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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



PREFACE FOR FIRST PRINTING

This coursé is.heing offeréd’to £h§ postégraduaté.students in
Survéying Enginééring. Its aim is to givé a basic knowlédgé of ténsor
"languagé" that can bé appliéd for solviﬁé sémé prsbléms in photogrammétry
and. géodésy. By no méans; can thé'toﬁréé élaim aﬁj“compléténéss; the
émphasis is on achiéving a basic undérstanding ana; pérhaps, a déépér
insight into a féW‘fundaméntal quéstions ﬁf différéntial géométry.

The coursé is dividéd into thréé parts: Thé first part is a
very briéf recapitulation of véctor algébra and analysis as taught in
the undérgraduate courses. Particular atténtion‘is paid to the appli-
cations of vectors in differential geométry. Thé sécond part is meant
to provide a link betwéen the concépts of véctors in thé ordinary Eucleidean
space and generalized Riemannian space. The third, and the most extensive
of all the three parts, deals with the ténsor calculus in the proper sense.

The course concentrates on giving thé theoretical outline rather
than applications. Howevér, a number of solvéd and mainly unsolved problems
is provided for the students who want to apply the theory to the "real
world" of photogrammetry and geodesy.

It is hoped that mistakes and errors in the lecture notes will
be charged against the pressure of time under which the author has worked
when writing them. Needless to say that any comment and criticism communi-

cated to the author will be highly appreciated.

P. Vanf¥ek
2/11/1972 |



PREFACE FOR SECOND PRINTING

The second printing of these lecture notes is basically
the same as the first printing with the exception of Chapter 4 that
has been added. This addition was requested by some of the graduate
students who sat on this course.

I should like to acknowledge here comments given to me by
Dr. G. Blaha and Mr. T. Wray that have helped in getting rid of some

errors in the first printing as well as in clarifying a few points.

P. Vanfgék

12/7/7h
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1) VECTORS IN RECTANGULAR CARTESIAN COORDINATES

1.1) Basic Definitions

The Cartesian power EB, where E is a set of real numbers, is

called the System of Coordinates in three-dimensional space (futher

only 3D-space). Any element ?SES is said to describe a point in the
space, the elements ?\being obviously ordered triplets of real numbers.

It is usual to denote them thus:

—I’>E (Xs Yo Z)

- >
If the distance of any two points, ry and r2 say, is given by

0(Fys F,) S 1lxy=x,)° + (37y,)° + (2,27

where

>

>
I‘l - (Xl,yl',zfa I'2 - (X25 y29 2‘2) 2

then the system of coordinates is known as Rectangular Cartesian.

This distance metricizes (measures) the space and this particular

distance (metric) is known as the Eucleidean metric. The appropriate

metric space (called usually just simply space) is called the

fucleidean space. The graphical interpretation given here is well known

from the elementary geometry.

\ 7




A triplet K = (AX, Ay’ AZ) of real functions of three real

arguments:

Te (B - 1)

is called a vector in the 3D Eucleidean gpace or a vector in Cartesian
Coordinates. It obviously can be seen as being a function of the
point ?. It is usually interpreted as describing a segment of a
straight line of a certain length and certain orientation. The length
and the direction are functions of the three real functions AX, Ay, A

Z

>
known as coordinates or components of the vector A. The real function

A= /(A% + 4% + 27)
by v z

(sometimes denoted as |K| is called the length or absolute value of the

..}.
vector A. It again is evidently a function of the point ;.

Z

The real functions

A A A
x ¥y z
A > A ®* A

are known as the direction cosines of the vector K and they determine the




->
direction of A. Note that every one of the three above expressions is
dependent on the other two. Squaring the equation for the absolute

value and dividing it by A2 we get

This can always be done if A is different from zero and A # 0 if and
only if at least one of the components ig different from zero. This
leads to a statement, that a vector of zero length has got an undeter-
mined direction.

Further, we can see that the point ? can be regarded as a special
case of a vector, whose argument is always the center of coordinates C:

- -
ry = (0, 0, 0) = 0.

It is therefore also called the pogition vector or the radius-vector of

the point. Hence we talk about the triplet of real functions K as

vector function of vector argument.

A triplet of constant functions (real numbers) is called free
vector, meaning that its absolute value and direction (as well as its
components) are independent or free from the argument (point). On the
L2 other hand, if we have a

//ﬁ vector function of a vector
//% argument defined for each
// point in a certain region

//f RCE3 of our space we say

v that there is a wvector
field defined in R. Thus
obviously a free vector can be regarded as constant vector field and

we shall refer to it as such.



It is useful to extend the definition of a fleld to one-~valued real
functions of a vector argument as well. If we have in a certain region
RCE3 of our space a real function ¢ of the position vector defined then

we say that

o {B5 + B}

is a scalar field in R. We thus note that vector field is a wvector

function of a vector variable the scalar field is a scalar function of a
vector variable.
ya One more useful quantitycan be

also defined here and that is a

vector function of a scalar

24 I variable, i.e. three-valued real

functions of one real variable.
~ 172 /// 00 o

////// This quantity is often used whenever
o, 3'g

S v, 1t is necessary to consider a

X;/// » varying parameter (real variable)
in the space. This parameter can be time, length of a curve, etc.
}iZ Hence we may have, for instance,
a vector defined along a curve K
as a function of its length as
shown on the diagram. The more or

less trivial extension of this

concept 1s the scalar function of

a scalar variable or the well known

real function of one real variable known

from the fundamentals of mathematical

analysis.
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The vector function of two scalar arguments is also used particularly

in the differential geometry of surfaces. The way,how this quantity is
defined is quite obvious.

Note that we have confined ourselves Jjust to 3D-space. The
development for an nD-space is indeed completely analogous and often

used in various branches of mathematics.

1.2) Vector Algebra

1.2.1) Zero Vector
Zero vector?fis:avector whose components are all zero. The necess-
ary and sufficient condition for this is that its absolute value equals

to zero. The direction of a zero vector is undetermined.

1.2.2) Unit Vectors

>
Unit vector A is a vector whose absolute value equals to 1.

Its direction may be arbitrary. The components of a unit vector are

equal to its direction cosines as can be seen from the equation

A2 + A2 + A2 =1
X v Z

for its absolute value.

1.2.3) Summation of Vectors

Summation of n vectors K. = ( , A, , A, ) is a vector % whose
i ix iy
components are given by
n n n
B.= X A, , B = A, , B = ¥ A, .

1 ix v izl iy



The geometrical interpretation of thé summation is shown on

[ the diagram. Evidently
- the summation is commuta~
YR

tive and associative, i.e.

> -> -+ -
A+ B=B+ A

-—>
(3 + %) +C =%+ (B+70).
The absolute value of the
sum.% of the two vectors

-> >
A and B is given by

a2 5 | ~
C = /(A" + B 4 2AB cogﬁﬂﬁ— AB)) ,
where by AB we denote the angle between X and B.

~

‘The prdof is‘lefﬁw£b'thé‘feader.

Convention — From now on we shall be demoting x by X5 ¥ by X5

and z by x The corregponding components of a véctor K will accordingly

3

A

be A 5o Aae

1’ A

1.2.4 Multiplication of a Vector Dby a Constant

> .
Vector B ig called the product of vector K with a constant k if

and only if

B.=kA, B =kA, B =kA or B, =kA, i=1,2, 3.
X X ¥y N Z 4 i i

Obviously

and
B = kA,

The direction of B is identical to the direction of A.



1.2.5) Opposite Vector

- -
Vector B is known as opposite vector to A if and only if
R+8=70.
- -
It is usual to denote the opposite vector to A by -A because

B=(-1) % .

1.2.6 Multiplication of Vectors

- > -> >
i) Scalar Product A * B of two vectors A and B is the real number

(scalar) k given by

>

: > > - >

Scalar product is obviously commutative, i.e. A + B =B - A, and it is
> >

not associative, i.e. A (B - C

> > > , :
C) # (A + B) . The proof of the

latter is left to the reader. The reader 1s also advised to show that

> > A
A+ B AB cos AB

£

> -+ - -> - - -
and (A+B) - C=A*C+3B-C.

Obviously, the absolute value of a vector K can be written as

a=vE&E 7).
e
Two non-zero vectors A, B whose scalar product equals to zero are

"
perpendicular because AB cos AB = 0 implies that

¥
¥

cos AB =0  and  AB = : AB =0
3n/2

i
>
=8



-> -> > > >
ii) Vector Product A x B of two vectors A and B is the vector C

given by

¢=(c,C.,cC)
= (0 Loy by

i

(A2B3 - ABBQ, A3Bl - A1B3, A1B2 - A2Bl).

It can be easily shown that the following formulae hold:

(k) x B = k(A x B) = & x (xB)
and particularly
> > > >
AxB=-BzxA,
- - - - > - >
Ax B+C)=AxB+AxC

- - > > >
a) C=Ax B is a vector perpendicular to both A and B
- - > - . s
(A* C=B8B.C=0) whose length equals to AB sin (AB) and that

>
points the same way with respect to A and B as the + z axis points

with respect to + x and + y axes (in this order);

>

%) B-(-B) 0

=¥

B) Ax (Bx?) = (

) - @ xD) =R -8 @D - 3-8 (% -7D).

es)'2

y) (& x

Evidently, the vector product of two non-zero vectors equals to zero
if and only if the two vectors are parallel. Hence the necessary and
sufficient condition for two vectors to be parallel is that their

vector product be zero:

AxB=3

-> >
A ] B.

-5 > - > .
iii) Dyadic Product A % B of two vectors A and B is a quantity C

which is neither scalar nor vector. It can be interpreted as a matrix
(or Cartesian tensor of second rank - see later) whose components are

given by

C.. =A, B i,3=1, 2, 3.




> > > >
iv) Mixed Product [ABC] of three vectors A, B, and C is a scalar

k defined as

Wy
b
ot
I
e~
[sv)g
oY

k =4 « (

Its wvalue can be seen to be
k = A B C sin BC sin AR
where A' is the projection of A on the plane B G (see the diagram).
But this equals to the volume of the parallelepiped given by the three
vectors. Evidently, the volume
of this body equals to zero if
Sat and only if all the three
, ;/ vectors are coplanar (lay in

, ,/ one plane) or at least one of

//')0% them is the zero~vector. Hence

LA the necessary and sufficient
BC sin BC

condition for three non-zero

vectors to be coplanar is that their mixed product equals to zero:

> > > > >
[ABCl=0=zA,B, Ce k
(k denotes a plane).

It is left to the reader to prove that

[XEE] = [BCA] = [CAB] = ~ [ACB] = - [BAC] = - [CBA].

Problem: ©Show that a vector given as a linear combination of two other

- -> > - - -> -
vectars A and B, i.e. C = klA + kEB’ is coplanar with the vectors A and B.
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1.2.7) Vector Equations

Equations involving vectors are known as vector equations. In

three-dimensional geometric applications they invariably describe
properties of various objects in 3D-space. For example, the vector

equation

tells us that vectors K and % are parallel and vector % is k-times

>
longer than A. Or the vector equation

]

: * > >
cos (AB) = A + B/ (AB)
- >

determines the angle of two non-zero vectors A and B.

If we decide, for some reason, to change the coordinate system,
i.e. transform the original coordinate system to another, the geometric
properties of the objects do not change. Two straight lines remain
parallel or perpendicular in any system of coordinates., Similarly one
vector remains k~times longer than another whatever the system of

coordinatesmay be. This fact is usually expressed by the statement

that vector equations are invariant in any trangformation of coordinate

system. This is the basic reason why we prefér using vectors - and
by this we mean here the described compact notation for the triplets
of functions - when dealing with properties of objects in space.
Another possibility would be to use coordinates instead but in that
case formulae would be valid only in the one coordinate system and

would not be invariant.



1.2.8) Note on Coordinate Transformations

When talking about transformations of coordinate systems here we

talk about relations of following kind

S of BN .
where A, A 1is a vector expressed in one and another coordinate systems

and M is the transformation matrix. For the position vectors the trans-

formation equation has a more general form, namely:

-
v = M? + T
C
N :
where ré is the position vector of the original center of coordinates

in the new system, known also as the translation vector (see the diagram).

X

r'4

When transferring one Cartesian coordinaté systém to another, the
transformation matrix can bé obtained as a product of three rotation
matrices representing the rotations through the three Euler's angles.
Alternatively the transformation matrix can bé obtalned using the nine
direction cosines of the néw coordinaté axes. In both cases, all the nine
elements of M are independent of the position of the transformed vectors
and can be, in addition, expréssed as functions of only 3 independent

variables (3 rotations of the new system of coordinates with respect to
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the original one). All the transformation matrices possessing these

properties are known as constituting the group of Cartesian transformation

matrices. Moreover, when talking about the invariance of lengths, we
have to require that
|det M| = 1.
Obviously, the Cartesian transformation matrices are something
very special. Later, we shall deal with a more general group of trans-
formations. However, it is not considered the aim of this course to

deal with transformations in detail.

1.3) Vector Analysis

1.3.1 Derivative of a Vector Function of One and Two Scalar Variables

The quantity

- - -

. Alu + Au) - A(u)  dA
1im = -
Au du

Au =+ O

—+
is called the derivative of vector A with respect to its scalar argu-—

>
ment u. It is sometimes denoted by A'. Geometrically, this derivative
has important applications in differential geometry of curves as we
shall see later.

A vector functionlz of two scalar arguments u and v has got two

partial derivatives. These are defined completely analogously to the

above case:

..a_A_ = 1im K(u + AU., v = COIlS't.) - A(u, v o= COIlS't.)
ou Au =+ 0 Au

ok . K(u = const., v + Av) - A(u = const., V)
= = 1im

BV AV °

Av > O
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Geometrically, these derivatives have applications in differential
geometry of surfaces and are sométimes denotéd by K;, X;. Obviously, all
the defined derivatives are again vectors.

The rules for differentiation are very much the same as those for

the differentiation of real functions, Particularly we have

> >

%E‘(K +3B) = %%~+ %%- s
>
%;(k’i)=k%,
a ,~»~ = - d% d_K >
H(A-B):A wtag P
@ 4+ > =+ a8 dh =
F (K x B) = A X o=t X B .
If A = const. then

dhgg kg
du du

The proof of this theorem is left to the reader. The rules for partial

differentiation are analogous.

1.3.2) Elements of Differential Geometry of Curves

> >

If for all we< a, b > a position-vector r = r(u) is defined, we

+

say that r describes a curve (spatial curve in 3D—space). The real
variable u is called the parameter of the curve. Let us assume that
..}
r is in < a, b > a‘continuous function and we shall hence talk about
continuous:curve,

" + L3 .

If r is in < a, b > continuous, we can define another scalar

fanction of u:
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—
= v & }
s(u) = /. !dul du

that always exists for a continuous ?, and call it the length of the

—)-
curve r between a and u. Since s is monotonic, there exists always
its inverse function u = u(s) and we conclude that for continuous curves

we can always write

This equation of a curve,using its length for parameter,is known as the

natural equation of the curve.

—
The unit tangent vector % to the curve r is given by

Since © is a vector of constent length (unit) its derivative is
perpendicular to it. Denoting the length of the derivative by 1/R we

can write

> - -
where n is a unit vector perpendicular to t. The interpretation of n can

be based on the following reasoning. The second derivative can be
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regarded as a scaléd differénce of two infinitésimally small vectors
connecting three infinitesimally close points on the curve. Hence n
has to lay in the plane given by the threé infinitesimally close
points, i.é. in the osculating
S plané. Thérefore 7 has got

the direction of the principal

-

normal (usually called just
the normal) to the curve.

o
|

dr
d82

The proof that R = 1/|

is therefore the radius of curvature is left to the reader.

e > -
The vector product b of t and n (in this order)

-> - —;--
ib =t xn

is obviously perpendicular to both % and E and has got also unit length.

It is therefore called the binormal vector. The three unit vectors
create an orthonérmal triplet oriented the same way as the coordinate
axes.

The differential relations among these three vectors are given by

Frenet's formulae

>

at _n

ds R

an _b _ %

ds ~ T R
>

d _ _n

ds = T T

..).
where T is the radius of torsion of r, i.e. the radius of curvature of

the projection of the curve onto the plane defined by % and. %. The
proof of the second two formulae is left to the reader.

The reader is also urged to prove the following two theorems:
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where by primes are denoted the derivatives with respect to s;

B) if
> _$.3B
Y:-il—+-§ then
- >
at > > dn_->» _ > db _ > =
asTY Xhgg TY XD LG =Y XD

The formulae for R and T give us a handy tool for categorizing
curves. If a curve ; has got 1/T = 0 in a certain interval, then it
is called planar in this interval. If even 1/R = 0 then ; is a straight
line in the same interval.
Problem: ~Show that the necessary and sufficient condition for a

curve to be a straight line is

S
+ Au-
o

7(u) = »

- ->
where ro is a fixed radius-vector and A is a vector

Problem: Determine the shortest distance of two lines

2=t
ru—rl lU.

g
It
sy
+
Y
[

that do not intersect.

1.3.3) Elements of Differential Geometry of Surfaces

.+
A radius-vector r given as a function of two scalar arguments u
-
and v, defines a surface. We ghall again assume that r is a continuous
function of both parameters and that the surface is therefore continuous.

The curves
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> ->
r (u, v = const), r (u = const., v)

are called parametric curves on the surface, for which we can indeed

use all the formulae developed in the previous paragraph.

Problem: Derive the equations of ¢-curves and A~curves on the surface

of an ellipsoid of rotation, where ¢ and A are geographical coordinates.

{ Problem: Show that the necessary and sufficient condition for a

{ surface to be a planhe is

-> -

r r
o

- >

(u, v) = +ul+vB
> > - .

where oo A and B are some arbitrary vectors.

Problem: Derive the shortest distance of a point ;p to the plane

- - >
r (u, v) r o +tu I+ v B.

-> >
A curve on the surface r = r (u, v) is given by the formula

7 (t) =7 (ult), v(t))

for which again all that has been said in the previous paragraph holds
true.
The tangent plane to the surface ?, if it exists, is given by the

two tangent wvectors

>
T = T -
= u b, = v

to the two parametric curves. Hence any vector that can be expressed
as a linear combination of these two vectors lays in the tangent plane.

The equation

N a—> 3_)
-> r r
I'=I‘(OL,B)=I'O+OL'B"E B'é"";l
- > - -
r =T r =r
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is therefore the equation of the tangent plane to the surface T (u, v)

at the point ;o'

Problem: Derive the equation of the tangent plane to the ellipsoid of
> -
rotation at the point r_ = r (¢O, AO).

->
The unit normal vector to the surface r is given by

7= l.(ﬁz.x R
T D ‘du T v

where

5’ (%ﬁ~g£)]~/[m_F]

D= 1/{(-@—- (

Bv

The normal points the same way with respect to u and v curves as the

z—~axis points with respect to x and y axes.

Problem: Derive a formula for the outward unit normal vector to the
ellipsoid of rotation.

Other characteristics. of a surface, as for instance various curva-
tures, are slightly more involved and do not serve any way as good
examples for vector analysis. They are better dealt with using tensors
as we shall see later. Let us just mention one more application here.
The curvature of the projection of a surface curve ? onto the tangent

plane to the surface at the point is known as geodetic curvature. This

gquantity is usually denoted by l/RG and given by

>q > >

1/R, = [+ r n]

>
where r(s) is the surface curve.

Problem: What are the geodetic curvatures of ¢ and A-curves on the

surface of the ellipsoid of rotation?
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As we know, one way how to define a geodesic curve on a surface

is: geodesic curve is a curve whose geodetic curvature is everywhere

equal to zero. Hence the equation

Lﬁ 7] = o

-
can be considered the equation of a geodesic curve r. Here, as well as

>t dr " de;
¥==-, ¥ === . If a curve happens to be
ds ds2

given as a function of another paraméter t then we have

in the previous formula

> - >
dr _ (8r du , 9r dv, 4t
ds du dt ov dt’ ds

and

t j3r du , drdy

£, ou dt ool at

s(t) =/

We can see that, generally, the formulae for describing properties
and relations on surfaces are complicated. It is usually simpler to
deal with general surfaces using a particularly suitable system of
coordinates, not necessarily Cartesian. We shall see later how to do

it.

1.3.4) Differentiation of Vector and Scalar Fields

Differentiation of vector and scalar fields (vector and scalar
functions of vector argument) can be defined in a multitude of ways.
The three most widely used definitions can all be presented using the

symbolic vector (differential operator) V (nabla, del). The V

operator is defined as follows

= _8—59_.
vl dx 3y’ dz
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Applying this operator to a scalar field ¢ (multiplying the vector

V by the scalar ¢) we get the derivative of the scalar field

39

99

99
e

Vo =

8x2

> dx

)
3

a vector known as the gradient of ¢.

grad ¢.

It is often written also as

' -
Wwith respect to a vector field A we can obviously "apply" the

operator in several ways.

>
with A

BAl

3A2

8A3

-
vV - A

Bxl

-+

)

8x2

8x3

First we can get the scalar product of V

This scalar product is known as the divergence of K and often written

-+
as div A.

Alternatively, we can produce a vector by taking the vector

product of V and K and get

oA

5 oA

dhs 1

-
VA

3A3

8A2

SAl

=( an

X 3

5 8x3

3Xl

3

BXl

90X

).
2

This vector is known as rotor or curl of.K and often written as rot K

+
or curl A.

Another possibility would be to take the dyadic product of V and

>
A to get a matrix of derivatives. This type of the derivative of a

vector is basic for tensor analysis and will be dealt with later.

A1l these differentiations are important in the theory of

physical fields into which we are not going to go here.

We shall just

Limit ourselves here to statements considering the rules these

derivatives obey.

ordinary derivatives.

Here are some of them:

The rules are again much the same as those for
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V(o +y)=Vo+ VY,

v (kd)) = kV¢ ,

V(4 p) = 6Vp + YV,
v (£(s)) = %ﬁ; v,

> > k
V.(A + B) =‘VgK‘+ v 'ﬁ,

- s e >
Ve(¢ph) = VR +A-Vd = ¢.divA + A grad ¢,

v (Z-%) = = hx rotB + Bx rot K+(K-v)—§+(§-v)éK;
> > > -+ e - > > —-> >
Ve(AxB) = B:(VxA) - A-(VxB) = B* rotA - A * rot B,

vx($h) = ¢ (vxh) - Rxvg = ¢-rot A + Ax grads .

It is left to the reader to prove the following theorems:

N
Vr = %- R

V() = - £
T r3 ?
ver = 3,

5
=Y
it
oV

- >
Ve (VxA) 0, Vx (V$) =20
>
where r is a radius vector and r its absolute value, K is a vector and

¢ is a scalar.
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(delta, V2). Tt can be obtained as the scalar product of two V

operators giving thus:

>
a scalar. Application to a vector A yields:

- 9 A 9 A 92h

AA = + + N
9 2 sz 8x2
% 2 3

a vector.

It is again left to the reader to show the following identities:
A (o + ¥) = Ad + AV,
A () = ¢AY + PAG + 2V + VY,
> > > >
A (A + B) = AA + AB,
AV = VAP -
A (vxA) = vx (aR),

v (VA) = AR + vx (vxk).
Let us Jjust mentior here that the integral formulae traditionally
considered a part of vector analysis are treated in another course and

do not, therefore, constitute a subject of interest here.
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2) VECTORS IN OTHER COORDINATE SYSTEMS

2.1) Vectors in Skew Cartesian Coordinates

In order to see one of the difficulties encountered when dealing
with curvilinear coordinates let us have a look first at the simplest

departure from rectangular Cartesian system - the skew Cartesian system.

For easier graphical interpretation we shall deal with 2D-space, the
plane and assume that the scale along the coordinate axes is the same
as the scale along the rectangular axesi “The first.diagram shows one
way how to define the coor-
dinates of a radius-vector

in skew coordinates. These
coordinates or components

are known as covariant

components and are obviously

given by

r. =¥ Ccos O

1 1» Tp =T COS Q.

2 2
Generally, the covariant components are defined as absolute value times
the directional cosine and we can generalize it immediately to any

vector in 3D-space:

The other alternative 1s shown
on the second diagram. Apply-
ing the sine law to thé lower triangle

we obtain
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2
T __r
sin (ﬂ—al~a2) sin o
or
2. sin o)
sin (al+a2)
Similarly
S sin a,
sin (ul+a2)

Components defined in this way are called contravariant components and

are denoted by a superscript to distinguish them from the covariant
components. In 3D-space the expressions are more complicated and will
not be dealt with here.

Note that in rectangular Cartesian coordinates, there is no
difference between the covariant and contravariant components. This is
the main point of departure when dealing with other than rectangular
Cartesian systems.

We can now ask the obvious question: how do we determine the

>
length of & vector a in a skew system? We either have to know gt least one of

the angles a; s O and gome of thecomponents or both covariant and

2

. + - . . .
contravariant components of a. The first case is trivial, the second

leads to the formula:



2
(a)2=aal+aa2= I ajan,

We shall prove this formula easlily by just substituting for the

components:

(a)2 = (a)2 cos o )+ (a)zcos o, sin ul/sin(al+u ) =

2 2

sin uz/sin(ul+u o

1

o )2 sin Eul+q2)

sin ( +a2)

!—J

We state without proof that the same formula holds even for 3D-space

where we get

- >
This is the generalization of the scalar product of a with a. Note

that the scalar product in rectangular Cartesian coordinates is just a
special case of the above where there 1s no difference between contra-
variant and covariant components.

Summation convention - Since we are going to deal with summations

of the type used above wery extensively we shall abbreviate the equations
by omitting the summation sign altogether. We shall understand, unless
stated otherwise, that whenever there is an index (subscript or super—
script) repeated twice in the right hand side the summation automatically
takes place. Usually, we require that one index is lower and one index

is upper. There will, however, be exceptions from this rule and this wili
be clear from the text. Such an index becomes a dummy index and does

not appear on the left hand side of the equation. In order to be able

to distinguish between 2D and 3D-spaceswe shall use Greek indeces in

2D~space and Latin indeces in 3D-space. This means that the two scalar
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products we have used in this paragraph will be written as follows:

2 . 3
1 o 2
= % a,a =aa, (a)”= I a,a =a.,a
i a . i i
=1 i=1

This convention does not apply, of course, in case the index appears
in two additive terms. Hencé
3
+ .
a; + b, # R (ai + bi)
i=1

Having established the summation convention we can now ask another

—).
obvious question: how do we determine the angle between two vectors a

ggQ_E_in a gkew Cartesian system? Here again, 1f we know the direction
cogines of the two vectors, the problem is trivial. More interesting
is the case when only covariant components of one and contravariant
components of the other vectors are known. We shall show that in this

[l
case the angle ab = w is given as:

> |
Xa,b o
ool ab
w = arccos (ifi___ )= arccos —
ab ab

To prove it let us first evaluate the scalar product of the two

vectors. We have:

2 .
i o _ . . . /54
i a;b” = a b = ab sin 8, cos ul/51n(81+62) + ab sin 8, cos az,/31n (§l+ 82)-
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Expressing o o0, in terms of Bl, 82 and w we get:

1° 72
o sin B, cos(Bl+w) + sin Bl cos(Bgmw)
a b = ab
sin (Bl+82)

sin 62(cos Bl cog w-sin B sin w)+sin Bl(cos BZCOSUw+Sln 62 sin w)

= ab sin (B.+6,)

1 72
o cos w(sin Becos Bl+31n Blcos BE)+Sln w(sin 6151n 82—s1n 8181n 62)

sin (Bl+82)

sin (B +8,)

. The last equation is obviously equivalent to the one we set to prove.

Problem: Show that aubu = aaba.
The result can be generalized for three dimensional space and we can

write

By answering the two questions we have shown that the two basic
formulae -~ for the length of a vector and the angle of two vectors -
remain the same in skew Cartesian coordinates as they were in the
rectangular Cartesian coordinates providing we redefine the scalar
product in the described manner. The same indeed holds true for all
vector equations as we have stated already in 1.2.7). TFor this aim
though the operations over vectors in non-Cartesian coordinates have
to be all redefined on even more general basis which we shall do in
the forthcoming paragraphs. Let us just stress here that the distinction
between covariant and contravariant components is fundamental for the

general development and will be strictly adhered to from now on.
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2.2) Vectors in Curvilinear Coordinates

Let us assume a 3D-space with a rectangular Cartesian coordinate

system X defined in it. We say that there is a curvilinear system of

coordinates U defined in the same space if and only if there are

three functions

=yt (xl, x2, x3) i=1,2,3
of the rectangular Cartesian coordinates defined and if these functions
can be inverted to give

i i 1 2
x" =x (u,u,u

) i=1,2,3,
The necessary and sufficient condition for the two sets of functions to

be reversible is that both determinants of transformation

J J
det (Eﬂir , det (5237)
i i

9xX ou

have to be different from zero.

The reason for writing the coordinates u as contravariant (in the
case of x it makes no difference since covariant and contravariant
coordinates are the same in rectangular Cartesian systems) will be
explained later. At this point we shall just note that the differentials
of the coordinates represent th& total differentials in terms of the

other coordinate system:

i3 et 5wty
du” = ¥ -—— dx - dx
j=1 ox 9%
i=1,2, 3
axt = g ééi dud = in-d J
J=1 du ouY
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It can be seen that to one triplet of valués xi there corresponds
only one triplet of wvalues ui. We say that there is a one~to-one
correspondence betweén the two systems X and U. Thé éxamples of such
curvilinear systems such as, cylindrical, spherical, geodetic etc. are
well known from more elementary courges. and will not be discussed here.

The basic question now arises as how to define the components
(coordinates) of a vector known in thé X systém, or moré precisely a
vector field, in the new coordinate system U, and yet preserve the
invariability of the vector equations even for the traﬁsformation from
X to U. What we really want is that the length of a vector 3 as well
as its orientation remain the same after expressing its components in
the U system.

The way " to define the components hence suggests itself as
follows. Let us write the vector g in X coordinaté system as

-
a

)

= (a cos o5 & COS o

2) = a(cos d;, COS @

2
using the 2D~space for easier graphical interpretation.

In the U system we shall define

> ~ ~
a = a(cos a5 COS ag)
where

cos 0, ,Co8 apre the direction cosines with respect to the ul, u2

coordinate lines. The quantities a cos &1’ a cos 4, are called,in

2
agreement with the skew

coordinates expressions,

>
covariant components of a

in U.
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Here, as well as in the next section, we assume that the scale
along the coordinate lines ul, u2 is the same as along the lines Xl,
x2. This is just for the geometric interpretation sake. If the scales
are different then it becomes increasingly difficult to visualise the
meaning of the components but the general results described in the next
section do not change. Let us just state that in such a case one has

to be careful when interpreting geometrically. the components.

The contravariant components are then defined as segments on the

coordinate lines as seen on the diagram:

o
I

= consthmconst

3

constg—constl.

o
1

We can see now the reason
why we have denoted the
coordinates u with a super-~
script (upper index rather

than lower). We find that

ponents. We shall come to this point once more later on.

It is not difficult to see that the introduced definition of
covariant and contravariant components conform with the requirement of
invariability of vector equations. However, the forthcoming develop-

ment is going to prove it more rigorously.

2.3) Transformation of Vector Component s

Let us now have a look at the mechanism of computing the ‘covariant

>
components of a vector a in the U system when we know its covariant
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components in the X system. From the diagram, we can write immediately

2
\)(2\ u ,"_> £ ~ ~ . . £
’//ﬂ or a,, ag(u51ng again for
simplicity the 2D-space):
L a cos 8, = a cos (ul—el) =
1 . .
h_%wxég . a(cos a,cos 6,+sin o, sin 61),
> X
~ - + 3 3 .
a cos 4, a(cos a,cos 62 sin a,sin 62)

These relations can be rewritten, realizing that

o, =~ _ g . =L g
1 2 2° 2 2 1
as
a cos &, = a(cos 61 cos a, + sin 61 cos az)
— + ad i
a cos &, a(cos 62 cos o, + sin 62 cos ul)
On the other hand, we can write for cos Gl, sin 61 from the diagram:
2
X
1 cos 6, = in sin §, = QEE
= R = .
1 dul 1 dul

R .
O\XQ 0491// ;’ 2.
/(& !2 k! 2 axl

dx . _ dx
du! cos 62 =% » sin 62 = 5
du du

Similarly for ©

Substituting these results back into the original equation for new

covariant components we get

or denoting by éi the covariant components in the U éystem and using the

summation convention
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o =1, 2.

Here the ordinary derivatives were replaced by partial derivatives
i,
because x” is generally an explicit function of all the u's.
This result is of a primary importance in the theory of vectors

in curvilinear coordinates and bears the name the transformation law

for covariant components. It can be derived in a more straightforward

manner for the 3D-space (or space of any dimension) vhen we realize
da " da > > > > RS
C*-i = cos ¢,, thus a, = a—, = a; a = au = aVa where u 11 ;, u- 1)
i i i
dx dx
that the covariant components are given by

~ a .
a_i=a‘d2"3:_' N air—'a"'@’i‘ i=1,2,3
- ax du

in any coordinate system. Applying the rule for total differentiation

we get immediately

~

a 3 i i i a
j da da  9x 9x~ da 90X i,
a du* i=1l dx— 3u Ju¥ dx~ = du a
g, = X3a i=1, 2, 3
or aJ‘ Jud %4 J=ls 2>
The reader is urged to prove to himself that the formala

a=32_i. a, J=1,2, 3
I oawd
holds for the inverse transformation.
Since in the second derivation nowhere have we used the special
properties of the X system (rectangular Cartesian) it can be seen that
the transformation law holds for the transformation between any two U

systems (non-Cartesian) as well. This is written as

-~ aui
a ., =":°T' ai"
dJd BuJ
a~i
Cjzajai J=1,2,3,
u”




33

The transformation law for contravariant components reads

— S|
;J=§}£.i_al

9

“ i=1,2,3
. 3 s
W o il g

ou

and its derivation is more involved. We should expect that this is the
law the coordinate differentials have té obey. Comparison with the
earlier developed formulae will assure the reader that it is the case.
This is the basic reason why wé have used the upper index for the
coordinates.

As an example, let us take a pair of tangent vectors 6%’ X% to the
6 and A parametric curves on a sphere of radius R.in Cartesian coordinates.
Expressiﬁg the sphere as

Xx = R gsin 6 cos A

(6, A) =¢/y = R sin 6 sin A (r = R)
z = R cos ©
we obtain:

X = R cos 6 cos A

6 _ or _ - _ .

t = e = y =R cos 6 sin A
Z = - R sin © )
Xx =~ R sin 0 sin A

=

Xt = %§-= vy =R sin 06 cos A

The elements of the Jacobian of transformation between the Cartesian

and the spherical coordinates are given by:



34

0X _ . ox _ 0xX _ . .

N sin 0 cos A, Yl rocos 6 cos A, SE“_ ~r sin 6 sin A
Y~ oy : 3y _ : Sy - ;

oy = 8in 9 sin A, Ng — T cos 0 sin A Sy o= T osin 6 cos A
0% _ 9z _ . 0z _

5y~ oS 6 , 5g — ~r sin o , Y 0 .

>
We can now evaluate the covariant components of e%, xt in the spherical

coordinates using the transformation law for covariant components:

t =0, % =R, t, =0,

o =Bl g

A A A .2 2 .2
t, =0, “t.=0, ty = Rr sin e|r=R = R sin“e,

The reader is suggested to show that the contravariant components of the

same two vectors are

Finally, we note that for a transformation between two Cartesian

systems, X and X say, all the partial derivatives

1 s
0X X ..

":.J-_= "I i, J=1,2, 3
X 0xX

are constant and we end up with the same expression as in 1.2.8.

The transformation laws as well as the whole idea of expressing
vectors in curvilinear coordinates may seem to be too complicated
when we can work with rectangular Cartesian coordinates
alone and use the relatively simple formulae developed in Chapter 1.
This is, unfortunately, not the case generally. There are spaces,
where we just cannot define Cartesian coordinates and where we have to
work with curvilinear coordinates whether we like it or not. The

gsimplest example of such spaces are surfaces that are not developable
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into a plane, sphere or ellipsold being the two most commonly used ones.

This matter will be dealt with more fully later.

Problem: Give the covariant and contravariant components of unit

tangent vectors to ¢ and A curves on the ellipsoid of rotation in

geodetic coordinates.
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3) TENSORS

3.1) Definition of a Tensor

As we have sald in the last paragraph, there are spaces in which
we cannot define Cartesian coordinate systems. In these spaces (but
not only these) it is usually difficult to even recognise if a quantity
is a vector or not. The transformation laws allow us to determine it,
providing we know the quantity we deal with in two different coordinate
system. We can now redefine the vector as a triplet of functions that
transforms according to one of the transformation laws. Accordingly,
we call the three functions either covariant or contravariant components
of the vector.

This approach allows also a further generalization of vectors. We

can now introduce a more general structure than the wvector - the tensor.

We call a structure aij of 32 elements a two-times covariant tensor (in
3D-space with U coordinate system)if and only if it is related to a
similar structure & i3 of 32 elements in 3D-space with U coordinate

system by following transformation equation

uk 5 L

- &

i
5t

(o5

= —

S, .
1J 3

.

k2

]

PJ

Here, we,of course, use the summation convention so that the formula in

the ordinairy notation reads

= R B 1
8;. = D) I T .
J k=1 g=1 3% 3@
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Similarly we can define, say a three-~times contravariant tensor in

2D-gspace as obeying the following formula:

“agy _ 0a* st oY sed
p*Y = il
ou ou ou
meaning
. 2 2 2 Al B oy
oY= x 1 1 3“6 ?uﬁ 3 8t
§=1 e=1 ¢=1 ou’ su° ou?

We can also have mixed tensors with some covariant and some

'

contravariant indeces. Hence the tensor c; ought to obey the following

transformation law.

sid - swd  du
3 =
auk Sum ol

km
n

= B

and is called once covariant and twice contravariant three-~dimensional

tensor. A tensor need not even have the same dimensions in all indeces.
It is left to the reader to write the transformation laws for following
tensors as an exercise:

J ol .
3:5%, Pagi’ %jp

L

It seemsrworﬁh'mentioning here that we could have easily ﬁsed the
matfix notation for ever&thing we have done. so far. From now on,
however, the matrix notation would not be able to express all the
guantities we shallvwork with.

AProblems: Write in full all the elements of the following tensors:
J

i i
a"a’ (dyade), a;b,.a7a, .

The number of indeces (excluding the dummy indeces) of a tensor is



38

called the rank of the tensor. Thus vectors are regarded as first

rank tensors, scalars as zero-rank tensors or invariants.

Note that the number of components of a tensor is given by

r
n

where n is the dimension of the space and r is the rank. If the tensor

is defined in spaces of different dimension, say nl,né®n3 then the

number of components is

nrl ) nr2 nr3
1 T2 73
where rl,rg,r3 are the ranks in nl;nZ,n3 dimensional indeces. Obviously

if there is a scalar ¢ defined at point ?, after changing the coordinate
system the same scalar will remain attached to the same point (although
the coordinates of the point will generally change). Hence we have the
transformation equation for scalar ¢:

=0

which is consistent with the transformation laws for tensor quantities.

3.2) Tensor Field, Tensor Equations

If in a region of a space a tensor is defined for each point of the

region, we say that there is a tensor field defined in the region. This

term evidently encompasses both special cases we have dealt with in
rectangular Cartesian coordinates -~ vector and scalar fields - and is a
direct generalization of both.

By having chosen the definition of covariant and contravariant components
of a vector the way we did, we have ensured that equations involving thus

defined vectors (either their covariant or contravariant components)
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remain insensitive (invariant) to any change of coordinate system. The
same holds true for tensors of any rank. The tensors of higher ranks
can be thus used to describe more complicated properties of objects in

the space like measures of distortion, curvatures of surfaces etc.

3.3) Tensor Algebra

The forthcoming 9 paragraphs are common for two as well as three-
dimensional tensors. For simplicity we are going to use only Latin letters
for indeces and the reader can "translate" everything for himself into

two dimensions by "transliteration" into Greek letters.

3.3.1) Zero Tensor
Zero tensor is a tensor whose elements are all equal to zero. It
ig trivial to show that the structure, say Ai' = Aij = O,transforms as

a tensor and is therefore s ‘tensor.

3.3.2) Kronecker §

The structure denoted by Gg and defined as

83 —/l i=j
17N
0 i#j

in any coordinate system is alsoc a W(mixed)“tensor. It is left to the

reader to show that it transforms as a mixed tensor of second rank.

3.3.3) Sumation of Tensors

The sum of two tensors that have the same number of covariant and

contravariant indeces =and the same dimension in all indeces 1s again
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a tensor of the same number of covariant and contravariant indeces:

C;J = A;J * B;J (summation convention not applied)

whose elements are all sums of the corresponding elements of ' the two
summed tensors. The proof that the sum of two tensors is again a tensor
is left to the reader

The summation is commutative and associative, i.e.
OIS R : : ed)
5 5 5 5 (summation convention not applied

A+ (B

= (summation convention not a lied)
ok + Czk) (Azk + B ) + Cox PP

2k 2k

3.3.4) Multiplication of a Tensor by a Constant

The product of a constant scalar and a tensor is again a tensor of
the same rank whose elements are equal to the correspond&&ggéiém@hﬁsf@éf
the multiplied tensor) multiplied by the constant

bij = ¢Aij .
The multiplication is associative and commutative. The proof that the

product is a tensor is trivial.

3.3.5) Opposite Tensor
Opposite tensor Bd to a tensor, say AlJ, is again a tensor of the
same rank whose elements are equal to the negatively taken corresponding

elements of AlJ. It is denoted by —AlJ and we have

At v B =0 or BY = (-1) a'Y.

Tts tensorial properties follow immediately from 3.3.4 if we take ¢ = -1.
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3.3.6) Multiplication of Tensors

The product of two tensors, say A ang Bi in this order, is a
tensor of a rank that is a sum of ‘the ranks of the two constituent tensors,
-.2,
in our case C;J . Its components are products of the corresponding
components of the constituent tensors, for instance
132 13 2
C = A . B
3 3
We can see that tensor product is generally not commutative, i.e.
132 13 .2 1 32
C = A" B B, A
3 3 ? 3
ij.2 i ,32
A Bk # Bk A

ij._%
(but A Bk

= BﬁAij )
On the other hand it is always associative.

The reader can prove for himself that the product of two tensors
is again a tensor by investigating its transformation from one coordinate
system into an other. Note that multiplication of a tensor by a constant
is just a special case of multiplication of tensors.

If one of the two tensors that are to be multiplied has got one or

more covariant (contravariant) indeces identical to one or more contra-

variant (covariant) indeces of the second tensor then: the resulting tensor

will have a rank smaller by 2 or gemerally by a larger even integer. This is

because the identical indeces become dummy indeces and we have, for example

A B =, YR gh ook,
ij i’ 73 i J

Such a product bears a special name of inner product in one or more

indeces.
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Note a particular inner multiplication by Si,

ik _ ,Jk

J
8 Aom = Aom

which is sometimes called the change of an index.

3.3.7) Contraction

Contraction is an operation by which we reduce the rank of the
tensor by two. If we set one covariant and one contravariant indeces to be
equal to each other, this automatically indicates that the indeces
become dummy indeces and the summation takes place. Applying this
operation to, for instance a tensor A?? we can create.f@ﬂf‘, generally

different, tensors of rank two:

L S IR T S
A = = =
137 Cpo Bgy = DA = B

AtY =
i

%
j!’
This operation is difficult to visualise unless we contract a tensor
of rank two, i.e. reduce it to a séﬁiéﬁ% In this case we have

A= Ai and taking the matrix of Ai:

ra}' 0 a?'j
1 'l 1
Jy o= .1 2 3
[Ai] £ ey a, a;
1 2 3
i as aq ag

.3 i
we can see that X = I a; = trace (A). Hence, for instance,
i=1
st =3, & =2 .
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We can show that the contracted tensor, say AS Bt, is again a

t

tensor by following calculations:

.. TR .
c =4,8" =L AL 3‘13 A, B
s 5% ud M
1
=20, pd
a5° 1
i
= U &
3~S 1

“Another way to view contraction is to say that it is equivalent

to inner multiplication by Kronecker § in two indeces. TFor example:

m i i m
A T < ey
Then the proof of the tensor character of B§ is evident. This is the
reason why some text-books do not list contraction as a special operation.
It should also be mentioned that, by the same virtue, an inner
multiplication in one index can be regarded as a once contracted general
tensor multiplication:

i,

At BY - st (Bt
dJ m J

ik

ik

Therefore we shall be'further‘speaking about a contracted ??oduct or

inner product, meaning the same thing.

3.3.8) Tensor Character

We can notice that the three basic tensorial operations ~ summation,
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multiplication and contraction - produce always again a tensor. They

are said to preserve the tensor character. This property serves as

another means of distinguishing a tensor. For instance a two-~index
quantity Aij can be tested for its tensor character by multiplying it

by two arbitrary contravariant vectors (or a twice contravariant tensor).
The result is a four index quantity, say B?f. If its double contraction
results in a scalar then Aij is a twice covariant tensor:

/// scalar =,‘>Aitj is a tensor
A, a5t = B, g -

1] R AN

something else =>Aij is not a tensor;

3.3.9) Symmetric and Antisymmetric Tensor

A tensor is called symmetric in two simultaneously either covariant
or contravariant indeces if and only if its value does not change when

we interchange the two indeces. For example

m g m

ijk Jik
is symmetric in the first two covariant indeces ;

gk = gk
i i
is symmetric in its contravariant indeces.

A tensor is said to be antisymmetric (skew-symmetric) in two simult-

aneously covariant or contravariant indeces if and only if it changes sign

k kmg,

when:we interchange the two indeces. Hence Ai%m = --Aij is antisymmetric in

the last two contravariant indeces.
Any tensor of second rank can be expressed as a sum of a symmetric and
an antisymmetric tensors. To show this, let us take, for instance, a

tensor B1J and write
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B9 =1/2 8 +1/2 B9 + 1/2 Bt ~1/2 BT
NI O v )

B

This equation can be rewritten as

B = 172 (8% + B + 172 (B - BIY) .
14 wi L. —

——

gtd atd

Here the first tensor is symmetric since it does not change when we inter-
change the indeces. The second changes the sign when we interchange the

indeces and is therefore antisymmetric.

3.3.10) Line Element and Metric Tensor

We have seen in 1.1 that in 3D-rectangular Cartesian coordinates

(or BEucleidean space), the square of a distance AS between any two points

> > . b
r)» Ty Was given by 5
(18)° = 1 (AxH)? .

i=1
If the two points are infintesimally close, we get similarly
3 . .
)2 = 1 (axT)? = ax® ax,
. 1
i=1

(ds

where ds is called the line element.

Let us ask now, what will be the formula for the line element in
a curvilinear U system. As we have shown already (2.2), the coordinate
differentials transform as contravariant vectors. Hence the differentials

du” will be given as
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and

Substituting this result into the fowmula for the line element and

realizing that the line element isg invariant in the transformation X - U
we have

2 axi Bxi 8
(as) = - 2E guP qu® .

Bup

ou
Since in this formula the summation convention applies (i,p,s are

dutimy indeces) the quantity

axl Bxl _
TS T, T8

an® au® ps

is a two-index field. Moreover, since the twice contracted product of

J is a scalar, the quantity

gps with two contravariant vectors du’ and du
8 g has to be a twice covariamt tensor. It is, perhaps, the most

important tensor and is called metric or fundamental tensor.

The one élément, can«be'hritten using the metrié$tané6r as

2 i J
= . d a:
(ds) giJ u” du

in any coordinate system. Note that the metric tensor is symmetrical since
giJ = gji’ or more explicitly:
ox™ axt _ o ax"

sut du?  suY 93

i
. . . i i 1 2 3 . .
Obviously, if we have the equations x~ =x (v, u”, u”) , i = 1,2,3, relating

ther curvilinear system U to the rectangular Cartesian system X, we can
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derive the metric tensor of.the U system from the above formulae.
Tt can be shown that if the U system is again rectangular Cartesian with the

same scale along all the axes, we end up with

/l i=j
i# 33
a tensor equal to the Kronecker § and denoted therefore by Gg. This

leads to the equation for the line element
(ds)2 = Gg au” auw’ = au’ dui

the sameias the oneé we hegan withg this was to be
indeed expected.

On the other hand, if the U system is skew Cartesian, its metric
tensor is not unit any more. The reader 1s advised to prove for himself

that a 2D-sgkew Cartesian system has a metric tensor

1, sin (6+62)

1
[8&18»] =
sin (efeg), 1
where 61,62 are given according to the figure.

2 This holds true providing that

X

the scale along all four axes

is the same. If the scale along

1, 2 . ‘o
u’ u axes, is different from

the scale along xl, x2 axes, the

metric tensor above will be::

different.
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As another example we may take the spherical coordinates r,0.),

for which we have

1 .
x7 =1 s8in 0 cos A
=1 sin 0 sin A
X~ = r cos O .

The reader may prove for himself that the matrix of the metric tensor

in these coordinates is given by following formula

Problem: Derive the metric tensor for geodetiec coordinates ¢,A,h
(geodetic latitude , longitude and height above a fixed ellipsoid of

rotation given by its two axes a,b and centered upon the coordinate origin)

for which
¥t = (N + h) cos ¢-cos A
x° = (N + h) cos'¢ sin A
% = (N(%&#h) sin ¢..
Here

-1/2

)2 sin2¢) ,

N=a (cosg¢ + Cg

In 2D-space the development is completely analogous. There, the for-

mula for the line element reads
2
)

- o . B
(ds)” = guﬁ du” du

and everything we have said about the 3D-metric tensor is valid for the
2D-metric tensor as well. It is left to the reader to prove that for

example a sphere of radius r has got a metric tensor whose matrix equals to
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r 0
g .1 =
B 0 r2 sin2¢
This expression can be arrived at by the following reasoning:
9x> 9x-

B

B

o

)2 = dxT dx* = du duB = gaB dua du

(ds "
du~ du

1
where u  =¢, u2 =\,

Problem: Derive the metric tensor for the geodetic coordinates ¢, A
defined on the surface of a fixed ellipsoid of rotation co~centric

with the Cartesian system and defined by a and b.

3.3.11) Terminological Remarks

The way we have defined a coordinate system ensures that there is
always a metric tensor associated with any syétém of coordinates. This
allows us to talk always about the metric space realized by the
coordinate gystem. Hence we can use the two terms -~ coordinate
system and metric space - interchangeably, which often is the case in
literature on metric geometry. Note that we can talk about the metric
tensor without having specified the gystem of coordinates, i.e.,
without having specified the relation betwéen U and X systems. We can
hence have just a set of 6 (or 3) independent elements of the metric
tensor without knowing anything about the coordinate system it
belongs to.

The metric space corresponding to the rectangular Cartesian

coordinates is known as the Eucleidean space, as mentioned already in

1.1. The Eucleidean space is then characterized by the unit metric tensor.
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(The tensors in FEucleidean spaces are sometimes called affinors). The
metric space corrésponding to skéw Cartésian coordinatés (with constant
scale along each axis, not necessarily the same for all axes), 1s
usually called the affine or pseudomEucleidéan space. It is character-
ized by a metric tensor constant throughout the space. Both the
Eucleidean and affine spaces are called flatb.

If the metric tensor changés from point to point, the metric space
corresponding to the used system of coordinates is called Riemannian
(in a wider sense) or curved. Hence, for instancé, a coordinate
system with three perpendicular axes and scalés varying along these
axes does no longer represent a flat space. Spaces, for which the metric

tensor is diagonal for every point, are called locally orthogonal. Most

of the coordinate systems dealt with in practice (spherical, cylindrical,
geodetic, geographical, etc.) are locally orthogonal. All the spaces,
i.e. Eucleidean, affine, locally orthogonal, are often regarded as
special cases of the Riemannian space.

Theoretically, we indeed can choose the metric in any {non-metric)
space any way we want. When dealing, for instance, with a sphere, there
is nothing to stop us from defining the metric as, say, Eucleldean and
write
)2 )2

(d5)° = (as)® + (ax

The only problem is that in such a case we cannot relate it properly to
physical (geometric) reality. For the example mentioned above it would
not be possible to immerse the sphere metricised in the described way into
a three~dimensional Eucleidean space without distorting its Eucleidean

metric. The distance of two points measured on the surface of the sphere

(by our chosen Eucleidean metric) would not generally agree with the
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distance of the same two points measured by the Fucleidean distance in the
3D-gpace. Therefore, we have to require that the metric of a space of
lower dimension immersed in a space of higher dimension be compatible
with the metric of the space of higher dimension called sometimes the

meta~space or super-space.

Spaces that can be metricised with the Eucleidean metric (i.e.,
whose any metric tensor can be transformed to the unit tensor by a
transformation of coordinates) and yet remain compatible with the

meta~space are called flat with respect to the meta~ space or inherently

flat. If this cannot be done then the space 1s called curved with

respect to the meta-space or inherently curved. If we consider the

common 3D-Fucleidean space the meta-space for the surfaces we deal with
(2D-spaces) then all the developable surfaces are inherently flat, all
the other surfaces are inherently curved. SF@riiﬁéfance the sphere

cannot be metricised with Eucleidean metric in the 3D-Eucleidean space

s
S e

and is therefore curféd with respect to this particular space. The

terminology in literature is not completely unified in this respect.

3.3.12) Associated Metric Tensor, Lowering and Raising of Indeces.

Let us take now the metric tensor gij’ multiply it by a contravariant
vector Ak and contract the result (since gij is symmetrical, it does not
matter whether we contract the first or second index). As we have seen
already, this operation is sometimes called inner multiplication and in

our case we get:
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Since this is a tensor equation it has to be valid in any coordinate
system, therefore even in rectangular Cartesian coordinates. But we have
seen in 3.3.10 that for rectangular Cartesian coordinates gij = 63 and

we get

g, A =67 A0 = AT = A, =B,

iJ J i i

(Note that we can lower and raise indeces here freely only because we
work in rectangular Cartesian coordinates). Thus the metric tensor

provides us with the tool for determining the covariant components of

a vector 1f we know its contravariant components:

1T 84

This is the reason why we call the inner multiplication of a vector

by metric tensor lowering of one contravariant index. This operation

can be applied to any,(at least once contravariant) tensor of any rank.
For example

.k Bli - Bkk.

Jk _
Ag = higs 843 i

13
where by the dot we indicate the initial position of the lowered index.
Let us now have a look again at the first equation of this paragraph

from purely akgebraic point of view. It can be evidently written as

33
I g.. A = A,
j=1 1J 1

and regarded as a system of three algebraic equations for AJ, J = 1,2,3.

It therefore makes sense to invert the system and write

G.. A, = A (%)
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since det (gij) for any Riemannian space is always positive.

To show that det (gij) = g is always positive we can write:

ol S Rl
+J out aud k=1 jut aud

Hence the matrix of gij can be regarded as a matrix product of
T
|

the two = transformation matrices (Jacobians) [Bxk/aul] and [BXK/BuJ

We know that according to Laplace's theorem, the determinant of a
product of two matrices equals to the product of the determinants of
the two matrices. We have hence
g = det (gij) = det (—3~—i—) det (=) = det
au ou ou
and since det (QEE) # 0 (see 2.2) we get g > 0. The proof is even

ou
simpler for a locally orthogonal system for which we can write:

3 3 Bxk 5x"
det (g,.) = I g,.= T (==-—=)
1J i=1 11 =1 au:L aul
3 3 k o
= 1II b} B"}'C"") .
i=1 k=1 8y

Interpreting the equation (¥) again in tensor notation we get

1J = aJ
g Ai Al

iJ . . .
where g J has to be a twice contravariant tensor because when multiplied
and contracted with a covariant vector it gives a contravariant vector.

It is called the agssociated metric tensor. The operation described by

the above formula is known as raising of the covariant index. It can
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be again applied to any‘xat least once covariant)tensor of any rank.
For example:
i

B =B

i3 & _ 48 ij
& k8 Py T P

Ajk = A .
An associated tensor to any second rank tensor whose determinant

is different from zero can be defined similarly.

Problem: Derive the contravariant vectors etl, Atl from the example

in section 2.3 from their covariant forms by means of the associated
metric tensor.

We also find that a once contracted product of the metric and
assoclated metric tensors equals to the Kronecker §. To show this let

us write

ij = ad

g Ai A“.
Multiplying the equation by the'metric tensor and contracting in J
indeces yields

1J - J
By € Ay &y 3 A
But the right hand side equals to A , therefore the left hand side

must equal to Ak too. Hence

i3 i
&y &8 = 9 ']

Note that even the operations "change of index" and "contraction"

can be expressed in terms of the metric and associated metric tensors.

We have, for example,

(change of index),

lgm g A=Ay

(contraction).
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Hence, we can say that all four special tensor operations (lowering,
raising and change of an index as well as contraction) are particular
cases of inner multiplications by the metric and/or associated metric
tensors.

We also note that

3.3.13 Scalar Product of Two Vectors., Applications

As in skew Cartesian coordinates, we again call thé-inner product

of two vectors the scalar product. The inner product of a vector with

itself equals to the square of its length here as well as before:

This can be easily seen when we realize that the above is a vector
equation and therefore is invariant in any coordinate transformation.
Since we know that A is the length of the vector in Cartesian coordinates

it has to be the same in any coordinate system.

Problem: What are the lengths of e%, X% used in the example in
section 2.37

Analogously, we call A the length of the vector A even in an
inherently curved space. Note that it is difficult to visualize a
vector in a curved space since it no longer can be interpreted as an
oriented segment of a straight line. The same holds true for the
components . In a curved space one cannot use the "common

sense' and has to go strictly by definitions. In our development we
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shall be working in a flat space. The results, however, will lend
themselves to straightforward generalization in a curved space with
the only difference that their geometrical interpretation will be
rather difficult.

Making use of the metric and associated metric tensors, we can

write for the length of a vector:
f

A= (gij At Aj)1/2 _ (gij A, Aj)l/z .1

The analogy with the fundamental form is evident. Obviously, in a 2D-

space the length of a vector K will be defined by

A% AB)l/E .j

1/2
A AB) = (

gdB

Let us just note that the fundamental form (see 3.3.10) can also

be written as
(as)? = ax* ax, .

Dividing this equation by (ds)2 we get

dxl qxi =1
ds ds
. dxi
Hence we can conclude that I are contravariant components of a unit

o

vector and é%i;are covariant components of the same.
35
We have seen in 2.1 that the following vector equation

AB cos w = A, Bl = Al B.
i i

> >

holds true for any two vectors A, B. It has to hold true even in a
curvilinear coordinate system since both lengths and the angle w are
invariant. Rewriting the above equation using the metric and associated

metric tensors we get:



o7

AB cos w = g, At Bd o= gt Ay By }

Note that this gives us the means of distinguishing two perpendicular
vectors in both flat and curved spaces. In 2D-space analogous

formulae hold:

AB cos w = gaB A% BB = guB Au BB . J

Problem: Show by direct computation that the angle between two tangent

vectors to ¢ and A curves on an ellipsoid equals to m/2.

3.3.14) Levi-Civitd Tensor

Let us define now the following tensor in 3D-sgpace:

erst = Vé srst
where
//,+ 1 for all even permutations of indeces
et SO T 1 for odd permutations of indeces
\\ 0 for all other combinations of indeces
and
g = det (gij)
Hence
8103 = Sp31 = %310 = 1o
8301 T 8130 T Opy3 T~ 1
6111 = 6112 T .. = 6333 = 0, We can show that e ot is a three-~times

covariant tensor.

To show it, it suffices to consider e first in rectangular

rst

Cartesian coordinates:

rst rst
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(in rectangular Cartesian coordinates we assume for simplicity

det (gi ) = 1), Taking Erst in another arbitrary coordinate system U,

J

it has to satisfy the following transformation law:

5 - 9% axj Bxk 5
rst st au® aut iJk

(*)

To prove that the above equation is satisfied we have to prove first

that

r s ,t _
By Ay Ay Oy = det (A) %15k

where det (A) is the determinant of the matrix of the arbitrarily chosen
mixed tensor Ai. This can be seen directly for specific values of 1,j.k.
We have, for instance

r s t
A A2 AB 6rst

det (A)

r s ,t _
Ay AJ A S = - det (a) ,

and similarly for other permwtations of 1,3, k.
The proof that all the expressions

r .8 ,t
Ai Aj Ak 6rst ?

where the lower indeces i,j.k are other combinations of 1,2, and 3, equal

to zero is left to the reader.

Having proved this, we proceed to state that

i
det (?ﬁg) = Ydet (gij) = Vg .

This has been shown in section 3.3.12 already. Applying both our

findings to equation (%) we obtain

e = /g $

rst rst

which concludes the proof.
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The erst tensor is called the LeVimCiVitE cOvariant.tensor.

Analogously we can define

The proof that this is a three-times contravariant tensor is left to

the reader. It is known as the Levi-Civita contravariant tensor. The

Levi-Civita tensors are sometimes called e-gystems. Note that Levi-
Civita tensors can be defined only for spaces with dimensionshigher

than 2.

3.3.15) 'Vector Product of Two Vectors.

The covariant vector

is known as the covariant vector product of the two (contravariant)

vectors AY and Bk. Similarly, the contravariant vector

i_ ijk
¢t = et A B

is called the contravariant vector product of the two (covariant) vectors.

To show that this definition of vector product is equivalent to
the usual definition in rectangular Cartesian coordinates, we can spell
out the components of any of the two vectors Ci or C* (in Cartesian

coordinates). We obtain, for example,

c. = 4°B° - 387
1

c. = a3pt - alg3
o

¢, = ate - A%t

that matches the formula for the components of the vector product in

1.2.6 sub ii.
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The reader is recommended to prove the following

C.A* =cta, =c,B" =C'B, =0
1 1 1 1

where the A,B,C vectors are those from the above equations. Note
that the vector product provides us with the tool for distinguishing

two parallel vectors in flat as well as curved spaces.

Problem: Write the equation for a unit normal vector to the ellipsoid

of rotation in geodetic coordinates sygstem uwsing vector product.
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3.4) Tensor Analysis

3.4.1) Constant Vector TField

Before we start talking about differential operations with tensors
let us see first how we can recognize constant vector field in curvilinear
coordinate systems. To do so let us take a vector field K known to

be constant in Cartesian coordinates (A). Transforming the curvilinear

system U to Cartesian X we get

~ Bxi .
At = A,
ouY
Further consider a curve C = C(t) in the space and ask what would

be the change in ' when we move on the curve by an infinitesimally

small step dt? The answer is given by the following equation

an’ _ 0%t au N 9x~  dAY
at” T J,k at oud  at

~

Since Al ig considered constant (in Cartesian coordinates), its derivative
dAl/dt ig identically equal to zero. Hence we obtain the following
differential equations of a constant vector field expressed in curvi-

linear coordinates:

o2 ko i3
._,?_%QLAJ_,__@Z{T a8 _ o .
dudouT At sud  dt

These are often called in literature the equations for parallel trans-

mission of a vector, the term borrowed from application of tensors in

mechanics.
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3.4.2) Christoffel Symbols

Our next goal will be to express the partial derivative of the
coordinates in the equation for parallel transmission in terms of the
metric tensor belonging to the curvilinear system. To achieve this, let
us multiply the equation by grp axi/aupa We get

rp 9% 82x1 duk

J rp ox~ dx.  daY _
T AT+ g - =0
o sudaut at ouf aud  at

Here

i i
rp 80X OxX  _ grp g = ¥
3u® 9uY bJ J

(see 3.3.12) and the second term becomes dA” /dt. The product of the

two partial derivatives in the first term is denoted [jk, p] :

3Xl 9 x.

ouP

[3k, pl =

and called the Christoffel symbol of l-st kind. It is a function of

the metric tensor only and it can be shown that:

Bul auJ K

9g ., og. 08, .
(wggk + glk glJ )

DS Ll

[ij, k] =
ou

To show this let us take partial derivatives of the metric tensor

g.. with respect to all three coordinates. We get

1J
8. . ,8x£ 82XZ ngz ‘ sz
e = T
du sut suddut  sutou suY
Analogously:
L 2.8 2.2 L
ngk B 0x” 9 X + " x ox

Bul BuJ Bukaul BuJBul auk
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2.4 2.2

%, st 5%x 32 axt

= — + : .
duY auk duTou? BukauJ Bui
Summing up the last two equations and subtracting the first from them

we get:

L2 %
0g, 0g, . 2g., . 9x” 9 x
Jk | ?1 e s R

dut ou Buk Buk duT dud
which is nothing else but 2[ij, k]. This concludes the proof.
Using the Christoffel symbol, the equation for parallel trans-—

mission can be rewritten as follows:

rp duk -
o te Lk, pl &

We note that in Cartesian coordinates the Christoffel symbol of the
first kind is always zero and the above equation degenerates to

dAr

== =03

dt
that had to be expected. The Christoffel symbol is not a tensor -
hence the name. It is, however, of a fundamental importance in tensor
analysis. Note that it is symmetrical within the first two indeces.

Upon introducing another quantity:

L Rk ...
Pij =8 [lJﬂ k] )

known as the Christoffel symbol of 2-nd kind, the above equation can be

further simplified to

r k
dA + 1F du

J -
dt Jjk dt AT =0
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It can be shown again that the Christoffel symbol of 2-nd kind is
not a tensor. On the other hand, it can be used as a multiplier by an
appropriate tensor, producing a non-tensorial guantity. It again
equals to zero in Cartesian coordinates and is symmetrical in the two
covariant indeces. It is sometimes also denoted by.{gk} or otherwise.

To conclude the paragraph, let us note that the first term in
the equation for parallel transmission can be rewritten as

aa® _aa" au®
at Kk dt
ou

Substituting this result back in the equation we obtain

r k
A vy du _
R T A g =0
ou

(realizing that rt ank = " bkaJ). This can be further rewritten as

Jk Jk
r .
LL N S CR
yut Jk

since duk/di # 0 along a general curve C(t). This is the final
differential equation of a constant vector field in any Riemannian
space (or equation of parallel transmission).

It can be shown similarly that for covariant wvectors we get

BAr j
— - Y A, =0
auk rk ]

Analogously, in 2D-space, the Christoffel symbols are defined as follows:

1 %8y %8y 38y
[aB, v] = 5 ( ot T8 == )
ou u au’
y _ _YS
TOCB - g [OCBD 6]'
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Similarly, the equations for parallel transmission (or constant field)

are

o [} Y - -
i)‘!}-——-+PYBA =0

BuB

BAQ ¥
— e T A
. auB aB Ty

it
o

Problems: Derive the expressions for [ij, k] and F?, in spherical,
geodetic and geographic coordinates.

Is a tangent vector to a ¢-curve for A = const. parallel co a

1

tangent vector to a ¢-curve for A = const2 on the surface of an ellip-

sold of rotation?

3_h,3) Tensor Derivative with Respect to Scalar Argument (Intrinsic

Derivative)
In trying to define a tensor derivative of a tensor, we require
that it be again a tensor so that we can remain in the realm of tensor
equations when differentiating. We can see that this requirement is

not satisfied for the ordinary derivative dAl/dt. This quantity does

not transform as a tensor and is therefore not a tensor (see 3.4.1):

ail _ 8%t au® ), xT an?
dt auJauk at BuJ dt

On the other hand the ordinary derivative of a scalar ¢ can be regarded

as tensor derivative since

conforms with the transformation law far scalars (see 3.1). Denoting

the tensor derivative by §/8t we can then write:
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PL@
St dt

To produce a satsifactory definition of a tensor derivative of
a vector let us take a scalar product of two arbitrary vectors and
take the derivative of thus defined: sealarxs We geff~

dA i
5 i, a4 i, %y dB
st (A4487) = gp (MB7T) = = BT+ A

We also want the tensor derivative to obey the same rules as the ordinary

derivative does. Namely, we want the following equation to be satis-

fied:
S i GAi i 5B
R T S

In order to determine the relationship between the tensor and the
ordinary derivatives, let us consider one of the vector fields, say
Bl, constant. From 3.4.2 we know that BT has to satisfy the follow-

ing differential equation

b

g8’ it
dt Jk dat
Combining the first two equations and substituting for dBl/dt we obtain:

SV ©oauk 4 AL sBh
B = —= B + A, — .

T o I =5 i 8%

Further, we want the tensor derivative of a constant field to be zero,
to conform again with the rules for ordinary derivatives. Putting
GBi/St = 0 and changing the i(dummy) indeces in the first terms on
both sides to j we get

da, . k . SA,
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Hence we have found finally the expression for the tensor derivative of

a covariant vector:

SA, dA., , a
o _d i, du
st dt gk 1 at

and Ai does not matter.

Note that the order of rgk

To show that the tensor derivative of a covariant vector, some~

times called intrinsic covariant derivative, is given as covariant

vector is left to the reader.

Problem: Prove by analogous reasoning that the intrinsic contravariant

derivative can be defined as

i i .
sAT _anl i

J duk
: L A=
st at J at

s gontravarisnt vector.
The above definitions can be now easily generalized for a tensor

of any rank. For instance:

3k ik
SA dA . . . . q
2mn 2mn s Jk s ,Jk s ,Jjk J sk k  js ydu
= + (- - s + . i
8t dt ( Tzq Asmn quAzsn anAlms quAan I1sq ﬁmn)dt

To show that an analogous formula holds true for intrinsic défivaﬁive inwa
2D~space is left to the reader.

Let us conclude this paragraph by stating that the tensor derivative
(with respect to its scalar argument) of the metric tensor, associated
metric tensor, Kronecker's &, and the Levi-Civita tensor are all zero.
This can be seen when we express the named tensors in Cartesian coor-
dinates. There all the Christoffel symbols disappear and all that is
Jeft are the ordinary derivatives. But even these are all zero since

all the components of the above tensors are constant. Hence the named
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tensors can be regarded as “constant" from the point of view of tensor
differentiation. An intuitive explanation for this phenomenon is that
although the tensors may vary from place to place their variation
reflects just the properties of the space itself and not that of any

objects in the space.

3.4.4) Tensor Derivative with Respect to Coordinates (Covariant

and Contravariant Derivatives)

We know that the ordinary derivative of, say Ar’ can be written

as

ah, A gk

dat k dt
ou

Let us require that the same rule applies on the tensor derivatives

as well, i.e.

SA SA k
- r du (%)
8t k dat °
Su

Substituting for the intrinsic tensor derivative on the left hand side

from 3.L4.3 we obtain

ro_ I,i duk - GAr duk
dt rk "1 dt Guk dt

Subsgtituting here again for the derivative dAr/dt from the above

equation we get

Hence the tensor derivative 6Ar/6uk, which we shall denote further by

var is given by
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r o_ _r i
k var T .k Frk Ai
u u

It is called usually the covariant derivative of the covariant vector Ar

and denoted sometimes by Ar We can see that the covariant derivative

ok

of a covariant vector is a twice covariant tensor from the equation (¥);

. e e . . . C/ .
the covariant intrinsic derivative is oné covariant tensor

aw o ot hown 1
at Bxi at an 3t was snown 1in

3.3.13 to be a once contravariant tensor), hence the covariant derivative

k .
and du /dt is once contravariant tensor (

is a twice covariant tensor.
It is not difficult to see that in Cartesian coordinates the

covariant derivative degenerates into the simple dyadic product of the
symbolic vector V and A. The covariant derivative of a scalar,

similarly to the intrinsic derivative, reduces to

V.6 =§i_
i i
ou

Problem: Show that the covariant derivative of the contravariant

r . . .
vector A" is a mixed tensor of second rank given by:

r  3A r
VA = —+ T,
k Buk Jk

A9

Contravariant derivatives, that have less important applications,

can be obtained by raising the indeces in covariant derivates. Hence:

Generally, a covariant derivative of any tensor can be obtained from

its intrinsic derivative using the formula
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ik )
S 3k du’
= vi ASLmn
8t dt

We may note that the covariant and contravariant derivatives of
the four pseudo-constant tensors (mentioned in 3.4.3) are again zero.

This is easily seen when we consider the derivatives in Cartesian
coordinates. The covariant and contravariant derivatives obey again

the same rules as the ordinary derivatives. For example:

Vi(kAj) = k(ViAj), k = const. ,
Y

V(A +B.) = VA, + V'B, ,
33 J J

Ky

vi(Ang

k k
= (ViAj)Bz + Aj(Vi Bl) .

. Problem: Show that the Frenet's formulae for a spatial curve are

given by:

= R
(VS tr)t nr/ >

<
B
S—
d
]

«tr/R + br/T ,

S

1

(vS br)t —nr/T .

If % is the unit tangent vector to a curve C on a surface then

B _
(VBtd)t = nq/RG

-5
is a differential equation relating +t to the unit normal vector n,

(on the surface) and Ry, the Padius of geodetic curvature of the curve.

o _
(Vth)t = 0

is the equation of a geodesic on a surface.

Hence
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3.4.5) V and A Operators in Tensor Notation.

We have already seen in the previous paragraph that the covariant

derivative of a scalar is nothing else but the gradient of the scalar.

Vi¢ = §QE-= grad ¢.

ou

It can similarly be shown that the contraction of the covariant derivative
of a contravariant vector gives us the scalar known as divergence of A.

To see this, it suffices to write the expression in Cartesian coordinates:

1 2 3
i oA oA JA

= + -+
viA 2 3

ou ou

-
A

= diw
ou

Due to the symmetrical properties of the scalar product we have:

v.AT =
1

VA, .
1

Further, by the same reasoning we can prove that

e

>
= rot A , ‘

and call the resulting vector the rotor or curl of K. Finally, for the

Laplacean of a scalar we obtain

i ~ i
V.4 o= V.V J

The proof of this statement is again based on the equivalence in Cartesian
coordinates.
In order to be able to write the differential formulae in a form

ready for computations, let us first derive one very important expression,

namely:
i _ 3(envg)
g i Buj -

Perhaps the easiest way to derive it 1s to take the covariant derivative

of the Levi-Civita tensor. We get
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V. e = Efiih' FS e Ts e FS e
271ijk auz i sjk Jo isk k& ijs

But we know that this tensor equals to zero so that all the components
equal to zero. Let us then take one vector of components, e.g.

5
Vo123 T T 7 TieBees T
ou

€123 s s s

P508143 = T308105 = 0 -

Taking the products of Christoffel symbols and the Levi-Civita tensors,
we can see that, due to the definition of the L~C, tensor, only one

vector of components is always different from zero. We can write:

de
€103 1 2 3 .
N 1108103 = T2p®103 = T3p8103 = O -
From 3.3.4 we know that €13 = Vg = Ydet (gij). Hence we obtain

3 1% 2% 3%
ou
or
1 9/g _ i
— " Tiy
/g ou

Recalling the formula from the analysis of real functions

dy _ 1 ar(x)

y = fn £(x), il ooy il el
we can finally rewrite the above equation in the form introduced at the
outset of this proof.

Having established the formula for the contracted Christoffel symbol

we can now proceed to derive the expressions for the differential oper-

ators in curvilinear coordinates. For 'the' divergence, we may write:
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. i .
goat =38 Lol I
i i ij
ou

_ AT , Aanve)
i J

aul ou

Y

i .
(,/gﬁ_fi.i__{Li‘%iAl)__l_
ou au /g

ook o L2’ Ve)
* /g du”

.
If we know only the covariant components of A we can write

i ; 3(Ve g
V.Al = V]‘A - __;I—__ ST e

1 1 /g aul

Joa)
J

N
Problem: Derive the formulae for div A in spherical and geodetic
coordinates.

For the Laplacean equation for a scalar ¢ we get

v vteev (o197 6) = v (419 20
b = VTV, (7,0) = V(g7 )

Applying to this formula the same treatment as we have applied to

the divergence, we obtain

Finally, we remark that the gradient as derived at the beginning
of this paragraph may be regarded as the covariant gradient - the
operatio of covariant derivative of a scalar results in a covariant

vector. We can also define the contravariant gradient as

i3 90

vl = gtdv ¢ = ¢
J qud




7k

As a matter of fact the contravariant gradient is the one that is more

often used in applications.

Problem.: Derive the formulae for contravariant gradient and Laplacean

in spherical and geodetic coordinates.

3.4.6) Riemann-Christoffel Tensor

Let us see now what would be the second covariant derivative of a

covariant vector. Taking an arbitrary covariant vector Ai we get

v (v.a) === (va) - 15 (VA - 10 (V.4)

kg1 Sy Ji jksi ik' 37s
Realizing that
oA,
VA1=--J’:"-F{L.A£
519 1J
we get
3A oA oA
2 i 2 s i ‘s 8 S L
V (VA ) =—— (—==T,A)-T_ (—==1/A)-T, (—= T .A)
k*ji auk auj 15 % Jk . is '8 ik 39 sj 2
This can be rewritten as
2
oAy 8 3 s A& s g s %A 5 g
VilV,A,) = . (r7,A)) =T, —=+T_ T A -T, —=+T, T A
k . AN . . . . . s
Ji BukBuJ Buk ij7e Jjk S Jr 1is8 ik Buj ik 8]

An interesting question now arises as to whether the second
derivative depends on the order of differentiation. To investigate

this question let us interchange the order of differentiation in the

above formula. We obtain
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82Ai 9 2 5 aAi s R S 3As s L
V (VA ) = — - (T A)) = T, —=+ T T, A =T, —=+T, T A.
J ki BuJBuk a9 ik % kJ 5 kj is % ij Buk ij sk %
The difference of the two second derivatives then yields:
i % 9 L s aAs 8 BAS
VA(V.A) -V (VA )=—HT, A ) - —=T, A)+T, —=-T, =+
. : . P
k' g g ki yu ik'% Buk ij7% ij auk ik s
s .2 s 4L
*Tikley 2o~ Tiglax 0
Here the first two terms on the right hand side give
L 2 '
or, oA ol , dA
2ot - Serta) = el Aot 2
sl 7 aut Y su? o du J g

Thus the terms containing the partial derivatives of the arbitrary

.—)-
vector A get cancelled and we end up with the final expression:

[ %
3Tik arij s 2 s 2
- I re—— - E — =
vk(vin) vj(vai) - Ay 3k Ay Fikrsj Ay Fistk Ay
ar¥ T ,
= ( ik ij. s FQ - 78 F% )A
1) SuE ik’ s ij sk’ "

Hence, the difference of the two second derivatives of a covariant
vector can be expressed as a product of a quantity with four indeces with
the covariant vector.

Let us now have a loock at the quantity in the brackets. Since we
know that the second covariant derivative of a covariant tensor is a
three~times covariant tensor then obviously ewven the difference of two
such derivatives is a three times covariant tensor. Using the theorem
on tensor character (3.3.8) we conclude that the expression in the brackets

is a three~times covariant and once contravariant tensor. We have
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%
vk(vin) - vj(vai) = Rijk Ay J

where the tensor R?jk is known as the Riemann-~Christoffel tensor.

It can be seen that the Riemann-Christoffel tensor is antisymmetric

in j and k. Its covariant form

_ m
Roije = &gm B ijk]

can be shown to be antisymmetric also in the first two indeces

Reige =~ Riggx
and symmetric with respect to the two pairs of indeces

Roige = Riues

The Riemann-Christoffel tensor has got one more interesting

property. We may note that it becomes identically equal to zero in
Cartesian coordinates (Eucleidean space) because all the Christoffel
symbols become zero. On the other hand, since it is a tensor, if it
is zero in one coordinate system it must be zero in any other coordinate
system as well, as we can easily see from its transformation law.
Hence one may conclude that if there exists a possibility of trans-
forming one system of coordinates in the space to the Cartesian system,
the Riemann-Christoffel tensor equals to zero. We know already
(3.3.11) that the possibility to transform any coordinate system to the
Cartesian system is the necessary and sufficient condition for the space
to be inherently flat. Therefore we can say that the necessary and
sufficient condition for a space to be inherently flat is

Rpsge = O

On the other hand, if R for any system of coordinates, is

LiJk?
different from zero, the space is inherently curved. Hence the Riemann-—

Christoffel tensor describes some inherent property of the space, namely

its curvature and is therefore sometimes called the curvature tensor. Note
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that here again the second derivative 1s connected with curvature one way
or the other.

In 2D~space, the curvature tensor is given analogously by

§ §
s Moy Top o .8 o .8 M
R = g + Fu TOB - PGB TG .
oBy ou auY Y Y

It may also be mentioned that the following formulae hold for

various tensors

i L
R.. A ,
AQ,'kJ

I

i i
Vk(VjA ) - vj(va )

AY,

Ve (Vshi) = Vi (VA) = Ry s

Vk(Vj ¢) ~ VJ.(Vk o) 0 for ¢ being a scalar,

2 2 2 m m 2
- = +
vk(vin) vj(vai) R. in R,ijk Am

Problems: Derive the Riemann~Christoffel tensor for a sphere and an

ellipsoid of rotation.

3.4.7) Ricci-Einstein and Lamé Tensors

The Riemann-~-Christoffel tensor can be shown to have only ng(ng—l)/lE
independent components out of nu. This is because.of the two antisymmetries
and the symmetry mentioned earlier and one more condition. In 3D-gpace this
means that we get only 9(9-1)/12 = 6 independent components, which leads to
the idea that all the information contained in the Riemann-~Christoffel tensor
can be expressed completely by a symmetric tensor of second rank which has

also only 6 independent components.
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Ricci has come up with one such possible tensor created by con-
tracting the Riemann-Christoffel tensor in the first and last indeces,

i.e.

Ri3 13k T %R ik T & Bmigk

Since this contracted curvature tensor is also used heavily in the
Einstein's general theory of relativity it became known as the Ricci-

Binstein (curvature) tensor. It can be obviously written as

Kk K

arik arij s _k s _k
i3 -3 " Tx T likTes T TigTex
I 0 ey J 3

Recalling the expressions for P? from 3.4.5 we can see immediately

k

that Rij is symmetric. A more direct proof of its symmetry is given by

k. gka =R

-8 kjim i

13 Roijr =

realizing that Rmi Obviously, the Ricci~Einstein tensor is

sk = Bryin’
zero if and only if Riemann-Christoffel tensor is zero, i.e. in a flat
space.

A different tensor of second rank can be obtained from the Riemann-

Christoffel tensor from the following formula

i _ 1 ikg _jmn o
S I © e szmn ..]

This tensor is known as the Lamé (curvature) tensor. It can be seen that

the Lamé tensor is again symmetric due to the symmetry of the Riemann-

Christoffel tensor in the two pairs of indeces:

oid %Aelkz Jmn Jmn elkﬁ R = gdi,

.
R T mnk4

kimn

Comparing the two latter tensors, one gets



since

pa _
€omi Sqik © R gk

.

After some development, which we are not going to show here, this

equation becomes

*
=8,. - .
Rij 13 i €1 }

where

mn *=
gjnS and S gmnS

_ mn
Si3 = 8im

Problems: Derive the Ricci-Einstein temsor for a sphere and an

ellipsoid of rotation.

3.4.8) Gaussian Curvature of a Surface, Classification of Spaces

In 2D-space the Riemann-Christoffel +tgnsor has got only one

L

independent component out of 2 = 16:
h(h-1)/12 = 1.
Taking the equation (¥) in 3.L4.6 we can see that

§ 2 -
R?GBY =0 for B =y

(similar equation of course holds even for the 3D case). Hence even

RS@BY =0 for B = vy.

Moreover, due to the symmetry in the two pairs of indeces, we have

RﬁuBY =0 for § = a.

This leaves us with only L components potentially different from zero, i.e.

those for which B # vy and § # a. These are R R R1221’ R2112' But

1212 "2121°

even these are related, due to the antisymmetry of the tensor and we have

R R = Riooy TFRop90

1212 ~ fo101 T
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In terms of the Ricci-Einstein tensor

= Y8
RaB g

RY@BG
this means that its four components are given simply by the following

relations

22 22

Bip =8 Bypip = -8 Biopp
Bip = g Roio1 = g Rio10
Rpy = g Rio1o

Bop = g Ripp1 = - g Rio100

Realizing that the components of the associated metric tensor (see 3.3.12)

can be written as

11 12 22
g =88, & =-g,/8, & =8g/8
(where g = det (gug)) we get for the matrix of RaB:
o2 12
~g g g../8, 8 ,/8
R 1=r - R 11 12
aB 1212 — 1212 :
g ~g glgég, g22/g

Hence

R

H

- aBy 2
det (Rdg) = RJ,y, det (g") = R1212/g R J

where the quantity R /g is called the Gaussian curvature of the surface

1212
(2D-space). It is usually denoted by K so that we have

R= 1R 155,

R S e |

We can obviously write also:

R = - g = - Kg

aB g of of




81

or

The Gaussian curvature can be also expressed directly in terms of

the metric tensor. After some development we would obtain

9g g
k- Lop2 17022y, 5 (1 g

1
2/g  su Vg au) du /g su

The Gaussian curvature plays the fundamental role in the classification
of spaces. As we have seen already, spaces where K = 0 are called
Eucleidian (in wider sense) or flat; if K # 0 the space is called
Riemannian (in wider sense) or curved. If K = const. > 0 the space is

knows as elliptical or Riemannian in the narrow sense or a space with

constant positive curvature. If K < 0, the space is called the Lobachevski
space, if K is a negative constant the space is hyperbolic. Elliptical and

parabolic spaces are called non-Eucleidian.

Problems: Derive the expression for Gaussian curvature of a sphere and

ellipsoid.



82

4) SOME APPLICATIONS OF
TENSORS IN DIFFERENTIAIL GEOMETRY OF

SURFACES

4.1) TFirst and Second Fundamental Forms of a Surface (Relation of

the first fundamental form to the metric tensor.)

The equation for the line element on a surface
2 _ a B
(ds)” = Bop du  du

is also known as the first fundamental (Gaussian) form of the surface

In the non-tensor notation it is usually denoted as

d32 = B du2 + 2F dudv + G dv2 .

Hence, ul = u, u2 = v E F G. We have met the

2 gll = 2 glg = 2. g22 =

quantities B, F, G, called also the fundamental guantities of 1-st

order of the surface, in 1.3.3. We. have also seen that they may be

defined as

E (9__}:)2];1_.?_—13 _3__1'_ G=(£2
au’ ? u v v

if the surface is given as

=7 (u,v) .

The connection between the two definitions ( temsorial and classical)

of the components of the metric tensor is obvious when we realize that
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r (u,v) = (x (u,v), yu,v), (u,v) = (xl(ul,uz),xz(ul;uz), x3(ul,u2)).

so that we get for instance

or _ 9r _ ( X~ 9X 8x3
ou Bul aul Sul aul :
. . 8+ . . 8+
We shall use the notation xl.for'—z-.and Xl for —£.
1 ou 2 EAY

At the same time we may notice that the quantity
D = Y(EG - F)
introduced in 1.3.3, is nothing else but
/det(gas) = -vg.
L. EUET T e '
Realizing that 3r/du, dr/dv are tangent vectors to the u and v-

curves on the surface, we have another method for deriving the metric tensor

of a surface. We can write

> >

r [ar =—ar

du au’ av
[g] = N
ar
3V

a dyadic product in matrix form, or in tensor notation

= xi X
gas o “1i,B

where the X coordinate system is assumed rectangular Cartesian. Note that the

surface is a Eucleidian space if and only if the two tangent vectors are
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unit and mutually orthogonal.
> > i
Let us now consider scalar product r . n = x n, . We may ask
> >
ourselves a question: What would be its total differential d(r.n)?

The answer to this question is given by the following development:
2

> > P > > e
' - Jrdm .2 3T dn 3r dn ot 9m dv
d(¥ . B) = oe og QU7+ op gy du dv oo o du dv 4+ oo
2 2
= (L du” + 2Mdudv + N dv")

In tensor notation we write

on on,,

i _ i i 1 1 i i 1 2
d(x ni) = —(xl - du” du -X] % du” du
ou ou
, on, , om,
X: —~i-dul du2 -x -l~du2 duz)
2 1 2 2
ou ou
= b du® au®.
aB

This formula is known as the second fundamental (Monge's) form of the surface.

The tensor bu is called the second fundemantal tensor of the surface and the

B

quantities L, M, N are known as the fundamental quantities of 2-nd order of a

surface.
Note that
b = L, b =N
11 22
b12 = b21 = 2M.

Hence, if ba is symmetrical,

B

b12 = b21 = M.
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We shall show later, that this is the case, if and only if
the surface is smooth, i.e., if the curvature changes continuously.

The reason for being asked the question we started with will be also seen

later.
As we know already (see 1.3.3) the unit normal vector is
given by
- (or 3T
no= Jdu x BV) /D

or, in temnsor notation

k /Vs.

3
Py T %K1 2

We may notice that the tensor ba is given by

aB

An alternative set of formulae for the components of the 2nd
fundamental tensor can be derived as follows. Let us consider the scalar

products of the taneent vectors with the normal vector , i.e.

xn, =x.n, =0, (x; l_ni).

then take the deriviatives of these with respect to ul, uz. We get

5 1 px i
T (xqng) = =3y +x) =0
ou du du
. i an,
E—E-(x;n,) = EE-—-n + xt ——%-= 0
du * du” + ou
i
9x an
9 i 1 i i
(xn) =——mn, +x. —==20
8u2 i 8u2 * L 8u2
i ax; i ani
——(_xzn)=-——-§nl+x2————-2'-=0
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and immediately:

BXl BX-"'L ,axl Bxl Bxl
L = t n 2M = 2 n, + L n, = ( 2 + < ) n, =
- —— . 3 — 3 L o - D T -
Bul i Bnl i Bu2 1 Bul Bu2 i
. . i
- S S Voo s 95 ,
- le 9 - le @
3u23ul Bul 3u2 + Bu2 +

Considering the surface r smooth (continuous curvature) one gets

82X1 g 32 i
8u2 Bul Bul Bu2
and .
i %,
M='3—}*C—2~ n, =“*":2L‘ l’l:L .
du * ou
In this and only in this case buB is symmetrical. This is what

we shall assume from now on. Rewriting these formulae in the classical

notation, one obtains:

O > > .
93"r 9r Or
L=|—% = =|/D,
3 du  ov J
u
D> —>—>_ 2> >
BV B T /D:?r @.1:9.71;»/]3
dudv  du v J 9vou du 3V
3% om a}’/
N= =% = =l/D.
oV ou oV

The second fundamental tensor determines the character of
the surface at a point. We define three different kinds of points;

according to the value of the determinant of det
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//// >0 elliptical point
&B) {;; 0 parabolic point
< 0  hyperbolic point .

It can also be shown that b = gK, where K is the gaussian curvature.

b = det (b

4.2) Curvature of a Surface Curve at a Point

Let us take first a special curve on the surface, a normal
section. It is givem as a section of a surface by a plane K containdng

the normal to the surface at the point.

The radius of curvature at P of such a

normal section is given by:

au” au® (%)

g
Rl —F B

o
b@B du” du
where the direction of the normal

section is defined by choosing appro-

priate dul/du2, and g

aB,bquareseyaluated

for P.

To prove this theorem we first write

the same as the above. From

the diagram, one can see that if
- - )
ar = 0, the curvature of the

normal section is equal to zero
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and R (W)»» ., So the formula above works for dg'= 0. To show that it
works under any circumstances, we write the second Frenet's formula

(see 1.3.2):

for the normal section. Since we deal with a plane curve, T - « and

> > '
substituting dr/ds for t we get

-3
dn _ _ dr
ds ds
or R dﬁ = e d?.

, ' >
Multiplying both sides by dr and realizing that

)2 2

(a7)° = ds

we get .
—d82

> >
dr dn

R =

which was to be proved.

The curvature 1/R(®) is usually called the normal curvature.

Note that the radii of curvature of u and v-curves, if they are normal

sections, are given by

g
- 222
» R(v) =TT=0

) = B _ .
oy

R(u) =
bll

S
z]a

Let us just state without proof, that should the second
plane be inclined with respect to the normal by an angle 6v

the radius of curvature R of the curve (section)would be given by
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R C%) =R (@) cos O ,

This theorem is known as the Meusnier's

- theoren.

RGe)
Cin ‘u\Q *‘th

L £ :(1\4 t.atcr)

4.3 Euler's Equation

Let us now adopt the point P for the origin af a new coor-
dinate system £, n, ¢, such that the Z-axis coincides with n and & , n

are oriented arbitrarily. We can write the equation of the surface F in this
A o ‘
‘V. coordinate  system, valid at.least for

a small neighbourhood of P:

N
=1}
)

¥ —m

o= f( E:n)

Then we can express the fundamental quantities E, F, G, L, i, if in equation(#)

as functions of &, n, ¢, and we 9get, (after a lengthy and tedious

computations)

2 2 2
. 2 .
A Ewéé | cos%y + 2 2L |, sin¢é cos¢ + gfg“lP 51n2¢ (%)
P F 'a[nz T

‘R(¢) & 7 3 gan



whére ¢ is thé anglé bétwéén the normal section and the g-axis,and
R(¢) is thé radius of curvature of thé’normal séction as given by (*).
The i~sign expréssés thé fact that within théHprocéss of *transformation
from ( <, Xg, XB) to ( E; n, &;) we lose (dué £6 some square roots) track
of the original sign;

Wé noticé that for fi%éd P, thé partial dérivativés aré constant

so that we can write also.

e = A COS2¢ + 2C sin.¢ cogs’¢d + B sin2¢‘.

R(¢)
Expressing the anglé ¢ via thé coordinatés £, n and the distance p
M (séé the diagram), we obtain
cos ¢ = &/p , sin ¢ = n/p

Hence the above equation becomes

e P e e e A

2 o
¢ f r—t=p —553 + 20 =1+ B I
i R(¢) 0 o P

or

2 5 >
+ = 2% + 20En 4+ Bn
R(4)

Selecting here p = VR(¢), the radius-vector p evidently

degcribes a curve of second order centered on P. This curve is known

as Dupin's indicatrix. & = [A C1 => &§ >0 )
| C B_f (C=0'ellipse A = B circle )
§ < 0 hyperbola
§ = 0 a pair of parallel lines

hence AECSB“ are nothing else but LGMEN,in the £,n local coordinate system

mthe surface (up to a scale factor). S
The radius of curvature is extreme in two perpendicular directioms.

The normal sections for which the curvature is extreme are known as the

principal sections and the radii of curvature are also called principal

and denoted by Rl, R2.
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We can now rotate the £ and n-axis so that & will coincide
with the direction of the first principal section (eigenvector problem).

Then the original equation (**) will become

+ lN =A cos2 $ + B sin2 7.

~ R(

~

The magnitudes of A and B can be evaluated from this equation considering

first ¢ = 0 or w :

+1—{]:' =.Z;
e
and thep ¢='1.2L,312T-:

N

Substituting this back we obtain

1 + cosgg + sin2$'

R(¢) R, R,

the well known £uler'sequation.

+
The signs - tell wus that the signs of Rl and R2 determine the

character of the Dupin's indicatrix in its natural system of coordinates.

Hence we get the four different cases as before as shown on the diagram:

A+ M

2%

y™
-2\
\

VR TR,
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