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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 
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A SYSTEMATIC ANALYSIS OF DISTORTIONS IN MAP PROJECTIONS 

Notes for course In Map Projections, Department of Surveying 
Eng I neerl ng. 

L. Hradllek and A. C. Hamilton 

Preface 

These notes are laid out with the Intention that this booklet 

will serve as a notebook for the student as well as providing him with most 

of the material that will be presented in the lectures. 

It is assumed that the student has complete mastery of the art 

of manipulating expressions in differential calculus, algebra and 

trigonometry; numerous opportunities are provided for him to practice this 

ski II. 

Acknowledgements 

These notes have evolved from the lecture notes prepared by 

Dr. Gottfried Konecny In 1965 supplemented by material from Mathematical 

Cartography by F. Fiala. 
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A SYSTEMATIC ANALYSIS OF DISTORTIONS IN MAP PROJECTIONS 

Notes for a course in Map Projections in 
the Department of Surveying Engineering 

University of New Brunswick 

INTRODUCTION 

If we 1 ived on a flat earth there would be. no need for a course 

on map projections. 

As It Is we live on an ellipsoidal earth and there is no way 

that the curved surface of the earth can be portrayed on a flat lheet of 

paper without introducing some distortions. There are two aspects to 

this problem: 

(a) The mapping problem. This is the problem of representing large 

areas, such as continents, on a flat piece of paper. There is no 

perfect solution to this problem; there are only compromise solutions 

that have acceptable distortions. 

(b) The surveying problem. Survey measurements are made on the actual, 

i.e. the curved, surface of the earth; it is possible using geodetic 

formulae to do all computations using the curved surface as 

reference, however this would introduce unnecessary complications to 

most projects and in practice most survey projects are computed 

assuming some plane projection. When using a plane projection the 

surveyor must be aware of the distortion that occurs as a result of 

using the projection. 

Hence In both mapping and surveying we have the problem of which 

projection to use and of understanding the distortions that are introduced 

by any projection that we do use. 

There are many books written for geographers and others interested 

in mapping at medium and small scales where a qualitative treatment is 

adequate. There are also many treatises on the transformations between 

various projection systems; In fact, this is an integral part of the 

course on geometrical geodesy. The purpose of these notes is to study 

the inherent properties of projections quantitatively and to develop a 

systematic approach to the evaluation and classification of map projections. 

In these notes analytical expressions for distortions in the 

general case are developed and applied to·a representative selection of 

projections. It is suggested that the student refer to a descriptive 

text, such as Map Projections by H.S. Roblin, for illustrations and a 

qllalltative discussion of the subject and to a textbook such as Coordinate 

Systems and Map Projections by D.H. Haling for more detailed treatment of 

the subject. 
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CHAPTER l 

GENERAL EXPRESSIONS FOR DISTORTIONS 

As distortions are Inevitable it is necessary to deal with them 

quantitatively and from this to develop their significant characteristics. 

We will approach this problem by developing analytical expressions for 

various distortions starting with distortion in length. For these develop­

ments it is assumed that the curved surface- ellipsoid, or sphere, with 

coordinates ¢ and >. is being mapped onto a plane with coordinates X and Y or 

onto a developable surface such as a cylinder or a cone. Note that a 

cylinder or a cone can be mapped onto a plane without any distortion. 

It is assumed that there exists a functional relationship 

X=f(¢,>.) y "g(¢,1.) 1 -1 a 

and that these are mathematically well-behaved functions having derivatives 

dX "' 2.f_ d¢ + !! . .f.. d>. 
3¢ a>. 

dY = ~ d¢ + ~ d>. a¢ a>. r-lb 

or 

The general expression for distortion wll 1 be developed using 

ellipsoidal parameters and then the simpler expression using spherical 

parameters will be found. 
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Distortion In length: ellipsoid 

Fig. 

(a) 

tan A N cos <P d>. 
Md<k 

Earth Ellipsoid 

M = a(l-e2 )/(1-e2 sin2~) 312 is the 

radius of curvature of the 

meridian 

N = a/ (1-e2 ~ ln 2 ~)-t l's the radtus of 
curvature of the prime 

vertical In which a is the 
length of the semi-major axis of 
theearthand e isthefirst 
ecc.entrlcrty of the earth. 

(b) 

X 

Mapping Plane 

Note that the axes have been chosen 

with X vertical andY horizontal; 

this enables us to follow the con-

ventlonal sequence 

I.e.~ and>., X andY. 

Earth sphere: This Is the sphere approximating the earth; it Is assumed to 

have radius R where R :::tM :=$'N ~ IMN. 

In these notes ~and>. are used interchangeably for both the 

earth ellipsoid and the earth sphere. Transformations between the earth 

ellipsoid and the earth sphere are taken up In Geometrical Geodesy. 

In Fig. I an elemental unit of length PP on the ellipsoid is mapped onto 
1 

the plane as P'PJ 
1 

set 

Distortion in length is defined as 

To simplify the derivation and analyses which folLow we will 
P'PJ. 
'P'P'1 = rnA l-2a 

and cal I it a length distortion factor. 

It follows that when mA • 1 there is zero length distortion, 



From Fig. 1: 

hence 
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(p'p' ]2 = dY2 + dX2 
1 

(PP ]2 = (Md$)2 + (N cos $ dX) 2 
1 

By substitution from 1-lb 
m2 = (f~ d$ +fA dA)2 + (g~ d~ + gA dA) 2 

A 

and multiplying numerator and denominator by --1-­
d$2 

From fig. ( 1 a): tan A N cos $ dA 
M d~ 

hence dA M 
$ tan A (ij""' N cos 

Exercise: By substitution from l-3c into l-2c show that: 

f2+g2 2(f$ fA+ g~ gA) f2 + g2 
m2 = ___t_:t cos 2A + sin A cos A + A A 

A M2 MN cos $ N 2 cos 2 ~ 

m2 cos 2A + p sin A cos A + m2 sin 2A 
1 2 

f2 + g2 2 (f q/ A + g<f,9;,) 
in which m2 $ $ m2 p "' 

1 M2 MN cos $ 2 

sin2A 

f2 + g2 
A A 

N2cos 2 ~ 

l-3a 

l-3b 

l-2b 

l-2c 

l-3c 

l-2d 

l-2e 

l-2f 

Question: What condition is required for the distortion to be independent of 

azimuth, A? 

Distortion In len~th: S!;!here 

When considering the earth as a sphere instead of as an ellipsoid the 

formulas In 1-2f become 
f2 + g2 2(f,{l, + g$g>.) f2 + g2 

m2 = $ p m2 = ' 
). 

1-2g p = 
1 R2 R2 cos $ 2 R2 cos2 ~ 
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Distortion In azimuth and angle 

X 

R 

In llP 'QR: 

from 1-lb 

FIg. 2 

vm Is the grid azimuth of the 
meridian 

v5 Is the grid azimuth of the 
element P'Pi 

A' Is the value of A In ~he 
mapping plane 

(180°-A') + (180 - vm) + vs .. 180° 

hence 180°-A' = vm - vs l-4a 

tan vm - tan ll 
and tan (180°-A') = + tan vm tan vs 

l-4b 

llP'P' T: 
dY 

from tan vs = dX 1 
dA 

dY g d¢ + gAdA g~ + gA df 
~ (dX) s f d<P + fAdA = - dA 
q, f<P + fA d.p 

1-Sa 

Substl tuting for dA 
Cij" from l-3c 

g<P N cosq, cos A + gA M sin A 
tan vs = f<P N cos¢ cos A+ fA M sin A l-5b 

Taking an element of length along the meridian, I .e. with X constant 

dV g~ d<P + gX dA 
tan llm = (dX)m = f<P d<P +fA di. 

9 
but for A constant, dX = 0 hence tan v = :i 

m f <P 

l-6a 
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Distortion in azimuth Is defined as A'-A 

in which A' Is computed from J-4b using tan ~s from l-5b and tan ~m from l-6a. 

To get the 

A' and A' from r-4b 
1 2 

The angular 

distortion In an angle,w, where w 

and get the angle w' =A' -A' 
1 

distortion Is 

w' -w = (A' 
2 

= (A I 

2 

then 

- A') 
1 

2 

given by: 

- (A -A ) 
2 1 

- A ) -
2 

(A I - A ) 
1 1 

In 

Special case: Distortion between meridian and parallel 

= A2-Al, we compute 

the mapping plane. 

Distortion In angle between the meridian and the parallel is equal 

to the distortion In the azimuth, A , where A = 90°. 
p p 

A' is computed by substituting 
p 

dY 
tan ~P· (dX)~ = const~ into l-4b In place of tan ~s 

from l-Ib (dY) A dX d~=o .. r;: 

hence tan(180-A') 
p 

tan ~m - tan ~p 

1 + tan ~m tan ~ 0 

As tan (180-A') = 1/tan (A'- 90) p p 

g<b gA 

= T;- fA 

g~ g" 
1 +- -· 

f <P f >. 

fA g<P - f ~ gA 

f~ fA+ g~ 9;~, 

1-8 

l-9a 

the distortion between the meridian and the parallel Is given by (A'-90) 
p 

and is evaluated from 

Question: What Is the value of A'-90" In a conformal projection? 
p 

1-10 
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Distortion In area 

Fig. 3 

IMAGE 
ELLIPSOID 

Element of area: 

dr' = ds' x ds' x sin A' 
1 2 p 

Distortion in area is defined as dr - di:' 

di:' For simplicity we will use df and call it an area distortion factor, 
di:' noting that when df 1 there is zero area distortion. 

ds!xds2sinA' 

ds x ds 
1 2 

ds { ds ~ 
= 'd"S" x 'd"S" x sIn A' 

1 1 p 

where m1 is the length distortion factor along the meridian 

and m2 Is the length distortion factor along the parallel. 

Remembering that sin A' =sin (180-A'J and noting that If tan a= _de , 
p p 

then from l-9a 

Exercise: Show that 

Question: What is the condition for a true-area projection? 

1-lla 

l-9b 

1-11 c 



Azimuths 

the first 
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with minimum and maximum distortion In 

We apply the condition for extrema to 

derivatIve to zero 

From 1-2e 
m2 = 
A m2 

1 
cos2A + p 

and solve 

cos A sin A + m2 
2 

dmA d~ 
-dA = -2- (-dA) mA 

length 

J-2e, namely: 

s i n2A 

dmA 
then~= 0 provided that mA ~ 0. 

equate 

d(m!) 
~ = -2m2

1 cos A sin A+ p(-sin2A + cos2A) + 2m22 cos A sin A 
l-12a 

-m2 sin 2A + p cos 2A + m2 sin 2A 
1 2 

l-12b 

Condition for extrema: 

(m~ m~) sin 2AE + p cos 2AE 0 l-13a 

therefore 

l-13b 

This equation can be satisfied by a value, AEl and by a value, AEZ' 

equal to AEI + 90. These are the azimuths of the elements of 

extreme distortion at point P. 

To establIsh which of AEl and AEZ has maximum distortion and 

which has minumum distortion, it is, of course, necessary to take 

the second derivative, substitute at the extrema: if the value is 

positive then it is minimum, if negative it is maximum. 
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CHAPTER II 

SIMPLIFIED EXPRESSIONS FOR DISTORTIONS 

Appreciable simplifications of formulas expressing distortions 

may be achieved by using the directions of the extreme distortions as 

reference axes. 

Tissot's lndicatrix 

A differentially small circle on the ellipsoid is mapped 

as a differentially small ell ipse on the plane. [This statement will 

not be proved here; a proof can be found in U.S.C. & G.S. Spec. Pub. 
by Oscar 

(a) FIG. 4 (b) 

Ellipsoid (sphere) Image 

No.57 
S. Adams]. 

X 

Coordinate axes chosen in the 
directions of extreme distortion 
in length. 

From the definition of distortion In 1-2a the magnitude of the length dis­

tortion factors in the directions of the extremes can be designated: 

dX and b dY II- Ia a=- = dy dx 

Note that this a is not to be confused with the a defined on 

dX = a dx dY = b dy 11-lb 

The equation of the small circle in Fig. 4a Is 

dx2 + dy2 = dr 2 11-lc 

and after substitution from 11-lb the equation of the ell Ipse in 

Fig. 4b is 

11-1 d 

hence dX2 dY2 
--+ =1 11-le 
a2dr2 b2dr2 

This is the equation of Tissot's lndicatrix. 

page 2. 
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By using the axes of Tlssot's lndlcatrix as reference axes 

alternative expressions for the length distortion factor (Equation 1-2d) 

and the distortion In angle (Equation 1-7) can be derived. 

Length distortion factor 

From Fig. 4: 

(P P1) 2= dx2 + dy 2 = dr2 

W'P')i dX 2 + dY 2 = a2 cos 2a dr 2 + b2 sin2a dr2 
1 

as dX = a dx (from 11-lb) and dx dr cos a 

and similarly dY = b dy, dy = dr sin a 

thus 
pIp I 2 

(~) 
1 

a 2cos 2a dr2 + b2sin2a dr 2 

dr2 

(from F i 9 . 4a) 

11-2 

where a is the bearing measured from the x-axis, i.e. from the direction 

of extreme distortion, a, the azimut~ of which is AEI' The azimuth of 

the PP 1 direction is AEl +a. This compares with 

m2 = m2 cos2A + p sin A cos A+ m2 sin2A • 
A 1 2 

Area distortion f~ 

In Fig. 4, the area of the differentially small circle is 

d~ = 11dr2 

and the area of the differentially small ell ipse is 

dE' = 11 adr x bdr 

hence 
dl:' -ar- = 

11 ab d r2 
1! dr2 = ab 11-3 

as compared with 
(in 1-11 c) • 



Distortion in bearing 

From Fig. 4 

hence from 11-lb 

tan a = 21. dx 

13 

tan a' 

tan a' =~=~tan a dx a 

Distortion in bearing Is defined as a'·a . 

Extreme distortion in bearing and azimuth 

dY 
=dX 

a • 

11-l;a 

ll-4b 

We take the derivative of a' - a and equate to zero. 

Thus 

-=-d ,;:(a'-' -:--...::.a:.<..) 
- da = 0 • da' E = daE • 

Applying this condition to the derivative of ll-4b 

d(tan a') = ~ d (tan a) 
da'E a da 

.. ~ 
cos2a' a 

cos 2aE E 

or 

I + tan2a'E =~(I + tan2aE) • 

Substituting from I l-4b 

+ E.:_ tan 2a = ~ + ~ tan 2a 
a2 E a a E 

tan aE = Jf" . 
But from ll-4b 

tan a' = ~ tan a = ~ ./£ = l'f E a E a b a 

For the computation of a'E - aE 

ll-4c 

I 1-4d 

ll-4e 

ll-4f 

il-4g 

sin (a'E-aE) =sin a'E cos aE- cos a'E sin aE • 11-Sa 

From ll-4f sin 

From ll-4g 

Hence sin 

a .. /2: E a+b 

(a' -a ) E E 

cos a' E 

11-Sb 
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Maximum distort)9n in angles 

The distortion 6wE in the angle w • a - a Is estimated by 
2 1 

its maximum value which may be two times larger than the distortion in 

bearing. 

Thus 

6wE 2(a'E - aE) 11··6a 

and 
t,wE 

(a' E aE) 
b-a sin (-rl sin - b+ci" I l-6b 

Note we did not compute an extremum for angle previously. We merely 

found w'-w = (A'-A ) - (A' -A ) where A' +A' were expressed in terms 
2 2 1 1 2 1 

of llm + \.Is. 

Note: The simplified formulas for distortions are well suited to 

Genuine Projections; i.e. to those in which the images of meridians and 

parallels remain perpendicular. In other words, those projections for 

which p • 0, i.e. those for which AEl = 0 and AEZ = 90. The meridians 

and parallels are then the directions with extreme scale factors. 
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CHAPTER Ill 

ANALYSIS OF DISTORTION IN CYLINDRICAL PROJECTIONS 

The cylindrical family of projections are Illustrated and 

their characteristics are discussed In RoblIn (pp 18-25) and in many 

other texts. In these notes, it will be assumed that the reader has 

referred to Roblin or to some similar reference for a description of 

the projection hence only the analytical expressions for distortion will 

be developed here; there will be appl !cations of the expressions 

developed in Chapters I and II. 

The cylinder is a useful intermediate surface between the sphere 

and the plane. It is called a developable surface as it may be mapped onto 

a plane without distortion; it is of special value in visualizing the 

transformation. The steps in transforming, i.e. projecting, from the 

ellipsoid to the plane are illustrated schematically: 

Ell/\ 
TREATED IN 
GEOMETRICAL GEODESY 

FiG. 5 

TREATED IN 
GEOMETRICAl GEODESY _____________ j _______________ _ 

CYLINDER 

TREATED IN THIS CHAPTER 

PLANE 

NO ANALYTICAL 
STEPS r-;EEDED 

All transformations from the ellipsoid, whether directly to 

the plane or to an intermediate surface are somewhat involved mathematically. 

As our immediate objective is to gain an understanding of map projections 

in general, we will in most cases start with a spherical surface. 
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Simple Cylindrical 

For this projection the explicit functional relationships 
and the derivatives corresponding to the general form In 1-la and 

1-1 b are: 

X = R<f> y RA 111-1 a 

f<l> R g<l> 0 

f = A 0 gA R 111-1 b 

From (1-2g): 

f2 + g2 2(f<f>fA+g<j>gA) f2 + g2 
<I> <I> A .l. 

mZ 
If 

p m2 = 
1 R2cos ~ 2 R2 cos 2 4> 

m p 0 m = cos ~ 111-1 c 
1 2 

What are the directions of the extrema? 

p 
tan 2AE 0 AEl 0 ' AE2 = 90• 

m2-m2 
1 2 

therefore a = m2 b ml 

Is the projection equal-area? No 

What Is the area dtstortlon factor? axb=mxm =-1-·111-ld 
1 2 cos <I> 

Is the projection conformal? No. p = 0 

but m f. m 
1 2 

Maximum distortion In angle? 

sin ~wE b-a sec p-1 
(--2--) = b+a = sec <f>+l 111-1 e 
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~lindrical equal-area 

The functional relationships are: 

X= R sin <P y = R\ I II -2 

Exercises: 

(i) Show that m =cos <p, p = 0, m 1/cos <P and hence that the 
l 2 

projection Is equal-area. 

(ii) Show that the maximum distortion in anqle Is given by 

~w sec <P - cos <P sin (-<:-) = 
2 sec ¢ + cos ¢ 
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Gall's projection 

The functional relationshipsand first derivatives are: 

X 1. 7R sIn ~ y 0.7R A. .1 + cos ~ 

f~ 1. 7R [ I + cos <I> 
J 9q, 0 

fX 0 gA O.]R 

From l-2g 

( 1. 7R )]2+ 0 
m2 = + cos p 0 m2 0 + (0.7R) 2 

RZ ;p R2 cos 2<1> 1 2 

( 1 + 
_l 

= 2.:1_ m 1.7 cos<!>) m 
1 2 cos <I> 

What are the directions of the extrema? 

tan 2AE m2 
p 
- m2 "' 0 AEl = 0, AE2 90° 

1 2 

therefore a = m 
' b = m 

2 1 

Is the projection equal-area? No 

Area distortion _factor? 

a X b = ...--:--1 '-'' ]'--....,.-· X Q.:l_ 
+ cos <I> cos <I> 

Is the projection conformal? No, 

p = 0, but m ~ m 
1 2 

Maximum distortion In angle? 

sin 
llwE b-a 

(-2-) = b+a = 

Questions: 

~- 1 .](1+ 1cos<!>) 

~~~<!> + 1.?(1+ 1cosq,) 

(i) Under what condition is there no distortion in angle? 

I ll-3a 

II l-3b 

II l-3c 

Ill-3d 

II l-3e 

(if) How can this be reconciled with the fact that the projection 

is not conformal? 
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Mercator's projection 

The functional relationships and first derivatives 

are: 

X 

R 
~ 

0 

From 1-2g 

Hence 

y 

g~ 

2(f~f"+gpgl.} 
R cos ~ 

0 m 
2 

RA 

0 

R 

1 
cos ~ = sec ~ • 

Do the directions of extreme distortion exist? 

No, because distortion is equal in all directions. 

Is the projection equal-area? No. 

Area distortion factor? 

a x b = m x m 
1 2 

Is the projection conformal? Yes 

p = 0, and m m 
1 2 

Maximum distortion in angle? 0 

sin b-a sec ~ - sec ~ = 0 • 
b+a = sec ~ + sec ¢ 

II l-4a 

lll-4b 

I ll-4c 

I ll-4d 

Definition: The Loxodrome or rhumb line Is defined as a curve on the 

sphere intersecting all meridians In the same azimuth. The loxodrome 

Is mapped as a straight line on Mercator's projection. (see Roblin p.22) 
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The Transverse Mercator (T.M.) projection Is used mainly for 

bands of only a few degrees in width, the band that ls 6 degrees in 

width is known as the Universal Transverse Mercator {U.T.M.) and is 

used for the National Topographic Series of maps In Canada and In 

many other countries. To reduce the distortion In scale a secant 

cylinder is generally used instead of a tangent cylinder. For a 6• 

zone, the cylinder is made to intersect the sphere 2• each side of the 

central meridian. 

The Transverse Mercator projection and procedures for con­

verting from the ellipsoid are discussed in Coordinate Systems and 

Map Projections by D. H. Mal lng (pp. 217-233). 
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CHAPTER IV 

ANALYSIS OF DISTORTION IN AZIMUTHAL (ZENITHAL) PROJECTIONS 

The azimuthal or zenithal family of projections are Illustrated 

and their characteristics are discussed fn Roblin (pp. 39-55) and in many 

other texts. As fn Chapter Ill It will be assumed that the reader has 

referred to a descriptive text and only the analytical expressions for 

distortion will be discussed here. Also, as In Chapter I II, discussion 

will be restricted to the transformation from sphere to plane. Some 

generality will be achieved, however, by the Introduction of oblique 

spherical coordinates (cartographic coordinates) in place of normal 

spherical coordinates; by this artifice the analyses that follow will be 

valid regardless of the location of the tangent point. 

Transformation to oblique spherical coordinates from normal ·spherical 

coordinates 

Oblique spherical coordinates, a·and 6 are the coordinates with 

respect to some pole other than ~he north or south pole. 

Fig. 6 

Exercise: 

( 1) 

(2) 

(3) 

This Is Illustrated In Fig. 6 In which: 

Prove that the two systems 

sin 0 sin a ,. cos .p sin 6).. 

sin 6 cos Ct = sin .p cos ~ -0 

cos 0 = sin ~ sin .p + cos ~ 0 

N.P. rs North Pole; 

0 (~0 , )..0 ) Is the tangent 

pofnt of an oblique 

projection; 

~. ).. are the normal spherical 

coordinates of point P; 

a, 6 are the oblique spherical 

(cartographic) coordinates 

of point P with respect to 

a pole at 0. 

are related by: 

cos .p sin .p0 cos 6).. IV-1 

cos ~0 cos 6).. 

If necessary refer to a text on spherical trigonometry such as 

Schaum's notes (pp. 168-172) to verify your proof. 
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General properties of azimuthal projections 

As azimuthal projections are symmetric about the tangent point 

the mathematical relationships can be conveniently expressed in polar 

coordinates. 

Fig. 7 
(a) 

In Fig. 7(b) 

X = r cos a' Y=rsina' 

a.• • a r • f (c) 

In which f(o) varies for different projections. 

Note: 

(b) 

X 
N.P. 

IV-2 

IV-3 

(I) The images of cartographic meridians are straight lines, I.e. a 

is constant. 

(il) The Images of cartographic parallels are circles, I.e. o Is 

constant. 

(iii) The Images of the cartographic meridians and parallels Intersect 

perpendicularly. 

Expressions for a and b (Tissot's Indices): 

Fig. 8 
(a) {b) 

y 

P.' 1 
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Applying the definition of length distortion factor In l-2a to Fig. 8 

IV-4a 

P'P2 
b = rd~' 

P P2 = R sin od~ IV-4b 

Exercise: Show that for all azimuthal projections P=O. 

Gnomonic Projection 

The perspective centre is the centre of the sphere. 

FIG. 9 ().1 =a. 
p' 

r = R tan o 

dr 1 R 1 1 
a= R (J'8 = R cos 2o = cos 2o 

Is the 

Area 

b = r d~' 
R sin od~ 

R tan o 
R sin o 

projection equal-area? No. 

ab '# 1 

distortion factor? 

1 1 

cos 0 

1 a x b = cos 2 o C'OS6 = cos 3o 

Is the projection conformal? a # b 

Maximum distortion in ang 1 e? 

I I 
t:.w b-a COs'"1' - cos2o cos o-1 (-e:) sin 2 = b+a = I I cos o+l 

COs'"1' cos2o 

-tan2 0 IV-5e 2 

Note: The most Important property of the gnomonic projection is that 

a great circle on the sphere maps as a straight line on the projection. 

Such an image is called an orthodrome. 

IV-Sa 

IV·5b 

IV-5c 

I V-5d 
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Stereographlc Projection 

The perspective centre is diametrically opposite the 

tangent point. 

Fig. 10 

a' = ex. 

r = 2R tan o/2 

a 

1 dr 1 R a=- dr = 'R = R cos2o/2 cos2o/2 

b = r 2R tan o/2 

R sin ll R sin cS cos2o/2 

Similarly, as for the gnonomic projection 

p = 0 and 

Is the projection equal-area? 

Area distortion factor? 

a X b = X 
cos 20/2 

Is the projection conformal? 

AEl = 0 
No. ab ;. 1 

cos40/2 

Yes. a = b 

Exercise: Starting with ~ • r cos a' and V = r sin a' 

show that 

--=---and m2 = -...:.....­
cos2o/2 cos2a/2 

IV-6a 

IV-6b 

IV-6c 

IV-6d 



Orthographic Projection 

Fig. II 

f 0 = R coso coso. 

f -R sino sina a 
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r = R sin o IV-7a 

X r cos a' Y = r sin a' 

ct' = a 

X= R sin 0 cos a;Y = R sino sina 

go = R coso sina 

g = R sino COSet a 

f2 2 
2 + go. 0. 

m2 
R2 sin2o 

R2 cos 2o cos 2o. + R2 cos 2o sin2o. 
R2 

R2 sin2o sin2a + R2sin2o cos 2a 

R2 sin2 o 

cos 0 R2 sin2o(sin2a + cos2o.l 

R2 sin2 o 

By substitution it can be shown that p • 0, hence m1 • a, 

Is the projection equal - area? No. 

What is the area distortion factor? cos o 
What is the maximum angular distortion? 

It is given by: 

ll.w 
sin (-2e:) _ ~ _ 1 - cos o 

- b + a - 1 + cos a 

IV-7b 

IV-7c 
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Fig. 12 

OP = OP' 
OP = 2R sin 812 

What is the condition for a true area projecti.on? ax b 1 

Thus if a = ~ and b = ~~ Rdo R "sin o 

a • b d.r _!_-···- -· 1 
Rdo R sin 6 -

i.e. r dr R2 sin 6 do 

!r dr R2 f sin 0 do 

+ c 

r = 0. thus c R2 For 6 = o, 
and l r 2 

2 
r2 

•• n2 cos 8 + R2 = R2 (1-cos li) 

2R 2 (1-cos 6) 
IV-Sa 

21\ sin o/2 

OP' OP=2 x(H sin 6/2) 

x = r cos a, 

X 2H sl.n 6/2 cosa, 
1 

f 0= 22R COS 6/2 COSCl 

fa,= -2R sin 15/2 sina, 

y r sin a 

Y 2R sin 6/2 sina, 

g 0= ~2R cos o/2 sina, 

f = 2R sin o/2 cosa 
a 

~2cos 2 tl/2 cos 2a + R2 cos 2 6/2_E_;in 2 ~. 
R 

4R2sin2o;2 sin2c;+4R2s.in 2c/2 cos 2o 
R2 sin 6 

cos 6/2 
4R2 sin2o/2 
4R2 sin2o/2 cos26/2 

1 
m2 cos 6/2 

By substitution it can be shown that p 0 

Is the projection equal area? Yes 

Is the pro,jection c:onforrna1'/ No 

What is the maximum angular distortion'/ 

Is i.t a genuine projection? 

b-a sec 6/2-cos o/2 
b+a = ~e"7:-o/2+cos o/2 

True Meridian Projection 

IV-8b 

For the projection to have zero length distortion on the meridian 

a must be equal to unlty. Given this condition show that: 

1. r = Rc 

2. Area distortion factor is 6/sin 6 

d . t t· . o -sino 3. Maximum angular lS or· ,lon lS ii+sin 0· 

IV-9a 

IV-9b 
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CHAPTER V 

ANAL YS I. S OF DISTORT I ON IN CON I CAL PROJECTIONS 

The conical fami1y of projections are illustrated and the 

characteristics of some representative examples are presented in 

Rob! in (pp. 26·33) and in many other texts. As for the previous 

chapters, it will be assumed that the reader has referred to a 

descriptive text and only the analytical expressions for distortions 

will be discussed here. 

Also, as for zenithal projections the cartographic coordinates 

(cl,a) will be used, 

For "Genuine" conical projections the images of cartographic 

meridians are straight lines which are convergent to one point and the 

images of cartographic parallels (6 = const) are concentric circles, 

By virtue of this similarity the Tissot's indices, a and b, are the 

same as for zenithal projections (see Fig. 8 and equations IV-4a and b) 

in which 

dr 
a = Rcl"6 

if da'= n 
da 

Fig. 14 

b 
rda' 
R s1n a da 

b = rn 
""R -s...,,,-n--::-cl 

(b) 
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General equations of "genuine" conical projections 

a' ... n a o < n ~ 
V-1 

r • f (c) 

a'·M rs defined as the value of a•· for a• 2'1T 

Thus a' a • a'M 211 
I 

a' a'M hence a M .. -z.rr . a . n .. --2 11 V-2 

For~ standard parallel: 

from fig. 14(b) a'M = 2'1T R sin 6 
0 

ro 

2'1T. R, s,ln 00 R sin 0 
a. .• :: a, hence~ = 0 . 2'1! r r 

0 0 
V-3 

For tangent COBe: 

r = R tan a 
0 0 

R sin 0 
at = 0 

0 hence 0 v-4 R tan ~0 
.a = cos .a • n .. cos 

0 0 

Fig. 15 Condition for distortionless meridians: 

TP = TP' TP = R (o -o) 
0 

r = r - TP' = r - TP 
0 0 

r = r 0 - R(o0 -o) 

Equations of the projection: 

a' = cos o0 a 

r = r -R(o -o) 
0 0 

where r = R tan 0 
0 0 

For the cartographic pole, o=O, and r = r0 - Ro 0 

(i.e. The pole maps as a circle) 

Exercises: (1) Show that a= 1, I.e. that the meridian Is 

distortion1ess. 
(2) Show that sin o0 + (o-o0 ) cos o0 

b • ----~--sTI-n-6~----~ 

v- ~ 
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Oistortioniess meridian projection when the pole is mapped as a point 

Fig. 16 

T 

Equations of the projection: 

sin 60 
a'=-0--a 

0 

r .. TV = TO 
0 

Condition: 

where TO = Ro 0 

But a' = M 

Q.·= 

r = Ro 
0 0 

<l' m 
a' = 'f,T" .a 

27T R sin 0 
0 

r 
0 

21! R sin 0 
0 

R o 21! 
0 

sin 0 
0 Hence n=---0 

0 

r = r - R(o -o) = r -Ro + Ro = Ro 
0 0 0 0 

To find Tlssot's lndicatrlces: 

dr Rdo 
a "' Rdo .. R'Cro • 

b 
r da' Ro sin 60 o sin 60 

R sin o · da = R sin 6 ·-o-- = o sin 8 

Is this projection equal-area? No 

What is the area distortion factor? 

What is the maximum angular distortion? 

0 0 

V-6 

V-7 
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Equal-area projection 

Condition: a.b = I 

• dr r da' .. 1 I.e. 'ii:do · R sino· (i(i"'"" 

But we define a' = na 

hence dcx' = nda 

Thus n r dr 
R2 sin cs do"' 1 

Integration gives 

and 

n I r dr .. R2/ sin o do 

l n r2 = -R2 cos o + C R2 
2 

in which CR 2 Is an arbitrary constant, 

which gives r ... R ./?:.. Jc - cos o 
n 

v-8 

and along with a' = n a defines any equal-area conical projection 

n, and c are constants which may be derived to satisfy any two 

conditions of our choice 

e.g. (I) Pole to be mapped as a point 

(2) Parallel 0 
0 

mapped without distortion (one std. parallel) 

From (1) when o = 0, r = 0 

hence C = 
R sin o 

From (2) and V-3 for one std. parallel n = ___ .;;..o 

Thus the equations for the equal-area projection with one 

standard parallel and In which the pole is mapped as a point are: 

r ,. R fi_ }I 
n - cos 0 

R sin 0 V-9 
a.• = no. • 0 a r 

0 

Exercise: Show that a.b = I 
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Alber's equal-area projection with two standard parallels 

Fig. 17 

v 

Given R, o1 and o2 
211 R sin 01 

a' = M rl 
a' 

From V-2 M --= n 2 1T 

For one standard parallel 

R sin a1 .. n r 1 

Similarly, for the second 

standard parallel 

R sin o2= n r2 

Thus, we have two conditions 

for finding the unknown 

constants n and c: 

sin2o1 = C-cos o1 

sin2 o2 C-cos o2 

By cross multiplication: 

i.e. 

c-c cos 2 o1-cos o2 + cos 2 c1 cos o2 

R sin o1= n 

R sin 0 = 2 n 

Squaring: 

sin2a1= 2n 

sln2a2= 2n 

c-c cos 2o2-cos o1+ cos o1 cos 2 o2 

II II + cos lil cos 02 (cos 

Rj~ 

Rj~ 

(C-cos 

(C-cos 

a2-cos 

(cos o2-cos ol) (1+ cos 01 cos <52) 
c = 

To get n, 

Hence: 
a• 

(cos o2-cos 01) (cos o2+ cos ol) 

subtract V-!Ob from V-lOa: 

= 

1-cos 2o1= 2 n C-2 n cos o1 
1-cos2c2= 2 n C-2 n cos o2 

cos2o 2-cos 2 a1• 2n (cos o2-cos o1) 

cos 01 cos tS2+ 
n .. 

2 

cos o2+ cos 01 
2 • 01 

2R 
r • -;""c~o~s!=o;8""1 +'F':ci!':o"=s"""'8"~2• 

C-cos 

C-cos 

o I) 

62) 

lil) 

Ill 

02 

V-!Oa 

V-iOb 

V-11 

V-12 

V-13 
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To find a and b: dr 
a .. ii.(j"6 

r da' 
b • R sin 6 • da 

r .. R If;- c·= cos 0 n 

dr Rt~· sin 0 do 
; c - cos 5 

R sin a do 1 1 sin 6 
a= 7Zn v'C-cos 6 R do " 72n · lc-cosa 

R.rr IC-cos o cos a2+ cos o1 
b = R sin o 

a .b = 

To show that the parallel defined by a1 Is standard (i.e. b = 1) 

hn It -=coso 
b "' sin o 

--------
./1+ cos olcos 62-cos 01 (cos ol+cos 62) 

= I cos o2+cos ol cos ol+ cos o2 

s1n 

11+ cos 61 (cos 62-cos ol-cos o2) 

s1n o1 

r,···:·-c-c;~ 

= sin o1 
.. I 

Note: In this discussion of Alber's projection it was assumed that a1 
and a2 were given. It may be that we want to choose o1 and 62 to satisfy 

some condition, e.g. the condition that the angular distortion at the 

upper and lower ends of the map should be equal to each other and also 

equal to the angular distortion In the central part of the map. 

If a' is the cartographic latitude of the top and a" the 

cartographic latitude of the bottom of the map then the condition specified 

above will be satisfied when 

ll"- o' 

o" + o' cos 2 
8"- 01 

2 

The proof for this can be found in T.R. No. 5, D.S.E., Map 

Projections by G. Konecny, pp. 29-34. 
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Conformal conical projections 

For conformality a • b 

a = dr 
'R'(]5 b 

n r 
R sin 6 

Hence 5!.!:. = 

~~ = 
r 

do 
!S'Ti16 

r 

R.n r + c 

f s i n2 <5/2. + cos 2 ot3_ 
sin o/2 cos 6/2 d 812 

., 1sin 6/2 
cos 6/2 

d 6/2 + !cos o/2 
sin 6/2 d o/2 

-2n cos o/2 + ~n sin o/2 + c = ~n tan o/2 + c 

In r • n·!n tan 6/2 + In c 

r = c (tan 6/2)n )' 

and a'"' n e1 ( 

General equations 
of conformal 
conical projections. 

Conformal pr?jectlon on tangent cone 

with one standa~ parallel 

Fig. 18 v From V-4 for tangent cone: 

For r = r 
0 

R tan 0 = C(tan o012) cos 
0 

R tan 6 
i.e. 0 c = 6 ( ) cos tan oo/2 0 

I 
I 
I R tan 6 
I 0 
I r "' 6 I (tan 6o/2)cos 

-------r ------
0 

1/~ a' = cos o C! ..J..-... 
0 

&0 For the pole: 

1 im r = 0 

v -14 

6 
0 

' 
and 

(tan o/2)cos 

V-15 

6 

the pole maps as a point. 
6 _,_ 0 

Exercise: ----
dr sin 0 (tan 012)cos 60 0 

a = R"cTs .. STiiT · 0 )cos o (tan 
o/2 ° 

Show that 

sin 0 (tan o/2)cos 6 
b = nr 0 0 

sin 0 .. S1iiT . 
0 R (tan 0 )cos 

o/2 0 

0 



Fig. 19 

For r 

For r 

Dividing: 

and from V-16 
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Conformal conical projection 

with two standard parallels 

(Lambert's conformal) 

Condition for standard parallels: 

Sphere Plane 

21T R sin 01 rl a' = M r 1 211 n 

21T R sin 02 = r2 a'M = r2 211 n 

But for conformal projection 

r = c (tan o/2)n 

V-16 

In sin o1 - In stn o2 
n = ------~----------~--- V-17 

In tan o112 - In tan o212 

R sin o1 c • _____ ...:__ 

n(tan o112)n 
V-18 

By using a series of these the world, except for polar regions, can be 

mapped conformally. 
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CHAPTER VI 

NON-GENUINE PROJECTIONS 

In non-genuine projections: 

(I) The Images of meridians and parallels do not intersect 

perpendicularly. 

(2) The meridians and parallels are~ the directions of 

extreme distortion. Thus the simplified expressions (Ch. II) for 

computing distortions cannot be used; it is necessary to use the general 

expressions developed inCh. I. 

There is no limit to the number of non-genuine projections that 

one can devise. Bearing in mind that these projections are not con­

formal their usefulness to surveyors Is limited. Nevertheless countless 

non-genuine projections have been developed and a few have been found 

to be useful; Bonne's projection Is one of these. It is analyzed here 

to illustrate the flexlbil tty and the problems that arise in the use 

of a non-genuine projection. It can be classified as a pseudo-

conical projection. 

(a) 

v 

ANOTHER 
MERIDIAN 

Fig. 20 

0 ... 

X 

MID 
MERIDIAN 

(b) 

y 
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Bonne's Projection 

As illustrated and described t·n Rob I In, p. 31 in this projection 

the sphere is mapped onto the tangent cone and 

(I) The Images of the parallels are concentric circles 

without distortion In length. 

(2) The mid-meridian is standard. 

For simplicity we will use geographic rather than cartographic 

coordinates. 

For the tangent cone r0 = R cot .p0 

For standard parallels (I .e. a II of them) R'A cos<jl = ra' 

For the standard mid-meridian r = r + R (<jl - .p) 
0 0 

Thus the equations of Bonne's projection are: 

i.e. 

ax 
= - cos a' ar-

ax r sin a' a;• 

or 
8f -R 

r = r + R(<jl - <jl) 
0 0 

X = r - r cos a' 
0 

av 

; 

-= ar 

a' = R cos 
r 

2 

Y = r sin a' 

sin a' 

av a;t = r cos a' 

~ 

aex' (r0 +R<jl0 -R<jl} (-sin .p)-cos <jl ( -R) 
--= a.p ( r +R<jl -R<jl) 2 

. 0 0 

[-r sin <P + R cos <P] ~ 

dex 1 R cos <P a;:-.. r 

.R~ 

VI-I 

Vl-2 

Vl-3 

Vl-4 

Vl-5 

f a X a r a X a a ' Rt.. q, = ar ~+~··aT =- cosa'(-R)+ r sin ex'[R cosrjl -r sin .p] rz-

= R[cos a'-A sin a'(sin .p- R cos <P)] 
r 

f oX ~+aX <lex' sin a'x R cos q, t.."'ar at.. aa•·a;;-=O+r r =Rslna'cos<jl 

g = aY i:lr av i:la' =slna'(-R)+ r cos a 1 [ -r q, + R cosrjl] RX 
or 8f + '§';i'"•. n- sin 

~ q, 

=-R[sln a'+ /.. cos ex' (sin <P _ R cosp)jJ 
r 

gA 
aY ~+ aY aex• = 0 + r cos a' x R cos <jl =a;:-· at.. a;·· ax- r = R cos a' cos <P 

v 1-6· 
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p • 

Hence we get 

R cos PF 
r 

Vl-7 

m2 = Il+A2(sln~ - R cos P)2]cos2A + sfn2A - 2A(sfn~ R cos P)slnA cosA A r r 

Let q • A (sIn~ - R c~s 4> ) 

dm2 
d/ • - 2q 2 cosA s•fnA - 2q(cos2A - stn2A) 

= -q2sfn 2AE - 2q cos 2AE • 0 

-2 
tan 2AE • - 2/q • R cos ~ 

A'~sln ~ -) r 

which yields 

AEI and AEl + 90° 

Exercise: Show that Bonne's projection Is an equal-area projection, 

i.e. show that: 




