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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



PREFACE FOR FIRST PRINTING 

This cours.e is beip.g o.fi'ered to the post"';graduate students in 

Su:rveying Engineering. Its aim is: to give a baS;ic knowledge oi' tensor 

"language" that can be applied i'or solving s-ome problems in photogra:m:rnetry 

and geodesy. By no :means-, can the course claim any: completeness; the 

emphasis is on achieving a basic understanding ana, perhaps, a deeper 

insight into a i'ew i'unda:mental questions oi' dii'i'erential geometry. 

The course is divided into three parts: The i'irst part is a 

very brief recapitulation oi' vector algebra ana analysis as taught in 

the undergraduate courses. Particular attention is paid to the appli-

cations of vectors in differential geometry. The second part is :meant 

to provide a link between the concepts of vectors in the ordinary Eucleidean 

space and generalized Riemannian space. The third, and the :most extensive 

of all the three parts, deals with the tensor calculus in the proper sense. 

The course concentrates on giving the theoretical outline rather 

than applications. However, a number of solved and :mainly unsolved problems 

is provided for the students who want to apply the theory to the "real 

world" of photograrn:metry and geodesy. 

It is hoped that :mistakes and errors in the lecture notes will 

be charged against the pressure of time under which the author has worked 

when writing them. Needless to say that any comment and criticism communi-

cated to the author will be highly appreciated. 

P. Yani~ek 
2/ll/1972 



PREFACE FOR SECOND PRINTING 

The second printing of these lecture notes is basically 

the same as the first printing with the exception of Chapter 4 that 

has been added. This addition was requested by some of the graduate 

students who sat on this course. 

I should like to acknowledge here comments given to me by 

Dr. G. Blaha and Mr. T. Wray that have helped in getting rid of some 

errors in the first printing as well as in clarifying a few points. 

lv P. Vanlcek 
12/7/74 
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1) VECTORS IN RECTANGULAR CARTESIAN COORDINATES 

1.1) Basic Definitions 

The Cartesian power E3 , where Eisa set of real numbers, is 

called the System of Coordinates in three-dimensional space (futher 

only 3D-space). Any element 1EE3 is said to describe a point in the 

space, the elements ~~being obviously ordered triplets of real numbers. 

It is usual to denote them thus: 

""±: = (x, y, z) 

+ ~ 
If the distance of any two points, r 1 and r2 say, is given by 

where 

then the system of coordinates is known as Rectangular Cartesian. 

This distance metricizes (measures) the space and this particular 

distance (metric) is known as the Eucleidean metric. The appropriate 

metric space (called usually just simply space) is called the 

Eucleidean space. The graphical interpretation given here is well known 

from the elementary geometry. 

z 

y 



-+ 
A triplet A -

arguments: 

2 

(A , A , A ) of real functions of three real 
X y Z 

is called a vector in the 3D Eucleidean space or a vector in Cartesian 

Coordinates. It obviously can be seen as being a function of the 

-+ 
point r. It is usually interpreted as describing a segment of a 

straight line of a certain length and certain orientation. The length 

and the direction are functions of the three real functions A , A , A 
X y Z 

-+ known as coordinates or components of the vector A. The real function 

I A = I(A~ + A~ + A;) I 
(sometimes denoted as 111 is called the length or absolute value of the 

-+ -+ 
vector A. It again is evidently a function of the point r. 

z 

c 

)( 

The real functions 

A 
X 

A 

A 
...::L 
A 

\ I ',, . A ,, 
I 1:. , 

-+ 
are known as the direction cosines of the vector A and they determine the 
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+ 
direction of A. Note that every one of the three above expressions is 

dependent on the other two. Squaring the equation for the absolute 

value and dividing it by A2 we get 

.A 2 A 2 A 2 
(2.) + (_:;[_) + (2.) l A A A = . 

This can always be done if A is different from zero and A ~ 0 if and 

only if at least one of the components is different from zero. This 

leads to a statement, that a vector of zero length has got an undeter-

mined direction. 

+ 
Further, we can see that the point r can be regarded as a special 

case of a vector, whose argument is always the center of coordinates C: 

+ + 
rc = (0, 0, 0) = o. 

It is therefore also called the position vector or the radius-vector of 

+ 
the point. Hence we talk about the triplet of real functions A as 

vector function of vector argument. 

A triplet of constant functions (real numbers) is called free 

vector, meaning that its absolute value and direction (as well as its 

components) are independent or free from the argument (point). On the 

I 
I I 

other hand, if we have a 

vector function of &<>Vector 

argument defined for each 

point in a certain region 

RCE3 of our space we say 

that there is a vector 

field defined in R. Thus 

obviously a free vector can be regarded as constant vector field and 

we shall refer to it as such. 
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It is useful to extend the definition of a field to one-valued real 

functions of a vector argument as well. If we have in a certain region 

3 RCE of our space a real function t of the position vector defined then 

we say that 

is a scalar field in R. We thus note that vector field is a vector 

function of a vector variable the scalar field is a scalar function of a 

vector variable. 

z One more useful quantitYcan be 

also defined here and that is a 
4 ·o 

vector function of a scalar 

i·l variable, i.e. three-valued real 

·- 17'2 o·o 
functions of one real variable. 

This qua:ntityis often used whenever 
·- 3'(; 

it is necessary to consider a 
X 

varying parameter (real variable) 

in the space. This parameter can be time, length of a curve, etc. 

7 Hence we may have, for instance, 

a vector defined along a curve K 

as a function of its length as 

shown on the diagram. The more or 

less trivial extension of this 

concept is the scalar function of 

a scalar variable or the well known 

real function of one real variable-known 

from the fundamentals of mathematical 

analysis. 
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The vector function of two scalar arsuments is also used, particularly 

in the differential geometry of surfaces. The way,li1,ow this quantity is 

defined is quite obvious. 

Note that we have confined ourselves just to 3,D ... space. The 

development for an nD-space is indeed completely analogous and often 

used in various branches of mathematics. 

1.2) Vector Algebra 

1.2.1) Zero Vector 

Zero vector 0 is a vector whose components are all zero. The necess-

ary and sufficient condition for this is that its absolute value equals 

to zero. The direction of a zero vector is undetermined. 

1.2.2) Unit Vectors 

+ 
Unit vector A is a vector whose absolute value equals to 1. 

Its direction may be arbitrary. The components of a unit vector are 

equal to its direction cosines as can be seen from the equation 

for its absolute value. 

1.2.3) Summation of Vectors 

+ 
Summation of n vectors Ai -

components are given by 

B 
X 

= 
n 
E 

i=l 
A. ' lX 

+ 
(A. , A. , A, ) is a vector B whose 

lX lY lZ 

n 
= .L: A. ' 

1=1 lY 
B 

z = 
n 
E A. 

i=l lZ 
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The geometrical interpretation of the summation is shown on 

z the diagram. Evidently 

the summation is commuta~ 

tive and associative, i.e. 

+ + + + 
A+B=B+A 

-~ 

As + + + + + + 
(A+ B) + C =A+ (B +C). 

The absolute value of the 

+ 
sum C of the two vectors 

X y A and B is given by 

,., C = I(A2 + B2 + 2AB cos('lf~.- A13)) ~ 
where by AB we denote the an[:l:le between A and B. 

·~·· -. ··-. ,·· .· ... 

The proo1· is left to the reader. 

Convention - From now on we shall be denot:tng x by x1 , y by x2 

+ and z by x3 • The corresponding components of a vector A will accordingly 

be A1 , A2 , A3 . 

1.2.4 Multiplication of a Vecto~~X a Constant 

+ + . 
Vector B is cal~ed the product of vector A with a constant k if 

and only if 

Obviously 

and 

B = kA , B = kA , B = kA or B. = kA. 
X X y y Z Z l l 

+ + 
kA = Ak 

B = kA. 

+ + 
The direction of B is identical to the direction of A. 

i = 1, 2, 3. 
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1.2.5) Opposite Vector 

+ + 
Vector B is known as opposite vector to A if and only if 

7 + + 
A + B :::: 0 • 

+ + 
It is usual to denote the opposite vector to A by -A because 

+ + B = (-1) A 

1.2.6 Multiplication of Vectors 

+ + + + 
i) Scalar Product A · B of two vectors A and B is the real number 

(scalar) k given by 

Scalar product is obviously commutative, i.e. A·B + + = B • A, and it is 

+ " (+ + + + '+ not associative, i.e. A ' B • C) ':/: (A • B) C. The proof of the 

latter is left to the reader. The reader is also advised to show that 

and (A + B) · c = A · c + B 
+ 

+ . c. 

Obviously, the absolute value of a vector A can be written as 

A = I(J. . A). 
-+ 4-

Two non-zero vectors A, B whose 3Calar product equals to zero are 
<'1 

perpendicular because AB cos AB = 0 implies that 

cos AB = 0 and 
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+ + + + + 
ii) Vector P~oduct A x B of two vectors A and B is the vector C 

given by 

fT= (Cl, C2, C3) = (A~3- A3B2'~~B~- ~B3' ~B2- ~:~J 
It can be easily shown that the following formulae hold: 

+ + + + + + (kA) x B = k(A X B) = A x (kB) 

and particularly 

+ + 
Ax B +B + X A, 

+ + + + + + + A x (B + c) = A x B + A x c. 

The reader is urged to prove: 

a) + + + + + 
C = A x B is a vector perpendicular to both A and B 

+ + + + l'f". 
(A · C = B . C = 0) whose length equals to AB sin (AD) and that 

+ + 
points the same way with respect to A and B as the + z axis points 

with respect to+ x and+ y axes (in this order); 

+ c· ' 

Evidently, the vector product of two non-zero vectors equals to zero 

if and only if the two vectors are parallel. Hence the necessary and 

sufficient condition for two vectors to be parallel is that their 

vector product be zero: 

A X B = () = A II B. 
+ + + + 

iii) Dyadic Product A * B of two vectors A and B is a quantity C 

which is neither scalar nor vector. It can be interpreted as a matrix 

(or Cartesian tensor of second rank- see later) whose components are 

given by 

:L, j = 1, 2, 3. 



+++ + + + 
iv) Mixed Product [ABC] of three vectors A, B, and C is a scalar 

k defined as 

k = ~~ . ( B X c) = [A B c J.J 
Its value can be seen to be 

k = A B C sin B~ sin AA' 
+t + + + 

where A is the projection of A on the plane B C (see the diagram). 

But this equals to the volume of the parallelepiped given by the three 

• 
' I 

13xcl 
I 
I 
I 

'•, 

' 

I 
' I 

' ' 
'•r-',.. 
I 

vectors. Evidently, the volume 

of this body equals to zero if 

~· and only if all the three 

vectors are coplanar (lay in 

one plane) or at least one of 

them is the zero-vector. Hence 

the necessary and sufficient 

condition for three non-zero 

vectors to be coplanar is that their mixed product equals to zero: 

+++ +·+ + [A B C] = 0 = A, B, C E K 

(K denotes a plane). 

It is left to the reader to prove that 
+++ 

[ABC] = [BCA] = [CAB] =- [ACB] =- [BAC] =- [CBA]. 

Problem: Show that a vector given as a linear combination of two other 

+ + + + + + + 
vectors A and B, i.e. C = k1 A + k2B, is coplanar with the vectors A and B. 
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1.2.7) Vector Equations 

Equations involving vectors are known as vector eguations. In 

three-dimensional geometric applications they invariably describe 

properties of various objects in 3D-space. For example, the vector 

equation 

+ + 
B = kA 

+ + + 
tells us that vectors A and B are parallel and vector B is k-times 

+ 
longer than A. Or the vector equation 

11 + + 
GOS (AB) = A • B I (AB) 

+ + 
determines the angle of two non-zero vectors A and B. 

If we decide, for some reason, to change the coordinate system, 

i.e. trans~orm the original coordinate system to another, the geometric 

properties of the objects do not change. Two straight lines remain 

parallel or perpendicular in any system of coordinates. Similarly one 

vector remains k-times longer than another whatever the system of 

coordinates may be. This fact is usually expressed by the statement 

that vector equations are invariant in any transformation of coordinate 

system. This is the basic reason why we prefer using vectors - and 

by this we mean here the described compact notation for the triplets 

of functions - when dealing with properties of objects in space. 

Another possibility would be to use coordinates instead but in that 

case formulae would be valid only in the one coordinate system and 

would not be invariant. 
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1.2.8) Note on Coordinate Transformations 

When talking about transformations of coordinate systems here we 

talk about relations of following kind 

-+ -+, 
where A, A is a vector expressed in one and another coordinate systems 

and M is the transformation matrix. For the position vectors the trans-

formation equation has a more general form, namely: 

+1 -+ +1 
r =Mr+r c 

-+, 
where rc is the position vector of the original center of coordinates 

in the new system, known also as the translation vector (see the diagram). 

z 

X 

When transferring one Cartesian coordinate system to another, the 

transformation matrix can be obtained as a product of three rotation 

matrices representing the rotations through the three Euler's angles. 

Alternatively the transformation matrix can be obtained using the nine 

direction cosines of the new coordinate axes. In both cases, all the nine 

elements of M are independent of the position of the transformed vectors 

and can be, in addition, expressed as functions of only 3 independent 

variables (3 rotations of the new system of coordinates with respect to 
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the original one). All the transformation matrices possessing these 

properties are known as constituting the group of Cartesian transformation 

matrices. Moreover, when talking about the invariance of lengths, we 

have to require that 

I det M! = l. 

Obviously, the Cartesian transformation matrices are something 

very special. Later, we shall deal with a more general group of trans-

formations. However, it is not considered the aim of this course to 

deal with transformations in detail. 

1.3) Vector Analysis 

1.3.1 Derivative of a Vector Function of One and Two Scalar Variables 

The quantity 

lim 
tm + 0 

+ 
A(u --~ + + 

+ Au) ~ A(u) = dA 
Au du ___ ,__ .... _ ....... 

+ 
is called the derivative of vector A with respect to its scalar argu-

ment u. 
-r, 

It is sometimes denoted by A . Geometrically, this derivative 

has important applications in differential geometry of curves as we 

shall see later. 

A vector function A of two scalar arguments u and v has got two 

partial derivatives. These are defined completely analogously to the 

above case: 

+ + 
const.) A(u, const.) dA A(u + Au, v = v = -= lim au Au+ 0 

Au 

ax + 
b.v) - A(u v) A(u = const. , v + = const., -= lim av b.v + 0 

Av 
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Geometrically, these derivatives have a~~lications in differential 

+, +, 
geometry of surfaces and are somet:tmes denoted by A , A • Obviously, all 

u v 

the defined derivatives are again vectors. 

The rules for differentiation are very much the same as those for 

the differentiation of real functions. Particularly we have 

+ + 
d CA +B) dA dB =-+-du du du 

+ 
d (kA) kdA = du du 

+ + 
d CA • B) = A . .£!?. + dA • i3 
du du du 

+ + 
d -? + + dB dA + 

(.A. X B) = A X - + - X B du du du 

If A = const. then 

+ 
dA • + 

A du 

The ~roof of this theorem is left tb the reader. The rules ~or ~artial 

differentiation are analogous. 

1.3.2) Elements of Differential Geometry of Curves 

+ + 
If for all U€< a, b > a position-vector r = r(u) is defined, we 

+ 
say that r describes a curve (s~atial curve in 3D-s~ace). The real 

variable u is called the parameter of the curve. Let us assume that 

+ 
r is in < a, b > a:,continuous £'litllct;lon and we shall hence talk about 

. + 
Tf r is in <a, b>> continuous, we can define another scalar 

function of u: 
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-+ 

s( u) = !u ldrl du 
a du 

-+ 
that always exists for a continuous r, and call it the length of the 

-+ 
curve r between a and u. Since s is monotonic, there exists always 

its inverse function u = u(s) and we conclude that for continuous curves 

we can always write 

-+ 't 
r(s) = r(u(s)). 

This equation of a curve,using its length for parameter,is known as the 

natural equation of the curve. 

-+ -+ 
The unit tangent vector t to the curve r is given by 

-+ 
-+ dr 
t = ds 

as can be easily seen from the diagram. 

-+ 
Since t is a vector of constant length (unit) its derivative is 

perpendicular to it. Denoting the length of the derivative by 1/R we 

can write 

-+ -+ -+ 
where n is a unit vector perpendicular to t. The interpretation of n can 

be based on the following reasoning. The second derivative can be 
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regarded as a scaled difference of two infinitesimally small vectors 

+ 
connecting three infinitesimally close points on the curve. Hence n 

has to lay in the plane given by the three infinitesimally close 

points, i.e. in the osculating ··- + 
plane. Therefore n has got 

.. _,. 
r 

the direction of the principal 

normal (usually called ,just 

the normal) to the curve. 

1 /l d rl The proof that R = I ~ 

ds2 
is therefore the radius of curvature is left to the reader. 

·+ + + 
The vector product b of t and n (in this order) 

lb =t xri! 
+ .+ 

is obviously perpendicular to both t and n and has got also unit length. 

It is therefore called the bd:normal vector. The three unit vectors 

create an orthonormal triplet or~ented the same way as the coordinate 

axes. 

The differential relations among these three vectors are given by 

Frenet's formulae 

+ + + 
dn b t -= --ds T R 

+ + 
db n -= -ds T 

+ where T is the radius of torsion of r, i.e. the radius of curvature of 

+ + I the projection of the curve onto the plane defined by t and b. 

proof of the second two formulae is left to the reader. 

The 

The reader is also urged to prove the following two theorems: 
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a) E "*"2 
___ =_-[-;-,.~r-;_" __ ;-,~,~,1-

where by primes are denoted the derivatives with respect to s; 

s) if 
+ + 

y=i+b 
T R 

then 

+ 
dt + 
ds = Y 

+ 
+ dn + + 

x t, ds = y x n 
+ db + + - = y X b ds 

The formulae for R and T give us a handy tool for categorizing 

+ 
curves. If a curve r has got 1/T = 0 in a certain interval, then it 

+ 
is called planar in this interval. If even 1/R = 0 then r is a straight 

line in the same interval. 

Problem: Show that the necessary and sufficient condition for a 

curve to be a straight line is 

+ + ·+ 
r( u) = r + Au 

0 

+ + 
where r is a fixed radius-vector and A is a vector 

0 

Problem: Determine the shortest distance of two lines 

that do not intersect. 

1.3.3) Elements of Differential Geometry of Surfaces 

+ 
A radius-vector r given as a function of two scalar arguments u 

+ 
and v, defines a surface. We shall again assume that r is a continuous 

function of both parameters and that the surface is therefore continuous. 

The curves 
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1 ~ ( u, v = + 
canst), r (u = ~o~~t ··-~-~J] 

are called parametric curves on the surface, for which we ca,n indeed 

use all the formulae developed in the previous paragraph. 

I 
Problem: Derive the equations of ~-curves and A-curves on the surface 

of an ellipsoid of rotation, where ~ and A are geographical coordinates. 

Problem: Show that the necessary and sufficient condition for a 

surface to be a plane is 

1: (u, v) = 1: + u A + v B 
0 

+ + + 
where r 0 , A and B are some arbitrary vectors. 

+ I Problem: Derive the shortest distance of a point r to the plane 
p 

+ 
r (u, v) 

+ 
= r 

0 
+ u A+ v "B. 

+ + 
A curve on the surface r = r (u, v) is given by the formula 

·--·---------1 \ 1: ( t) =_ t ( u( t) , v( t)) 
l ----------

for which again all that has been said in the previous paragraph holds 

true. 

+ 
The tangent plane to the surface r, if it exists, is given by the 

two tangent vectors 

+ d-;; 
t = 

U dU 

to the two parametric curves. Hence any vector that can be expressed 

as a linear combination of these two vectors lays in the tangent plane. 

The equation 

-----·---
+ + 

+ + s) + ar sk r = r(o:, = r + 0: 

I+ 
+ 

I+ 0 au dV 
+ + r = r r = r 

0 0 
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-+ 
is therefore the equation of the tangent vlane to the surface r (u, v) 

at the :point 
-+ 
r . 

0 

I Problem: Derive the equation of the tangent :plane to the ellipsoid of 

rotation -+ -+ 
at the :point r = r (~ , A ). 

0 0. 0 

-+ 
The unit normal vector to the surface r is given by 

-+ -+ 
-+ = 1_ (l!:_ X l!:_ ) 
n D ou ov 

where 

The normal :points the same way with respect to u and v curves as the 

z-axis :points with respect to x and y axes. 

I Problem: Derive a formula for the outward unit normal vector to the 

ellipsoid of rotation. 

Other characteristics. cf a surface, as for .instance various curva-

t-ures, are slightly more involved and do not serve any way as good 

examples for vector analysis. They are better dealt with using tensors 

as we shall see later. Let· us just mention,:one more application here. 

-+ 
The curvature of the :projection of a surface curve r onto the tangent 

:plane to the surface at the :point is known as geodetic curvature. This 

quantity is usually denoted by 1/RG and given by 

I [-+r' 1 R = 
G 

-;n ri J 

-+ 
where r(s) is the surface curve. 

What are the geodetic curvatures of ~ and A-curves on the I Problem: 

surface of the ellipsoid of rotation? 
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As we know, one way how to define a geodesic curve on a surface 

is: geodesic curve is a curve whose geodetic curvature is everywhere 

equal to zero. Hence the equation 

can be considered the equation of 
+ 

a geodesic 
2+ 

-:t" = d r . 

curve r. Here, as well as 

· th · f 1 +' dr ln e preVlOUS ormu a r = ds , 
ds2 

If a curve happens to be 

given as a function of another parameter t then we have 

and 

+ '+ + 
dr = (k du + .£!. dv) £t 
ds au dt av dt as 

s( t) 
+ + 

lk ~u ar9:.;[1 'dt' 
au dt + av dt ... • 

We can see that, generally, the formulae for describing properties 

and relations on surfaces are complicated. It is usually simpler to 

deal with general surfaces using a particularly suitable system of 

coordinates, not necessarily Cartesian. We shall see later how to do 

it. 

1.3.4) Differentiation of Vector and Scalar Fields 

Differentiation of vector and scalar fields (vector and scalar 

functions of vector argument) can be defined in a multitude of ways. 

The three most widely used definitions can ·all be presented using the 

symbolic vector (differential operat6r.11 y (nabla, del). The V 

operator is defined as follows 

= C _L,_L a ) (a a 
-. ax ay' az = ax-' ax-' 

1 2 
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Applying this operator to a scalar field ~ (multiplying the vector 

V by the scalar ~) we get the derivative of the scalar field 

v,~, = (lL lL lL) 
'I' ax ' ax ' ax 

1 2 3 

a vector known as the gradient of p. It is often written also as 

grad cj>. 

+ 
with respect to a vector field A we can obviously "apply" the 

operator in several ways. First we can get the scalar product of V 

+ 
with A 

+ 
V • A 

I 

I 
I 

+ 
This scalar product is known as the divergence of A and often written 

+ 
as div A. 

Alternatively, we can produce a vector by taking the vector 

+ 
product of V and A and get 

+ 3A3 aA2 
VxA = (a;- - ax3 ' 2 ----

Ml aA3 aA2 _ aA1 
ax3 - -a-). ax1 ' ax1 x2 

-----·---
+ This vector is known as rotor or curl of A and often 

+ 
or curl A. 

written as rot 
+ 
A 

Another possipility would be to take the dyadic product of V and 

+ 
A to get a matrix of derivatives. This type of the derivative of a 

vector is basic for tensor analysis and will be dealt with later. 

All these differentiations are important in the theory of 

physical fields ~nto which we are not going to go here. We shall just 

limit ourselves here to statements considering the rules these 

derivatives obey. The rules are again much the same as those for 

ordinary derivatives. Here are some of them: 



21 

v (~ + ~) = v~ + v~ , 

V (k~) = kV~ , 

df v ( f ( ~ ) ) = d~ v ~ ' 

·+ + = ~\;divA + A· grad ~, 

++ 
V (A·B) 

++ + + + + + + + + 
V•(AxB) = B~(VxA) - A·(VxB) = B· rotA- A · rot B, 

+ + + + 
Vx(A+B) = VxA + VxB, 

( +) ( +) + + + . Vx ~A = ~ VxA - AxV~ = ~·rot A+ Ax grad~ 

It is left to the reader to prove the foliliowing theorems: 

+ 
Vr = !. 

r 

+ 

V (;) = - r 3 ' 
r 

+ 
3, v•r = 

+ 
V•(!..) 2 =-

r r 

+ + 
Vxr = 0 ' 

+ 
Vx (V~) = 0 

where ; is a radius vector and r its absolute value, A is a vector and 

~ is a scalar. 



22 

Very important is also the di;fre;rentiei.l · O;r?eta~ o:r. 1 of ,s,e,con~. order 'A 

(delta, v2 ). It can be obtained as the scalar product of two V 

ope rat a·rs giving thus: 

J 
The application of this operator; to a scalar cp gives 

2 2 2 
llcp = n + n + n = div (grad cp) ' 2 2 2 

axl ax2 ax3 

+ 
a scalar. Application to a vector A yields: 

a vector. 

It is again lett to the reader to show the following identities: 

l; (cp + ~) = llcp + ll~, 

Let us just mentior. here that the integral formulae traditionally 

considered a part of vector analysis are treated in another course and 

do not, therefore, constitute a subject of interest here. 
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2) VECTORS IN OTHER COORDINATE SYSTEMS 

2.1) Vectors in Skew Cartesian Coordinates 

In order to see one of the difficulties encountered when dealing 

with curvilinear coordinates let us have a look first at the simplest 

departure from rectangular Cartesian system - the skew Cartesian system. 

For easier graphical interpretation we shall deal with 2D-space, the 

plane ,and assume that the scale along the coordinate axes is the same 

as the scale along the rectangular axes~~ ~"-:'The i:f'!f.,rs:f:;;.\'q:i._,ag-ram' shows~ one 

way how to define the coor-

dinates of a radius-vector 

in skew coordinates. These 

coordinates or components 

are known as covariant 
r .. 

components and are obviously 

given by 

Generally, the covariant components are defined as absolute value times 

the directional cosine and we can generalize it immediately to any 

vector in 3D-space: 

I 
/ 

I 
I 

r 

/ 
/ 

r 

a. = a cos a. i = 1, 2, 3. 
J. J. 

The other alternative is shown 

on the second diagram. Apply-

ing the sine law to the lower triangle 
/ / ---------k~U,------ .x1 we obtain 
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2 
r r 

(TI-a -a ) = sin 1 2 sin a1 

or 

2 
sin al 

r = r sin (al+a2) 

Similarly 

1 sin a2 
r = r sin (al+a2) 

Components defined in this way are called contravariant components and 

are denoted by a superscript to distinguish them from the covariant 

components. In 3D-space the expressions are more complicated and will 

not be dealt with here. 

Note that in rectangular Cartesian coordinates, there is no 

difference between the covariant and contravariant components. This is 

the main point of departure when dealing with other than rectangular 

Cartesian systems. 

We can now ask the obvious question: how do we determine the 

-+ 
length of a vector a in a skew system? We either have to know at least one of 

the angles a1 , a2 and somec>f thecomponents or both covariant and 

-+ 
contravariant components of a. The first case is trivial, the second 

leads to the formula: 
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2 i 
E a1a . 

i=l 

We shall prove this formula easily by just substituting for the 

components: 

We state without proof that the same formula holds even for 3D-space 

where we get 

-+ -+ 
This is the generalization of the scalar product of a with a. Note 

that the scalar product in rectangular Cartesian coordinates is just a 

special case of the above where there is no difference between contra-

variant and covariant components. 

Summation convention ~ Since we are going to deal with summations 

of the type used above very' ex'temsively we shall abbreviate the equations 

by omitting the summation sign altogether. We shall understand,unless 

stated otherwise,that whenever there is an index (subscript or super­

script) repeated twice in the right hand side the summation automatically 

takes place. Usually, we require that one index is lower and one index 

is upper. There will, however, be exceptions from this rule and this will 

be clear from the text. Such an index becomes a dummy index and does 

not appear on the left hand side of the equation. In order to be able 

to distinguish between 2D and 3D-spac~we shall use Greek indeces in 

2D-space and Latin indeces in 3D-space. This means that the two scalar 
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products we have used in this paragraph will be written as follows: 

2 (a) = a = a a a ~ a. a2 

i=l J. 
3 -~ 

-----· 
This convention does not apply, of course, in case the index appears 

in two additive terms. Hence 

3 
ai + b 2• ~ ~ (a, +b.). 

i=l J. J. 

Having established the summation convention we can now ask another 

+ 
obvious question: how do we determine the angle between two vectors a 

+ 
and b in a skew Cartesian system? Here again, if we know the direction 

cosines of the two vectors, the pro')Jlem is trivial. More interesting 

is the case when only covariant components of one and contravariant 

components of the other vectors are known. We shall show that in this 
If> 

case the angle ab = w is given as: 
2 i 
~~;.b·, 

i=ll, ' 
w = arccos ( ab )= arccos 

a bq. 
a. 
ab 

To prove it let us first evaluate the scalar product of the two 

vectors. We have: 

2 
~ 

i=l 
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Expressing a1 , a2 in terms of S1 , S2 and w we get: 

sin a2 
= ab 

cos w(sin s2cos s1+sin s1cos s2 )+sin w(sin s1sin s2-sin s1sin s2 ) 
= ab ----------~----~----~~---=------------~----~-----=~--~ 

sin 
= ab cos w -­

sin 

,, .. The last equation is obviously equivalent to the one we set to prove. 

I Problem: Show that 

The result can be generalized for three dimensional space and we can 

write 

i i a.b a b. 
~ ~ cos w =~=~ 

By answering the two questions we have shown that the two basic 

formulae - for the length of a vector and the angle of two vectors -

remain the same in skew Cartesian coordinates as they were in the 

rectangular Cartesian coordinates providing we redefine the scalar 

product in the described manner. The same indeed holds true for all 

vector equations as we have stated already in 1.2.7), For this aim 

though the operations over vectors in non-Cartesian coordinates have 

to be all redefined on even more·general basis which we sl'lall do in 

the forthcoming paragraphs. Let us just stress here that the distinction 

between covariant and contravariant components is fundamental for the 

general development and will be strictly adhered to from now on. 
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2.2) Vectors in Curvilinear Coordinates 

Let us assume a 3D-space with a rectangular Cartesian coordinate 

system X defined in it. We say that there is a curvilinear system of 

coordinates U defined in the same space if and only if there are 

three functions 

. . 1 2 3 
u1 = u1 (x , x , x .) i = 1, 2, 3 

of the rectangular Cartesian coordinates defined and if these functions 

can be inverted to give 

2 
u ' i=l,2,3. 

The necessary and sufficient condition for the two sets of functions to 

be reversible is that both determinants of transformation 

have to be different from zero. 

j 
det (ax.) 

au1 

The reason for writing the coordinates u as contravariant (in the 

case of x it makes no difference since covariant and contravariant 

coordinates are the same in rectangular Cartesian systems) will be 

explained later. At this point we shall just note that the differentials 

of the coordinates represent the total differentials in terms of the 

other coordinate system: 

i = 1, 2, 3. 
3 . i 
" ax d j '-' --. u 

j=l auJ 
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It can be seen that to one triplet of values xi there corresponds 

only one triplet of values i u • We say that there is a one-to-one 

correspondence between the two systems X and U. The examples of such 

curvilinear systems such as, cylindrical, spherical, geodetic etc. are 

well known from more elementary courses.and will not be discussed here. 

The basic question now arises as how to define the components 

(coordinates) of a vector known in the X system, or more precisely a 

vector field, in the new coordinate system U, and yet preserve the 

invariability of the vector equations even for the transformation from 

+ 
X to U. What we really want is that the length of a vector a as well 

as its orientation remain the same after expressing its components in 

the U system. 

The way ' to define the components hence suggests itself as 

+ 
follows. Let us write the vector a in X coordinate system as 

using the 2D-space for easier graphical interpretation. 

In the U system we shall define 

where 
1 2 cos a1 ,cos a 2are the direction cosines with respect to the u , u 

coordinate lines. 
)J! 

The quantities a cos a1 , a cos a2 are called,in 
'-, 

agreement with the skew 

coordinates expressions, 

+ covariant components of a 

in u. 
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Here, as well as in the next section, we assume that the scale 

1 2 1 along the coordinate lines u , u is the same as along the lines x , 

2 x . This is just for the geometric interpretation sake. If the scales 

are different then it becomes increasingly difficult to visualise the 

meaning of the components but the general results described in the next 

section do not change. Let us just state that dm such a case one has 

to be careful when inte~preting geomet:o.meall:yc.t:JlJ.e components. 

The contravariant components are then defined as segments on the 

coordinate lines as seen on 

2 a = const 4-const3 

a1 = const2-const1 • 

We can see now the reason 

why we have denoted the 

coordinates u with a super-

script {upper index rather 

the u coordinate 

L{:l 
._. than lower). We find that 
~ '8 

differences play the role of contravariant com-

ponents. We shall come to this point once more later on. 

It is not difficult to see that the introduced definition of 

covariant and contravariant components conform with the requirement of 

invariability of vector equations. However, the forthcoming develop-

ment is going to prove it more rigorously. 

2. 3) Transformation of Vector Components 

Let us now have a look at the mechanism of computing the c_oyariant 

-+ components of a vector a in the U system when we know its covariant 
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the X system. From the diagram, we can write immediately -a for &1, a2(using again for 

simplicity the 2D-space): 

These relations can be rewritten, realizing that 

as 

a cos al = a( cos 61 cos 0\1 + sin 61 cos 0\2) 

a cos a2 = a(cos 62 cos a2 + sin 6 2 cos a1 ). 

On the other hand, we can write for cos 61' sin 

dx1 
cos 61 = 1 , 

du 

61 from the diagram: 

sin 
dx2 

~1 =-1 • 
du 

Similarly for 62 : 

dx2 
cos e = --

2 du2 
sin 62 

dx;r = --. 
du2 

Substituting these results back into the original equation for new 

covariant components we get 

a cos a. 
l 

ox2 
a cos a1 + ---. a cos a 2 

oul 
i = 1, 2 

or denoting by a. the covariantcomponents. in the U system and using the 
l 

summation convention 
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a = 1, 2. 

Here the ordinary derivatives were replaced by partial derivatives 

i 
because x is generally an explicit function of all the u's. 

This result is of a primary importance· in the theory of vectors 

in curvilinear coordinates and bears the name the transformation law 

for covariant components. It can be derived in a more straightforward 

manner for the 3D-space (or space of any dimension) Tchen we realize 

(da ., cjli' thus ai .;:::; da -+ -+ -+.-+ -+ -+ = cos a--- = a· a"" au ;= aVa where u 11 a, u""" 
dxi dx1 ' 

that the covariant components are given by 

da 
a.=a---:­

l. dx2 

- da a.=a --. 
2 du2 

i = 1, 2, 3 

1) 

in any coordinate sy,stem. Applying the rule for total differentiation 

we get immediately 

or 

~ .~ axi = axi ~ = axi _ 
i=l dxi auj auj dxi auJ 

j=l, 2, 3. 

a. 
l. 

a 
j=l,2,3. 

The reader is urged to Jlrove to himself that the formala 
a i -

a = ..:!!... a. 
J · axJ 2 

holds for the inverse transformation. 

j ·= 1' 2' 3. 

Since in the second derivation nowhere have we used the special 

properties of the X system (rectangular Cartesian) it can be seen that 

the transformation law holds for the transformation between any two U 

systems (non-Cartesian) as well. This is written as 

au1 
a. =-- a .. 

J a l'iJ l. 

a-.i u. ~ 

aj =-- ai J = 1, 2, 3. 
au~ 
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The transformation law for contravariant components reads 

j=l,2,3 

and its derivation is more involved. We should expect that this is the 

law the coordinate differentials have to obey. Comparison with the 

earlier developed formulae will assure the reader that it is the case. 

This is the basic reason why we have used the upper index for the 

coordinates. 

6-+ A.+ 
As an example, let us take a p.air of tangent vectors t, t to the 

6 and A. parametric curves on a sphere of radius R.,:inC~rtesian coordinates. 

ExJJressing the sphere as 

r 
= R sin 6 cos A. 

-+ 
A.) 

= : 
(r R) r ( 6, =.R sin 6 sin A. = 

= R cos 6 

we obtain: 

X = R cos 6 cos A. 
-+ 

6-+ Clr 
6 A. t =-··= y = R cos sin 

a6 

z = - R sin 6 

X = .... R sin 6 sin A. 
-+ A.+ Clr R sin 6 A. t = -= y = cos a A. 

z = o. 

The elements of the Jacobian of transformation between the Cartesian 

and the spherical coordinates are given by: 
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ax sin 6 A., 
ax 6 A., 

ax sin 6 sin A. -= cos -= I\ 'COS cos -= -r ar a6 a A. 

ll.= sin 6 sin A. ' ll.= r cos 6 sin A. ~c.;= r sin 6 cos A. 
ar a6 a A. 

az 6 az sin 6 az 
0 -= cos ' 

-= -r ' 
-= . ar a6 a A. 

We evaluate the covariant components 
6+ A.+ 

in the spherical can now of t, t 

coordinates using the transformation law for covariant components: 

= o, 6t = Rrl 2 r = 

The :ceaGf.er is s-uggested to show that the contravariant components of the 

same two vectors are 

6;L 62 63 
t = o, t = 1, t = o, 

A. l 
t = o, 

Finally, we note that for a transformation between two Cartesian 
N 

systems, X and X say, all the partial derivatives 

i ax 
-axj = i, j = 1, 2, 3 

are constant and we end up with the same expression as in 1.2.8. 

The transformation laws as well as the whole idea of expressing 

vectors in curvilinear coordinates may seem to be too complicated 

when we can work with rectangular Cartesian coordinates 

alone and use the relatively simple formulae developed in Chapter 1. 

This is, unfortunately, not the case generally. There are spaces, 

where we just cannot define Cartesian coordinates and where we have to 

work with curvilinear coordinates whether we like it or not. The 

simplest example of such spaces are surfaces that are not developable 
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into a plane, sphere or ellipsoid being the two most commonly used ones. 

This matter will be dealt with more fully later. 

Problem: Give the covariant and contravariant components of unit 

tangent vectors to ~ and A. curves on the ellipsoid of rotation in 

geodetic coordinates. 



3) TENSORS 

3.1) Definition of a Tensor 

As we have said in the last paragraph, there are spaces in which 

we cannot define Cartesian coordinate systems. In these spaces (but 

not only these) it is usually difficult to even recognise if a quantity 

is a vector or not. The transformation laws allow us to determine it, 

providing we know the quantity we deal with in two different coordinate 

system.. We can now redefine the vector as a triplet of functions that 

transforms according to one of the transformation laws. Accordingly, 

we call the three functions either covariant or contravariant components 

of the vector. 

This approach allows also a further generalization of vectors. We 

can now introduce a more general structure tha:p:tb.e v:ecto:t' .... the te:asor. 

We call a structure a .. of 32 elements a two-times covariant tensor (in. 
~J 

3D-space with U coordinate system)if and only if it is related to a 

similar structure a .. of 32 elements in 3D-space with U coordinate 
~J 

system by following transformat~on equation 

a .. 
~J 

"k "'R, oU aU :.• 

= ""'i "-.:i ~R, • 
aU aU.' 

Here, we,of course, use the summation convention so that the formula in 

the ordinary notation reads 

a. .• 
lJ 

3 
= l: 
k=l 
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Similarly we can define, say a three-times contravariant tensor in 

2D-space as obeying the following formuEL.la.: 

meaning 

baSy 
2 2 2 "'ti af113 a-a:Y oe;$ 
l: E l: 

au = 8 >·IJ1,~br.!i :' 
o=l: e:=l ~=1 au au· au. 

We can also have mixed tensors with some covariant and some 

contravariant indeces. 
ij. ' 

Hence the tensor c:R, · ought to obey the following 

transformation law, 

and is called once covariant and twice cont~avariant three-dimensional 

tensor. A tensor need not even have the same dimensions in all indeces. 

It is left to the reader to write the transformation laws for following 

tensors as an exeretse: 

It seems wo;rth;mentioning here that we could have easily used the 

matrix notation for everything we have done,. so far. From now on, 

however, the matrix notation would not be able to express all the 

quantities we shall work with. 

I Problems: Write in full all the elements of the following tensors: 

aiaj (dyade), aibi,aiai. 

The number of indeces (excluding the dummy indeces) of a tensor is 
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called the rank of the tensor. Thus vectors are regarded as first 

rank tensors, scalars as zero-rank tensors or invariants. 

Note that the number of components of a tensor is given by 

r 
n 

where n is the dimension of the space and r is the rank. If the tensor 

is def'ined in spaces of different di,mension, say n1 ,n~;'~:til3 then the 

number of' components is 

where r 1 ,r 2 ,r 3 are the ranks in n1 ·,n2 ,n3 dimensional indeces. Obviously 

+ if there is a scalar cf> defined at point r, after changingthe coordinate 

system the same scalar will remain attached to the same point (although 

the coordinates of the point will generally change). Hence we have the 

transformation equation for scalar +: 

which is consistent with the transformation laws for tensor quantities. 

3.2) Tensor Field, Tensor Equations 

If i:h' .a region of a space: a tensor is def'ined for each point of the 

region, we say that there is a tensor field defined in the region. This 

term evidently encompasses both special cases we have dealt with in 

rectangular Cartesian coordinates - vector and scalar fields - and is a 

direct generalization of 'Doth. 

By having chosen the definition of covariant and contravariant components 

of a vector the way we did, we have ensured that equations involving thus 

defined vectors (either their covariant or contravariant components) 
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remain insensitive (invariant) to any change of coordinate system. The 

same holds true for tensors of any rank. The tensors of higher ranks 

can be thus used to describe more complicated properties of objects in 

the space like measures of distortion, curvatures of surfaces etc. 

3.3) Tensor Algebra 

The forthcoming 9 paragraphs are co:mmon for two as well as three-

dimensional tensors. For simplicity we are going to use only Latin letters 

for indeces and the reader can "translate" everything for himself into 

two dimensions by "transliteration" into Greek letters. 

3.3.1) Zero Tensor 

Zero tensor is a tensor whose elements are all equal to zero. It 

-is trivial to show that the structure, say A .. = A .. = o,transforms as 
~J ~J 

a tensor and is therefore a tensor. 

3.3.2) Kronecker o 

The structure denoted by o~ 
~ 

and defined as 

i=j 

in any coordinate system is also a '~,(mixed) tensor. It is left ttl the 

reader to show that it transforms as a mixed tensor of second rank. 

3.3.3) Summation of Tensors 

The sum of two tensors that have the same number of covariant and 

contravariant inde.ces and the same dimension in all indeces is again 
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a tensor of the same number of eovariant and contravariant indeces: 

C~j = ~j + B~j (summation convention not applied) 

whose elements are all sums of the corresponding elements of:the two 

summed tensors. The proof that the sum of two tensors is again a tensor 

is left to the reader 

The summation is commutative and. associative, i.e. 

= B0 + Aj 
l i (summation convention not applied) 

= (A + B ) + c (summation convention not applied) 
. Q,k Q.k Q,k 

The product of a constant scalar and a tensor is again a tensor of 

the same rank whose elements are equal to the correspond;ft;ttg elemextesirof 

the multip1ied tensor) mu~tip1ied by the constant 

b .. = ~A ..• 
lJ lJ 

The .multip1ication is associative and commutative. The proof that the 

product is a tensor is trivial.. 

3.3.5) ~site Tensor 

Opposite tensor Bij to a tensor, say Aij, is again a tensor of the 

same rank whose elements are equal to the negatively taken corresponding 

elements of A ij. It is denoted by -A ij and we have 

Aij + Bij = 0 or 

Its tensorial properties fo1low immediate1y from 3.3.4 if we take ¢ = --1. 
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3.3.6) Multiplication of Tensors 

The product of two tensors, say Aij and B~ in this order, is a 

tensor of a rank that is a sum of the ranks of the two constituent tensors, 
•• fl, 

in our case c1 J 
k 

Its components are products of the corresponding 

components of the constituent tensors, for instance 

We can see that tensor product is generally not commutative, i.e. 

AijBfl, :f Bi Ajfl, 
k k 

(but AijB~ = B~Aij) 

On the other hand it is always associative. 

The reader can prove for himself that the product of two tensors 

is again a tensor by investigating its transformation from one coordinate 

system into an other. Note that multiplication of a tensor by a constant 

is just a special case of multiplication of tensors. 

If one of the two tensors that are to be multiplied has got one or 

more covariant (contravariant) indeces identical to one or more contra.-

variant (covariant) indeces of the second tensor thendhe resulting tensor 

will have a rank smaller by 2 or generally by a, l.~;rge:r: even integer. This is 

because the identical indeces become dummy indeces and.we have, for example 

A Bj = C. , A ik . B fl, = Ck 
ij J. j fl, i j . 

Such a product bears a special name of inner product in one or more 

indeces. 
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Note a particular inner multiplication by o~, 
~ 

which is sometimes called the change of an index. 

3~3.7) Contraction 

Contraction is an operation by which we reduce the rank of the 

tensor by two. If we set one covariant and one contravariant indeces to be 

equal to each other, this automatically indicates that the indeces 

become dummy indeces and the summation takes place. Applying this 

operation to, for instance a tensor A~1 we can create f"u~ , generally 

different, tensors of rank two: 

A~~= B~, 
~J J 

C9- Akj 
i' ij 

This operation is difficult t~ visualise unless we contract a tensor 

of rank two, i.e. reduce it to a seaiifr~ In this case we have 

A = A~ 
~ 

we can 

and taking the matrix of A~: 
~ 

3 
see that x = I: 

i=l 

l 2 
~1 ~1 

[A?] l 2 - a~, a2 I 

1 2 
a3 a3 

i a. = trace (A). Hence, 
~ 

0~ = 3, 
~ 

oa. = 2 
a. 

3 
al 

3 
a2 

3 
a3 

for instance, 



43 

We can show that the contracted tensor, say AstBt, is again a 

tensor by following cala'lllation.S: 

aui 
=--

•,· .... 
au"" 

.'AM®ther way to view contraction is to say that it is equivalent 

to inner milltip1i!;8.'f[on--by kronec:k.e:i:- o in two indeces. For example: 

Then the proof of the tensor character of B~ is evident. This is the 

reason why some text~books do not list contraction as a special operation. 

It should also be mentioned that, by the same virtue, an inner 

multiplication in one index can be regarded as a once contracted general 

tensor multiplication: 

A:l. B~ = 
j ik 

··. . 
Therefore we shall be further speaking about a contracted product or 

inner product, meaning the same thing. 

3.3.8) Tensor Character 

We can notice that the three basic tensorial operations - summation, 
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multiplication and contraction -produce alwa~.again a tensor. They 

are said to preserve the tensor character. This property serves as 

another means of distinguishing a tensor. For instance a two-index 

quantity A .. can be tested for its tensor character by multiplying it 
lJ 

by two arbitrary contravariant vectors (or a twice contravariant tensor). 

kt 
The result is a four index quantity, say Bij' If its double contraction 

results in a scalar then A .. is a twice covariant tensor: 
lJ 

_/ -" 
scalar ='>A. . is a tensor 

lJ 

something else =>A. . is not a tensor. 
lJ 

3.3.9) Symmetric and Antis~etric Tensor 

A tensor is called symmetric in two simultaneously either covariant 

or contravariant indeces if and only if its value does not change when 

we interchange the two indeces. For example 

.Q,m .Q,m 
8ijk = 8Jik 

is symmetric in the first two covariant indeces 

is symmetric in its contravariant indeces. 

A tensor is said to be antisymmetric (skew-symmetric) in two simult-

aneously covariant or contravariant indeces if and only if it changes sign 

when,we interchange the two indeces. Hence A~~m = -A~.Q, is antisymmetric in 

the last two contravariant indeces. 

Any tensor of second rank can be expressed as a sum of a symmetric and 

an antisymmetric tensors. To show this, let us take, for instance, a 

tensor Bij and write 
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Bij = 1/2 Bij + 1/2 Bij + 1/2 Bji "" 1/2 Bji 

Bij 0 

This equation can be rewritten as 

Bij = 1/2 (Bij + Bji) + 1/2 (Bij - Bji) 

sij Aij 

Here the first tensor is symmetric since it does not change when weihter-

change the indeces. The second changes the sign when we interchange the 

inaeces and is therefore antisymmetric. 

3.3.10) Line Element and Metr~c Tensor 

We have seen in 1.1 that in 3D-rectangular Cartesian coordinates 

(or Eucleidean space), the square of a distance ilS between any two points 

3 . 2 
E ( LDC7) 

i=l 

If the two points are infintesimally close, we get similarly 

2 (ds) = 
3 
E 

i=:j. 

where ds is called the line element. 

Let us ask now, what will be the formula for the line element in 

a curvilinear U system. As we have shown already (2.2), the coordinate 

differentials transform as contravariant vectors. Hence the differentials 

dui will be given as 

a i . = u a.x·J 
axil 
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and 

Substituting this result into the frDvmula for the line element and 

realizing that the'line element is invariant in the transformation X+ U 

we have 

axi axi =----
auP aus 

Since i:n th;i,s ;J;orrqula the summation conventi,on applie$ (i ,p, s are 

duri'my indeces) the quantity 

i "xi ax/ a 

is a two-index field. Moreover, since the twice contracted product of 

gps with two contravariant vectors dui and duj is a scalar, the quantity 

gps has to be a twice covariant tensor~. , uri is, perhaps, the most 

important tensor and is called metric. or funCla1Ilental tensor. 

The o~~-~~~iement, c.an be written using the metrffr'1~E::~~~;;; as 

i ~-g .. du du 
~J 

------·-
in any coordinate system. Note that the metric tensor is symmetrical since 

g~J = gji' or more explicitly: 

axk axk axk axk 

aui auj = auj Clji 

i . 1 2 3 
Obviously, if we have the equations x = x~ (u , u , u ) , i = 1,2,3, relating 

the(' curvilinear system U to the rectangular Cartesian system X, we can 
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derive the metric tensor of"the U system from the above formulae. 

It can be shown that if the U system is again rectangular Cartesian.with the 

same scale along all the axes, we end up with 

=/1 
i = j 

gij 
\0 i :f j ~ 

j 
a tensor equal to the Kronecker o and denoted therefore by o .. This 

~ 

leads to the equation for the line element 

the same: a.s the cine. we began with; this wa.s to be 

indeed expected. 

On the other hand, if the U system is skew Cartesian, its metric 

tensor is not unit any more. The reader is advised to prove for himself 

that a 2D-skew Cartesian system has a ~tric tensor 

where 81 ,8 2 are given according to the figure. 

This holds true providing that 

the scale along all four axes 

is the same. If the scale along 

1, ·2 
u u axes, is different from 

1 2 the scale along x , x axes, the 

metric tensor above will be;.· 

different. 
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As another example we may take the spherical coordinates r,e,A., 

for which we have 

1 sin X = r e cos A 
2 sin e sin A X = r 

x3 = r cos e 

The reader may prove for himself that the matrix of the metric tensor 

in these coordinates is given by following formula 

[~ 
0 0 

J fgijJ 
2 

0 = r 
2 2 

0 r sin . 
Problem: Derive the metric tensor for geodetic. coordinates ~,A.,h 

(geodetic latitude , longitude and height above a fixed ellipsoJd;.'of 

rotation given by its two axes a,b and centered upon the coordinate origin) 

for which 

1 (N + h) cos ~~-c®s A X = 
2 (N + h) cos'~ sin A X = 

x3 = (N(g.r+h) sin ~ .. a 

Here 

In 2D-space the development is completely analogous. There, the for-

mula for the line e,h~ment reads 

[(ds )2 = ga.~ dua du-13 l 
and everything we have said about the 3D-metric tensor is valid for the 

2D-metric tensor as well. It is left to the reader to prove that for 

example a sphere of radius r has got a metric tensor whose matrix equals to 
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This expression can be arrived at by the following rea.s.ohing: 

(ds) 2 

l 2 
where u =¢, u =A~ 

Problem: Derive the metric tensor for the geodetic coordinates ¢, A 

defined on the surface of a fixed ellipsoid of rotation co-centric 

with the Cartesian system and defined by a and b. 

3.3.11) Terminolosical Remarks 

The way we have defined a coordinate system ensures that there is 

always a metric tensor associated with any system of coordinates. This 

allows us to talk always about the metric space realized by the 

coordinate system. Hence we can use the two terms ~ coordinate 

system and metric space ~ interchangeably, which often is the case in 

literature on metric geometry. Note that we can talk about the metric 

tensor without having specified the system of coordinates, i.e., 

without having specified the relation between U and X systems. We can 

hence have just a set of 6 (or 3) independent elements of the metric 

tensor without knowing anything about the coordinate system it 

belongs to. 

The metric space corresponding to the rectangular Cartesian 

coordinates is known as the Eucleidean space, as mentioned ~lready in 

l.l. The Eucleidean space is then characterized by the unit metric tensor. 
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(The tensors in Eucleidean spaces are sometimes called affinors). The 

metric space corresponding to skew Cartesian coordinates (with constant 

scale along each axis, not necessarily the same for all axes), is 

usually called the affine or pseudo~Eucleidean space. It is character­

ized by a metric tensor constant throughout the space. Both the 

Eucleidean and affine spaces are called flat. 

If the metric tensor changes from point to point, the metric space 

corresponding to the used system of coordinates is called Riemannian 

(in a wider sense) or curved. Hence, for instance, a coordinate 

system with three peeyendicular axes and scales varying along these 

axes does no longer represent a flat space. Spaces, for which the metric 

tensor is diagonal for every point, are called locally orthosonal. Most 

of the coordinate systems dealt with in practice (spherical, cylindrical, 

geodetic, geographical, etc.) are locally orthogonal. All the spaces, 

i.e. Eucleidean, affine, locally orthogonal, are often regarded as 

special cases of the Riemannian space. 

Theoreti.cally, we indeed can choose the metric ln any (non-metric) 

space any way we want. When dealing, for instance, with a sphere, there 

is nothing to stop us from defining the metric as, say, Eucleidean and 

write 

The only problem is that in such a case we cannot relate it properly to 

physical (geometric) re~lity. For the example mentioned above it would 

not be possible to immerse the sphere metr icised in the described way into 

a three-dimensional Eucleidean space without distorting its Eucleidean 

metric. The distance of two points measured on the surface of the sphere 

(by our chosen Eucleidean metric) would not generally agree with the 
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distance of the same two points measured by the Eucleidean distance in the 

3D-space. Therefore, we have to require that the metric of a space of 

lower dimension immersed in a space of higher dimension be compatible 

with the metric of the space of higher dimension called sometimes the 

meta-space or super-space. 

Spaces that can be metricised with the Eucleidean metric (i.e., 

whose any metric tensor can be transformed to the unit tensor by a 

transformation of coordinates) and yet remain compatible with the 

meta-space are called flat with respect to the meta- space or inherently 

flat. If this cannot be done then the space is called curved with 

respect to the meta-space or inherently curved. If we consider the 

common 3D-Eucleidean space the meta-space for the surfaces we deal with 

(2D-spaces) then all the developable surfaces are inherently flat, all 

the other surfaces are inherently curved. :~dr'~.i,tiitance the sphere 

cannot be metrici')!i~d .. ·with Eucleidean metric in the 3D-Eucleidean space 
~l., . I , 

'-.:,·,, ""''!~· •• ._,...;\ 

and is therefore curved with respect to this particular space. The 

terminology in literature is not compilietely unified in this respect. 

3. 3.:12) Associated Metric Tensor, Lowering and Raising of Indeces. 

Let us take now the metric tensor g .. , multiply it by a contravariant 
lJ 

k vector A and contract the result (since g .. is symmetrical, it does not 
lJ 

matter whether we contract the first or second index). As we have seen 

already, this operation is sometimes called inner multiplication and in 

our case we get: 

g Aj = B 
ij i 
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Since this is a tensor equation it has to be valid in any coordinate 

system, therefore even in rectangular Cartesian coordinates.. But we have 

seen in 3.3.10 that for rectangular Cartesian coordinates g .. = o~ and 
l.J J 

we get 

i j i = o. A =A =A. =B .• 
J 1. 1. 

(Note that we can lower and raise indeces here freely only because we 

work in rectangular Cartesian coordinates). Thus the metric tensor 

provides us with the tool for determining the covariant components of 

a vector if we know its contravariant components: 

~ = gij Aj J. 
This is the reason why we call the inner multiplication of a vector 

by metric tensor lowering of one contravariant index. This operation 

can be applied to any, (at least once contravariant) tensor of any rank. 

For example 

where by the dot we indicate the initial position of the lowered index. 

Let us now have a look again at the first equation of this paragraph 

from purely algebraic point of view. It can be evidently written as 

~ b Aj=A 
'-' 1!:>1.• J' • j=l 1. 

and regarded as a system of three algebraic equations for Aj, j = 1,2,3. 

It therefore makes sense to invert the system and write 

(*) 
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since det (gij) for any Riemannian space is always positive. 

To show that d.et (gij) = g is always positive we can write: 

Hence the matrix of gij can be regarded as a matrix product of 

the two trans£ormation matrices (J~acobians) [3xk/aui] and [axk/auj]T. 

We knmv that according to Laplace's theorem, the determinant of a 

product of two matrices equals to the product of the determinants 

the two matrices. We have hence 

k k 
det2 

k 
g = det (g .. ) = det (ax.) det (ax.) = (ax.) 

lJ au1 auJ au1 

k 
d . d t (ax.) ..J. an SJ.nce e .,.. 

au1 

simpler for a locally 

0 (see 2.2) we get g > 0. The proof is even 

orthogonal system for which we can write: 

3 
IT g1'1' = 

i=l 

3 
= IT 

i=l 

3 
I: 

k=l 

ti 
i=l 

Interpreting the equation (*) again in tensor notation we get 

of 

where gij has to be a twice contravariant tensor because when multiplied 

and contracted with a cov.armant vector it gives a contravariant vector. 

It is called the associated, metric tensor. The operation described by 

the above formula is known as raisin6 of the covariant index. It can 
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be again applied to any ,~(?-t least once covariant)tensor of any rank. 

For example: 

gij B = 
kR,j 

An associated tensor to any second rank tensor whose determinant 

is different from zero can be defined similarly. 

Problem: . e ~ A i Derive the contravar1ant vectors t , t from the example 

in section 2.3 from their covariant forms by means of the associated 

metric tensor. 

We also find that a once contracted product of the metric and 

associated metric tensors equals to the Kronecker o. To show this let 

us write 

iJ" J" 
g A. = A . 

1 

Multiplying the equation by the!rmetric tensor and contracting in j 

indeces yields 

But the right hand side equals to Ak, therefore the left hand side 

must equal to ~ too. Hence 

gkj ~j = iJ 
Note that even the operations "change of index" and "contraction" 

can be expressed in terms of the metric and associated metric tensors. 

We have, for example, 

~~~(change of index), 

gil gjk At= A~ (contraction). 
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Hence, we can say that all four special tensor operations (lowering, 

raising and change of an index as well as contraction) are particular 

cases of inner multiplications by the metric and/or associated metric 

tensors. 

We also note that 

[L:-gl_· k_gl_· k_=_3_,_g_a_s_g_a_a- =:~OJ 

3.3.13 Scalar Product of Two Vectors, Applications 

As in skew Cartesian coordinates, we again call thec'inner product 

of two vectors the scalar product. The inner product of a vector with 

itself equals to the square of its length here as well as before~ 

(A) 2 = i i A. A =A A .. 
l l 

This can be easily seen when we realize that the above is a vector 

equation and therefore is invariant in any coordinate transformation. 

Since we know that A is the length of the vector in Cartesian coordinates 

it has to be the same in any coordinate system. 

Problem: 
6+ /..+ 

What are the~lengths of t, t used in the example in 

section 2.3? 

Analogously, we call A the length of the vector A even in an 

inherently curved space. Note that it is difficult to visualize a 

vector in a curved space since it no longer can be interpreted as an 

oriented segment of a straight line. The same holds true for the 

components . In a curved space one cannot use the "co:m.mon 

sense" and has to go strictly by definitions. In our development we 
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shall be working in a flat space. The results, however, will lend 

themselves to straightforward generalization in a curved space with 

the only difference that their geometrical interpretation will be 

rather difficult. 

Making use of the metric and associated metric tensors, we can 

write for the length of a vector: 

E_i_A_j_)_l-/2_=_( g_i_j_A_i _-A_j_),~ 
The analogy with the fundamental form is evident. Obviously, in a 2D-

+ 
space the length of a vector A will be defined by 

Let us just note that the fundamental form (see 3.3.10) can also 

be written as 

dxid x .. 
l 

2 Dividing this equation by (ds) we get 

dx i ~i 
= 1 ds ds 

dxi 
Hence we can conclude that ---d are contravariant components of a unit s -

.~--
vector and :f .:;f_ are covariant components of the same. 

d'i 

We have seen in 2.1 that the following vector equation 

AB cos w = A. Bi = Ai B. 
l l 

+ + 
holds true for any two vectors A, B. It has to hold true even in a 

curvilinear coordinate system since both lengths and the angle w are 

invariant. Rewriting the above equation using the metric and associated 

metric tensors we get: 
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= gij A. B.~1 
l j_j 

Note that this gives us the means of distinguishing two perpendicular 

vectors in both flat and curved spaces. In 2D-space analogous 

formulae hold: 

cos w = g Aa B~ = ga~ A ~. 
a~ a ~~--~~J ·--------

Problem: Show by direct computation that the angle between two tangent 

vectors to ~ and A curves on an ellipsoid equals to TI/2. 

3.3.14) Levi-Civita Tensor 

Let us define now the following tensor in 3D-space: 

where 

/+ l for all even permutations of indeces 

0 l for odd permutations of indeces =- -rst \ 0 for all other combinations of indeces 

and 

Hence 

o111 = o112 = ... = o333 = 0. We can show that erst is a three-times 

covariant tensor. 

To show it, it suffices to consider erst first in rectan.gular 

Cartesian coordinates: 

= 0 rst 
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(in rectangular Cartesian coord~nates we assume for simplicity 

det ( gij) = 1). Taking e t in another arbitrary coordinate system U, rs 

it has to satisfy the following transformation law: 

( *) 

To prove that the above equation is satisfied we have to prove first 

that 

Ar As At o = det (.A) oiJ'k i j --k rst 

where det (A) is the determinant of the matrix of the arbitrarily chosen 

j mixed tensor A1 • This can be seen directly for specific values of i,j,k. 

We have, for instance 

r s t 
A3 A2 A1 orst = .... det (A) ,, 

and similarly for other permutations o:r. :t ,j, ,k. 
The proof that all the expressions 

where the lower indeces i,j,k are other combinations of 1,2, and 3, equal 

to zero is left to the reader. 

Having proved this, we proceed to state that 

This has been shown in section 3.3.12 already. Applying both our 

findings to eq~ation (*) we obtain 

which concludes the proof. 
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..... 
The e t tensor is called the LeYi~Civita c6Yariant tensor. rs 

Analogously we can define 

The proof that this is a three-times contravariant tensor is left to 

the reader. It is known as the Levi-Civita contravariant tensor. The 

Levi-Civit~ tensors are sometimes called e-systems. Note that Levi-

... 
Civita tensors can be defined only for spaces with dimensiow;higher 

than 2. 

3. 3.15) /Vector Product of Two Vectors. 

The covariant vector 

[ci = eijk Aj B~J 
is known as the covariant vector product of the two (contravariant) 

. k 
vectors AJ and B . Similarly, the contravariant vector 

is called the contravariant vector product of the two (covariant) vectors. 

To show that this definition of vector product is equivalent to 

the usual definition in rectangular Cartesian coordinates, we can spell 

out the components of any of the two vectors C. or Ci (in Cartesian 
l 

coordinates). We obtain, for example, 

cl = A2B3 A3B2 

c2 = A3Bl AlB3 

c = 3 
AlB2 "" A2Bl 

that matches the formula for the components of the vector product in 

1.2.6 sub ii. 
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The reader is recommended to prove the following 

where the A,B,C vectors are those from the above equations. Note 

that the vector product provides us with the tool for distinguishing 

two parallel vectors in flat as well as curved spaces. 

Problem: Write the equation for a unit normal vector to the ellipsoid 

of rotation in geodetic coordinates syi\>t.emusing vector product. 
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3.4) Tensor Analysis 

3.4.1) Constant Vector Field 

Before we start talking about differential operations with tensors 

let us see first how we can recognize constant vector field in curvilinear 

coordinate systems. To do so let us take a vector field A known to 

be constant in Cartesian coordinates (A). Transforming the curvilinear 

system U to Cartesian X we get 

Further consider a curve C = C(t) in the space and ask what would 

be the change in Ai when we move on the curve by an infinitesimally 

small step dt? The answer is given by the following equation 

d k . "' i dAj 
...22:_ AJ + ~ 

dt Cluj dt 

Since Ai is considered constant (in Cartesian coordinates), its derivative 

dAi/dt is identically equal to zero. Hence we obtain the following 

differential equations of a constant vector field expressed in curvi-

linear coordinates: 

These are often called in literature the equations for parallel trans-

mission of a vector, the term borrowed from application of tensors in 

mechanics. 
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3.4.2) Christoffel Symbols 

Our next goal will be to express the partial derivative of the 

coordinates in the equation for parallel transmission in terms of the 

metric tensor belonging to the curvilinear system. To achieve this, let 

us multiply the equation by g rp Clxi/Clup; We get 

rp Clx i Cl2xi d k . rp Clxi Clxi d.Aj 
g - ~AJ + g--. --= 0 

()up 
. k . 

Clup CluJ CluJ Clu dt dt 

Here 

(see 3.3.12) and the second term becomes dAr/dt. The product of the 

two partial derivatives in the first term is denoted [jk, p] : 

[jk, p] 

and called the Christoffel symbol of 1-st kind. It is a function of 

the metric tensor only and it can be shown that: 

1 Clgjk Clgik Clgij 
[ij' k] = 2 (. . + -.-- k ) • 

Clu1 CluJ Clu , ________________ _ 
To show this let us take partial derivatives of the metric tensor 

gij with respect to all three coordinates. We get 

Analogously: 
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Summing up the last two equations and !i\:Ubtracting the first from them 

we get: 

which is nothing else but 2[ij, k]. This concludes the proof. 

Using the Christoffel symbol, the equation for paralle~ trans-

mission can be rewritten as follows: 

We note that in Cartesian coordinates the Christoffel symbol of the 

first kind is always zero and the above equation degenerates to 

that had to be expected. The Christoffel symbol is not a tensor -

hence the name. It is, however, of a fundamental importance in tensor 

analysis. Note that it is symmetrical within the first two indeces. 

Upon introducimg another quantity: 

}-r~J = g~k [iJ, k]~ 
known as the Christoffel symbol of 2-nd kind, the above equation can ~e 

further simplified to 

dAr d k . 
dt + rr ~ AJ = o 

jk dt . 



64 

It can be shown again that the Christoffel symbol of 2-nd kind is 

not a tensor. On the other hand, it can be used as a multiplier by an 

appropriate tensor, producing a non-tensorial quantity. It ~gain 

equals to zero in Cartesian coordinates and is symmetrical in the two 

covariant indeces. 
. r 

It is sometimes also denoted by {jk} or otherwise. 

To conclude the paragraph, let us note that the first term in 

the equation for parallel transmission can be rewritten as 

Substituting this result back in the equation we obtain 

nAr . ,;a). k 
(_;a-+ rr AJ) ~ = 0 

auk jk dt 

(realizing that r~k ajbk = r~k bkaj). This can be further rewritten as 

~~k Aj = 0 

since duk/~t # 0 along a general curve C(t). This is the final 

differential equation of a constant vector field in any Riemannian 

space (or equation of parallel transmission). 

It can be shown similarly that for covariant vectors we get 

oA . ~ 
' _r -_rJ_A_=_o . -~uk rk j 

Anal~gously, in 2D-space, the Christoffel symbols are defined as follows: 
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Similarly, the equations for parallel transmission (or constant field) 

are 

'OAa ra y 
-+ yS A = 0 
a us 

'OA a pY A = o. ---
a us aS y 

Problems: k Derive the expressions for [ij, k] and r .. in spherical, 
~J 

geodetic and geographic coordinates. 

Is a tangent vector to a ¢-curve for A = const1 paralle.l co a 

tangent vector to a ¢-curve for A = const2 on the surface of an ellip-

soid of rotation? 

3.4.3) Tensor Derivative with Respect to Scalar Ar8ument (Intrinsic 

Derivative) 

In trying to define a tensor derivative of a tensor, we require 

that it be again a tensor so that we can remain in the realm of tensor 

equations when differentiating. We can see that this requirement is 

not satisfied for the ordinary derivative dAi/dt. This quantity does 

not transform as a tensor and is therefore not a tensor (see 3.4.1): 

On the other hand the ordinary derivative of a scalar ¢ can be regarded 

as tensor derivative since 

~ 

§i _ _gj_ 
dt - dt 

conforms with the transformation law fo.r scalars (see 3.1). Denoting 

the tensor derivative by o/ot we can then write: 
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~ 
t~· 

To produce a satsifactory definition of a tensor derivative of 

a vector let us take a scalar product of two arbitrary vectors and 

take the derivative of tb'us defined-: S4ala~ti. W.~ geutc-

We also want the tensor derivative to obey the same rules as the ordinary 

derivative does. Namely, we want the following equation to be satis-

fied: 

~A ~Bi 
~ 1. u • • u 
u (A B \ = --1 B1 A 
8t i 1 ot + i ot 

In order to determine the relationship between the tensor and the 

ordinary derivatives, let us consider one of the vector fields, say 

Bi, constant. i From 3.4.2 we know that B has to satisfy the follow-

ing differential equation 

dB i . d k . 
r 1 ~BJ 

dt = - jk dt 

Combining the first two equations and substituting for dBi/dt we obtain: 

dA. . . d k . oA. . oBi 
--1 B1 - A. r 1 ~ BJ = --1 B1 A dt 1 jk dt ot + i ot 

Further, we want the tensor derivative of a constant field to be zero, 

to conform again with the rules for ordinary derivatives. Putting 

oBi I ot = 0 and changing the i {dummy) indeces in the first terms on 

both sides to j we get 

dA. . d k . oA. . 
(_J_ - A r 1 ~) BJ = _J_ BJ 
dt i jk dt ot · 
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Hence we have found finally the expression for the tensor derivative of 

a covariant vector: 

. d k 1. u -[] 
r jk Ai dt --~ 

i Note that the order of rjk and Ai does not matter. 

To show that the tensor derivative of a covariant vector, some-

times called intrinsic covariant derivative, is given as covariant 

vector is left to the reader. 

Problem: Prove by analogous reasoning that the intrinsic contravariant 

derivative can be defined as 

oAi dAi ri Aj duk 
0~ = dt + jk dt 

'·. '.Show·;t;Ji~E··f~;}~{~~3~;~~~~~{~~g~~~~~-~i; :vee~~·?~:~······· 
The above definitions can be now easily generalized ~or a tensor 

of any rank. For instance: 

--------------------------------·-"------~"-·--~"---.. --.. -----·"' l 
_ rs Ajk __ rs Ajk + rj Ask + rk Ajs )duq . 

mq ~sn nq ~ms sq ~mn sq ~mn dt 
""'" __ ,.............,__...,..,_=- .. =~-·" ==~~~~=~= 00----~-=-~ ..... ..,.,~ ~ 

= 
·----------------

To show that an analogous formula holds true for intrinsic derivative in 

2D-space is left to the reader. 

Let us conclude this paragraph by stating that the tensor derivative 

(with respect to its scalar argument) of the metric tensor, associated 

metric tensor, Kronecker's o, and the Levi-Civita tensor are all zero. 

This can be seen when we express the named tensors in Cartesian coor-

dinates. There all the Christoffel symbols disappear and all that is 

left are the ordinary derivatives. But even these are all zero since 

all the components of the above tensors are constant. Hence the named 
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tensors can be regarded as 11 constant 11 from the point of view of tensor 

differentiation. An intuitive explanation for this phenomenon is that 

although the tensors may vary from place to place their variation 

reflects just the properties of the space itself and not that of any 

objects in the space. 

3.4.4) Tensor Derivative with Respect to Coordinates (Covariant 

and Contravariant Derivatives) 

We know that the ordinary derivative of, say A , can be written 
r 

as 

Let us require that the same rule applies on the tensor derivatives 

as well, i.e. 

oA oA 
r r 

dt = ouk 
( *) 

Substituting for the intrinsic tensor derivative on the left hand side 

from 3.4.3 we obtain 

dA . d k oA r l u r 
dt - r rk Ai dt = ouk 

Substituting here again for the derivative dA /dt from the above 
r 

equation we get 

Hence the tensor derivative oA /ouk, which we shall denote further by 
r 

v_ A is given by 
k r 
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oA 3A 
__..!:. = 'iJ A = r ri 
ouk k r auk - rk 

It is called usually the covariant derivative of the covariant vector A 
r 

and denoted sometimes by A k' We can see that the covariant derivative r, 

of a covariant vector is a twice covariant tensor from the equation (*); 

the covariant intrinsic derivative is o5~ covariant tensor 

k duk dUk dxi dxi . 
and du /dt is once contravariant tensor (dt =--i dt and dt was shown ln 

. dX 
3.3.13 to be a once contravariant tensor), hence the covariant derivative 

is a twice covariant tensor. 
It is not difficult to see that in Cartesian coordinates the 

covariant derivative degenerates into the simple dyadic product of the 

symbolic vector 'iJ and 1. The covariant derivative of a scalar, 

similarly to the intri·nsic derivative, reduces to 

'V.¢ 
l 

Problem: Show that the covariant derivative of the contravariant 

vector Ar is a mixed tensor of second rank given by: 

Contravariant derivatives, that have less important applications, 

can be obtained by raising the indeces in covariant derivates. Hence: 

,kAr = gik r 
v IJ.A • 

l 

Generally, a covariant derivative of any tensor can be obtained from 

its intrinsic derivative using the formula 
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We may note that the covariant and contravariant derivatives of 

the four pseudo-constant tensors (mentioned in 3.4.3) are again zero. 

This is easily seen when we consider the derivatives in Cartesian 

coordinates. The covariant and contravariant derivatives obey again 

the same rules as the ordinary derivatives. For example: 

17.(kA.) = k(17.Aj), k = const. , 
l J l 

( ) k ( Bk) = V.A. Bn +A. V. n 
l J i'v J l i'v 

.Problem: Show that the Frenet's formulae for a spatial curve are 

given by: 

+ 

( 17 t )t s = 
s r n /R , 

r 

-t /R + b /T, 
r r 

(17 b )ts = -n /T • 
s r r 

If t is the unit tangent vector to a curve C on a surface then 

is a differential equation relating 
+ 
t to the unit normal vector n 

01. 

(on the surface) and RG, the tad.ius ·of_ geo,detic curvature of the curve. Hence 

is the equation of a geodesic on a surface. 
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3.4.5) V and~ Operators in Tensor Notation. 

We have already seen in the previous paragraph that the covariant 

derivative of a scalar is nothing else but the gradient of the scalar. 

<1> =~=grad <I>] 
au1 

-·--------
It can similarly be shown that the contraction of the covariant derivative 

of a contravariant vector gives us the scalar known as divergence of A. 

To see this, it suffices to write the expression in Cartesian coordinates: 

Due to the symmetrical properties of the scalar product we have: 

"'.Ai i v = V A •• 
l l 

Further, by the same reasoning we can prove that 

+ 
and call the resulting vector the rotor or curl of A. Finally, for the 

Laplacean of a scalar we obtain 

] 
The proof of this statement is again based on the equivalence in Cartesian 

coordinates. 

In order to be able to write the differential formulae in a form 

ready for computations, let us first derive one very important expression, 

namely: 

i = a ( tnlg) 
r ij auj 

Perhaps the easiest way to derive it is to take the covariant derivative 

' of the Levi-Civita tensor. We get 



s 
r. ne 'k l.IV SJ 

s r. ne. k J IV J.S 

s 
rk"e .. 

IV l.JS 

But we know that this tensor equals to zero so that all the components 

equal to zero. Let us then take one vector of components, e.g. 

s 
r~J/.,els3 

Taking the products of Christoffel symbols and the Levi-Civita tensors, 

we can see that, due to the definition of the L~C.tensor, only one 

vector of components is always different from zero. We can write: 

r3 e = o . 3Ll23 

From 3.3.4 we know that e123 = lg = Vdet (gij). Hence we obtain 

or 

__1.1{g_ - i 
!/., - r H 

lg au 

Recalling the formula from the analysis of real functions 

y = J/.,n f(x), 
Ex. _ _ 1_ df(x) 
dx - f(x) dx 

we can finally rewrite the above equation in the form introduced at the 

outset of this proof. 

Having established the formula for the contracted Christoffel symbol 

we can now proceed to derive the expressions for the differential oper-

ators in curvilinear coordinates. For :&h&:!' divergenc·e, we may write: 
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\f.Ai 
ClAi i Aj = --. + r .. l au l lJ 

ClAi a( tn/g) Aj = --. + 
au 

l Cluj 

( /g ClA~ + a/~ Ai) l 
= 

Clul Clul lg 

'il.Ai l Cl(Ai /g) 
=-

l lg au 
i 

+ 
If we know only the covariant components of A we can write 

ViAi = ViAi = 1: ~J(~a::j ~ 
+ 

Problem: Derive the formulae for div A in spherical and geodetic 

coordinates. 

For the Laplacean equation for a scalar ¢ we get 

= 'iJ ( ij 2.L ) . g j . 
l au 

Applying to this formula the same treatment as we have applied to 

the divergence, we obtain 

Finally~ we remark that the gradient as derived at the beginning 

of this paragraph may be regarded as the covariant gradient - the 

operaticnof covariant derivative of a scalar results in a covariant 

vector. We can also define the contravariant gradient as 



As a matter of fact the contravariant gradient is the one that is more 

often used in applications. 

Problem.: Derive the formulae for contravariant gradient and Laplacean 

in spherical and geodetic coordinates. 

3.4.6) Riemann-Christoffel Tensor 

Let us see now what would be the second covariant derivative of a 

covariant vector. Taking an arbitrary covariant vector A. we get 
l 

V,~('i/ .A.) = _Lk (V .A.) - r~k('i/ A.) - :U~k(V .A ) . 
~ J l au J l J s l l . J s 

Realizing that 

aA. R-
" A = ---rl:. r A vj i · - iJ' R, 

auJ 

we get 

... aA t 
r~k(~- r .An) 

l dUJ SJ N 

ThiS can be rewritten as 

a A a R­
-k(r .. An) 
au lJ IV 

s dA. .S. R, 
rjk - 1 + r .. r. An 

aus JK lS N 

rs --lt + s t 
ik · ~ r.kr .At au<J l SJ 

An interesting question now arises as to whether the second 

derivative depends on the order of differentiation. To investigate 

this question let us interchange the order of differentiation in the 

above formula. We obtain 



a t 
-. (r .kAn) 

a A s __ s + s t 
r.. k r .. r kAn. 

auJ l Tv lJ au lJ s Tv 

The difference of the two second derivatives then yields: 

(l . R, 
'i/k('i/.A.)- 'il.('i/kA.) = -.(r.kA 0 ) 

J l J l auJ l Tv 

a n aA 
( Tv ) + rs s s -k r .. An .. -k- r.k 

lJ Tv lJ ~u 1 au 0 

Here the first two terms on the right hand side give 

R, 
t aAt 

R, 
aAR, a R, a R, arik ar .. 

r~. (rikAt) -- (rijAt) =--A + r ., __ _.hL At -
auj auk auj t ik auf auk lJ ' . k au 

· _ __.!'' 

Thus the terms containing the partial derivatives of the arbitrary 

-+ 
vector A get cancelled and we end up with the final expression: 

'ilk( \1 .A. ) - \1. ( 'i/kA. ) 
J 'l J l 

t 
a r i.i s t · s t ) 

k +r.kr . - r .. r k A0 au l SJ lJ S Tv 

Hence, the difference of the two second derivatives of a covariant 

vector can be expressed as a product of a ~tj,ty with foUilll indeces with 

the covariant vector. 

Let us now have a look at the quantity in the brackets. Since we 

know that the second covariant derivative of a covariant tensor is a 

three-times covariant tensor then obviously ev.en the difference of two 

such derivatives is a three times covariant tensor. Using the theorem 

on tensor character (3.3.8) we conclude that the expression in the brackets 

is a three-times covariant and once contravariant tensor. We have 



~- Vj(VkAi) = R~jk ;-:_] 

where the tensor R~.k is known as the Riemann-Christoffel tensor. 
lJ 

It can be seen that the Riemann-Christoffel tensor is antisymmetric 

in j and k. Its covariant form 

1 RJI,ijk = g.Q.m Rm ijk J 
can be shown to be antisymmetric also in the first two indeces 

and symmetric with respect to the two pairs of indeces 

RUjk = RjkU 

The Riemann-Christoffel tensor has got one more interesting 

property. We may note that it becomes identically equal to zero in 

Cartesian coordinates (Euclemdean space) because all the Christoffel 

symbols become zero. On the other hand, since it is a tensor, if it 

is zero in one coordinate system it must be zero in any other coordinate 

system as well, as we can easily see from its transformation law. 

Hence one may conclude that if there exists a possibility of trans-

forming one system of coordinates in the space to the Cartesian system, 

the Riemann-Christoffel tensor equals to zero. We know already 

(3.3.11) that the possibility to trans~orm any coordinate system to the 

Cartesian system is the necessary and sufficient condition for the space 

to be inherently flat. Therefore we can say that the necessary and 

sufficient condition for a space to be inherently flat is 

RR.ijk = 0 

On the other hand, if RR.ijk' for any system of coordinates, is 

different from zero, the space is inherently curved. Hence the Riemann-

Christoffel tensor describes some inherent property of the space, namely 

its curvature and is therefore sometimes called the curvature tensor. Note 
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that here again the second derivative is connected with curvature one way 

or the other. 

In 2D-space, the curvature tensor is given analogously by 

* 

It may also be mentioned that the following formulae hold for 

various tensors 

'ii'k('ii'jAi) 'ii'j('ii'kAi) 
i Ag_, = R 1<' ' .g_, J 

'ii'k('ii' .A.) 'ii'. ('ii'kA.) RjkH 
g_, 

= A:, 
J l J l 

for ~ being a scalar, 

Problems: Derive the Riemann-Christoffel tensor for a sphere and an 

ellipsoid of rotation. 

3.4.7) "" Ricci-Einstein and Lame Tensors 

2 2 The Riemann-Christoffel tensor can be shown to have only n (n -1)/12 

4 independent components out of n • This is because of the two antisymmetries 

and the symmetry mentioned earlier and one more condition. In SD-space this 

means that we get only 9(9-1)/12 = 6 independent components, which leads to 

the idea that all the information contained in the Riemann-Christoffel tensor 

can be expressed completely by a symmetric tensor of second rank which has 

also only 6 independent components. 
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Ricci has come up with one such possible tensor created by con-

tracting the Riemann-Christoffel tensor in the first and last indeces, 

i.e. 

R •• 
lJ = gmkR ;J.k. mlJ 

------· 
Since this contracted curvature tensor is also used heavily in the 

Einstein's general theory of relativity it became known as the Ricci-

Einstein (curvature) tensor. It can be obviously written as 

R .• = 
lJ 

k ar .. 
__hl + 
auk 

s k 
r.kr . 

l SJ 

s k 
r .. r k lJ s 

Recalling the expressions for r~k from 3.4.5 we can see immediately 

that R .. is symmetric. A more direct proof of its symmetry is given by 
lJ 

R .. = gmkR . 'k = g~k .. =·R .. 
lJ mlJ Jlm Jl 

realizing that Rmijk = Rkjim' Obviously, the Ricci-Einstein tensor is 

zero if and only if Riemann-Christoffel tensor is zero, i.e. in a flat 

space. 

A different tensor of second rank can be obtained from the Riemann-

Christoffel tensor from the following formula 

Gj = l ik.R. jmn R J 
~~ 4 e e k~mn . 

This tensor is known as the Lame (curvature) tensor. It can be seen that 

"" the Lame tensor is again symmetric due to the symmetry of the Riemann-

Christoffel tensor in the two pairs of indeces: 

ik~ e j mn R 1 j mn ik.R. R = 
e k.R.mn = 4 e e mnk~ 

Comparing the two latter tensors, one gets 

mk s·· e 
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since 

e . pmJ. 
e Spq - R 
qjk - mijk • 

After some development, which we are not going to show here, this 

equation becomes 

= s .. - s* g. j J J.J J., ----· l R •• 
" J.J 

where 

S Smn and s* = g smn. 'j = g, gj mn J. J.m n 

Problems: Derive the Ricci-Einstein tensor for a sphere and an 

ellipsoid of rotation. 

3.4.8) Gaussian Curvature of a Surface, Classification of Spaces 

In 2D-space the Riemann-Christoffel "tl>lnsor has got only one 

4 independent component out of 2 = 16: 

4 ( 4-1) /12 = 1. 

Taking the equation (*) in 3.4.6 we can see that 

R0 = o for S = y 
~asy 

(similar equation of course holds even for the 3D case). Hence even 

R = 0 for S = y. oaSy 

Moreover, due to the symmetry in the two pairs of indeces, we have 

for o = a. 

This leaves us with only 4 components potentially different from zero, i.e. 

those for which S ~ y and o ~a. These are R1212 , R2121 , R1221 , R2112 • But 

even these are related, due to the antisymmetry of the tensor and we have 
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In terms of the Ricci-Einstein tensor 

R = gyo R 
aS yaBo 

this means that its four components are given simply by the following 

relations 

Rll 
22 22 = g R2112 - - g Rl212 

Rl2 
21 12 

Rl212 = g R2121 = g 

R21 
12 = g Rl212 

R22 = 
11 11 

g Rl221 - - g Rl212' 

Realizing that the components of the associated metric tensor (see 3.3.12) 

can be written as 

12 _ Q I 
g - gl2 g, 

(where g = det (gaB)) we get for the matrix of RaB: 

[ 
22 12] -g g 

12 11 
g -g 

Hence 

I ( ) 2 (gaB) 2 I R = det RaS = Rl212 det = Rl212 g 

where the quantity R1212/g is called the Gaussian curvature of the surface 

(2D-space). It is usually denoted by K so that we have 

[R= KR~\. 
We can obviously write also: 
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or 

The Gaussian curvature can be also expressed directly in terms of 

the metric tensor. After some development we would obtain 

K=--1-[_a_. 
2/g au1 

The Gaussian curvature plays the fundamental role in the classification 

of spaces. As we have seen already, spaces where K = 0 are called 

Eucleidian Lin wider sense) or flat; if K ~ 0 the space is called 

Riemannian (in wider sense) or curved. If K = const.J> 0 the space is 

knows as elliptical or Riemannian in the narrow sense or a space with 

constant positive curvature. If K < 0, the space is called the Lobachevski 

space, if K is a negative constant the space is hyperbolic. 

parabolic spaces are called non-Eucleidian. 

Elliptical and 

Problems: Derive the expression for Gaussian curvature of a sphere and 

ellipsoid. 
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4) SOME APPLICATIONS OF 

TENSORS IN DIFFERENTIAL GEOMETRY OF 

SURFACES 

4.1) First and Second Fundamental Forms of a Surface (Relation of 

the first fundamental form to the metric tensor.) 

The equation for the line element on a surface 

2 a f3 
( ds ) = g·af3 du du 

is also known as the first fundamental (Gaussian) form of the surface 

and ga:B is sometimes called the 1-st fundemental tensor.of'tlie'stir.face. 

In the non-tensor notation it is usually denoted as 

ds2 = E du2 + 2F dudv + G dv2 . 

1 2 
Hence, u = u, u = v, g11 = E, g12 = F, g22 = G. We have met the 

quantities E, F, G, called also the fundamental quantities of 1-st 

order of the surface~ in 1.3.3. 

defined as 

if the surface is given as 

-+ -+ 
r = r (u,v) 

We• have also seen that they may be 

ai-" ai-" 
du • dv ' G· = 

ai-" 2 
av) 

The connection between the two definitions ( tensorial and classical) 

of the components of the metric tensor is obvious when we realize that 
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r (u,v) ':' (x (u,v), y(u,v), (u,v) 

so that we get for instance 

4 -+ at ar 

au = au1 

1 1 2 2 1 2 3 1 2 :: (_x (u ,u ),x (u ~u ), x (u ,u )). 

· at i a+ 
We shall use .the notation xi for au and x2 for . a~~ 

At the same time we may notice that the quantity 

introduced in 1.3.3, is nothing else but 

-+ -+ -+ -+ 
Realizing that ar/au, ar/av are tangent vectors to the u and v-

curves on the surface, we have another method for deriving the metric tensor 

of a surface. We can write 

-+ -+ 
ar [ar :l!:_J 
au au' av 

[g] = -+ 
ar 
av 

a dyadic product in matrix form, or in tensor notation 

where the x coordinate system is assumed rectangular Cartesian. Note that the 

surface is a Eucleidian space if and only if the two tangent vectors are 
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unit and mutually orthogonal. 

+ 
Let us now consider scalar product r 

+ i 
• n = x n .• 

1 
We may ask 

ourselves a question: 
++ 

What would be its total differential d(r.n)? 

The answer to this question is 

a"f aii 2 d(i: . fi) = - - du + au au 

given by the following development: 
~+ ~+ ~+ ~+ ~+ ~+ d 2 
~ ~ du dv + ~ ~ du dv + ~ ~ v 
au av av au av av 

2 2 (L du + 2Mdudv + N dv ) 

In tensor notation we write 

i ani 1 1 . on~ 1 2 = -(x · -- du du -x1 __ J. du du -
1 aul 1 au2 

i ani 1 2 i ami 2 2 
x 2 1 du du -x -- du du ) 

au 2 au2 

= (l f3 -b af3 du du • 

This formula is known as the second fundamental (Monge's) 

The tensor baf3 is called the second fundemantal tensor of 

form of the 

the surface 

surface. 

and the 

quantities L, M, N are known as the fundamental quantities of 2-nd order of a 

surface. 

Note that 

b = L, b = N 
i.l 22 

Hence, if baf3 is symmetrical, 
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We shall show later, that this is the case, if and only if 

the surface is smooth, i.e., if the curvature changes continuously. 

The reason for being asked the question we started with will be also seen 

later. 

As we know already (see 1. 3. 3) the unit normal vector is 

given by 

n = 

or, in tensor notation 

We may notice that the tensor baS is given by 

b = 
aS 

i pni 
-x --a ··· S 

au 

An alternative set of formulae for the components of the 2nd 

fundamental tensor can be derived as follows. Let us consider the scalar 

products of the taneent vectors with the normal vector , i.e. 

1 2 
then take the deriviatives of these with respect to u , u • We get 

0 i i i Clni .ox::. 
1 (xlni) = --n +X--= 0 
Clu Clul i 1 Clul 

0 i ox i i 
on, 

+ 
~ 

0 (x2ni) = -1- ni x2 --= 
l Clu 1 

Clu au .. 

i Bn. 
0 i ax1 i 
-2 (xl ni) = --n + x1 --~ = 0 

Clu2 i Clu 
2 

au 

i an. 
0 i ax2 i J. 

0 (x2ni) = --n + x2 --·~ = 
2 Clu2 i Clu 2 

au 
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and immediately: 

a i . :xl 
1 = - :ni' 

au l 

= 

87 

i i 
ax2 .axl 

2M = aul :rii 
+ 2 :n. 

dU ~ 

...,2.i 
o X ) . 
l 2 ni' 

aU dU 

i i 
ax2 axl 

) = (-+ 'l 
au 

2 
au 

Considering the surface r smooth {continuous curvature) one gets 

and 
i a i X ax 2 i 

M = n. = n. 
au 2 ~ au l ~ 

ni 

In this and only in this case baS is symmetrical. This is what 

= 

we shall assume from now on. Rewriting these formulae in the classical 

notation, one obtains: 

1 = l a~ 
a 2 

u 

a; a;] /n , 
dU av 

a; a-; l / D • 
au av 

The second fundamental tensor determines the character of 

the surface at a point. We define three different kinds of points; 

according to the value of the determinant of b ·· . as· 
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elliptical point 
/ > 0 

b = det (b ) - = 0 parabolic point 

aB "" < 0 hyperbolic point • 
It can also be shown that b = gK, where K is the gaussian curvature. 

4.2) Curvature of a Surface Curve at a Point 

Let us take first a special curve on the surface, a normal 

section. It is giveri as a section of a surface by a plane K containling 

the normal to the surface at the point. 

the same as the above. From 

the diagram, one can see that if 

drt = 0, the curvature of the 

normal section is equal to zero 

The radius of curvature at P of such a 

normal section is given by: 

ot dU:B ga. s du ( * }, 
R(*' 

duO\ s 
ba:s du 

where the direction of the normal 

section is defined l:?Y.' . choosing appro­

priate du l I du 2 ' and got s 'bot s'' ar.e >feYall:tated 

for P. 

To prove this theorem we first write 

R (';le) = 
' 2 

-ds 
-+ -+ 

dr • dil, 



and R (')t) -+co • 
-+ 

So the formula above works for d~ = 0. To show that it 

works under any circumstances, we write the second Frenet's formula 

(see l. 3. 2): 

-+ -+ -+ 
dV. = 1?.. - !. 
ds T R 

for the normal section. Since we deal with a plane curve, T -+co and 

substituting a.~/ds for t we get 

a.ri -= a.s 

or 
-+ R a.n = -+ a.r. 

Multiplying both sides 

(a.~)2 

+ by dr and realizing that 

we get 

= a.s2 

2 
R = -a.s 

-+ -+ 
a.r dn 

which was to be proved. 

The curvature 1/R(~) is usually called the normal curvature. 

Note that the radii of curvature of u and v-curves, if they are normal 

sections, are given by 

plane 

R(u) = = E 

L 

g22 
R(v) =. b22 = 

G 
~· 

Let us just state without prolbf, that should the second 

be inclined with respect to the normal by an angle ev 

the radius of' curvature R of' the curve {section) would be given by 



"R('X) 
(.t.. \~.. ~'""& 

!. 1; :t4.... ~· ~· .. ) 
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R (~) = R (~) cos 6 • 

This theorem is known as the Ueusnier's 

· theorem. 

4.3 Euler's Equation 

Let us now adopt the. point P for the origin of a new coor-

-+ 
dinate system t;;, n, r;, such that the ~;-axis coincides with n and 1; ; n 

-+ are oriented arbitrarily. We can write the equation of the surface r in this 

coordinatesystem, valid a1f:iJleast for 

a small neighbourhood of P: 

Then we can express the fundamental quantities E, F, G, 1, w, N' in equation(~) 

as functions of 1;, n , r; , and we get, (after a lengthy and tedious 

computations )_ 

.+ l ..._..,., ~··= 

:a{<P) 

2 
cos <P + 2 n_ I . n I . 2;,. s1n<P cos<P + . , 2 p sn..n 'I' · (**) 

a tan P a:n · . 
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wb.ere ip is the angle hetwen the normal section and tne s;""axis, and 

R(ip) is the radius o.f curvature o.f the normal section as given by(*). 

The !. sign expres:s~s th~ .fact that within the .process of transformation 

1 2 3 from ( x , x , x ) to ( t, rt, ~,) we lose (due to some square roots) tr~~.llc 

of the original sign. 

We notice that for fixed P, the partial derivatives are constant 

so that we can write also. 

Expressing the angle ip via the coordinates ~' n and the distance p 

or 
2 

+ p 
R(ip) 

(see the d.fuagram), we obtain 

cos ip = ~/p , sin ip = n/p 

Hence the above equation becomes 

1 _c 
+--=A 2': + 
- R(ip) p 

2 
2C ~ + B _n_ 

2 2 
p p 

Selecting here p ~ yR(ip), the radius-vector p evidently 

describes a curve of second order centered on P. This curve is known 

as Dupin's indicatrix. c I ='> o > o 
B I (C: =-:o· ellipse A= B circle) 

0 = 

o < o hyperbola 
o = 0 a pair of parallel lines 

hence A4C;:J3· are nothing else but L,M1N.in the ~,n local coordinate system 

anthe surface (up to a scale factor). 
The radius of curvature is extreme in two perpendicular directions. 

The normal sections for which the curvature is extreme are known as the 

principal sections and the radi.i of curvature are also called pr.incd:pal 

and denoted by R~, R2 . 
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We can now rotate the l;; and n-axis so that l;; will coincide 

with t:he direction of the first. principal section (eigenvector problem). 

Then the origi-nal equat.ton L**) wi-.11 become 

1 - 2- 2 
+ ---- = A cos 4> + B sin ~ ~. 
- R(4J) 

'I'he magnitudes of A and B can be evaluated. from this equation considering 

first 4> = 0 or TI 

and then 1T 3 .!!. 
2' 2 

+ = B. 

Substituting this back we obtain 

,... 2-
_1_ = :!: cos"'-p :!: si!Li_ 

R(~) R1 R2 

the well known .!!:uler' s equation. 

The signs :!: tell us that the signs of R1 and R2 determine the 

character of the Dupin's indicatrix in its natural system of coordinates. 

Henee we get the four different cases as before as shown on the diagram: 
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