 

the body, in the perpendicular direction the tilt goes to zero. In the 

intermediate directions the tilt is between the maximum and zero. 



3 . 2 ~ . 2 ~ 1 = 2 s~n ~ s~n u - 2 
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. 2 ~ - 1 . 2 ~ + l 
s~n ~ 2 s~n u 6 

1 (3 . 2 ~ . 2 ~ . 2~ . 2 ~ 1) = 2 s~n ~ s~n u - s~n ~ - s~n u + 3 

3 ( . 2 ~ 1) ( . 2 ~ 1) = 2- s~n ~ - 3 s:t.n u - 3 

Then the tidal potential can be written as 

W = G (a, 'p) [cos2 ~ cos2 o cos 2t +sin 2~ sin 2o cost+ 

3 ( sin2 ~- ~) (sin2 o - ~) ]. (6d) 

The three constituents of the potential can now be dealt with individually. 

It is convenient to denote Was: 

W = S + T + Z, 

where 

s G(a, p) 2 2 = cos ~ cos 0 

T = G(a, p) sin 2 ~ sin 2 

3G(a, p) (sin2 <P - l) z = 3 

cos 2t 

0 cos t 

(sin2 o 1 - -) 
3 

(6e) 

(10) 

(11) 

(12) 

are known as the sectorial, tesseral and zonal functions respectively. 

It can be noted now that the tidal potential contains three 

variables dependent on time. These are p, o and t. From these,the 

radius-vector of the celestial body varies with time (around its mean 

value C) only within a narrow interval. Similarly, the declination o 

also oscilates around a mean value for a certain period of time. Hence, 

replacing p and o,in the frist approximation,by their mean values, we 

can see that the time variations of the individual tidal constituents 

are predominently governed by t. t, being thehour angle, undergoes one 
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cycle per day and we can thus see that the sectorial constituent gives 

raise to mainly semidiurnal variations, the tesseral to diurnal variations 

and the zonal to long term variations. 

1. l1) Decompo.@ion of Tidal Potential into Freg:uencies 

•_rhe classification of tidal frequencies in the three categories, 

i.e. semi diurnal diurnal and. long-periodic, as used in the previous section 

is of course valid only in the first approximation. As soon as one starts 

considering even p and o as varying in time;one discovers that the tidal 

potential variation is a much more complex phenomenon, requiring a more 

sophisticated. treatment. 

We shall show the principle of one such treatment, due basically to G.H. 

Darwin [ 1886] , for the sectorial constituent. 

Rewriting the sectorial constituent 

S = G (a, p) cos 2 ~ cos2 o cos 2t (10) 

as 

cos 
2 

~ cos 2 o cos 2t J (lOa) 

we can separate the terms depending only on the latitude from those depending 

on time. 2 
Denoting G(a,e) eos ~ by Gf we get 

where G~, known as the geodetic function, does not vary with time. 

remaining three terms are a1.1 variable in time. 

(lOb) 

'I'he radius-vector p and the declination of the celestial body 

whose tidal influence ·we seek (usually only the moon and the sun) can be 
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now expressed in terms of their orbital elements. Expressing even the 

hour angle in the same ,terms,J<we find ourselves dealing with the follof~Ting 

periods: [M~lchior, 1966] 

mean solar day 

tropic year 

perihelion revolution 

lunar nodes revolution 

moon perigee revolution 

mean anomalistic year 

evection period 

mean synodic month 

mean anomalistic month 

tropic month 

mean draconitic month 

variation period 

mean lunar day 

sidereal day 

Table 1 

1 m.s.d. 

365.242199 m.s.d. 

20.940 t.y. 

18.613 t.y. 

8.847 t.y. 

365.25964 m.s.d. 

31. 812 m. s • d. 

29.53059 m.s.d. 

27.55455 m. s. d. 

27.321582 m.s.d. 

27.21222 m.s .d. 

14.76530 m.s .d. 

1.035050 m.s.d. 

0.997270 m.s.d. 

The time-varying terms of the three constituents (sectorial, tes

sera.l\ and zonal) can be further rewritten in terms of pure cosine series 

using some simple trigonometric formulae. This was first done by Doodson 

[1921] who also introduced symbols for the individual cosine vawes that have 

been used ever since. The followi:gg table summarizes the principal waves as 

obtained by Doodson [Melchior, 1966]. 
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Symbol Velocity .Amplitude•l05 Origin 
per hour (L, lunar; S, solar) 

Long period components 

M 0~:,000000 + 50458 L constant flattening 
0 

s 0°,000000 + 23411 
0 

s constant flattening 

s 0°,041067 + 
a 1176 s elliptic wave 

s 0°,082137 + 
sa 

.7287 s declinational wave 

M 0°,544375 + m 8254 L elliptic wave 

M f 1°,098033 + 15642 L declinational wave 

Diurnal components 

Ql 13°,398661 + 7216 L elliptic wave of 01 

01 . 13°,943036 +37689 L principal lunar wave 

Ml 14°,496694 - 2964 L elliptic wave of ~l 

'ITl 14°,917865 + 1029 s elliptic wave of P1 
pl 14°,958931 +17554 s solar principal wave 

sl 15°,000002 - 423 s elliptic wave of sKi 

mKl1 15°;041069 -36233 L declinational wave 
SK 15°,041069 -16817 s declinational wave 1 
'±'1 15°,082135 - 423 s elliptic wave of sK1 

cpl 15°,123206 - 756 s declinational wave 

·\ 15°,585443 - 2964 L elliptic wave of ~l 

001 16°,139102 - 1623 L declinational wave 

., Semi-diurnal components· 

2N2 27°,895355 + 2301 L ellipticwave of M2 

].l2 27°,968208 + 2777 L variation wave 

N2 ,28°,439730 +17387 L major elliptic wave of M2 

\)2 28° ;5l2583 + 3303 L evection wave 

M2 28°,984104 +90812 L principal wave 

A.2 29°,455625 - 670 L evection wave 

12 29°,528479 - 2567 L minor elliptic wave of M2 
I 
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Table 2 continued 

Symbol Velocity Amplitude•lo5 Origin 
per hour (L, lunar; S, solar) 

T2 29°,958933 + 2479 s major elliptic wave of 82 

82 30°,oooooo +42286 s principal wave 

R2 30°,041067 - 354 s minor elliptic wave of s2 

mK21 30°,082137 + 7858 L declinational wave 
sK 30°,082137 + 3648 s declinational wave 2 

Ter-diurnal component 

M3 43°,476156 - 1188 L principal wave 

Table 2 

We may note that the most predominant waves are the M2 , s2 , 

N2 from the semi-diurnal and o1 , K1 from the diurnal. The actual ratios 

of amplitudes of the long-period1 diurnal,and semi-diurnal will, of course, 

depend on the values of :the·, appr.opria.te, geod!;!tic functions. The diagrams 

from [Melchior, 1964], illustrate this point. 

70 GRAVITY VARIATION 

60 --M2 -·1 -o, 
-·-·- S2 
-··-··- N2 

.. 40 
0 
"' 30 ·-·-. 
~ -· 

20 
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---,-------·----. 
:':AST ··WEST COMPONENT 

10· 

10 20 30 40 50 60 10 ao 90 ____________________________ _J 

'I' he two-dimensionality of the tilt mentioned in l. 2 should be 

again noticed here. 
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2) TIDES OF THE ACTUAL EARTH 

2.1) Tidal Deformation of the Earth 

So far, we have been assuming the eartr1 to be rigid. In reality 

the earth is an elastic body and as such deforms in response to the tidal 

f'orce. 

mathematically the influence of 

the elasticity of the earth on the 

observations of gravity and direction 

of the vertical, let us have a look 

at the diagram. There we can follow 

wr1at is happening to the point A on 

the surface of the real earth coin-

ciding with its own undisturbed 

ec1uipotential surface . By applying the tidal force L'IF;. due to, say, the 

moon, the equipotential surface changes so that it passes through the point 

C. If the earth were completely plastic it 1-wuld now try to reach the 

same shape as this equipotential. surface. Because the earth is not plastic 

(more about it will be said later), it does not reach the same shape and 

conforms only partially to the equipotential. '.rhe point A on the surface 

of the earth gets uplifted (by u) to the position B. 

This deformation causes an additional change of the equipotential 

surface so that it no longer passes through C but D. Hence by applying 

the tidal force to a. point A on the earth and equipotential surface , the 

physical surface of the earth changes to B and the equipotential surface 

changes to D. 
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What change in the potential W would now an observ~on the 

surface of the earth observe? The potential W(A) obviously changes to W(B) 

so that one would observe the difference W(B) - W(A). This difference can 

be expressed as a summation of three terms: (i) W(, the lunar tidal poten

tial (same as for the rigid earth); 

(ii) -~W(u), the loss in 

potential due to the uplift u; 

(iii) ~W(u) , the additional 
def 

potential due to the tidal deformation of the earth, called the deformation 

potential. 

These three terms can now be evaluated separately: 

(i) The lunar tidal potential is given by the eqs. 6 to 6e. 

(ii) The loss of potential can be expressed as (see[Van{~ek, 

1971; 1972] ) : 

~W(u) = ug , (13) 

where u can be interpreted as a linear deformation of an elastic body 

v caused by the force ~F¢ . Applying the Hook's law for a deformation of 

an elas.tic body, we can write 

or 

Recalling eq. 7a we obtain 

u = canst. ~F V 
( 

u = canst. 
aw" 
a a 

(14) 

(14a) 



Hence 

Here, the expression 
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2 
ilW( u) = g canst. -; W ({. 

g canst. R is a function 
a 

first Love's "number" h(a) [Love, 1927]: 

2 h(a) = g canst. -
a 

(13a) 

of a and is known as the 

(15) 

~ii) The deformation potential can be evaluated as the paten-

tial of the masses enclosed in between the original surface (A) and the 

deformed surface (B) of the earth. It is evidently proportionate to the 

uplift u and we can therefore write 

L1Wdef(u) =canst.* u-. 

Substituting for u from 14a we obtain 

2 
L1Wdef (u) ,: canst.* canst. a W( • 

Here, the expression by We is again a function of a and is called the 

second Love"s "number" k(a) [Love, 1927]: 

2 k(a) = const.* canst. -a 

Putting the three terms together we finally end up with the 

equation for the potential difference: 

W(B) - W(A) ,: (1 + k(a) - h(a)) W«. 

(16) 

(16a) 

(17) 

(18) 

It is not difficult to see, that exactly the same equation holds even for 

the Sun so that the complete potential difference reads: 

~W(B)- W(A) ~ (l + k- h) (W~ + W9) • (l + k- h) w.j (18a) 

It has to bee mentioned now that the elastic-response of the 

earth is different for different frequencies of the deforming force. The 

higher the frequency of the tidal force, the more"rigidlyuthe earth responds. 
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Inversely, if the applied force is constant or secular, the earth responds 

as an almost plastic body. This is, of course, reflected in the fact 

the the Love's numbers are also frequency dependent. In the existing 

literature this functional relationship is not usually expressed explicitely 

with the understanding that the symbols h, k mean the values for a = R and 

semidiurnal frequency (corresponding to M2 constituent). 

2.2) Tidal Variations of Other Quantities 

Having described how the earth and its equipotential surfaces 

change in response to the tidal force we can now attempt to answer questions 

concerning other problems. We may now, for instance, answer the question: 

How much does the observer actually move (with respect to the centre of 

gravity of the earth) with the earth-tide? The answer is given by the 

value of u (AB) .. Combining 14a and 15 we get 

= h: ·1 (14b) 

The deformation of the equipotential surface, given by the displacement 

AD, can be evaluated from the following formula 

I AD • (l + k) i ·] (19) 

Similarly, we can derive the expression for the theoretical 

height of the sea-tide. Assuming that the water does reach the equilibrium 

i.e. the water level coincides with the equipotential surface, the sea-

tide height as observed on the shore by an observer moving with the earth 

would be given by the displacement BD. Thus 



19 

(20) 

which is (1 + k - h) - times smaller than the theoretical value of the 

sea-tide observed on rigid earth. In reality the sea-tide height is 

always different from the theoretical value because of various dynamic 

effects such as the resonance. 

Let us consider now the tidal tilt that would be observed by an 

observer moving with the earth surface. The situation depicted on the 

diagram will occur. 

Instead of observing the 

magnitude derived for 

rigid earth,~Ec see 

eq. 9, we would observe 

the quantity ~ED - 6EB. 

Assuming that all four 

surfaces intersect approx-

imately in a line, seen 

as point I here, we can expect the relative tilts to be proportionate to 

the appropriate displacements. 

Hence 

where A is a constant of proportionality. 

Denoting ~ED - 6EB by 6E* we obtain 

6E* • (21) 
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Here BD is given by eq. 20 and AC by eq. 8. Thus the equation linking the 

rigid earth tidal tilt ~EC with the elastic earth tidal tilt ~s* reads 

[ ~o• ~ (1 + k - h) M:. 
c . l 

(2la) 

Finally, we can derive an expression for the gravimetric tide 

observed on the surface of the actual earth. According to section 2.1 we 

can write 

W(B) - W(A) = W- ~W(u) + ~Wdef(u). 

Differentiating this with respect to a yields 

~a (W(B) - W(A)) = ~:- ~a ~W(u) 

which in turn equals 

~a ( W (B) - W(A)) 

It has been shown [Melchior, 1966] that 

~W(u) ex: a-2 , ex: a -3 

Hence 

a 
aa ~W(u) 

2 = - - ~W(u) 
a 

and 

3 --a 

a +aa 

fubstituting for .6.W(u) and .llw·def(u) from (18a) we obtain 

and 

~a ~W(u) · - ~ hW = - h aw 
0 a aa 

(18b) 

(22) 

(22a) 
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( ) . 3 . 3 aw 
l~Wdef u = -~ kW = - 2 k aa 

Substituting these results back in (22) we get finally 

1 ~g ,;, - ( 1 + h - l k) aw ) L--: AB ___ ._ .. 2_a_a __.1 (22b) 

where ·'dW/'da can be interpreted as the negatively taken gravimetric tide 

for the rigid earth. 

Tidal variatio~of other quantities, like linear strain, cubic 

expansion etc. can also be determined. They however, require an introduction 

of another function called the Shida' s number and denoted by it,. Since these 

quantities are of less interest to geodesist we are not going to talk about 

them here. 

2.3) Experimental Results 

The two Love ' s numbers and the Shida' s number are one of the 

fundamental parameters characterizing the elastic properties of the earth. 

They are intimately connected with the modulae of compressibility A. and 

tic:ity lJ (known also as Larn~'s coefficients), Poisson's coefficient~ 

and Young's modulus E. As such they are of the utmost interest to the 

geophysicists to understand the physical properties of the earth. Hence 

a great deal of effort had been put into experiments leading to the 

evaluation of the above numbers. 

From the quantities discussed in 2.2 only the last two 

elas-

i.e. the tilt and gravity variations, lend themselves readily to observation. 

Hence two different linear combinations of the Love's numbers can be read-

ily observed making use of the phenomenon of earth tides. Denoting the 
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theoretical values, for the rigid earth using formulae 9a and 3c, by 

M:C and 11gC, and. the corresponding observed. values by i1E and. /1gJwe obtain 

from 21a and 22b: 

(1 + k - h) = f1E/f1EC (23) 

(1 - ~ +· h) = t:.g/t:.gc . (24) 

'I'hese two particular linear combinations are known as diminishing_ and. 

gravimetric faetors and. denoted by either D and G or y and. o respectively. 

Since both k and h vary with the frequency of the tidal force, so do the 

factors D, G. 

From years of tidal observations the following values of' D and 

G have been deduced [Melchior, 1966]: 

D ' 0.'706 

G - J_.l49 

for semidiurnal frequencies, namely M2 component. Solving the equations 

23 and 2l+ yields 

k = 4 

h - 5 

2D 

3D 

2G - 0.290 

2G 0.584 

'rhe values for diurnal frequencies because of smaller amplitudes of diurnal 

terms in our latitudes and higher degree of their contamination· by noise 

(see section 4) ean be determined only with lower degree of certainty. 

The extensive analyses of results of tilt observations from 

various tidal observatories show that there are considerable local biases 

present. 'l'he causes for these biases are not yet understood. The hypothesis 

that is presently gaining some recognition, [King and Bilham, 1973], post·-

ulates that the tilt observations are influenced by coupling of the tilt 
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with stress deformations of underground chambers where the observations 

are usually carried out. In spite of these local anomalies, the derived 

values for k and h agree fairly well with the astronomically determined 

as well as theoretically predicted values. 

2.4) Actual Magnitude of the Tidal Effects 

In 1.2 we have discussed the theoretical magnitudes of some of 

the tidal effects. Now, we are finally in a position to evaluate the 

actual observable effects. 

Taking first the tidal tilt, we would not observe the variations 

of the direction of vertical within< -0.025", 0.025" >but D-times smaller, 

i.e. 

1:1t. ~ < -0.018", 0.018" > . 

This having a systematic character in time should be taken into account 

for precise astronomic and levelling works [Kukkamakki, 1949; Rune, 1950; 

Simonsen, 1950]. 

On the other hand the,cr,tgravi ty variations observed on the surface 

of the actual earth will be G-times larger than the theoretical, namely 

1:1g e < -0.117 ngal, 0.234 mgal > 

Since these variations are larger than the sensitivity of most of the 

modern gravimeters, the tidal effect is usually taken into account in the 

precise gravity work. 

The tidal deformation of the equipotential surfaces close to 

the surface of the earth (including thus the geoid) is given by formula 19. 
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Substituting for W/g the values obtained in 1.2 from eq. 8, we discover 

that the actual equipotential surface can oscillate within 

AD E < -33.6 em, 67.2 em> . 

Thus the span of the tidal oscillations of the geoid can be over 1 metre. 

We can also evaluate the actual uplift of an observer on the 

surface of the earth. It is given by eq. 14 b that yields 

u E < -15.1 em, 30.2 em) • 

Although this uplift is not observable by terrestrial means, it may play 

some role in measurements on satellitesand other extraterrestrial objects. 

Finally, if we disregard the dynamic effects on the sea level then 

we would observe the sea-tide height given by eq. 20. The oscillations would 

be 

BD E < -18.3 em., 36.3 em > • 

As a matter of fact there is a fallacy in the argument contained 

in this section. We are using, on the one hand, the full span of the tidal 

potential regardless of the frequencies of its constituenu and, on the 

other hand, we use the values of k and h determined for the semidiurnal 

frequency, namely that of M2 . However, the stated maximum spans are pro

bably not too far away from the real maximum values. It also must be borne 

in mind that these maxima. are applicable only in certain locations at 

specific times. The usually observed magnitudes will be somewhat lower. 
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3) INSTRUMENTATION AND ANALYSIS OF OBSERVATIONS 

3.1) Tilt Measurements 

To detect the tidal tilt one has to observe the variations of the 

spatial angle between the local vertical (direction of gravity) and a line 

thought to represent theposition of the ground. Hence any instrument 

sensing the direction of gravity whose frame can be rigidly connected with 

the ground (bed-rock) can be used. 

There are two basic designs available. First uses a beam (pendulum) 

suspended from the frame as a sensor, the second uses a liquid level. Many 

variations on these two themes have been devised with the common aim to 

obtain a very high sensitivity. Since the magnitude of the phenomenon we 

want to observe is extremely small, at most 0.018" in aboslute value, the 

instruments have to be very sensitive to give some meaningfull results. 

The typical requirement for a tiltmeter is a sensitivity of+ 0 11 .0002, i.e. 

0.2 · msec of arc or 1 nrad (nanoradian), or better. 

It is obvious that this accuracy can be achieved with a pendulum 

only when it is either very long or its position is recorded very precisely. 

The displacement of the end of a vertical pendulum say 1 metre long corres

ponding to 1 · nrad that has to be recorded is 10-3 wm, i.e. 101. This is 

naturally very difficult and thus "longer" pendulums are usually thought 

to be a better answer. The necessary sizeable length is achieved by 

mounting the pendulumalmost horizontally. Even a short, horizontally 
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mounted beam, can be made effectively equivalent to a very long vertical 

pendulum by making its angle with the vertical close to 7T/2. Such pendulums 

are known as horizontal pendulums and are used in most tiltmeters. A well 

designed and manufactured horizontal pendulum can be operated under almost 

any sensitivity we want. There are two horizontal pendulums necessary to 

record the tilt in two dimensions, see the figure 

The arrows show the directions of tilt sensed by 

the pendulums. (View from the top). 

Various types of tiltmeters are described for instance in 

[Melchior, 1966]. The second category of tiltmeters, based on the recording 

of a liquid level variations, are known as hydrostatic tiltmeters. They 

can be of various shapes, using various liquids and dimensions. The most 

popular systems use two containers connected by a pipe and measure the 

difference in the levels by means of transducers. The direction of the 

vertical plane passing through the containers coincides with the direction 

of the tilt sensed by the instrument. Hence two pairs of containers are 

again required to get the tilt in two dimensions. 

tt:: ~·.n~~:J 
A good discussion of the principles of these instruments is given in [Bower, 

1973]. 
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3.2) Gravity Measurements 

To detect the tidal variations of gravity very sensitive gravi-

meters are used. Since the gravity varies at most by some 0.2 mgal~ it is 

usually required that the gravimeter be accurate enough to sense changes 

within the ~gal range. This sensitivity is normally obtained by most of 

the modern instruments. [Lennon and Baker~ 1973]. 

The actual design of the tidal gravity - meters is basically 

the same as that of the ordinary meters. The differences are in a more 

sophisticated and more precise read-out systems. Their installation does 

not require such an excessive care as the installation of tiltmeters. 

This is because the gravity meters do not have to be connected with the 

bed-rock, providing the ground it stays on is stable, within the mm range; 

change of l ~gal corresponds to approximately 3 mm displacement in the 

vertical sense. One problem is, however, common to both tilt and gravity 

variation measurements. This is the calibration of the instruments. 

3.3) Analysis of Observations 

As we have seen in 2.3, the diminishing and gravimetric factors 

vary with the frequency of the deforming force. Hence, thero.etically ~ we 

should obtain different results for D and G from equations 23 and 24 using 

different tidal vawes (see 1.4) in the ratios ~£/~£ and ~g/~g • We there-c . c 

fore compute the two factors separately for every tidal frequency and get 

D(M2), G(M2 )~ D(01 ), G(01 ) etc. While the frequency decomposition of the 

theoretical values ~£ and ~g was treated already in 1.4, we have to say c . c 

something about the decompositon of the observed values ~£ and ~g. 
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At the first view, the problem of such a decomposition known as 

harmonic analysis is a simple one. (Note that the term harmonic analysis 

has here a different meaning than in mathematics). Given the observed time 

series (normally values for every hour), we want to determine the amplitudes 

of the individual periodic constituents of known frequencies (Table 2) •. This 

can conceivably be achieved by a straighforward least-squares fit of a 

trigonometric polynomial 

n 
T(t) = I (ai cos wi t + bi sin wit) 

i=l 
(25) 

with predetermined frequencies w .. Unfortunately, however, the actual ob-
1 

served time series are contaminated by a "noise" of periodic as well non-

periodic nature (see the next section). The amplitude of ll:rihe noise is often 

much larger than the amplitudes of most of the tidal components so that 

the signal to noise ratio is usually adverse. 

It is known from the theory of least squares approximation (see 

for instance [Vani6ek and Wells, 1972], that the lower is the signal to 

noise ratio, the less reliable results we can expect to obtain of the fitting. 

For this reason, the signal, i.e., the sum of tidal components, has to be 

enhanced first. This can be done in a variety of ways. The most obvious 

one seems to be the use of various numerical "filters" designed to suppress 

:tmW:anted{ ;frequeneies in the time series. 

Once the signal has been enhanced, we can use the above described 

least-squares fitting and obtain the amplitudes (A) and phases (p) 

i 
= /( 2 2 ) v a . + b . , p. = arctg b./a-1· 1 1 1 1 

(26) A 
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of. the individual components. The amplitudes then can be compared to the 

amplitudes of the theoretical tidal vawes and the values D and G computed. 

Similarly, we can also compare the phases of the individual components to 

get the phase lags of the theoretical and observed vawes. These phase 

lags should reflect the velocity of gravitation propagation and the speed 

of the elastic pesponse of the earth. They should be very nearly equal to 

zero. 

There has been a number of techniques developed for the "harmonic 

analysis". Some of them combine the analysis with the comparisons in one 

operation. Customarily, only the higher frequency components (diurnal, 

semidiurnal, terdiurnal)are sought. A comprehensive account of these 

techniques is given in [Godin, 1972], 
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4) TILT AND GRAVITY VARIATIONS.DUE TO.OTHER CAUSES (NOISE) 

4.1) Noise with Tidal Frequencies 

We have mentioned at several occasions that the records of both 

the tidal tilt as well as the gravimetric tide are generally strongly con-

taminated by noise. This noise is generated by a whole gamily of causes. 

Because of the necessary difference in techniques used to s~ppress or 

separate the noise it is convenient to distinguish the noise: 

i) with tidal frequencies 

ii) with non-tidal frequencies 

iii) non-periodic. 

Noise with non-tidal frequencies as wll as non-periodic noise 

can be quite efficiently filtered out of the observed record,or time series, 

be it tilt or gravity. On the other hand, noise with tidal frequencise 

cannot. It combines with the true tidal signal into a time series that 

again contains nothing but components with the same frequencies as the 

signal. This can be acertained by the following simple computation, dealing 

with just one such component jyf frequency iu. Let us write for the signal 

S(t) and the noise N(t): 

S(t) = A cos (wt -.ll ) = a cos w1t + b sin wt s s s s 

N(t) = ~ cos (mt - pN) = ~ cos wt + bN sin wt , 

where the parameters A, p, a, b are again linked via relations 26. Adding 

the signal and the noise together, we obtain 
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T(t) = S(t) + N(t) = (a6 + ~) cos U)t + (bs + bN) sin wt 

= 

P = arctg 
T 

(26) 

(27) 

Hence the sum is again a purely periodic vawe with the same frequency w'. 

We can therefore conclude that the frequency {harmonic) analysis of the 

tidal records reveals the amplitudes and phases of the components which 

correspond to the combined effects. 

4.2 Sea Tides Effect 

Disregarding the effect of the atmospheric tides, negligible for 

all practical purposes, and the tidal stress, whose role is not yet p~operly 

understood, the only remaining effect with tidal frequencies is the effect 

of the sea tides. This effect is particularly strong in coastal areas but 

can be traced even deep inland. Because of its importance, we devote a 

separate section to this problem alone. 

As we have already mentioned, the sea tides can be decomposed 

into components of the same frequencies as the earth tides. However, the 

phenomenon of sea tides is more complicated than that of the earth tides 

because of the dynamic effects of the sea. These dynamic effects are 

especially severe in shallow coastal basins (shallow-sea effect) where 

they can distort the amplitude of the tides several tens of times and the 
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phases of the individual components by several tens of degrees. In the 

Bay of Fundy, Bristol Channel, Saint-Malo Bay (southwest part of the English 

Channel) and the Liverpool Bay, to name just a few locations, the actually 

observed magnitudes of the tides are over 10 metres. 

The incoming tidal water influences the tilt and the gravity in 

two ways: 

( i) - The load of the water l~er c.H thickness L1hw depresses the 

earth crust by ilh . This depression. is, in turn, reflected in the change 
c 

of the equipotential surface. 

(ii)- The water ~er ·,representing a considerable amount of matter, 

also exerts some gravitational attraction on the masses around. 

It has been shown by various authors, e.g. [Bower, 1969; Lennon and Van{~ek, 

1969; Beaumont and Lambert, 1972], that the sea tides combined effect can 

reach a magnitude of several times that of the earth tides. 

~om the geodetic point of view,one thus has to be doubly care-

ful when carrying out a precise work in the vicinity (several tens of 

miles) of high tides sea basins. From the geophysical view, it is conceiv-

able that the sea tides effect can be utlized to learn about the physical 

properties of the earth crust. 

Referring to equations 26 and 27 we can see that they can be 

used in this context. Taking for any tidal vawe ~ and pT as obtained 
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from the harmonic analysis and assuming a and b as sufficiently well 
s s 

defined by the tidal theory and the derived values of k and h, we can 

solve for the parameters aa, ba. After some development we obtain 

(28) 

and 

(29) 

These two parameters obviously define the magnitude and phase 

of the sea tides effect in the appropriate frequency as excerted by all 

the seas around the observation site. They have to be then compared to 

similar qualities obtained from a model of the phenomenon. Any such 

model requires the knowledge of the sea tides characteristics (distribution) 

and the knowledge, or working hypothesis, of the parameters characterizing 

the elastic response of the earth crust to the water loading. 

The major hindrance in studying the sea tides effect is the 

fact that the sea tides characteristics are not yet very well known, part-

icularly on the open seas. Also, the "cotidal charts", i.e. charts de-

picting the sea tides in terms of iso-tide lines, are to any reasonable 

extent - available only for the M2 constituent. And even these are derived 

practically exclusively from the information given by the land based 

tide gauges. 

4.3) Other Periodic Effects 

Having dealt briefly with the phenomena. posessing all the tidal 

frequencies, we shall mention other periodic causes. These inclucl.a . 



34 

basically all the atmospheric variations i.e. variations of temperature, 

barometric pressure, rain and snow fall, subsurface water level, etc. 

From. these generally the temperature variations have the most 

pronounced effect because they influence not only the movement of the 

ground but also the operation of the instruments. For this reason a pro

tection against temperature changes is sought and the instruments are usually 

placed in well insulated underground chambers in natural or man-made 

cavities. A fairly thick cover is needed, particularly for tiltmeters, to 

shelter them from spurious temperature effects. 

Barometric pressure, surface water and ,snow loads act in much 

the same way as the sea water load. They tend to induce local tilts that 

depend on the local and regional patterns of inhomogene.i ty and ,fractures. 

Very little is known about the effect of the subsurface water level varia

tions. However, it is conceivable that in at least certain areas it is 

not negligible. 

All the atmospheric variations have a pronounced annual period, 

common with the tid«&·; fTht.er'>ia: ~t.he: .reason why the annual component 

of the earth tides is too contaminated to be of any value.for determining 

the elastic response of the earth at this fre~uency. From the fre~uency 

point of view, the temperature variations again are the most dangerous 

because of their diurnal component that tends to combine with the diurnal 

tidal constituents. 

The annual component of the observed time series offers some 

interesting geophysical interpretations and has been investigated by 

several researchers, e.g. [P{cha,l966; Van{~ek, 1971]. It has been shown 

that its magnitude in tilt observations can reach as much as a few seconds 
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of arc. The International Association of Geodesy recommended as early as 

in 1950 to investigate its.effect on precise levelling networks. 

4.4) Non-periodic Effects 

The last group of effects are the effects that do not have a 

periodic character, at least within the space of several years. These 

effects are caused by non-periodic movements of the ground, natural as 

well as man-made, e:ustatic water level changes, secular climatic changes, 

etc. 

Generally, noise of this nature called also drift, does not 

present a serious problem for the harmonic analysis and can pe,as we have 

already mentioned in 4.1, separated from the tidal signal. More difficult 

problem, however, is the interpretation. The drift in fact consists of 

three distinctly different contributions: 

i) instrumental drift (instability), 

ii) instability of the instrument mounting, 

iii) non-periodic effects. 

The first contribution is generally larger when gravimeters are used, the 

second is more serious in tilt measurements. 

In spite of the instrument and mounting instability, it is be

lieved by some scholars that the continous tilt and gravity observations 

can be used for the crustal movement detection. It has been shown, e.g., 

[Lennon and Van{~ek, 1969], that given a proper care the instabilities of 

the instrument and its mounting can be minimized and the drift then inter

preted as showing the real movement of the ground. Hence, tiltmeters, and 



to a lesser degree the gravimeters (because of their lower sensitivity 

to vertical displacements), present a potentially powerful tool even i.n 

the field of crustal movements. 
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