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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



FORWORD 

When setting up this course I tried to be faithful to my 

principles: 

... to begin with assuming as little initial knowledge from the 

students as possible; 

... to define all the used terms properly; 

- to present all the logical arguments behind the structure of the 

subject avoiding 11 logical gaps 11 ; 

- to concentrate on the concepts and go into applications and 

technicalities only if time permits. Due to the breadth of the presented 

subject, I found it rather difficult to do so within one term course. 

Hence, the student will find it necessary to bridge the inevitable gaps 

from outside sources referenced in the lecture notes. Also, somebody may 

grumble that the course is on the heavier side as far as the use of 

mathematics is concerned. This is so, because, as A. Einstein put it 

once, 11 the approach to a more profound knowledge of the basic principles 

of physics is tied up with the most intricate mathematical methods. 11 

I should like to acknowledge the kind help of Dr. E.J. Krakiwsky and 

Mr. D.E. Wells who made me aware of some of my 11overly original ideas. 11 

In addition, Mr. Wells suggested a reorganization of the first section 

that greatly improved the logical structure. I also owe many thanks to 

Mrs. Debbie Smith who expertly typed these notes from my atrocious hand

written manuscript. Any comments communicated to the author will be 

greatly appreciated. 

i 

P. Vanicek 
Fredericton, N.B. 
25/3/1973 
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1) Review of Classical Mechanics 

1 .1 Introduction 

Let us begin with the convention that throughout the course we 

shall be using subscript notation for vectors and matrices. The Latin 

letters will denote indices running from 1 to 3; Greek letters will be 

used for indices acquiring other values. Whenever the same subscript 

will be used twice in a product of two quantities, it will automatically 

imply that summation over the subscript takes place; the subscript 

becomes a dummy subscript. 

The space we shall be working in will be the classical (Newtonian) 

physical space defined as follows. The physical· space is a metr.ic space, 

metricized with Euclidean metric. Positions of points are given by 

position vectors x1eE1 (i = 1,2,3), where by s1 we denote a set of all 

real numbers; x1 are called the (rectangular) Cartesian coordinates. The 

distance between two points xP), x( 2) is hence given by: 
1 1 

3 
s1,2 =I 2: (x(l)- x~ 2 )) 2 E E1 . 

i =1 1 1 

(By E1 we denote a set of all non-negative real numbers.) The points 

are allowed to 11move in the space 11 , which means that their positions may 

vary with a parameter t, called time. This is usually denoted as 

meaning that the position vector x1 is a function of the scalar 

argument-time. 
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In the physical space there are physical objects possessing 

certain physical properties and acting upon each other according to 

certain physical laws. In classical mechanics, we deal with two kinds 

of physical objects: particles and physical bodies. The properties we 

shall be interested in are motion, velocity, acceleration, mass, 

gravitational force, momentum, kinetic energy. 

In classical mechanics, no other interactions are considered but 

gravitation. Thus neither electromagnetic nor the nuclear interactions 

are regarded as being present. Also, velocities are assumed to be very 

low compared with the speed of light. The action of the gravitational 

force is considered instantaneous, i.e., the velocity of propagation of 

gravitation is considered infinite which distinguishes the classical 

mechanics from the relativistic mechanics. 

Our use of classical mechanics will be limited to the study of the 

motion of particles in the physical space. The motion is described by 

equations known as equations of motion. Hence, derivation of various 

kinds of equations of motion will be considered our primary aim in this 

section. 

1 .2 Fundamental Definitions 

By a particle (mass point) in classical mechanics, we understand 

a pair of elements 
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(by E3 we denote the Cartesian product E1 x E1 x E1, and E~ is a set of 

all posit'ive real numbers), where x1 is the vector of the point, taken 

as varying in time (xis a function of time), and m 'is a real number 

considered independent of time (m ~ m(t)) and called the mass of the 

particle. The position vector x1 is also known as the motion of the 

particle. 

Taking a particle (x1, m), it is useful to define its velocity x1 

as 

and acceleration x1 by 

• 2 dx. d x. 
1 l .. (' ) 

dt- = dt2 = X; t E: E3 . 

We shall assume that these two functions, describing the same motion x. 
1 

of the particle,always exist. More will be said about it later. 

If the velocity equals to zero, we say that the particle does not 

move. If the acceleration equals to zero, the particle is said to 

move inertially. A particular value of the motion x1, i.e., xi(t), is 

called the instantaneous position of the particle. Similarly, i 1(t) 

'iS its instantaneOUS velocity, and x.(t) its instantaneous acceleration. 
' 1 

It has been determined from physical experiments with two 

particles that a presence of one particle influences the motion of the 

other. It has been observed that the two particles attract each other 

so that each particle acquires an acceleration directed towards the 

other. The two accelerations, observed with respect to the coordinate 
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system (more precisely a stationary coordinate system--see section 1.5), 

are general1y different. The property of the particle that determines 

its acceleration is the mass. Calling the mass·of the first particle m, 

its motion x1, the mass of the second particle~, and its motion x1, we 

define the mass as being inversely proportional to the acceleration, i.e., 

mx = JlX • (*) 

Using the vector notation and realizing that the two accelerations have 

opposite signs, we have 

This vector quantity is called the gravitational force (acting on the 

particles). Denoting the forces acting on the two particles by fi and 

F1, we have 

.. 
f; = mx. 

1 ' 
.. 

F. 
1 

= J.lX. 
1 

and 

These formulae are known as Newton's law, and they link the mass, force, 

and acceleration related to a particle. Since x1 (X1) is considered a 

function of time, then even the force f1(F1) is a function of time. 

On the other hand, the mass in classical mechanics is always regarded 

as constant with respect to time, or conservative. 
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It has already been observed that the two accelerations remain 

inversely proportional to the square of the distance of the two particles. 

Denoting 

x. -X. =-a. , 
1 1 1 

we have to require that 

.. I 2 x = c a , 
.. 2 
X = C/a ' 

where c and C are some constants characterising the two particles. 

Combining the two sets of equations, (*) and (**), we obtain 

UC = me 

( **) 

In other words, the ratio C/m, or c/U, is constant. Denoting this 

constant by K, we can express the constants c and C in terms of the 

masses as follows: 

c = ~ , C = Km . 

Simple substitution into eqn. (**) yields 

x = ~a2 , X = Km/a2 

and we can see that each particle renders the other an acceleration 

proportional to its own mass. 

These equations can now be rewritten using the forces f; and Fi 

yielding 

This formula is known as Newton's law of universal attraction or the 

law of universal gravitation. The constant of proportionality K 

is called Newton's or the gravitation constant. It can be regarded as 
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the ratio between the behaviour of the mass of a particle as a 11Source 11 

of gravitation and the behaviour of the mass of the same particle as a 

11 source 11 of gravitation. Its value,· determined from experiments, is 

The vector function pi of position and time given as 

is called the momentum of the particle (xi' m). It is not difficult to 

see that gravitational force fi is linked with the momentum pi through 

the following equation: 

f.(t) = ~ (mx.(t)) = ~ 1.(t) 
1 dt 1 

It is an empirically established fact that the acceleration is always 

a continuous and bounded function of time. Therefore, even the force is 

a continuous and bounded function of time. The velocity, hence, must be 

not only bounded and continuous but also a smooth function of time and 

so must be the motion of the particle. 

The scalar function T of position and time related to the particle 

(x., m) by the formula 
1 

is called the kinetic energy of the particle. Note that X; X; = / and 

that the kinetic energy can also be expressed by the momentum as 



-
T(t) 

Writing the first formula for kinetic energy in the classical 

notation, i.e., 

- 1 3 ·2 
T = '2m E X; 

i=l 

it is not difficult to see that 

. 

.91_ = l m 2x . = mx . = p . 
~· 2 J J J QX• 

J 

Since pi = fj' we can also write 

-
~ddt .91__) = p . = f . ax. J J 

J 
' 

which is the relationship between kinetic energy and force. 

1.3 Gravitational Field, Potential 

Let us now return to the law of universal gravitation. It is 

obviously valid for both particles involved, and its meaning depends on 

which particle one associates himself with. This 11ambiguity 11 may prove 

difficult to keep track of. It is, therefore, convenient to regard one 

of the particles as a "source" of gravitation or attracting particle 

and the other as 11 Sensing 11 the gravitation or attracted particle. This 

is known as the concept of gravitational field. It can be mathematically 

formula ted as 
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.. - ~ x. - 3 a .. 
1 a 1 

Note that this is nothing else but the law of universal gravitation 

divided by the mass of the sensing (or attracted) particle, where a1 

is the vector joining the attracted with the attracting particles. 

In the above equation, i 1 is no longer an acceleration of a specific 

particle but an acceleration field; from the mathematical point of view, 

i 1 is a central vector field. If a particle with mass m happens to 

occur at a particular place xi in the field, then obviously the field 

would start attracting it with a force 

f.= mi.= KJ.J!3m a. 
1 1 a 1 

The field can exert a force at a point x1 if and only if m at x1 is 

different from zero, i.e., only if there is a particle present at x1 . 

Since a vector field is more awkward to deal with than a scalar field, 

we shall try to simplify the concept of the gravitational field further. 

We define a scalar field U such that it satisfies the following 

equation: 

au x. = -- = 
1 ax. 

1 

- grad U • 

This scalar field is called gravitational potential or attracting 

potential. It can be thought of as again generating gravitation given 

by 

.. = mx. 
1 
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It can be shown that the potential U of the particle(Xi,J!) is 

given by 

U=-.!5!!: a 

The proof of this formula reads as follows: 

~ = 2..\:!_ aa 
ax; aa ax; 

3 . 2 1 a 3 2 (x.-X.) 
1 1 . -~ = _a - .; 2: ( xJ. - XJ.) = - -· - E (x . - X . ) = --ax; ax; j=l 2a ax; j=l J J 

Hence, 

au ---ax. 
1 

which was to be proved. 

a. 
;)..l 1 -

K a3 -
.. 
x. 

1 

a a 

Considering a cluster of rigidly connected particles and an attracted 

particle, the situation will be very much the same. Disregarding the 

effect of the particle on the cluster, or connecting the cluster to 

the coordinate system, which is the same thing, the attracted particle 

will move according to the sum of all the forces generated by the 

particles in the cluster. The sum F of the forces will no longer be 

described by a central field unless the ·cluster is infinite and 

arranged with a spherical symmetry around its centre of gravity. 

This gravitational field can now again be represented by its potential U, 

defined in exactly the same way as in the case of one particle field, i.e., 



m·x· = - m ~ . 
1 ax. 

1 
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The just described situation can be immediately applied to a rigid body 

that is nothing else but a cluster of rigidly connected particles. Hence 

we may also talk about the gravitational potential of a rigid body or, 

for that matter, the gravitational potential of any physical body. 

The gravitational potential U can either be an explicit function 

of time, i.e., vary not only wi.th place but also with time, or may not. 

When it is, it is called non-conservative potential and the force it 

delivers (is also a function of time) is known as non-conservative 

force. If the potential is not varying with time, it is called 

stationary or conservative and the corresponding force -- m au;ax1 is 

also known as conservative. 

At this point, it comes in handy to realize that we have been 

dealing with two parallel sets of quantities. One set can be obtained 

from the other just by considering the mass m or omitting it. Thus 

we can distinguish the following corresponding pairs: 

(x.' 
l 

m) • X; (particle . . . motion) 
~ . (momentum velocity) pi • X; 

f. 
1 Xi (force . acceleration). 

Defining two more quantities, namely, gravitational (attracting) energy 
~ 

U (usually called the potential energy) as 

~ 

U = mU 
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and kinetic potential T as 

""' T = T/m, 

we can complete the 1 ist as follows 
-v 

T . T (kinetic energy •.... kinetic potential} 
.-J 

u U (gravitational energy .... gravitational potential). 

Based on these two sets of quantities are two branches of 

mechanics: kinetics and kinematics. While kinetics deal with particles, 

and therefore masses, the kinematics deal only with motions and its 

relatives. All the equations we have derived so far, can be formulated 

in both ways. For example 

d (a~ ) Cit ax. = f i 
I 

d (a~ ) = 
dt ax. xi 

I 

• • • • X. 
au 
ax. I 

I 

We shall tend to use more the kinematic approach. 

To conclude this paragraph, let us state without proof one 

useful physical law. It has been established that if the gravitational 
~ 

potentia I U (and therefore even U) is conservative, the tota I energy 

T + U of a particle moving in the field is conserved. This is known 

as the law of conservation of energy and it means that 

E = T + U 

is not an explicit function of time. The consequence is that the 

kinetic energy is not an explicit function of time either. We have 



12 

for a conservative field: 

But 

since u 

-and T is 

is 

~ - ~ 

aE a - - aT au "IT = "IT (T + U) = "IT + "IT = 0 • 

-
~= 0 at 

not an explicit function of time, 
-

!I::; 0 
at 

hence 

not an explicit function of time either. 

1.4) Equations of Motion 

In section 1.2 we have defined the gravitational force by 

fi(t) = m x;ft) 

In classical mechanics, we think about the gravitational energy as the 

only cource of force fi. This leads immediately to the conclusion that 

it is only the gravitational energy that generates the motion of 

particles in classical mechanics. Mathematically, this is expressed 

by our known equation 

or, equivalently, 

x1 (t) 

= _ m aU(t) 
ax1 ' 

These differential equations of second order are hence known as the 

equations of motions (of the particle) in the potential field U. 



13 

Since the potential U is a function of position (as well as time) 

they have got the following form: 

i.(t) + •. (t, x.(t)) = 0 , 
1 1 J 

where, by the symbol •i' we denote the partial derivative au;axi. Hence, 

the equations are not independent--they represent a system of three 

differential equations of second order that can be solved only if •i is 

a very simple function. 

The solution x1(t) is a function of time containing 6 integration 

constants determined usually from the initial conditions, i.e., from the 

state of the motion x1 at a particular initial time t 0 • We may note that 

since 6 constants have to be determined, it is not enough to know just 

the values of the 3 components x1{t0 ), x2{t0 ), x3{t0 ) at t 0 • We usually 

have to know also the velocities ><,<to)' x2(to)' x3{to) at the same time. 

One such solution is possible if U is the central field potential, 

i.e., 

u =- ~ 
r 

3 
where r = I E x~ is the distance of the attracted point from the centre 

i=l 
of the central field taken as the origin of the coordinate system at the 

same time. Then the gradient is given, as we have seen in section 1.3, by 
x. 

au;ax. = - KU -! 
1 r 

The solution was arrived at by J. Kepler at the beginning of the seventeenth 

century on the basis of Tycho's observations and is summarized in his 

three famous laws [Kovalevsky, 1967]: 
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(1) The particle moves on a plane curve of second order and its 

radius-vector sweeps out equal areas in equal time intervals. 

(2) The plane of the curve contains the centre of coordinates that 

coincides with one of the foci of the curve. 

(3) The squares of the periods of orbit on elliptical (circular) 

curves are proportional to the cubes of the semi-major axes of the 

ellipses (circles). 

Let us state here that for a more complicated form of U we are not 

able to use this simple approach and have to go for a more sophisticated 

mathematical treatment. This treatment involves the so-called canonic 

equations of motion and will constitute the rest of the first section. 

The first step towards such a formulation is to rewrite the equations of 

motion in a slightly different manner. 

Since the attracting energy is the only source of force in classical 

mechanics, what is the kinetic energy? It is useful to think about 

kinetic energy as a "measure of force ... Adopting this approach, we can 

say that the force 11exerted on a particle by the attracting energy .. must 

equal the force as 11 indicated by its kinetic energy ... In mathematical 

terms, this reads 

Evidently, this is another formulation of the equations of motion. In 

kinematics, they read 

- 1!L_ = £_ (~) 
oX; dt oX 

i 
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and we may recall having seen them in section 1.3 already. We shall see 

later that these euqations of motion can be further generalized and then 

converted into the canonic equations we are looking for. 

1 .5) Generalized Coordinates 

When describing problems in classical mechanics, we do not have to 

use the Cartesian coordinates as we have done thus far. As a matter of 

fact, it is normally more convenient to use different systems for different 

problems. Some such systems are almost dictated by the character of the 

problem we are to deal with. 

Generally, any triplet of functions 

q . = q.(x.) 
1 1 . J 

of xj can be used for the coordinate system. However, we usually require 

that the two coordinate systems, x1, qj, are in one-to-one relation, 

i.e., that to each triplet x1 there corresponds one and only one triplet 

qj, and vice-versa. Hence, there also exists a triplet of functions, 

inverse to the above: 

x. = x.(q.) 
1 1 J 

This means that the Jacobian matrix of transformation 
( q.) 

J - 1 
ij - (xj) 

is a non-singular matrix and so is its inverse 
(x.) 

- =: 1 
Jij {q.) 

J 
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It is usual in mechanics to extend the definition of such arbitrary 

new coordinate systems to a set of v functions q such that the original 
. a 

(rectangular) Cartesian coordinates are expressed as 

x. = x.(q ) 
1 1 a 

The number v of such new functions must equal the number of degrees of 

freedom of the mechanical system that we want to study. Such functions 

q are usually called generalized coordinates~ since they cannot be 
a 

considered natural coordinates in the three-dimensional space in which 

we work. 

In our case, we shall be dealing with only one particle (point, 

motion) moving in an attracting field considered stationary in the 

coordinate system. Hence, the number of degrees of freedom of our 

mechanical system (consisting of the attracting field and the moving 

point) will be equal to 3. These degrees of freedom can be visualized 

as representing the three coordinates of the point; the remaining 6 

degrees of freedom belonging to the body emanating the attracting field 

are removed by fixing the coordinate system to the body. We shall be 

then dealing with just three coordinates qj and yet call them also 

generalized coordinates, conforming to the custom in mechanics. 

In general, the generalized, as well as the Cartesian coordinates, 

can be defined as varying with time: 

q. = q.(x., t) • 
1 1 J 

Let us have a look at what happens to the velocities and accelerations 

if this is the case. Defining velocity x1 as total derivative of x1 

with respect to time, we have the following relationship: 
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. 
where q. is the generalized velocity. Similarly 

J 

dq. ax. ax. dq. ax. 
qi = dt 1 = at 1 + ax~ -err ;: at 1 + Jij xj . 

Thus the fact that the coordinate systems depend on time gives rise to 

the terms ax;fat and aq1/at {partial derivatives) that can be regarded 

as virtual velocities. 

For the accelerations, we obtain 

2 2 2 .. a x. ax. d q. a x1 dq. dq~ 
X _ 1 + 1 __2+ _.:.J__ 
i - ~t "'q 0 -d-;-tL2--

0 o J aqjaq~ dt dt 

2 2 a x. a x. 
=~+J .. q.+ l q.q 

at 1J J aqjaq~ J ~ 

and, similarly, 

Here again the second partial derivatives with respect to time disappear 

if the coordinate systems are not functions of time or, more precisely, 

if they are only linear functions of time (ax;~at = const., aq;1at = const.). 
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Thus these terms can be again regarded as virtual (accelerations) only, 

i.e. depending on the mutual motion of the coordinate systems, and having 

nothing to do with the mechanical system we describe. 

Two coordinate systems that move with respect to each other with 

constant relative velocity (ax;fat = canst., aqi=/at = canst.) are called 

mutually inertial. Conversely, if their mutual velocities are not 

constant, they are known as mutually non-inertial. ·~e can see that when 

dealing with a mechanical system in two inertial systems of coordinates we 

do not observe any virtual accelerations or forces; this considerably 

simplifies the investigations. 

To make things even more simple, we usually choose the rectangular 

Cartesian coordinate system so that 

ax. 
1 - 0 at- . 

Such coordinate system is called stationary and can be realized by letting 

the individual coordinate axes point to fixed directions among the stars. 

In this system, the fixed stars do not appear to move and we say that the 

coordinate system does not vary with time. It is called the inertial 

frame. 

From now on, we shall assume that neither x1 nor qj systems 

depend on time. Then the relations between the velocities and accelerations 

in the two systems become 

. . . 
X; = ij qj, qi = t;f;j x. 

J 

a2x. 
=1;j 

?2qi 
+ 

. 1 .. .. 
X; = rij qj qjq qi xj +. xjxQ. . 

aqjaq2 axjaxQ.. 
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1.6) Lagrangian Equations of Motion 

At the end of 1.4 we have developed the generalized equations 

of motion. Let us have a look now at what. form will they acquire in a, system 

of generalized coordinates q •• 
' J 

Considering, to begin with, the attractive 

potential U(x.) to be eonservative, we have 
I 

These equations can be ~ewritten as 

au d 
- ax.=Cit 

1 

~ 

We shall show that this term, multiplied bydfki equals to 

5L (ll_) - ll_ dt • . 
aqk aqk 

To show it, let us first express the kinetic potential in 

generalized coordinates. We get 

or 

1 • ax. ax. 
• I I 

T = -2 qJ. 9 --. 
!/, aqj aqf(, 

Differentiation with respect to qk yields 

T 1 a2x. '(lXi 
a (" q" 0 I _: . .t.q'' 
aqk = 2 9J· N aq aq a ~ · j k 9:Q_ J 

realizing that 
. ' 2 aq. a g. a aqi I I . . a 
-= X. =-- ( aqk) x. =-
aqk axjaqk J ax. J ax. 

J J 

(o~) . . 
x. = 0 x. = o. 

I J J 
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where 0~ is the Kronecker o defined as 
I 

0~ 
/1 k = 

=· 
I '-....o k #: i. 

Interchanging the subscripts j and ~ in the first term of the equation 

for aT I aqk we get..----------------. 
,..2 
o X. ax. 

I I 

This interchange is permissible since we deal just with the summation 

i nd i:ces. 

d • 
Let us ROW evaluate the second expression, CfF (aT/aqk). We 

obtain . 
1 aq. ax. ax. 1 ' I • I I • 

(- ..-1.. q - - + - q 2 • R, 2 j 
aqk aqj aq~ 

. 
aqi ax. ax. 
_ __!__I } 

a'\ aqj aq~ 

since obviously ax./aq. is not a function of ~k and 
I J 

a ax. 
- (-1) = 0 • . 
aqk aqj 

Realizing that again 

we get 

Interchanging the dummy index t in the first term on the right-hand side fur j 

we end up with 



21 

d ~T d ax. ax. 
(~) (" I I ) 

dT • = dT qj aqk aqJ. 
aqk 

Carrying out the differentiation with respect to time yields 

L(.£I._) 
ax. ax. a x. ax. ax. a x. __ 1 __ 1 + . I . I • I I = gj q. qR, aq.- + q- ·q dt • aqk aqj J aqkaqR- j aqk aqj aqR- R, 

aqk J 

Now we can subtract from this equation the equation for 

aT/aqk with the result 

aT - --= 
aqk 

or 

that was to be proved. 

Substituting now back into the generalized equation of motion 

we have 

A/ au 'Y d aT aT 
- t:fki aq = <1ki (dt (-. ) - aq). 

k aqk k 

Multiplying the equation by~ik we get finally 

Recalling that conservative U w~ work with is a function of qk only, we 

have 



and also 

Hence 1 defining a new potential 
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au -=0 . 
aqk 

L = T - U 

called Lagrangian potential,or just Lagrangian1we can rewrite the 

equations above in a simp~er form (for U conservative) 

This is the new form of our generalized equations of motion of which the 

original equations were only a special case. These new equations are 

known as Lagrangian equations of motion. An altogether different 

derivation of these equations is given in Appendix 1. 

Note that the Lagtai;rgi~m equations are derived under the 

assumption that U was conservative. In various physical problems, U 

may be given as a function of velocities as well as coordinates. This 

is the case with friction, electromagnetic forces, etc. Such potential 

is also considered non-conservative. Its partial derivatSves<3.t¥/aqk are 

then dJfferent from zero and the Lagrangian equations read 

where the left hand side is evaluated under the assumption of U being 

conservative. 
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1.7) Canonic Equations of Motion 

Let us first call the quantity 8L/8qi the generalized momentum 

Pj. For comparison see 1.2 where the formula aT/8~. = p. was derived. 
I I 

But using the Lagrangian equations we get: 

8L d 8L d • 
~ = --.- = dt pi = pi 
a9 . dt a9 . 

I I 

For comparison see' 1 . 3, name 1 y au/ax. =f. and 1.2, namely 
I I 

As we have done so far, we shall require that, neither T nor U b~ 

an explicit functions of time. Hence 

L = L (g., q.). 
I I 

Then the tot a 1 d i ffe rent I a 1 of the Lag rang i an1Xirt~ri:ti &l', is given by 

dL 8L d 8L d•. =-g.+- g. 
"' I "'• I 
"'9 i "'9 i 

Upon substitution for the partial derivatives from the above formulae 

we obtain 

dL = p. dq. + p. dq.l • 
I I I 

But the second term on the right hand side can also be expressed from 

the following formula for the total differential of the product p.q .. 
I I 

( . ) . . d p.q. = p.dg. + q.dp .. 
I I I I I 1 

Thus we get 

or 
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d(p.q. - L) = q.dp. - p.dq. 
I I I I I I 

• Let us have a look now at the scalar product p.q.. For 
I I 

q. = x. we get 
I I 

Hence 

. . 
p.q. = x.x. = 2T 

I I I I 

Then even in the generalized coordinates the product p.q. has to equal 
I I 

to 2T because T is a scalar invarJant in any coordinate transformation. 

Reallztng that L = T - U, we get 

piqi - L = 2T - T + U = T + U = E. 

We can therefore write 

dE= q.dp. - p.dq .• 
I I I I 

The total p;:~tenti~lE(qi' qi) used in this context is sometimes called the 

Hamiltonian function. As we have seen in 1.3, E in a conservative field 

is not an explicit function of time and thws its total different·i·al does 

not contain the time differential. 

We can now solve the differential equation by writing first 

aE • api • 
aq . = q i aq . - P j · 

j j 

This equation is obtained from the above through a f~rmal 

division by dqj. Here P; -is m>t a .function-cof qj"' ,,, Both 

vectors (velocity and position) must be considered normally ind~pendent 

since we are entitled to cl:loose them beth arbitrarily at the be~rinning 

of the trajectory (see 1.4). The only relationship between then, is 
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given by the equations of motion into which they figure as two sets of 

independent parameters. Therefore we must consider 

Hence 

op./aq. = o. 
I J 

aE -=-aq. 
I 

• p •• 
I 

Then we can write similarly, dividing the orijlnal equation by dp.: 
J 

and again qi being not an explicit function of pj the second term disappears. 

Thus 

The equations (*) and (**) are the canonic equations of motion we have 

been looking for. 

Note that this system of six differential equations of 1-st 

order replacesthe system of three differential equations of 2-nd order. 

They are usually much easier to solve than the Lagrangian equations. 

We shall conclude this section by remarking that for the 

rectangular Cartesian coordinates, the canonic equations can be developed 

almost immediately by writing two sets of equations: the equations of 

motion 

au 
X. =- --

1 ax. 
I 

and the equation for the kinetic potential 

1 • 
T = 2 xi 

. 
x. • 

I 
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We have obviously 

ClT • --= x. 
I • ax. 

I 

• and substituti.ng p. for some of the x. we get 
I I 

. au . aT 
Pj = - ax.- ) X. = --

I ap. 
I I 

Denoting by E (x., p.) the sum T ( p.) + u (x.) ' we fi na 11 y end up with 
I I I J 

the canonic equations of motion in Cartesian coordinates. 

The ~ues.tion then arises as why to bring the Langragian 

potential and all the subsequent quantities into the discussion at all. 

The answer is that we have to in order to show that the canonic equations 

are valid not only for Cartesian coordinates but for qny 

system of generalized coordinates, i.e. to show that the canonic equations 

in Cartesian coordinates above are just a special case of a more general 

formulation. We have thus established that the canonic equations of 

motion are invariant in any admissible coordinate transformation. 



2) Close Satellit~ Otbits 

2.1) Basicsof Celestial Mechanics 

When a satellite orbits around the earth there are various 

forces - some of them -9ravitatJ.ona:t some of them not - acting on it. It 

is advantageous not to talk about these forces directly but deal with 

the potentials corresponding to these forces. By far the most pre-

dominant among all these potentials is the attracting potential of the 

earth. 

The attracting potential of the earth is not too different 

from an attracting potential of a central field. The deviations of the 

actual potential from that of a central field are at most of the order 

of 10-3 (measured by the potential of the central field) as we shall 

see later. It is thus customary to write the formula for the actual 

potential in the following form 

. V= - U = KJL, + R 
r 

where the first term obviously describes the potential of a central 

field with Jl denoting the mass of the earth and r the distance of the 

satellite from the center of gravity of the earth. R represents the 

deviation of the actual potential from the potential of the central 

field. R, as a whole, is as stated above of the order of 10-3 of the 

first term and is usually called the disturbing potential or perturbing 

potential. 

27 
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Since the disturbing potential is very small with respect to 

the main central field potential, it is very convenient to regard in 

the first approximation the problem of motion of an earth satellite as 

motion in a central field. For this type of motion the theory developed 

by J. Kepler holds and the motion presents na serious theoretical 

problem. 

To describe the actual motion, any system of coordinates can 

be used. However, some coordinate systems are better suited for the 

investigations than other. The best one, from the theoretical point 

of view, would be a stationary system, related to the sun. From the 

computational point of view though, this would present us with great 

difficulties because of the complexity of motion of the earth that would 

have to be described. Also, we would loose the opportunity to view 

the motion in first approximation as a motion in central field centered 

on the coordinate origin. Hence, for computational convenience, we 

generally sacrifice the inertiality (with respect to fixed stars) of 

the system and content ourselves with a non-Inertial system concentric 

with the centre of mass of the earth. To make the system close to 

inertial, however, we take the directions of the coordinate axes fixed in 

the star space. This is done by having one axis pointing towards th~ mean 

vernal point. Second axis is let to coincide with the mean axis of 

rotation of the earth and the third completes the rectangular Cartesian 

triade [Krakiwsky and Wells, 1971]. The mean positions of vernal point 

and the axis of rotation are refenPed to a convenient epoch. 
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Since the described coordinate system is not inertial with 

respect to fixed stars, its acceleration (with respect to an inertial 

system) can be observed as a change of geometry of the potential. 

This appears as non-conservative part of the disturbing potential with 

annual period and is treated usually together with the rest of the so 

called ''tidal part11 of the disturbing potential as we shall see later. 

A more serious problem arises from the fact that in the described 

coordinate system, the earth, together with the attracting potential it 

radiates, is moving. It rotates around its immediate axis of rotation 

and it also precesses and nutates. Hence, its attracting potential 

becomes, in this coordinate system, non-conservative. However, there 

are parts of the earth attracting (g'f"aVHational )~potential 

that possess a rotational symmetry with respect to the instantaneous 

axis of rotation. These can be considered as approximately conserva

tive, if we disregard the precession and nutation that,due to their long 

periods,introduce only very minute virtual accelerations. 

Having established this we can now start thinking about a more 

convenient generalized coordinate system linked with the above rectangu

lar Cartesian framework. The most widely used such generalized system 

is the system of 6 orbital elements known also as Keplerian elements. 

Out of these, only 3 play. the role of proper generalized coordinates, 

the rest being linked with generalized velocities or generalized momenta 

as we shal I see later. 

Devised by Kepler they were meant to describe an elliptical 

motion of a particle (originally a planet) in a centr-al field (originally 
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that of the Solar attraction). Although the orbital elements are well 

known to any student of astronomy we shall recapitulate them here for 

the sake of completeness (see also [Krakiwsky and Wells, 1971]): 

CeVIb-e. o~ 
Centre o4! m 
o~ the earth -·-oy-b\t ~. _..- . ...-- · -

semi-major axis of the orbital ellipse 

eccentricity of the orbital ellipse 

inclination of the orbital plane with respect to the equator·· 

right ascention of the ascending node 

argument of the perigee 

mean anomaly. 

The geometric meaning of i, n, w is clear from the di;H ..... ---
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To show the geometric meaning of a and e we have to draw a 

figure of the orbital ellipse: 

Finally we have to explain what the mean anomaly M is. To do 

so we first define the true (real) anomaly f as an angle between 

the satellite and its perigee measured from the centre of gravity of 

the earth. Then we can say that the mean anomaly is an angle between a 

hypothet i ca 1 sate 11 i te moving with constant angu 1 a r veloCity .(observed at 

the centre of mass of the earth) on the actual orbit and the perigee. 

Hence M is a linear function of time 

while f is a more complicated function of time governed by first 

Kepler law. 

The meaning of the e~centric anomaly E is obvious from the 

figure. Its importance is in linking the two aforementioned anomalies 

via two known formulae: 
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1-e f 
E ; 2 arctan (/l+e tg 2 

M = E- e sinE 

see [Krakiwsky and Wells, 1971]. While the ·first formula has got a closed 

form inverse 

,l+e f = 2 arct~(v·-1 --e 
E 

tg 2 ) ' 

the inversion of the second formul:an leads to an infiniterse:rJes. 

We remark that for a motion in a central field the first 5 

Keplerian elements are constant. They describe the size, shape and 

orientation of the orbit. The only element that depends on time is the 

sixth, the mean anomaly in our case. It describes the instantaneous 

position of the satellite on the otherwise stationary orbit. In some 

developments, other anomalies are preferred to the mean anomaly. In our 

case we shall try to work with M wherever possible. 

Using the Kepler laws we can derive the expression for the 

kinetic potential of a satellite. The formula for twice the kinetic 

potential is called the Vis-Viva ln.tegral in celestial mechanics, and 

reads 

X •• X. = I i=,. F , 1 

Here r is the length of the radius-vector of the satellite given by the 

known formulae [Krakiwsky and We 11 s, 1971]: 

r = a /[O-e2) . 2E 2 1-e 2 
s1n + (cos E-e) ] = a l+e cos f 
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To derive the Vis-Viva integral, let us begin agaJnwith the 

motion in central field. The velocity of the satellite~. in rectangu-
1 

lar Cartesian coordinates can be expressed in $pherica1 coordinates 

r. = (r, ~' ¢) as follows 
I 

~. = m .. r. 
I I J J 

where the matrix m is nothing else but again the Jacobian matrix of 

transformation: 

m .. 
I J 

a (x.) 
I = -:-r-r a(r} · 

We can choose the spherical ·coordina~es r1 in such a way as to 

make~ equal to w/2 and ¢ equal 

to the true anomaly f (see the 

Figure). This means that ~ is meas-

~ ured in :the reference plane' perp.endicular 

to the orbit and containing the 

perigee, f is measured in the 

plane of orbit from the perigee. 

The radius-vector r is measured 

from the origin of the coordinate 

system which is the focus of the 

orbital eli~pse(coincides with the centre of the sphere on our Figure). 

The reader can prove that for such spherical coordinates the ~quare of the 

velocity of the satellite is given by 

•2 r2f•2 x.x. = r + 
I I 

(Note that~ =-0!). 
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This equation can be rewritten by means of the chain rule 

for derivatives 

(Note that i = ~ = 0 for the motion in central field!). We get 

whereor/of can be evaluated from the~known formula for r as follows: 

'br esinf 
'Of = r I +e cos f 

Substituting this back into the equation for velocity we get 

x.x. 
I I 

= (I + ~e~ si~2 ! 12 } r2 ;2 = l+e2 + 2e cos f 
(l+e cos f) ( 1 + e cos f) 2 

(2 ( 1 +e f) 2 1 2 '2 cos e - ) = + r f 
( l+e cos f)2 ( l+e cos f)2 

2 <l 2 2 ·2 - ··e: ) = ( l+e cos f r f . 
(l+e c9s f) 2 

Using again the formula for r we obtain 

2 2r 1-e2 r2 
~1+-:-e-:t-co-s....-.,:'f= ,; c··· ~) ' ( f) 2 = a2 ( 1-e2) a 1-e l+e cos 

so that we can write 

2 1 4 '2 2 1 4 '2 x. x. = (- - -) r f = (- - -) _r_ f 
I I r a a (1..:~2) r a av2 

where v ,.; ·4(:r::::o:- e 2) ·;. . 

2 "2 
r f 

To evaluate f let us recall the 1-st Kepler law. It requires 

that the area A of the quasi-triangle P1P2C swept by the radius-vector 

r in a time interval ~t be constant 1 i.e. 
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A/bt = k = const. 

Making the time interval At infinitely small, the area A can be computed 

from the following formula: 

A = 1 i m .f .. .!:. b f. 
bt-+0 ; 2 

Substituting this back we obtain 

. 

2 2 
k I . r b·f r • =tm--·=-f 

bt-+0 2 bt 2 . 

Hence f is inversely proportional to 2 
r • 

We can now rewrite the formula for the velocHy as 

x.x. = (!- ..!..) k;': 
11 r a-2-, 

av 

Let us now multiply the equation by half of the mass of the satellite. 

We get 

J 

the kinetic energy. The first term on the right hand side obviously 

varies with time while theysecond is constant. The only explanation 

for it is that the first term represents the negative a.;:tta¢ttm· energy: 

mk* --2=-u 
rav 



while the second term is nothing but the total energy E, which we know 

is constant for a motion in conservative field 

mk* 
2 2 = - E. 

2a v 

But, f,r;om our earlier explanations, we know that the potential 

energy of the central field is given by 

~ KJ.,{_ 
U =- m

r 

which must result in the following equation 

k* ll 
--2 = K~, 
av 

where.Jtis the mass of the earth. Thus we finally end up with the vis-

viva integral which we set out to prove. 

Let us now go back to the real earth and the actual potential 

U governing the motion of the satellite. This motion will no longer 

be a plane Keplerian motion. In the real case, all the orbital 

elements vary with time (not only the anomalies) and we are faced with Cl 

much more difficult problem. 

Probably the easiest way to solve the problem, i.e. to derive 

the expressions for motion or as we say in celestial mechanics, to 

predict the orbit, is to first establish a system of canonic equations 

of motion using a convenient system of generalized coordinates. These 

equations can be then solved or transformed to something else. 

2. 2) De 1 auney Coordinates, Lagrangian and Hami 1 ton ian:Jn O:e'lail'rt~¥ Ceo-rd fhat,.;!. 

The most natural choice of the generalized coordinates is the 

choice of the last three orbital elements: 
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in this order [koval.evsky~ 1967land other ]. These particular coordinates 

were first suggested by a French astf:'onomer Delatiney~ whose name they 

usually bear. Delau.ney has also shown that choosing these coordinates 
'. 

q. we get the generalized momenta p. = aL/aq. (see 1.7) given by the 
I · ... I I 

following equations: 

p1 = /(KJ/a), (= p1(a)) 

p2 = /(KJia v 2) = p1v , (= p2(a1e)) 

p3 =cos i I(K.lia v2) = p2 cos~i (= p3(a1e1i)). 

S i nee the derivation of the genera 1 i zed rMiri:letfiff$ .. · is quite i nvo 1 ved ~ we 

are not going to prove the above formu 1 ae here [.~'ci.t"eiiAa~' 1967]. 

We can now derive the Lagrangian and Ham i 1 toni an p~teJi.tJ:aJ.$, for 

this particular system of coordinates. Recalling the formula for the 

Lagrangian pot~ntJa l ( 1. 6) 

L = T - U 

and making use of the Vis-·viva integral as well as the formula for U 

from the beginning of 2. 1, we get 

L = ..!_ Kj,l(~- ..!_) + (Kj,l+ R). 
2 r a r 

Note that we can use the Vis-Viva integral even for motion in non-central 

field because,although it was developed for Keplerian motion originally, 

it was shown to hold true for any motion, that is even if a and r changes 

wi-th time. The a~ove· equation yields 
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and L can be subsequently expressed in terms of q. and p .. We are not 
I I 

going to do it because we do not need this result directly. 

The Hamiltonian function (see 1.7) needed for the canomic equation 

E = T + U 

is similarly given by 

. KJL 2 1 
E = -2- (-; - a-) - (KJ.l+ R) 

r 

= - KJL - R 
2a 

Expressing a in terms of p1 we obtain 

It should be noted that the validity of the canonic equations 

based on this Hamiltonian is guaranteed only if U is conservative and 

hence if R is not an explicit function of time. In the forthcoming 

discussion, we shall assume that R does not depend on time· while 

keeping in mind that there are components in R which are definitely 

time dependent. The consequences of this assumption will be pointed 

out wherever appropriate. 

Let us conclude this section by stating that this choice of 

generalized coordinates is not suitable for circular or equatorial orbits. In 

U1ecase of a circular orbit (e = 0) we obviously get p2 = p1; for 

equatorial orbit (i = 0) we have p3 = p2. This reduces the number of 

independent canonic equations and prevents us from solving them. For 

this reason, Delauney came up with another set of coordinates suitable 

for circular and equatorial orbits. These are 
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ql = ql + q2 + q3' q2 = q2 + q3' q3 .- q3 . 
These yield 

pl = pl' Pz = P2 - pl ' p = p -
3 3 Pz 

[Kaula, 1962]. In our development we are going to deal wi th the f i rs t 

set of Delauney's coordinates only. 

2.3) Canonic Equations and their Transformation to Velocities in 

as 

Orbital Elements 

The canonic equations of motion can now be written (see 1.7) 

;aE 
aq. 

I 

• aE q. =-
' ap. 

I 

where q. are the Dela~ney's coordinates and p. the Delauney's generalized 
I I 

momentt~~. In order to be able to use a compact notation in the forth-

coming argument, let us perform one change in the Delauney 1 s variables, 

namely the first, i.e. M. 

The 4-th canonic equation reads 

or 
~R(qi' pi) 

apl 

Obviously, if the disturbing potential R equals to 0, the above equation 

describes the time change of the mean anomaly of the motion in central 

field, i.e. the Keplerian motion. Denoting the mean anomaly of this 

Keplerian motion by M* we get 
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This result provides us with an opportunity to see how the 

3rd Kepler law can be used when working with the Keplerian motion. The 

above formula can be indeed obtained directly from the 3rd Kepler law 

and the derivation Is given in Appendix 2 . 

Substituting this result back into the canonic equation of 

motion we get 

~ (M-M,~) = t1M = - l!L . 
dt ap 1 

where ~M is the deviation from Keplerian motion. 
On the other hand the remaining equations can be all written 

in a straightforward manner: 

~E aR aR 
pl = ---=-=-- ' aql aql 3M I 

aE aR aR 
p2 = - -=·-=-

aq2 aq2 aw 

• aE aR aR 
p3 = - -=--=-

aq3 aq3 3Q 

and 

aE aR 
q2 = w = ap2 = - ap2 ' 

• aE 3R 
q3 = Q = ap3 = - ap3 • 

Hence, taking the difference aM of the two anomalies M and M*.jnstead of M 

as the first generalized coordinate,we end up with a new system of 

equations 
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aE aR ~ = ·L = - l!L pi = --=- q. aq. aq. ' I ap. ap. ' 
I ' I I 

with q. denoting the vector (6.M' w, Q) and q. - (M, w, Q). I. nspect i ng 
I ' 

the new system of equations we rea 1 i ze that the right hand sides are 

nothing else but gradients of R expressed in the two coordinate systems 

q. and p .. 
I I 

Even this new system of equations is still difficult to handle 

because of the presence of generalized msmenta. it would be 

preferable to have the equations formulated in such a way as to contain 

only the orbital elements so that we could use the1 constant values 

characterizing the plane motion as direct first approximation. This 

can be done without too much of a problem in the following manner. 

Let us denote the vector (a, e, i) by k.. Then we can write 
J 

l!L=A l!L 
ak. i j ap. 

J I 

where Aij is the Jacobi an matrix of tran sforma t.i on p 1 + k j 

Then 

A .. 
I J 

a ( P.) 
I 

a (k.) 
J 

l!L=-4 l!L 
ap. ji ak. 

I J 

where;4ji is the inverse of the Jacobian.rhatrix~i' if it exists. 

On the other hand, we can write for the generalized rife~,nta: 

dp. Clp. di<. Clp. 
pj. = .:.:...L = -.:...L _._1 = ,....:....L k 

dt ak. dt ak. i 
I I 

Here Clpj/ak 1 is nothing else but the transposed Jacobian matrix,v1ji so 

that we have: 
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p. =.A .. 
J J I 

. 
k •• 

I 

Substituting into our modified canonic equations for oR/op. and 
I 

for p. we obtain 
J 

The first equation gives 

.A · aR 
· j i ki = aq. 

J ' 
! R 
qi = -v4 .. ~k •. 

J I J 

i<. =A .. ~R 
I I J oq, 

J 

These two systems of equations relate the velocities of. orbital elements . 
(k., q.) with the gradient of R expressed ink and q coordinates 

I I 

respectively, i.e. the acceleration of the disturbi~g force expressed in 

k and q coordinates. 

Problem: 

Show that (the "transposed" inverse oft .. ). 1J 

2a, 2 v /e, 0 

v{ .. 
a (k.) 

1 cot 
=~ =- IKJtl a) 0, -vie, 

J I \) 
I 

o, 0 
-1 

' \) sin 

where v 2 = 1 - 2 e • 

i. 

Since the derived equations are of fundamental importance to 

us we shall spell them out in full. 
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1 2 
~!B.) e = li(KJla) 

,~~-
' e oM e aw 

• 1 (cot _l2! _ lJ ~) i = li(KJla) v aw v sin an 

1 2 
llM = li(K:U:a) 

(- 2a ~- ~~) ' aa e ae 

1 (~~- cot .. ~) w = li(K:.Ala) } e ae v 0 i 

• 1 aR 
n = li(Klla) v sin "IT 

where we have substituted the orbital parameters for the generalized 

coordinates ki, qi, qi. Denoting by K the vector (k., q.) and by KN a I I ~ 

the vector (k., q.) (a = 1, 2, •.. , 6) and introducing a 6 by 6 
I I 

[ !3 l = [-A~. 
Jl 

.4. .. 1 IJ 

·o 

we can write the above equations of motion in orbital parameters as 

R = m aR 
a WSa oK 13 ' 

These equations can be regarded as transformed equations of 

motion again. We can notice that in absence of any disturbing potential 

(R = o) we get aR/aK13 
. 

= 0 and therefore K = 0. a 
Then none of the orbital 

elements a, e, i, w, n varies with time and we obtain again a stationary 

planar (Keplerian) orbit. As far as llM is concerned, we get: 

M - M* = 0 

or, in other words, the mean anomaly of the motion equals the mean anomaly 

of the Keplerian motion, up to a constant term. 
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2.4) Velocities in Orbital Elements in Terms of Orbital Forces 

It is sometimes handy to know the 11 response11 of a satellite 

orbiting around the earth to forces expressed in a rnore readily under-

standable form than gradients in k and q systems. Thus, for instance, . 
we want to know, what would be the orbital element velocities K in 

a 

response to radial, tangential and normal orbital forces. To answer 

this question we define a new system of coordinates~., moving with 
I 

the hypothetical Keplarian satellite, with one axis pointing in the 

direction opposite to the direction of the radius vector, one pointing 

in the direction perpendicular to the radius-vector and laying in the 

osculating half-plane containing the positive branch of the orbit to Which 

it is amost tangential and the· third normal to the first two_ma-king a 

positively oriented orthogonal system of axes. Denoting the coordinates 

along these three ax~s by p, ~. n we can write 

(p, •, n) = ~ .. 
I 

The forces acting on the 

satellite can be split into 2 

parts: 1st due to the central 

field, 2nd, due to the disturb-

ing field. As we have seen 

already, the first part does 

not cause any changes in the 

orbital elements K - (a, e, i, a 

~M, w, n). Only the disturbing 

field has any effect on these. Hence in this development we shall 

assume the disturbing force only, for which we can write 
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F. = - ~~ 
I O<;,• 

I 

where F. are the components of the acceleration belonging to the dis-
1 

turbing force in our new system t; .• 
I 

Between the accelerations expressed in t;, k and q coordinates, 

the following transformations hold 

where 

~~- = ~ i ~~. ' 
I J 

1B_ =ai l!L 
aq. ji at;. 

I J 

~ = a(t;.) ' 
ji an& 

I 

~ = a(t;.) 

ji ~ 
are the Jacobi an ·matrices of transformation. 

Substituting these equations back into the equations for 

orbital element velocities we obtain 

1. Jo a R c:r- aR rr-
qi = -.:n::ji LR-j os2 =.:rR-i osR- = -.TR-i FR.' 

. (,.. ·!. )·.. .! 
Denotlng again. 1«1.,;. ~:r by Ka. we can combine the two equations into one 

and write 

where 
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is a 6by 3 matrix of functions of orbital elements. The reader may prove 

that the explicit form of the above equation reads [Tucker et al., 

1970]: 

2 2a\12 
a = Q(2a e sin f F1 + ~ F2) ' r r 

2 2 
Q(~ sin f F1 + (e + (1 av ) f) F2) e = +--cos , r r 

= Q cos (w + f) F3 

t:.M = Q-1(2- av2 cos f)Fl - (1 + av2)sin f F) 
V\! re r e 2 ' 

w = Q(- av2 cos f (l + a})sin f F _ sin(w+f) ) 
re F 1 + r e 2 tan i F 3 ' 

'"' sin (w + f) 
•b = Q F3 , sin i 

where by Q we denote 

individual 

forces may 

Note that 

coincides 

r , 1 
Q =- v--n- • v K.M.a 

These equations are helpful to study the influence: of the 

disturbing forces acting on the sate 11 i te, even though the 

not be stationary and hence may not satisfy the equations. 

for satellites with sma 11 excentricity e, F2 practically 

with the tangent to the positive branch of the orbit. 
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2.5) Disturbing Potential 

In 2.1, we have introduced the term disturbing (perturbing) 

potential R for the deviation of the actual potential of all the 

forces acting on the satellite from the potential of the central field. 

We have also seen that in order that the developed theory hold, R has to 

be conservative, i.e. not explicitly dependent on time. We shall now 

try to track down the individual components of the disturbing potential. 

2.5.1) The far most important component of the disturbing potential is the 

one arising from the flattening (ellipticity) of the earth. The fact, 

that the earth is more or less ellipsoidal, with flattening of the 

order of l/300 [IAG Special Publication, 1981], causes the close 

external gravitational field to deviate from spherical symmetry. The 

equipotential surfaces, that can be used to depict or map the attracting 

field, have approximately the same flattening. This flattening corresponds 

to the difference of equatorial and polar radii, of the same equipotential 

surface, which is of the order of 21 km. 

The component of R due to this ellipticity is known as the 

ellipticity term and we shall denote it by RE. The elliptic term is 

rotationally symmetric, which means that the fact that the earth rotates 

underneath the orbit does not introduce any variations in RE. Hence, 

in our coordinate system, RE is stationary (up to the influence of the 

precession and nutation). 
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2.5.2) Remaining irregularities of the earth external gravitation field 

can be lumped into another part of the disturbing potential, R1. Since 

these two terms, RE and R1 are of the utmost interest to the geodesists, 

we shall deal with them in a separate section. Let us just mention here, 

that the irregularities of the gravitational field can be split into two 

sub-parts, Rrs and RIN' where the first sub-part is again rotationally 

symmetric. Obviously, neither RE nor R1 depends on anything not even 

the mass of the satellite. It influences "massive" as well as "1 ight 11 

satellites in the same way. 

2.5.3) As the satellite moves through the earth atmosphere it collides 

with the air molecules. These collusions result in 11 friction" between 

the satellite and the air which is usually termes air drag. The force 

due to the friction is known to be acting opposite to the direction of 

motion and is in magnitude proportional to the velocity of the motion. 

We shall denote the potential of this force by R0. 

Since the atmosphere is denser at lower and thinner at higher 

altitudes, the air drag causes the satellite to slow down more at the 

vicinity of the perigee. The consequence is that the altitude of the 

apogee gets reduced and the orbit becomes more and more circular (e + 0). 

From the formulae for orbital parameter velocities (2.4), we can see that i 

and~ are not influenced at all, at least in the first approximation. 

The magnitude of the air drag depends on the shape and size of 

the satellite as well as on the density of the atmosphere. Evaluation of 

air drag is a difficult proglem, not only because of our incomplete 



49 

knowledge of the air density distribution but also because the potential 

R0 is not strictly stationary. It would be stationary only for a perfectly 

symmetrical atmosphere. 

2.5.4) Solar radiation in a whole spectrum of frequencies introduces another 

force - solar radiation pressure. The direction of this force is always 

given by the direction Sun - satellite and its magnitude depends largely 

on the specific mass of the satellite. Lighter and larger satellites are 

subjected to more pressure than heavier and smaller ones. It has been 

established from experiments that the solar radiation pressure becomes 

particularly significant at altitudes above 1000 km, where it becomes more 

important than the air drag even for small and heavy satellites. 

The potential of the solar radiation pressure, Rp, is, thus non

stationary. It influences all the orbital elements. 

2.5.5) The Sun, and also the Moon, influence the satellite also by their 

Newtonian attraction. These two celestial bodies (strictly speaking all 

the celestial bodies) radiate their own attracting potentials that 

interfere with that of the earth. This part of the disturbing potential, 

RT' is known as tidal and obviously varies with the positions of the Sun 

and Moon, and hence with time. It therefore is also non-stationary and 

influences all the orbital elements. 

2.5.6) Relativistic effects are of several different kinds. The largest, 

(almost 100-times larger than the rest), and therefore most important, is 

the secular influence on the motion of perigee w. It is due to the fact 



50 

that the equation.~of motion in a central field formulated by the general 

theory of relativ~ty ·is not linear (as it is in the classical mechanics). 

The influence of the non-linear terms results in the orbital period to 

be slightly longer than 2Vmaking thus the perigee to advance by a small 

amount every turn. Although the potential RR of this virtual force is 

non-stationary, the relativistic effect can be built in the mathematical 

model and accounted for quite properly without too much of a problem. 

2.5.7) As the satellite moves through the ionosphere,i~ acquires an 

electrical charge. Then its electr-O<Statfc field starts interacting with 

the magnetic field of the earth influencing the motion of the satellite 

to a certain degree. The potential of this disturbing force is very 

similar to that of the air drag but even more difficult to deal with 

mathematically. This electromagnetic disturbing potent~al RM is 

definitely non-conservative and depends on the electrical properties of 

the satellite, its direction with respect to the earth magnetic field 

and other parameters. 

In recapitulation we can Ju•t state that the disturbing 

potential R can be written in first approximation as a sum of 8 terms: 

R = RE + RIS + RIN + RD + Rp + RT + RR + RM 

where only the first two can be regarded as sctrictly censervative. Hence, the 

theory we have developed thus far, can be appl led only~' the first two 

terms. The rest has to be dealt with in a more sophisticated way which 

shall not be treated in this outline. More detail can be found in 

[Kaula, 1962; Kaula, 1966]. 
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Finally, let us mention here that the centrifugal force arising 

from the earth•s rotation that plays an important role in physic~l geodesy 

does not appear here at all. The reason for this fact is that the satellite 

is not rigidly connected to the earth; the earth rotates underneath its 

.orbit freely and its rotation is felt by the satellite only in the time 

changes of RIN (and R0, RM in a lesser degree). Thus the necessary link 

giving rise to the centrifugal force is missing altogether. 

2.6) Orbit Prediction 

If we kn·~ the disturbing potential R then the equations of 

motion in: orbital elements derived in 2.3 could be used immediately for 

orbit predictton. The orbital elements at any given instant t 1 could 
.. 

be computed by integrating the mentioned differential equations as 

fo 11 ows 

-
where K (t) is the known position of the satellite at the time t 0 Ct 0 

(initial position). 

Unfortunately, the disturbing potential is never known precisely 

and in addition R is a function of time too. Hence the integration above 

can yield only an approximate orbit. However, by comparing the approx.imate 

orbit with· the actual (obs.erved), we-get a discrepancy that can be further 

· analjsed, R improved and the prediction bettered on the basis of this 

improvement. 
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An alternative approach that does not require the knowledge of 

R is used by the Smithsonian Astrophysical Observatory [Veis and Moore, 

1960] by which the orbital elements at an instant t 1 are computed from 

the following formula 

K (tl) = K (t ) + PN . (tl-t ) a a o ,a o 

where PN (t 1-t ) is a generalized polynomial of N-th order. It is com-,a o 

posed of algebraic, trigonometric, hyperbolic and exponential functions of 

the time interval t 1-t0 • The coefficients of this polynomial are deter

mined by the least-squares approximation of a known piece of orbit 

(called sometimes arc). These coefficients can be, of course, updated 

in much the same way as the solution of the equations of motion in the 

first approach, Using again the obsevved discrepancies between the 

predicted and actual orbits. 

In the orbit prediction we are not restricted to use the 

orbital elements only. It is quite common to useothercoordinate systems 

too. The geocentric rectangular Cartesian coordinates are quite popular 

for this task. 



3) Gravitational Potential of the Earth 

3. 1) Gravitational Potential in Spherital Har~onics 

In Physical Geodesy the earth gravity potential (in spherical 

coordinates r, 6, A) 

is used [Vanf~ek, 1971]. Here by U we again denote the attracting. or 

gravitational potential and the second term is the potential of the 

centrifugal force where w denotes the angular velocity of the rotation of 

the earth. For the gravitaticrat·potential l1 outside a sphere of radius 

r0 ,concentric with the coordinate system and containing the whole earth J 

it was found [Vanf~ek, 1971] 

r n+l 
u =- ~ (~) 

n=O r 

n 
~ (A cos mA + B sin mA) P (cos e), 

m=O nm nm nm 

a series of spherical harmonics. 

In this formula r > r , P (cos e) is the associated Legendre o nm 

function of n-th order and m-th degtee [Heiskanen and Moritz, 1967], and 

A B are some coefficients depending on the distrubition of masses nm' nm 

within the earth as well as on the position of the earth with resp,ect to the 

·coordinate system. They are usually called harmenic or potential ·coefficients. 

As we have already said earlier, when dealing with extraterrestrial 

objects like satellites,we do not have to worry about the centrifugal 

force. Hence our dealings will be solely with the gravitational 

potential U. 

53 
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A considerable simplification can be achieved by choosing the 

coordinatesystem so that its origin coincides with the centre of mass 

of the earth. In this case all the terms of 1-st degree (containing 

n = 1) disappear. It also is customary to orient the fundamental axis of 

the coordinate system (e = 0) to coincide with the mean rotational axis 

of the earth. The plane~= 0 is required to pass through the 

Mean Greenwich observatory. In addition, the reference sphere of 

radius r0 is usually chosen so that its radius equals the semi major 

axis ae of the mean-earth ellipsoid as defined in Physical Geodesy. Then 

the expression for U becomes 

a [ (I() a n n 
U = - ~ • A + 1:' (~) 2: (A cos m~ + B sin m~) P (cos 

r oo n=2 r m=O nm nm · nm 

We can see now that the only term that does not depend on e or 

~ is -(ae/r)A00 • This is 1 hence,the term describing the part of the earth 

gravitational potential corresponding to the central field (we recall 

that the central field is defined so that it is not a function of either 

e or~). But the central field potential is given also by -(KJU)/r, 

whereJl is the mass of the earthoinduclr-n!\} lts atmosphere. Thus we get 

A 
00 

KJL =--a e 

The gravitational potential can then be written as 

M[ oo ann ~ L(r,~ ,~j=- ~r 1 -n~2 ( er) L: (Jnm cos m~ + K sin m~) P (cos e) 
m=O nm nm 

where 

=- K nm =-
a 

B e 
nm KJL, • 
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It should be noted that some authors use the normalized 

-Legendre associated functions P instead of P : nm nm 

-p 
nm 

= ;2(2n+l)(n"'m)_! P 
(n+m)! nm' 

-Use of P instead of P results in a different set of harmonic nm nm -coefficients, C , S . that are, in addition, taken usually also with nm nm 

the opposite signs to Jnm' Knm giving thus 

c = -nm 
I ( n+m)! 
2(2n+l) (n-m)! Jnm 

S - - I (n+m)! 
nm - 2 ( 2n +1) ( n-m) ! Knm 

These coefficients are known as normalized harmonic coefficients. 

Referring to 2.5 it is not difficult to see that 

..Uoo ann 
RG = RE + R15 + RIN =_E._ E (~) E (J cos mt..+K m sin m>..)P (cos 8). 

r n=2 r m=O nm n nm 

The,question arises now as to which terms of the series of spherical 

harmonics can be 1 isted undertthei Individual parts RE' R15 , RIN' 

Evidently, only the terms that do not depend on A. will represent the 

stationary part of the disturbing potential, i.e. RE + R15 • This is 

because they represent a field possessing rotational symmetry so 

that when the potential rotates with the earth there are no time vari-

atlons in this part of the disturbing potential. Further, by RE we 

understand that part of U containing J 20 only. Thus we get 
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K,M_ QQ 
a n 

R =--I: (~) J p (cos e) ' IS r n=3 r n n 

KJA 00 a n n 
RIN = --- I; (~) E (J cos mA+K sin rnA.) p (cos e) ' r n=2 r m=l nm nm · nm 

where we have denoted Jno by Jn and Pno by Pn. It can be shown that 

P (cos e) are just the ordinary Legendre polynomials of m-th .degree. 
n 

We conclude this section by stating that the terms in the 

series expressing R15 are called zonal harmonics. The terms in the 

double-series for R1N are known as tesseral harmonics. It is particularly 

popular to use the normalized harmonic coefficients for the tesseral 

harmonics yielding: 

JJ a n 
R = ~ ~ (~) 

IN r n=2 r 

n 
I: (Cnmcos rnA.+ S sin mA.)P (cos e). 

m=l nm nm 

In this outline we shall be using only the common harmonic coefficients 

J , K m wherever possible. nm n 

3.2) Connection Between the Disturbing Potentials RG and T 

The disturbing potential RG as developed in 3.1 is obviously a 

scalar function of the 3 spherical coordinates r, e, A.. What is probably 

less obvious is the fact that it also is related to the sphere of 

radius ae or, as we would say, to the reference sphere r = a6 . If we 

regard the sphere as being massive with spherically distributed mass 

then the reference sphere can be visualized as generating the central 

field with potential -(KJ!)/r for r > a • e 
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Similar a:ppr<:>-1ic:h is used in Physical Geodesy where instead 

of reference sphere a reference ell ipsoiqd is introduced. This mean

earth ellipsoid is defined by its position and orientation (concentric 

with the earth and its semi-minor axis coinciding with the mean axis of 

rotation of the earth), size and shape (usually a and flattening f
e 

do not mix up with the true anomaly of the Keplerian motion) and some 

physical properties. The physical properties are its mass (equal to 

that of the earth), the distribution of masses within the ellipsoid 

(chosen so that its equipotential surface v*= W ; of its attracting 
0 

p.etc;Ot i aJ.J co i Mc i·.Oes wi t.b -the sur-face ef <the e Ui psoi.d where 1.,./0 is the 

potei1tialon the geotd ) and its rotation. It rotates around its 

semi-minor axis with the same velocity as the earth does, i~e. with 

velocity w. 

The mean-earth ellipsoid is then said to generate the so-called 

normal gravity potential which can be written as follows 

l 2.~2: 2 
V*=-U*+ 2 r -w•- cos 8 

where U* is the gravitational (attraction) part and the second term on 

the right-hand side Is the potential of the centrifugal force, identical 
)) l) 

to that of the real earth. Since our massive ellipsoid is not only 

rotationally symmetric but also symmetric with respect to its equator, 

the gravitational potential U* must have the same properties too. Hence 

developing U* into spherical harmonics they must i) be functions of 8 only; 

ii) contain only even 

degree harmonics (the odd degree harmonics acquire opposite values on 

Northern and Southern ''hemispheres11 ). We can thus write 



58 

Ji a n 
Ui~ = .., .!S_ ( 1 - l: (~) J*P (cos e)) 

r n=2 ~ 4' . . r n n 

where J;~ are some harmonic coefficients, generally different from J in 
n n 

3. l. 

The difference between the actual potential of the earth Wand 

the normal potential is called the disturbing potential T (do not mix up 

with kinetic potential): 

T = W - \fi< ·:..',~*:: ::r4.;r2, ~~ cos2 e 
The determination of the disturbing potential T (and some quantities 

closely related to it) is one of the main tasks of geodesy. It will also 

be our main task in this outline. Thus the question arises as what is the 

relationship between RG and T,i.e. can we use the 11 terrestrial 11 dis

turbing potential T for orbit prediction and inversely, can we use the 

RG sensed by the satellite to help us solving the terrestrial problems? 

The question can be easily answered by equating the actual 

potential of the earth using the two gravitational potentials U and U*. 

We get 

.... u+..Lrr2 .28 ... " .... +..!_ 2:::2 ·"'2a.+T 
2 w · co·s ·-u" 2 r ·., .. or cos· . 

According to 3.1 

- KJ.l .., 
U = r RG . 

On the other hand 

n 

u'~ = - K..M + KJ.t E ( ae) J'~P (cos e) = 
r r 4 r n n 

n=2, , •• 
- K.Al + Z 

r t • 
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Hence we get 

which is the relation we have been seeking. 

Let us now, have a closer look at the series Zt of even-degree 

zonal terrestrial harmonics. Since the potential ~is defined so that 

the equipotential surface 

is a surface of an ellipsoid of rotation with semi-major axis ae and 

flattening f, there must be a filationship between the harmonic coefficients 

J;~ and the geometriC': parameters of the ellipsoid. Such relationships 
n 

were found by various authors and we shall just state without proof the 

formula for J~ that can be found in most geodetic literature; e.g. 

[Heiskanen and Morttz, 1967]: 

where 
-2 w a 

e m =--
Ye 

ye stands for the magnitude of normal gravity (!vvr? on the equator 

of the mean-earth ellipsoid. Similar formulae exist also for higher 

-I\ 
degree harmonic coefficients J • 

n 

J~ can be also expressed in terms of other parameters of the 

mean-earth ellipsoid. The following equation 

Ji'\ = 
2 
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is well known [Heiskanen and Moritz, 1967]. Here C :and A are the 

moments of inertia of the ellipsoid with respect to its axis of 

rotation and with respect to any 1 ine in the equatorial plane. 

The perphaps most disputed techn~q~e Of determining the J~ and 

other J* (n even) terms is based on the theory of equilibrium of a 
n 

totating liquid body. This theory teaches us that if the earth were 

completely liquid and spinning with velocity w, its shape would be 

very close to an ellipsoid of rotationj The flattening of this 

hydrostatic equilibrium shape would be given by approximately 1/300.0 

as opposed to 1/298.25 as derived from the actual observat•:i•ons, 

terrestrial or satellite [Caputo, 1967] hence giving two different 

values of J~. This discrepancy cannot be explained by observational 

errors and has to be considered real. It is probably caused by the 

departure of the real earth from fluid (or plastic) state. The existing 

hypotheses are still matter of a controversy, 

Finally, let us say something about the magnitude of the harmonic 

coefficients generally. The far predominant among all of them is the 

coefficient J~ or J2 which is of the order 10-3. It is in absolute value, 

about a 1000 times larger than any other harmonic coefficient. This is 

the main reason why its contribution to the distrubing potential (RE) is 

singled out and dealt with separately. The rest of the harmonic coef-

ficients, as experience has shown, decrease with increasing degree. 

The best known experimental rule for this decrease is due to Kaula and reads 

n 
-::---"';'""/ L: 
2n + m=O 

2 2 (J +Kc-) = 
nm '"hm 
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[G.aposhkin and Lambeck, 1970]. It became known as the Kaula's rule of 

thumb. More recent investigations have produced more complicated 

experimental formulae but the improvement gained does not seem to be 

too significant. 

3.3) Gravitational Disturbing Potential in Orbital Elements 

In 2.3 we have derived the equations of motion in orbital 

elements containing the gradient of R, i.e. oR/oq• and oR/ak .. Con-
I I 

sidering the influence of all other parts of R but RG removed before

hand through corrections to the observed orbitsJwe can express the orbital 

element velocities R as functions of the gradient of the gravitational 
CJ. 

disturbing potential RG: 

In 3.1 we have come up with the expression for RG as a function 

of spherical coordinates r. = (r, 8, A). To be able to use this 
I 

expression in the above formula we would have to compute the Jacobian 

of transformation 

and write 

!. 

K = 
CJ. 

This approach would be equivalent to the classical one which we are 

going to outline. 



62 

The classical approach of celestial mechanics is based on the 

transformation of RG(ri) to RG(Ka). It is preferable to the above 

technique because of the possibility to treat K in the 1-st approximation 
a 

as independent of time (because of the closeness of the actual orbit 

to the plane Keplerian orbit). On the other hand, the derivation of 

the formula for RG(Ka) is very laborious. For the reason of avoiding 

the voluminous manipulations we shall just introduce the final result 

leaving it on the interested reader to fill the gap from any textbook 

on celestial mechanics [Kovalevsky,l967; Caputo, 1967]. The final 

formula reads 

11 - a n 
R = _KJ_IA.. 'l (.J:.) 
G a n=2 a 

n oo 

E F (i) E G (e)S (M w, 
m,p=O nmp q=- oo npq nmpq ' 

n, e) 

where F (i) and G (e) ate some complicated functions of i (inclination) nmp n.pq 

and e (excentricity) .. They aga·incan be found in the textbooks and for the 

sake of completeness we include the list ·af some of their components +n 

Appendix 3. The 3~rd function S is of a less complicated nature and reads 

;- J cos lP - K sin 1/J for n-m even nm nm 
s = nmpq \_ 

Jnm sin 1/1 + K cos 1/1 for n-m odd nm 

where 1/J = 1/J (n, m, p, q; M, w, n, e) is a,·linear function w,M,n given by 

1/J = (n-2p)w + (n-2p+q)M + m(n-e) 

... nd 8 denotes the 'true Greenwich Sidereal Time (do .. not mix up with the 

second spheri~~{· co~~dlnat~), describing the rotation of the earth under-

neath the orbit. 
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Using the formula for RG~ its three constituents RE' R15 and 

RIN can be written as follows: 

R = K)l te) 
2 ~ F ( i) ~ G2 (e) S (M, w~ rl, 8) • 

E a a p=O 2op q=-oo pq 2opq 

Here 

SZopq =- .... J 2cos [(2-2p)w + (2-2p+q)M] 

so that we obtain 

00 

L F2 (i)G2 (e) cos [(2-2p)w + (2-2p+q) M] , 
q=-oo op pq . 

a linear function of J 2. The zonal harmonics contribution yields 

Jl oo a n n oo 
R I S = _K - L 3 ( ~) E F ( i ) E G (e) a n= a 0 nop npq p= q=-oo 

.[Jncos [(2-2p)w+(n-2p+q) M]} 

J sin [(2-2p)w+(n-2p+q) M] n 

where the upper expression in the braces. (} is valid for n even and the 

lower for n odd. This can evidently be simplified to 

Rl S =- _K- L (~) J E L: ,J no ( i) Gn (e) · , 
j( oo a n n oo r·cos[(2-2p)w+(n-2p+q)M]J 

a n=3 a n p=O q=-oo P pq sin[(2-2p)w+(n-2p+q)M] 

obviously again a linear function of the harmonic coefficients J • The n 

tesseral harmonics contribution will have the same form as the original 

formula for RG with two minor changes: the summat(~n over n begins·with 

n = 3 and the summation over m oegins with rri = 1. 

Having expressed RG in orbital elements Ka we could take the . 
required derivatives oRG/aKa, substitute them into the formula for Ka 

and obtain the velocities in orbital elements. Then these equations 
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would have to be integrated to give the actual orbit as a function of 

the harmonic coefficients. Easler appears to be the alternative 

approach based on the idea of .E!:_rturbations,which will be outlined in 

the next chapter. 



4) PERTURBATIONS 

4. 1) Perturbations in Orbital Elements 

As we have said several times already the actual orbit does 

not deviate much fromtl:le Keplerian plane motion because the dis-

turbing potential R is much smaller than the potential of the central 

field. This allows us to treat the deviations of the actual orbit from 

the planar orbit as quantities of second order of importance or in other 

words, as perturbations of the planar orbit. These perturbations can 

be of course described in any coordinate system. 

The most common way is to express the perturbations in orbital 

elements. We know that for the Keplerian motion, the orbital elements, 

Ka are constant, i.e. they do not depend on time. Hence,1any time 

-
variations of K we observe are the perturbations in orbital elements. a 

We have already met the perturbations in 2.6 when dealing with orbit 

prediction. There, the difference between Ka(t 1) and Ka(t 0 ) was experienced 

due to the perturbations in the time interval < t 0 , t 1 > • In this 

chapter we are going to express the perturbations as functions of time in 

a systematic fashion and denote them by oK (t). It is not difficult to a 

see that between the perturbations and the velocities the following 

relation holds 

oK (t) =! K (t) dt. 
a a 

65 
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Using this symbolism the orbital elements for an instant t 1 can 

be derived from the orbital elements at t from 
0 

where oK is a function of the disturbing potential. 
0\ 

We indeed see that if R = 0 we get oK (t) = 0 as required. 
0\ 

The integration of the equations of motion in orbital elements 

is a formidable task. All the elements of the matrix~ are functions of 

time and so are the derivatives of R. HenceJthe integration is usually 

done approximately only. We can regard the Keplerian orbit as a "zero 

approximation11 , yielding zero perturbations. This corresponds to R = 0. 

Taking R = RE we get the ''1-st approximation", involving only the most 

predominant term in the disturbing potential. Based on this approximation 

are the so-called linear perturbations to which we shall devote most of 

the forthcoming chapter. 

4.2) First Approximation of the Equations of Motion 

To be able to get the 1-st approximation ofaf we have to see 

first how the RE term influences the orbital elements. To see this we 

have to solve the equations of motion for R = RE. Therefore, we have to 

derive the expressions for aRE/aKa. 

The formula for RE as a function of Ka was derived in 3.3. It 

has been shown by various ~uthors that the dependence of RE on M is much 

weaker than the dependence on w [Kaula, 1966]. Neglecting Min the 
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2 expression for RE we make an error of the order of J2 , i.e. of the same 

order as the so far neglected harmonic coefficients J ~ This neglect is 
n 

hence perfectly justifiable and we shall make a good use of it. 

When we say that we neglect M in the formula for RE, this is 

equivalent to saying that we take only such combinations of the indices p 

and q that satisfy the equation 

(2 - 2p + q)M = 0. 

This yields the following 3 combinations for the allowable p and q, i.e. 

0 ~ p ~ n = 2, and - oo < q < oo : 

(p, q) = (o, -2), (1, o), (2, 2). 

Inspecting the tables for the function G2 , one discovers pq 
-3/2 

that 

G (e) G(e) 0 G2(e10) = (1-e2) 20-2 = 222 = • 
-3 = \) • 

Hence the only combination of p and q that has to be taken into account 

is (1, 0) for which we find 

F ( .) 3 . 2. 
201 I = ..,--SIn I -

Lf 2 • 

Thus the first order approximation of REgives 

KJJa 2 

RE ~----:/- J2F201 (i) G210 (e) cos [(2 - 2)w] 
a 

Using this equation we can now derive the expressions for the 

gradient aRE/aqi, where according to 2.3, we understand qi = (M, w, n). 

We get 

aRE 
--~0 aq. 

I 
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and immediately 

k. ~ 0. 
I 

where k. =(a, e, i). 
I 

Thus, in the first approximation, the first 3 orbital elements 

a, e, are not perturbed by RE at all. They remain constant and so 

does the matrix 6S of the system of equations of motion. 

4.3) Linear Perturbations Due to the Elliptical Term 

The approximate equations of motion can now be used to develop 

the perturbations due to the elliptical term RE. Evaluating the gradient 

aRE/aki we obtain: 

aRE = aRE ~- 3 KvUa! {3 . 2 .... l)"' 
ak a --=s::.--:-3 e :zr.sln ' . 2 ""2' 

2 e v a 

Substituting the gradient aRE/aki back into the equations of 

motion we obtain 

a 2 . ' ·' 
=- .L ~JL (~) ( 4- !i~i r?i · .. 1-) J2 , 3 3 lf . .. . 2 

v a a 
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Jk2 
w~ 

:"1 e 1 (3 . 2. 3 (- 1i Stn I 
I(Klta} )a3 v 

.,. 3 I dl (~) 2 
... 5 cos 2 i) ( 1 

4v~' a3 a 

-1 dla2 
J; sin2i 

st~ ·3 e 
J2 

)a3 .'lN l(d.la) sin I 

3 I d.L (c;~_e)' 2 M 3 a cos i J2 . 
a 

i 
1 cotg 2 

2i) J2 ..... 2) .sin 
4v 

J2' 

Since in the 1-st approximation none of the elements a, e, i 

is a function of time, these three differential equations yield, upon 

integration, pertrubations that are linear functions of time. These are 

otlM( t) Pft sin2 i 
1 

1¥ --) J t 2 2 

ow ( t) ~ (1 - 5 
2 i) J2t ~ cos 

o!1( tl p 
J2t ~ -cos 2v 

where by P we understand 

3 11 ,a 2 
P = - - I ~ l-~) . 

} a3 a 

These linear perturbations are linear in time and could be 

called 1 inear I inear perturbations. Thi.s would be awkward so we call 

them secular linear perturbations. They can be used for.t::he~approX:lmate 

evaluation of J 2. 

Problem: Determin~ the approximate rates of change of individual orbital 

-2 elements for a typical geodetic satellite of e ~ 10 , perigee 

height of approximately 103 km and various acceptable values of 

i. Consider~= 398 603 x 109 m3 sec- 2 , a = 6.378 1 137 m and 
e 

-3 J2 ~ 1. 082 10 . 
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4.4) Formal Integration of Equations of Motion for RG 

Having determined the first approximation to the perturbations 

(1 inear perturbations) due to the elliptical term (secular 1 inear 

perturbations) we now can proceed to establish the linear perturbation 

due to the rest of the gravitational disturbing potential. As we have 

seen earlier, the equations of motion we use in this development (see 2.3) 

are valid only for R stationary. But we have also discovered that the 

tesseral harmonics part of RG' i.e. RIN is not statio'nary and therefore, 

strictly speaking, cannot be used in the equations of motion. However, it 

is useful to treat all components RE' R15 and RIN' formally as being 

stationary and then correct for the non-stationaHty of RrN later. This 

is what we are going to do here. 

When integrating the equations of motion formally for R = RG' 

we shall use the first approximation of the orbital _elements, i.e. we 

s·hal 1 assume that in the matrix r!J a, e, i are constan·t. This amounts to 

neglecting the time variations in these elements due to the terms of the 

2 order of J 2 , in other words, terms of the same order as the largest of 

the rest of harmonic coefficients. This is the second flaw of the linear 

perturbations. The effect of this flaw has to be also corrected for later. 

Let us take now the general equation of RG as developed in 3.3 

and write it briefly as 

Each of the components RG. can be obviously treated separately in jnmpq 

the equations of motion. Substituting the above expression into the 

equations of motion we get 
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aR G_;nmpq 

aKS 
= L: R nmpq a~nmpq 

and each component RG 1 can be regarded as contributing ,nmpq 
.t 

. 
K a;nmpq toward 

the velocity K. Similarly, it can be regarded as 
a 

contributing oK a,nmpq 

toward the overall perturbation oK. We shall now proceed to evaluate 
a 

these individual contributions, leaving out the subscripts for simplicity. 

The first individual perturbation oK 1 = oa is given by 

oa(t) = J adt • 

" Substitution for a from the equations of motion yields 

oa ( t) = ! 1 2a !!l dt ~ 2 /. , a ! lB. dt 
I(K...Ua) aM l(]l aM 

taking a: as constant,· t.e. FAdependentof time. 

The integral here cari he written as 

! !13. dt = J !!l a¢ dt aM a¢ aM · 

Recalling the formula for 1/J (see 3.3) we get 

!t-aM - n - 2p + q • 

This is obviously not a function of time either and can therefore be taken 

out of the integn··Hon,• .. giving 

aR aR 
J aM dt = (n-2p+q) J aiji dt . 

The integral f ~~ dt can now lala.lolvedJ,l~ changing;:;·th~v.ari'ables. We can write 

1 ~ dt = Q(w) • 
3¢ 
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Then 

or 

Hence 

dQ = ~-l dR 

and finally 

Q = !dQ = ! ~-ldR . 
. 

Here ~ is given by 

. . 
¢ = (n-2p)~ + (n-2p+q) M + m (n- e). 

Here, w, M, n, can be considered, in the first approximation, as depending 

only on a, e, i and J 2. ~·is the frequency of the rotation of the earth. 

We thus get 

oa(t) ~ 2 'Sit {n: 2p+q) !dR =~:a ~ 2(n-2p+q) . .v 'to 1/J . til 

Substituting here for Rand~ we can write the complete formula as 

a n F ( t.) G (el(n-2p+q) 
2: (~) nmp npg; ... · • • • S (lfi"). 

nmpq a (n-2p)w+ (n-2p+q)M + m(n-e) nmpq 

The reader can show analogically that the following formulae hold fore 

and [Kaula, 1966]: 

R 

/ 
kl<.. ''G;nmpq 

oe (t) A: - y_ ---nmpq .a: ae • 
1/J 

a~ al)J 
(v aM - a} ' 
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oe(t) "'"' ~~ ~-1 a. ae 

a n 
L: (__;::,) 

F (i)G (e) [v(n-2p+q)-(n-2p)] 
~-.!:.?~-----.- s (1/J) 

~nmpq a (n-2p)~ + (n-2p+q)M + m(; - e) nmpq ' 

R 
o 1 ( t) r~ . A_ id<. __ l_. -. ~n:!E...ct (cos 21/! - ch/J) 

nmpq r q av 5 I n I 1/J dW 3S1 ' 

a r ( t) ,, . .~~~)~L 1• 
a n 

L: (~-) 
F (i)G (e)[cos i(n-2p)-m] 
. nrn.e__2£.9... ____ , ______ S ( 1/J) • 

, 1 a av s 1 n "nmpq a (n-2p)~ + (n-2p+q)M + m(;•e) nmpq 

The integration of the other three equations of motion is done 

similarly. \·Je shall show only the integration of the first equation. We 

can write, to begin with: 

.~tiM "" o (M~~~t,~ '= J~Mdt - !Mdt - JM~~dt = oM - r/4fdt = oM -w~t 
a . 

Considering 6M as given by the equations of motion we get 

1 3R v 2 3R 
M M (t) -~f ·- rr.-:rr::'i" f ( 2 a -·- + - -) d t 

v \K;JIIld/ 3a e 3e 

-1 [2 f 3R d v2 fi 3R d ~~ 7fi<:Al-a)- a 3 a t + ·-e· -ae· t ] ,. 

Concentrating again on the individual contributions due to RG·nmpq and 
} 

leaving the subscripts out we obtain 

3R (n+l) 
- ~~·- -·-- R ' 3a a 

li a n 
_?~~ -1<- (~) F(i) ~ S(l/J) 
3e a a 3e ·.· • 

Then the two integrals in the above equati~n can be written as 

f~·dt:-:::::- _(n+l)!Rdt~~- Jn~_!_l_K,,,~ (-~~) 11 F(i) G(e) f S(1/J) dt, 
3a a a a a 

11 a n ( ) 
f ~ dt ~ ~ (~) F( i) 2-~ee f S ( 1/J) dt 

3e a a a 
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because, in the first approximation, only S (or more precisely 1/J) is a 

function of time. Here, the integral over S can be evaluated using the 

same idea of changing the variables as we have used above. We have: 

f S(l/J)dt = Q(l/J). 

Hence 

dQ(p) =·dQ(l/J) cll/J = S(l/J) 
dt dl/J dt 

or 

dQ(l/J) = 1/ dl/J S(l/J) = S(l/J)/~ • 
. dl/J dt 

Finally 

Q(l/J) = r dQ(w) dl/J = 1 ilil. dl/J 
dl/J • 

1/J . 
where 1/J can be again, in tfl;e< N'fS't··ap;:~·tQi riiraF-t:eft:-; :'reg·ardeel·: at·•ceris~tan t w rth 

• • • respect to 1/J (!}J contains M, n, w, e while M, n, w, are functions of a1 eJi,J 2 

and 8:::::: cons t. = 1 revo 1 uti on/day) . Hence we can write 

f s ( 1/J) d t ~ .!. !> s ( 1/J) dl/J • . 
1/J 

This integral from Scan now be evaluated directly. Using the formula for 

S introduced in 3.3 .. and denoting the integral by SJto conform with the 

custom in this di·sdpl ine,we get' 

/ - J s i n 1/J + K cos 1/J s ( 1/J) = / nm nm 
nmpq ""- + J cos 1/J + K s i n 1/J nm nm 

n-m even 

n-m odd 

Substituting this back into the formula for the pertwrbation in ~M and 

denoting, in addition, aG/ae•by G' we obtain 

M a n 2 
o~M (t)::::; -r- 3 ( :) [-2(n+l) Gnpq(e) + \)e G~pq(e)]Fnmp(i) S(l/J)/~ • 

nmpq a nmpq 
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Then the overall perturbation in Misgiven by 

2 
Jt a n F ( i ) [ 2 ( n+ 1 ) G (e) -L G 1 (e) ] 

oM(t) ~ ~ {t- E (~) _nm ...... p ____ ___.np::-q.___.._e..,._._n...~..p ...... q __ S (•'•)} 
3 a • • • • nmpq ~ · a nmpq (n-2p)w+(n-2p+q)M + m(Q - e) 

The reader can snow that similar equations hold for the other 2 elements, 

Q and w [Kaula, 1966]: 

a n 
E (~) 

F 1 ( i) G (e) -
nmp npg Snm (\fJ)' 

a nmpq 
• • • • pq 

(n-2p)w + (n-2p+q)M + m(Q-6) 

11 a n vIe F ( i ) G 1 (e) -co t g i /v F 1 ( i ) G (e) 
ow(t) ~ ~!. E (~) ~nmp . npq . nmp npq S (·'·) 

3 a • nmpq ~ ' a v nmpq (n-2p)~ + (n-2p+q)M + m(O-a) 

where by F1 we denote aF/ai. 
0 • • 

Realizing again that 6 -.const. and M, Q, w, are in tfrec ·l .. s:t approx-

imation functions of a, e, i only (realizing ~.k$t:.J12 · ;.s, not a fun.ction of time), 

all the partial perturbations can be written as 

oK (t):::::: A (nJm>p,q; a,eJi) (cr(\fJ)J + ;(\fJ)K ) a, nmpq a . . • . nm nm 

where cr(;) is either cos (sin) or sin (cos) taken with the appropriate 

sign depending on i) the difference n-m, 

ii) the presence of S or S in the formula. 

functions already specified, i.e. 

f~rll a n F nmp ( i) Gnpq (e) (n-2p+q) 
A = 2 ~{~) -

I a ' a · · • • • {n~2p)~+(n-2p+q)M+m(Q-6) 

A are the 
a 

for a, etc. Then, applying the summation with respect to p and q, we get 

n 
oK ( t) ~ E 

a, nm p=O 
co -

E A (crJ + crK m) 
q=-oo a nm n 

-= J E A cr + K E A cr nm a nm a 
p q p 9 
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The complete linear1perturbations are then given by the following formulae 

~ co n 
oK ( t) := E E [J E 

a n=2 m=O nm p.q 
Acr+K E 

a nm 
p q 

A cr ] , 
a 

i.e. as linear combinations of the harmonic coefficients. 

4.5) Non-Linear Perturbations 

As we have already stated (4.4), the linear perturbations cannot 

be used for two reasons. Firstly, they include the influence of the non-

stationary part of the gravitational disturbing potential which contradicts 

the basic assumption of the Hamiltonian approach. Secondly, they do not 

account for the quadratic term of J 2 , i.e. J~, which is of the order of 

Jn, n = 3, 4, ... 

Both these hindrances can be corrected for by means of 

developing corrections to the linear formulae and produce a set of 

formulae for what became known as the non-linear perturbations. The 

methods for developing the formulae are tedious and very involved and 

hence considered beyond the scope of this course. The interested reader 

can find them for instance in [Kaula, 1962; Kaula, 1966]. 

In order to discuss at least the generalities of the earth 

gravity field determination let us just state here that the formulae 

for the non-linear perturbations can be again brought to the same form as 

those for the linear perturbations. This means that even the non-linear 

perturbations can be expressed as linear combinations of the harmonic 

coefficients, involving the same trigonometric functions cr, cr. Denoting 

the non-linear perturbations by o*K (t) we have 
a. 
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o'·~K. ( t) = 
a 

oo n 
l: l: [J l: A''' cr(lji) + K l: A''' cr(lji)] , 

n=2 m=O nm p q a nm p q a 

where only the functions A* (n,m,p,q; a, e, i) are different from A . 
a a 

It has been established [Gaposhkin and Lambeck, 1970] that the 

functions A&, although quite complicated in nature, are proportionate to 

Since e <1 (usually e « 1), the magnitude of A* 
a 

decreases with 

increasing absolute value of q. Hence the smaller e is, the sooner the 

series can be truncated in q. 
-2 

For typical geodetic satellites (e ~ 10 ) 

the summation over q does not have to go beyond lql = 10. 

We may also note that the functions A&, for a specific satellite, 

are functions of time only through a, e, i. Since these elements vary with 

time very slowly, A& can be considered as functions ofonly n,m,r,q even 

for very long arcs, if mean values of a, e, i are taken. 

To conclude with, let us repeat again that the perturbations can 

be expressed in other coordinate systems as well. It is quite a common 

practice to express them in geocentric rectangular Cartesian coordinates. 

The resulting equations give approximately the same results - approximately 

because within the developments, different approximations are used. 

4.6) Frequencies of Perturbations, Resonance 

When we take a close look at the formulae for perturbations we 

discover that each perturbation is expressed as a function of time thro~gh 

the trigonometric terms cr(lji) and ;(lji). As we have seen, M, w,~ are in 

the 1-st approximation 1 inear functions of time and so is e. Hence 

denoting 
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• • • 
M = M + M t, 

0 
w = w + w t, 

0 
n = n + n t, 

0 

we can write 

.. . . 
~ = [(n-2p)~ + (n-2p+q)M + m(n,-e.)]t 

+ (n-2p)w + (n-2p+q)M + m(n -e ) 
0 0 ° 0 0 

• = w~ + lP . 
0::. 0 

... 

e = e + e .t 
0 

The term l ·represents the freq~ency and ~0 is_the phase of cr or•g, 

From the point of view of frequency analysis the phase iJJ0 does not 

interest us and.we shall concentrate on~ . 

• • • e 
In the expression for~: M > n -e > w : M is the frequency of . . . ~ , 

the orbiting satellite, i.e. several times per day; n -e.......,- e (e » n 

is the frequency of the rotation of the earth, i.e. approximately once 

per day; finally • w, is the frequency of the motion of perigee within the 

orbital plane that is much slower than the other two motl-ons •. This 

ordering gave raise to the terminology used. The frequencies of the order 
• 

of .e and higher are known as corresponding to short periods. Lower 

• frequencies of the order of w and around this value, are said to correspond 

to long periods. Lower frequencies still, due to periodic changes of A* 
0\ 

are usually thought of as depicting linear variations called secular as in 

4.3. 
• If we have a look now at~ we can see that in case n-2p+q = 0 

and m = 0, the corresponding partial perturbation will have only long 

periodic and s ecu I a r term:s ... If, in addition, even n-2p=O then the 

corresponding part i a 1 perturbation will vary only secularly, i.e. with 

A~'c 
0\' Such will be the case for the combination of subscripts (n, m, p, q) 

(2k, o, k, 0) for any value of k. Since n has to be an even ~t~umber and m 

= 
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has to equal to zero to get a purely secular partial perturbation, we 

conclude that only zonal harmonics of even order, i~e., harmonics related 

to the ellipticity, cause purely secular variations or orbital elements. 

Note that for J2k,O the perturbation equations are undefined. This is the 

practical reason why the perturbation equations cannot be used and why the 

secular linear perturbation equation (section 4.3) are used. Hence, in 

practice, the zonal harmonic coefficients of even order are generally 

determined from observations of secular perturbations because they are not 

influenced by other harmonics. 

On the other hand, all zonal harmonics (m = 0) give raise to 

long periodic terms because they always contain combinations n-2p+q = 0. 

They are therefore determined mainly from long periodic variations of the 

perturbations. The tesseral harmonics have always short periodic terms 

(m r 0) and their coefficients have to be determined from short periodic 

variations. 

As in the case of linear perturbations, the functions A* in the 
a. 

non-linear formulae are also inversely proportional to~- What then may 

happen, and in fact often happens in reality, is that~ becomes very small 

for certain combinations (n, m, p, q). When this occurs, the value of A* 
a. 

increases and magnifies certain low frequencies of the perturbations. These 

frequencies, known as resonant freguencies, are then particularly useful 

for evaluation of the corresponding harmonic coefficients. We say, that 

the satellite is specially sensitive to the resonant frequencies. 



5. DETERMINATION OF THE TERRESTRIAL GRAVITY FIELD CHARACTERISTICS 

5. 1) Evaluation of Harmonic Coefficients from Perturbations 

It is not difficult to see that the equations for perturbations 

give us a handy tool for evaluating the harmonic coefficients of the 

earth gravity field. They can be immediately taken as observation 

equations for adjustment (or more specifically for harmonic analysis) 

since they provide us with the 1 inear relationship between the unknowns 

J m' K and the perturbations. For this purpose, the perturbations in n nm 

individual elements are evaluated as differences between the 11 observed 11 

elements, i.e. orbital elements as derived from the observed positions 

of the satellite, and some adopted constant values. These constant 

orbital elements are usually chosen close to the mean values for the 

period of observations (generally several days) and are said to describe 

an intermediate orbit. Evidently, the intermediate orbit is a Keplerian 

orbit chosen to represent the actual orbit quite closely. The actual 

orbit for the period of observations is called orbital arc. 

The coefficients for the unknowns (harmonic coefficients) can 

be written as 

X (t) = a,nm 2: 
p q 

y (t) = 
a;nm 2: 

p q 

As we have seen in 4.5, they are functions of the orbital elements and 

also of n, m and,e (w, n, Mare treated as functions of a, e, i, J 2). 

80 
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To evaluate the coefficients X (t) Y (t) we use the orbital elements a,nm ' a,nm 

describing the lntermediate orbit and the value of J 2 determined from the 

1-st approximation of the equations of motion (see 4.3). Hence, in 

practice, the evaluation of the harmonic coefficients is usually carried 

out in two steps, consisting of the determination of tbe first approxi-

matron of J 2 and the determination of the rest of the coefficients includ

ing the correction to the first approximation to J 2 • 

Having determined the first approximation of J2 and the values 

of A* we then proceed to eval~ate the zonal harmon[c coefficients from 
a, 

the secular and long-periodic variations. These vartattons are influenced 

by tesseral harmonics in resonant frequenctes so that the determination 

generally includes these also .• Finally, the parameters of non-gravitational 

variations (see 2.5) have to be usuallt solv~d for together with the zonal 

harmonic coefficients as well. The p~edominant effects are due to the alr

dra'g, solar radiation pressure and luni-solar tides [Kaula, 1966]. 

Then, in what is effectively the third step, we can determine 

the tess era 1 coefficIents from the short-periodic variations, S i nee there 

are also short-periodic variations due to the zonal harmonics (see 4.6) 

these have to be first removed. The removal is done using the zonal 

harmonic coefficients determined previously. 

There is still one complication involved in the described 

harmonic analysts that should be mentioned here. Always a whole set of 

harmonic coefficients is connected to a certain period (and inversely, of 

course, there is a whole series of periods related to each coefficient). 

Hence what we can determine from the harmonic analysis, i.e. amplitudes of 
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specific trigonometric terms, are just various linear combinations of 

harmonic coefficients. If the combinations varied from period to period 

they could be then disentangled, i.e. the individual coefficients cou'ld 

be obtained from a system of linear algebraic equations. This may or may 

not be the case. 

To eliminate any possible linear dependence of the individual 

harmonic coefficients it is necessary to use several different orbital 

arcs in the solution. These usually are not only arcs belonging to one 

satellite at different epochs but also arcs for different satellites. It 

is not rare to use hundreds of arcs in one solution. One such solution 

is described in an illustrative way in [Gaposchkin & Lambeck, 1970]. 

Two more things are of importance for the harmonic analysis. 

The first is the choice of the maximum order n to which the harmonic 

analysis should be carried out. This choice is governed by the precision 

with which the perturbations, or more specifically the 11 0bserved 11 orbital 

elements, can be determined. This precision is, at present, a few metres 

at best. On the other hand, we can determine the magnitude of any such 

partial contribution, due to a certain order, from the Kaula's rule of 

thumb (see 3.2). These contributions decrease rapidly not only because 

of the natural decrement in magnitude of coefficients but also due to the 
ae n 

decrease of the damping factor (-a-·) (see 3.3) with the order of the 

harmonic coefficient. The highest order of harmonic coefficients that 

can be estimated with the present best precision of orbit is about 16 

[Sandson and Strange, 1972]. 

The second remark concerns the weighting of perturbations for the 

harmonic analysis. This has to be done on the basis of observation precision 

and we shall not dwell on this point here. It is more appropriately dealt 
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with in the geometric aspects of sate11 ite geodesy where it 1 s known as 

weighting of the orbit. 

To conclude with, let us state that there is no universal rule as 

to which orbital element should be used in the perturbation analysis as 

described above. They may be selected differently for different satellites 

as these are again influenced differently by the various non-gravitational 

forces and thus differently suitable for the analysis. 

5.2) Determination of Gravity Anomalies 

Once the harmonic coefficients J and K are known, they can nm nm 

be easily used to describe other characteristics of the earth gravity 

field. Although Jnm and Khm describe the gravitat'ional potential, ,they 

can also express gravity anomal,ie-s, geoidal heights, etc. 

In order to derive the relation between the gravitational 

potential and the gravity anomalies we first recal 1 the formula I i,Aking 

the terrestrial disturbing potential T with the gravity anomaly developed 

in spherical harmonics [Vanftek, 1971, 3.15]: 

co R 
T ~ E -- llg 

n=2 n-l n 

where R is the mean radius of the earth and should not be confused with 

the disturbing potential .llg are the spherical harmonics of the gravity 
n 

anomaly llg. Here T is assumed to have been determined with respect to 

an ellipsoid (see 3.2) concentric with the earth and having the same 

massjlas the earth. The consequence of this assumption is that developing 

T in spherical harmonics the first two degree terms are identically equal 

tozero, i.e., 
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T = 
00 

I: 
n=2 

T n 

with Tn denoting the spherical harmonics ofT. 

We have also seen that T can be written as (3.2) 

. Substitution for RG and Zt yields 

K.Jl·oo 1- ..,._I: 
r n=2 

a n 
(~) 

r 

n 
E (J cos m~ + K sin m~) P (cos 8) + 

m=O nm nm nm 

11 a n 
+ _K..M-_ '£ (~) 

r n=2, 4,.. r 

This can be rewritten again 

oo a n n 00 K.u 
T= -r 

I: (~) 
r n=2 

E [(J ~J* )cos m~ + Knm sin m~]P (cos 8) = E T 
m=O nm nm nm n=2 n 

where 

·'-
J" 

nm == 

Hence we can equate 

and since 

·'-
~ 

J" n = n 

~ 
0 all 

R 
T ~-- f:..g n n-1 n 

00 

f:..g = E f:..gn 
n=2 

2,4, •.. ; m = 0 

other combinations of n and 

(the summation does not include the terms of 0-th and 1-st order since 

under the accepted assumptions they are again both equal to zero 

[Vanf~ek, 1971]), we obtain finally 

m. 
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oo n-1 

t.g ~ E - T 
n=2 R n 

1L oo a n 
:;:.,.~R E (n-1)(-7) 

n=2 

n .... 
E [(J ;...J" ) cos rnA.+ K msin mA.]P (cos e). 

m=O nm nm n nm 

It is usual in practice to put 

r~ a= R. e 

This spherical approximation changes the above formula to 

K.M. oo ( , ),n [( ... ) 
t.g ~-2 E2 n-1 E . J .... ..:J" cos rnA.+ K msin mA.l P (cos e) • 

R n= m=O n,,, nm n · nm 

The average difference (in absolute value) between the last two formulae 

is approximately 0.1 mgal with a maximum of about 1 mgal [Rapp, 1972]. 

We should note that the values of d* depend on the flattening 
n 

of the selected geocentric reference ellipsoid (see 3.3) which we are 

free to choose more or less arbitrarily. Practically only the first 

two terms, J~ and J4, can be taken as different from zero since they 

describe any chosen ellipsoid adequately. It is interesting to see 

that the selection of a particular flattening influences the values of 

gravity anomalies quite strongly [Gaposchkinand Lambeck, 1970]. 

Let us conclude by stating that should the reference ellipsoid 

have a mass different from that of the earth an additional absolute term 

would have to be taken into account in the formula above. Also, we should 

be aware of the fact that other formulae have been derived for t.g by 

various scholars. 
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5.3) Determination of Geoidal Heights 

To develop the equation linking the geoidal height with the 

harmonic coefficients, let us again assume that the reference ellipsoid 

is geocentric and its mass equals to the mass of the earth. The 2nd 

Bruns formula [Vanftek, 1971, section 3. 11] can be used in its Simpler 

form 

N = T/y 

where by N we denote the ge(i)ildal height andy is the normal gravity on 

the chosen best fitting reference e·ll ipsoid .. Taking the expression for T 

(from 5.2) we obtain 

Jl oo a n 
N= ... L-. E (...!:.) 

ry r n=2 

n 
E [(J ,,..J* )cos mt.. + K sin mt..] P (cos e). 

0 n~ nm nm nm m= 

Here a and r can be again replaced by the mean radius of earth. e 

Moreover, the normal gravity, intthe first approximation, can be written 

as 

Substituting these approximations back into the above equation we get 

oo n .~ 

N~-:R E E [.~J ""'J" )cos m>.. + K sin mt..]P (cos e). 
n=Z m=O nm nm nm nm 

The difference between the exact and the approximate formulae is in aver-

age (in absolu~e value) 0.2 m. The maximum is of the order of 1 m [Rapp, 

1972]. 

We again note that the geoid can be computed with respect to 

an ellipsoid of arbitrary flattening, the selection being made possible 

through the J* coefficients. The various versions of the geoid derived 
n 
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from satellite observations by different authors are always very smooth 

since the perturbation analysis cannot give the higher order harmonic 

coefficients. The smallest details one may expect of any such 11 satellite 

geoid 11 are of the order of 2000 km in length (for degree 20). This is 

the reason why many geodesists combine the satellite data (lower degree 

harmonics) with terrestrial gravity data (higher degree harmonics) to 

obtain the so-called 11 combined solution 11 • To venture into this domain 

is considered beyond the scope of this course. 
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APPENDIX 1 

Alternative Deriy,s.tion of Lagrangian Equations of Motion 

We first define the Lagrangian potential Las 

.. 
L ( q ' q ) . I = ,· T - u • 

Then we define the action functionS, known sometimes as Hamilton 1 s 

principal function, as 

It describes the action of the potential change L in the period of 

The Hamilton•s principle, one of the fundamental laws of 

classical physics says that the pa:rt:f~;le moves in a conservative 

field U in such a way that the action of the potential change L within 

any period of time is minimum, see for instance [Landau and Lifschitz, 

1965]. In mathematical language it can be stated as 

min S. 
qi 

It obviously is an extremum condition and can be formulated in an 

equation form using variational calculus, leading then to eur system 

of differential equations of motion. 

To be able to apply the variational calculus, let us first 

formulate the extremum condition in terms of variations. We assume 

that we know the position q.(t .. ) of the point (or generally a whole 
I 0 

system of points) at the time t 0 , as well as the position qi(t 1) at 

the time t 1. We shall be trying to determine the path of the motion 



9l 

(the trajectory) of our point between these two positions such as to 

minimize the action function S. Obviously, for different trajectories 

we get different values of S. This means that varying the trajectories, 

we can vary the value of S belong-

ing to them. Let us take then 

one trajectory q.(t) and another 
I 

trajectory q.(t) + oq.(t) infinit-
1 I 

esimally close to the first one. 

The difference oq.(t) l-s ealled 
I 

the variation of trajectory and 

we note that 

oq.(t) = oq.(t 1) = o 
I 0 I 

since all the trajectories go through the two end points. Variation 

of the trajectory oq.(t) will produce the following variation of the 
I 

action function: 

t 1 t 1 • 
oS =It L(q.+oq., ~.+o~.)dt- It L(q., q.) dt , 

I I I I I I 
0 0 

where the variation o~. of the generalized velocity can be expressed as 
I 

Because the variation of the trajectory is asse~sed 

infinitesimally small, we can develop the Lagrangian L(q.+S~., ~.+o~.) 
I I I I 

into the Taylor series and retain just the first two terms. We obtain 

L(qi+oqi' qi+oqi) ~ L(qi' qi) + ~~i oqi + :~. oqi 
I 
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and the variation of the action function becomes 

tl 
as = !t 

0 

The second term can now be 

/t 1 (~a· .)dt = • ql 
o aqi 

aL +~a·.) <a-aq. q. I • ql 
I aq. 

I 

integrated by 

t 
[~a.] 1 • ql 
aq. t 

I 0 

parts: 

dt . 

The first term on the right hand side can be written as 

[2L . 
aq. 

I 

tl aL 
1 

aL j aq. l t = - aq. ( t 1)- - aq. ( t ) 
I ' I · • I 0 

o aq. t aq. t 
I 1 I 0 

and equals thus to zero since: both variations equal to zero. Hence we 

get finally: 

t 1 aL d aL 
aS=!t (-a-oq.-'dt-.-oqi)dt 

o qi 1 aq. 
I 

= / 1 (~ - .2.... 2.!:_) a d t aq. dt • qi t • 
o 1 aq. 

I 

Everthing else being fixed, the action function is just a 

function of the trajectory. The trajectory that minimizes the action 

function is the one that renders the variation of the function zero. 

Hence the equations 

can be regarded as the equations of the motion satisfying the Hamiltonian 

principle of least action. But the only way how to satisfy the equations 
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above is to make the expression in the brackets equal to zero, since 

the variation 8q. is an arbitrary (though small) function of time. 
I 

Thus we obtain the Lagrange's equations of motion 

aL d a l aq:-- (it-.-= 0 • 
1 aq. 

I 



94 

APPENDIX 2 

Derivation of Keplerian Orbital Frequency from Third Kepler Law. 

The 3-rd Kepler law states 

where P is the period of the orbit of the satellite. P can be 

obtained from M* by realizing that i) M* is a linear function of 

time (see 2. 1): 

M1c(t) = M~~ + tt~'c t 
0 1 

ii) P is the time interval t 2-t 1 

necessary to make 

Hence 

M*(t ) - M*(t ) = M*(t -t ) = M*P = 2n 2 1 1 2 1 1 

where Mf is nothing else but M*. Thus 

. 
P = 2n IM~~ 

and we see that M~'c is the angular frequency of the orbital motion as 

we might have expected. 

Substituting for P in the 3-rd Kepler law, we obtain 

• 2 3 ,.., 
M;~ a = 2n/k . 

On the other hand, taking the Vis-Viva integral for a circular orbit 

(e = 0, r = a), we get 

KJL x.x. 
I I a 
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Here the linear instantaneous velocity can be also computed from the 

obvious formula 

I ~i I = 2;a . 
Substituting for P here and evaluating the Vis-Viva integral for the 

circular orbit we obtain 

• 2 3 
and M;'; a (for the circular orbit) equals to KJA.. But if it equals to 

Kli. for a circular orbit, it has to equal to the same constant 'for any 

orbit and we end up with the equation 

• .AL 
M* = ~ 3 . 

a 
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APPENDIX 3 

List of the principal components of F(i) and G(e) (see 3.3) 

as they appear in [Kau1a, 1966]. 

n 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 
4 

4 

m 

0 

0 

0 

1 

2 

2 

2 

0 

0 

0 

0 

1 

2 

2 

2 

2 

3 

3 

3 

3 
0 

0 

p 

0 

1 

2 

0 

2 

0 

2 

0 

1 

2 

3 
0 

2 

3 

0 

1 

2 

3 
0 

1 

2 

3 
0 

1 

~n.mp ( i) 

- 3(sin2 i)/8 

3 (s i n2 i)l4 - 112 

- 3(sin2 i)/8 

3 sin i(1 +cos i)l4 

- 3 (sin i cos i)l2 

- 3 sin i(1 -cos i)l4 

3 ( 1 + cos i ) 2 I 4 

3 ( s i n2 i.Y2 

3 ( 1 - cos i) 214 

- 5 (s i n3 i)l 16 

15 ( s i n3 i)/16 - 3 ( s in i)l 4 

- 15 ( s i n3 iY 16 + 3 (sin i)/ 4 

5 (s i n3 i)/16 

- 15 sin2 i(l +cos i)l16 

15 s in 2 i (I + 3 cos i) I 16 - 3 (I 

15 s in 2 i ( 1 - 3 cos i) I 16 - 3 ( 1 

- 15 sin2i(1- cos i)l16 

15 sin i(1 +cos i) 218 

+ cos 

- cos 

15 sin i(1 - 2 cos i - 3 cos2 i)l8 

- 15 sin i(l + 2 cos i - 3 cos2 i)l8 

- 15 sin i (I : cos i) 218 

15(1 +cos i) 318 

45 sin2 i(1 +cos i)l8 

45 sin2i(1 -cos i)/8 

15(1 - cos i)3/8 

3 5 ( s i n 4 i)i 12 8 

- 35 (sin 4 i)l32 + 15 (s i n2 iY 16 

i) 14' 
i) 14 



n 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

m 

0 

0 

0 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

p 

2 

3 
4 

0 

2 

3 

4 

0 

1 

2 

3 
4 

0 

1 

2 

3 
4 

0 

1 

2 

3 

4 
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Fn ( i) mp 

(105/64) sin i - (15/8) sin2i + 3/8 

- (35/32)sin4 i + (15/16)sin2i 

(35/128) sin4 i 

- (35/32)sin3 i(1 +cos i) 

(35/16)sin3i(1 + 2 cos i) - (15/8) (1 +cos i) sin 

cos i(15(sin i)/4- 105(sin3 i)/16) 

- (35/16)sin3 i(1-2 cos i)+(l5/8)sin i(1- cos i) 

(35/32)sin3 i(1 -cos i) 

- (105/32) sin i(1 +cos i) 2 

(105/8)sin2i cos i(1+cos i) - (15/8)(1 +cos i) 2 

(105/16)sin2i(1- 3 cos2 i) + (15/4) sin2 i 

- (105/8)sin2i cos i(1- cos i)-(15/8)(1-cos i) 2 

- (105/32)sin2i(l -cos i) 2 

( 1 05/16) sin i ( 1 + cos i) 3 

(105/8) sin i(1 - 3 cos2 i - 2 cos3i) 

- (315/8)sin3 i cos i 

- (105/8) sin i(1 - 3 cos2i + 2 cos3 i) 

* (105/16) sin i(l- cos i)3 

(105/16) (1 +cos i) 4 

(105/4)sin2i(1 +cos i) 2 

(315/8) sin4 i 

(105/4) sin2i(1 -cos i) 2 

(105/16) (1 - cos i) 4 
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n p q n p q G11 (e) 
,: pg 

2 0 -2 2 2 2 0 

2 0 -1 2 2 -e/2 + e3/16 + 

2 0 0 2 2 0 2 4 1 - 5e /2 + 13e /16 + . 

2 0 1 2 2 -1 7e/2- 123e3/16 + . 

2 0 2 2 2 -2 
2 4 .. 

17e /2- 115e /6 + 

1 2 4 2 -2 2 2 9e /4 + 7e /4 + . . . 
2 -1 2 1 1 3e/2 + 27e3/16 + 

2 1 0 ( 1_e2) -3/2 

3 0 -2 3 3 2 2 4 e /8 + e /48 + . 

3 0 -1 3 3 1 -e + Se3J4 + . . . 
3 0 0 3 3 0 2 4 1 - 6e + 423e /64 + • 

3 0 1 3 3 -1 5e - 22e3 + • . . 
3 0 2 3 3 -2 127e2/8 - 3065e 4/48 .:t .• . • 

1 2 2 4 3 -2 3 2 11e /8 + 49e /16 +. 

3 -1 3 2 1 e(1 - e2)-5/2 

3 0 3 2 0 1 + 2e2 + 239e4J64 + 

3 1 3 2 -1 3e + 11 e3/4 + . . . 
3 2 3 2 -2 2 4 53e /8 + 39e /16 + . 

4 0 -2 4 4 2 2 4 e /2 - e /3 + . . . 
4 0 -1 4 4 1 - 3e/2 + 75e3/16 + . 

4 0 0 4 4 0 2 4 1 - 11e + 199e /8 + 

4 0 1 4 4 -1 13e/2- 765e3/16 + . 

4 0 2 4 4 -2 2 4 51e /2 - 321e /2 + . 

4 1 -2 4 3 2 (3e2/4) ( 1 _ e2)-7/2 

4 -1 4 3 2 e/2 + 33e /16 + . . . 
4 4 3 2 4 0 0 I + e + 65e /16 + • . . 
4 1 4 3 -1 9e/2- 3e3/16 + . . . 
4 4 3 

2 4 2 -2 53e /4 ~ 179e /24 + . . . 
4 2 4 2 2 2 4 -2 5e + 155e /12 + . . . 
4 2 -1 4 2 5e/2 + 135e3/16 + . . . . 

4 2 0 2 ( 1 + 3e /2) (1 _ e2)-7/2 




