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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



PREFACE 

These notes have been compiled in an attempt to integrate a descrip-

tion of the method of least squares as used in surveying with 

(a) statistical concepts 

(b) linear algebra using matrix notation, and 

(c) the use of digital computers. 

They are a culmination of concepts first described at a symposium he~d 

in 1964 at the University of New Brunswick on "The Impact of Electronic 

Computers on Geodetic Adjustments" (see The Canadian Surveyor, Vol. IX, 

No. l, March 1965). We also owe a considerable debt to Professor 

Urho Uotila of The Ohio State University, Department of Geodetic Science 

whose lecture notes ("An Introduction to Adjustment Computations", 1967) 

provided a starting point for these notes. We have attempted to retain 

Uotila's notation with minimum changes. 

We acknowledge the invaluable help of Mr. Mohammed Nassar who 

meticulously proofread the manuscript before the first printing, and 

Dr. Georges Blaha who suggested a number of corrections which have 

been incorporated in the second printing. 
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THE METHOD OF LEAST SQUARES 

1. INTRODUCTION 

The method of least squares is the standard method used to obtain 

unique values for physical parameters from redundant measurements of 

those parameters, or parameters related to them by a known mathematic~! 

model. 

The first use of the method of least squares is generally 

attributed to Karl Friedrich Gauss in 1795 (at the age of 18), 

although it was concurrently and independently used by Adrien Marie 

Legendre. Gauss invented the method of least squares to enable him 

to estimate the orbital motion of planets from telescopic measurements. 

Developments from three other fields are presently finding 

increasing application in the method of least squares, and are 

profoundly influencing both the theory and practice of least squares 

e~timation. These three developments are the conc~pts of modern 

statistical estimation theory; matrix notation and the concepts of 

modern linear algebra; and the use of large fast digital computers. 

These notes are an attempt to describe the method of least squares 

making full use of these three developments. A review of the concepts 

of statistics is given in chapters 2, 3, 4, 5 and 8 of these notes. 

The required background in matrix notation and linear algebra is 
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given in the course notes on "Matrices" [Wells 1971]. A description 

of digital computer programming is beyond the scope of this presentation, 

however, an Appendix to these notes contains listings of results 

obtained by computer for a specific problem discussed throughout 

these notes. 

The remainder of this chapter briefly outlines the relationship 

of the method of least squares to statistics and linear algebra, and 

describes the current impact of digital computers on practical 

computing techniques. 

1.1 STATISTICS AND THE METHOD OF LEAST SQUARES 

Physical quantities can never be measured perfectly. There will 

always be a limiting measurement precision beyond which either the 

mathematical model describing the physical quantity, or the resolution 

of the measuring instrument, or both will fail. Beyond this limiting 

precision, redundant measurements will not ~gree with one another 

(that is they will not be consistent). 

For example if we measure the length of a table several times 

with a meter stick and eyeball, the limiting precision is likely to 

be about one millimeter. If we record our measurements only to the 

nearest centimeter they will be consistent. If we record our measure

ments to the nearest tenth of a millimeter, they will be inconsistent. 

The precision which we desire is often beyond the limiting 

precision of our measurements. In such a case we can not ~ the 

"true"value of our physical quantity. All we can do is make an 

estimate of the "true" value. We want this estimate to be unique 
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(that is determined by some standard method which will always yield 

the same estimate given the same measurements), and we want to have 

some idea of how "good" the estimate is. 

The scientific method for handling inconsistent data is called 

statistics. The methods for determining unique estimates (together 

with how good they are) is called statistical estimation·. The method 

of least squares is one such method, based on minimizing the sum of 

the squares of the inconsistencies. 

It should be emphasized that there are other methods which will 

yield unique estimates, for example minimizing the sum of the absolute 

values of the inconsistencies, or minimizing the maximum inconsistency 

[Hamming 1962]. However, these other methods have at least three 

disadvantages compared to the method of least squares. The method of 

least squares·can be applied to problems involving either linear or 

non-linear mathematical models; these other two methods are restricted 

to linear problems only, because of fundamental continuity and 

differentiability limitations. Least squares estimates are related to 

a statistical quantity (the arithmetic mean) which is usually more 

important than the statistical quantities (the median and mid-range 

respectively) to which these other methods are related. And finally 

the method of least squares is in common use in many fields, making it 

the standard method of obtaining unique estimates. 

Statistics is sometimes called the theory of 'functions of a 

random variable. An ordinary variable is defined only by the set of 

permissible values which it may assume. A random variable is defined 

both by this set of permissible values, and by an associated frequency 



4 

(or probability density) function which expresses how often each of 

these values appear in the situation under discussion. The most 

important of these functions iS the normal (or Gaussian) frequency 

function. Physical measurements can almost always be assumed to be 

random variables with a normal frequency function. 

A unique statistical estimate of the value of a physical quantity 

(called a point estimate) together with some indication of how close 

it is to the "true" value can be made whether the frequency function 

is known or not. However, there are other kinds of estimates (called 

interval estimates and hypothesis tests), which cannot be made unless 

a particular frequency function is specified. 

Chapter 2 summarizes statistical nomenclature and concepts. 

Chapters 3 and 4 present the properties of some particular distributions, 

related to the normal distribution. Chapters 6 and 7 discuss least 

squares point estimators, and Chapters 5 and 8 discuss interval 

estimation and hypothesis testing. 

1.2 LINEAR ALGEBRA AND THE METHOD OF LEAST SQUARES 

The system of linear equations 

A X= L 1-1 

where X is called the unknown vector, L is the constant vector, A the 

I 
coefficient matrix,[A 1 L] the augmented matrix, has a unique nontrivial 

solution only if 

L # 0 (the system is nonhomogeneous), l-2a 

rank of A = dimension of X , 1-2b 

rank of [A: L] = rank of A (system is 1-2c 
consistent). 
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In the case whetethere are no redundant equations, criterion (l-2b) will 

mean that A is square and nonsingular, and therefore has an inverse. 

The solution is then given by 

-lL X= A • l-3 

In the case where there are redundant equations, A will not be square, 

but ATA will be square and nonsingular, and the solution is given by 

l-4 

(See course notes on "Matrices" for a more detailed treatment of the 

above ideas). 

Let us consider the case where the elements of L are the results 

of physical measurements, which are to be related to the elements of 

X by equation (1-l). If there are no redundant measurements (the 

number of measurements equals the number of unknowns) there will be a 

unique nontrivial solution for X. However, if there are redundant 

measurements, they will be inconsistent because physical measurements 

are never perfect. In that case criterion (l-2c) will not be satisfied, 

the system of equations will be inconsistent, and no unique 

solution will exist. All we are able to do is make a unique estimate 

of the solution. In order that a unique estimate exists, we must find 

some criterion to use in place of criterion (l-2c). There are a 

number of possible criteria, but the one commonly used is the least 

squares criterion; that the sum of the squares of the inconsistencies 

be a minimum. Before stating this criterion, let us find an expression 

for the inconsistencies. 

Because equation (1-l) is inconsistent, let us write an equation 

which is consistent by adding a vector which will "cancel" the 

inconsistencies. 



6 

AX-L=V ~5 

where V is usually called the residual vector. The elements o£ V are 

not known and must be solved for, since we have no way or knoving what 

the inconsistent parts of each measurement will be. We can now replace 

criterion (l-2c), the consistency criterion, with the least squares 

criterion, which states that th.e "best" estimate X ror X is the estimate 

which will minimize the sum or the squares of the residuals, that is. 

VT V = (A X - L}T (A X - L) = minimum. l-6 

The estimate X so determined is called the least squares estimate, and 

we will see (in Chapter 6 of these notes) that it is equal to the 

expression in equation 1-4, that is 

1-7 

and that the "best" estimate or the observation errors or residuals is 

given by 

1-8 

These estimates are the simple least sauares estimates (also called the 

equally weighted least squares estimates). 

Often the physical measurements which make up the elements of L 

do not all have the same precision (some could have been made using· 

.different instruments or under different conditions). This ract should 

be reflected in our least squares estimatioh process, so we assign to 

each measurement a known "weight" and call P the matrix whose elements 

are these weights, the weight matrix •. we modifY the least squares 

criterion to state that the best estimate is that which minimizes the 

sum of the squares of the weighted residuals, that is 

... T ,. 
V P V = minimum. l-9 
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And as we will see in Chapter ~ the estimate is given by 

X = (ATPA)-l ATPL 

and is called the weighted least sguares estimate. 

1-10 

In Chapter 6~ we will see that if the weight matrix P is chosen 

to be the inverse of the estimated covariance matrix of the observations, 

then the least squares estimate is the minimum variance estimate, and 

that if the observation errors have a normal (Gaussian) distribution, 

then the least squares minimum variance estimate is the maximum 

likelihood estimate. 

In this short introduction to least squares estimates we have 

considered only the linear mathematical model of equation 1-5. In 

Chapter 1 we will consider the more general case in which 

i) the observations are related to nonlinear functions of 

the unknown parameters, that is 

F(X) - L = V 1-11 

and ii) the observations are nonlinearly related to functions of 

the unknown parameters, that is 

F(X, L + V) = 0 1-12 

In Chapter 9 we will consider further complications of the 

mathematical models. 

1.3 DIGITAL COMPUTERS AND THE METHOD OF LEAST SQUARES 

So far we have described the method of least squares from a 

purely theoretical point of view, discussing expressions for least 

squares estimates. However, from a practical point of view, the 
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inversion of large matrices (and even the multiplication of matrices) 

requires a considerable number of computation steps. 

Until the advent of large fast digital computers the solution of 

large systems of equations was a formidable and incredibly tedious 

task, attempted only when absolutely necessary. One application for 

which it was absolutely necessary was to obtain least squares estimates 

for survey net coordinates. Consequently the last 150 years have seen 

considerable ingenuity and effort directed by geodesists towards 

finding shortcuts, simplifications, and procedures to reduce the 

number of computation steps required. 

Now that digital computers are in widespread use, this work does 

not hold the importance it once did. However, even the largest fastest 

digital computer is incapable of simultaneously solving systems which 

may incorporate, for example, several thousand equations. Therefore, 

ingenuity and effort are currently directed towards developing algorithms 

for chopping a large system into smaller pieces and solving it piece 

by piece, but in a manner such that the final solution is identical to 

that which would have been obtained by solving simultaneously. We will 

discuss some of these algorithms in Chapter 10. 

1.4 GAUSS AND THE METHOD OF LEAST SQUARES 

To dispel the notion that the concepts discussed in this Chapter 

are all new, we will analyze the following quotation from Gauss' book 

"Theoria Motus Corporum Coelestium" published in 1809 (see Gauss [1963] 

for an English translation). 
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"If the astronomical observations and other quantities 
on which the computation of orbits is based were absolutely 
correct, the elements also, whether deduced from three or 
four observations, would be strictly accurate (so far 
indeed as the motion is supposed to take place exactly 
according to the laws of Kepler) and, therefore, if other 
observations were used, they might be confirmed but not 
corrected. But since all our measurements and observations 
are nothing more than approximations to the truth, the same 
must be true of all calculations resting upon them, and 
the highest aim of all computations made concerning concrete 
phenomena must be to approximate, as nearly as practicable, 
to the truth. But this can be accomplished in no other way 
than by a suitable combination of more observations than 
the number absolutely requisite for the determination of 
the unknown quantities. This problem can only be properly 
undertaken when an approximate knowledge of the orbit has 
been already attained, which is afterwards to be corrected 
so as to satisfy all the observations in the most accurate 
manner possible." 

Note that this single paragraph, written over 150 years ago, 

embodies the concepts that 

a) mathematical models may be incomplete, 

b) physical. measurements are inconsistent, 

c) all that can be expected from computations based on 

inconsistent measurements are estimates of the "truth", 

d) redundant measurements will reduce the effect of 

measurement inconsistencies, 

e) an initial approximation to the final estimate should be 

used, and finally, 

f) this initial approximation should be corrected in such a 

way as to minimize the inconsistencies between measurements (by which 

Gauss meant his method of least squares). 
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2. STATISTICAL DEFINITIONS AND CONCEPTS 

Statistical terms are in everyday use, and as such are often used 

imprecisely or erroneously. Most of this Chapter is based on a 

comparative reading of Kendall [1957], Spiegel [1961], Hamilton [1964], 

Kendall [1969] and Carnahan et al [1969]. 

2.1 STATISTICAL TERMS 

Statistics is the scientific method of collecting, arranging, 

summarizing, presenting, analyzing, drawing valid conclusions from, 

and making reasonable decisions on the basis of ~· Statistical 

data include numerical facts and measurements or observations of 

natural phenomena or experiments. A statistic is a quantitative 

item of information deduced from the application of statistical methods. 

A variable is a quantity which varies, and may assume any one of 

the values of a specified set. A continuous variable is a variable 

which can assume any value within some continuous range. A discrete 

variable (also called a discontinuous variable) is a variable which 

can assume only certain discrete values. A constant is a discrete 

variable which can assume only one value. In general, the result of a 
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measurement is a continuous variable, while the result of counting is 

a discrete variable. 

A variate (also called a random variable) is a quantity which may 

assume any one of the values of a specified set, but only with a 

specified relative frequency or probability. A variate is defined not 

merely by a set of permissible values (as is an ordinary variable), 

but also by an associated frequency (probability) function expressing 

how often those values appear. 

A population is the collection of all objects having in common a 

particular measurable variate. A population can be finite or infinite. 

For example, the population consisting of all possible outcomes of a 

single toss of a coin is finite (consisting of two members, heads and 

tails), while the population consisting of all possible outcomes in 

successive tosses of a coin is infinite, and the population consisting 

of all real numbers between 0 and 1 is also infinite. An individual 

is a single member of a population. 

A sample is a group of individuals drawn from a population, and 

a random sample is a sample which is selected such that each individual 

in the population is equally likely to be selected. Usually sample 

implies random sample. Often the terms sample space, sample point, 

and event respectively, are used instead of population, individual and 

random sample (for example in Hamilton [1964)}. 

The individuals in a sample may be grouped according to convenient 

divisions of the variate-range. A group so determined is called a 

class. The variate-values determining the upper and lower limits of a 

class are called the class boundaries~ The interval between class 
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boundaries is called the class interval. The number of individuals 

falling into a specified class is called the class frequency. The 

relative frequency (also called the EroEortional frequency) is the 

class frequency expressed as a proportion of the total number of 

individuals in the sample. 

No single definition of the concept of Erbbability is accepted 

by all statisticians. The classical definition is that the probability 

Pr (A) that an individual selected with equal likelihood from a 

population will fall into a particular class A is equal to the 

fraction of all individuals in the population which would, if selected, 

fall into A. This is a circular definition since the words "equal 

likelihood" really mean "equal probability", therefore defining 

probability in terms of itself. This problem can be resolved in two 

different ways, neither entirely satisfactory. The first is to 

define the emEiXical Erobability Pr (A) that an individual selected 

from a population will fall into a particular class A as the limit of 

the relative frequency of A for a series of n selections, as n tends 

to infinity. The second is to accept "probability" as an undefinable 

concept, and proceed to state the rules governing probabilities as 

axioms. 

2.2 FREQUENCY FUNCTIONS 

This discussion will be restricted to continuous variates only. 

Most of the results can be applied to discrete variates simply by 

replacing integrals by summations. 
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The frequency function ~ (x) (also called the probability density 

function or p.d.f.) of the variate xis the relative frequency of x 

(assuming a class interval dx) as a function of the value of x, that is 

~ (x ) dx = Pr(x < x < x + dx) , 2-1 
0 0- - 0 

where the term on the right is read "the probability that the value of 

the variate x lies between x and x + dx inclusive". 
0 0 

The cumulative frequency function ~ (x) (also called the 

distribution function, the cumulative distribution function or c.d.f., 

and the cumulative probability function), of the variate xis the 

integral of the frequency function ~ (x) 

Xo 
~ (x ) = f 

0 -oo 
~ (x) dx = Pr (x < x ) , 

- 0 
2-2 

where the term on the right is read "the probability that the value of 

the variate xis less than or equal to x ". 
0 

The dependency of the frequency function ~ (x) on x is called the 

frequency distribution. A typical frequency distribution is shown in 

Figure 2-1. · 

Probability is represented by an ~rea under this curve. For 

example, the probability that x lies between x0 and x 1is shown as the 

shaded area 

2-3 

Note that the probability that x lies somewhere between the extreme 

limits is certainty (or probability of unity). 

00 

Pr (-00 ~X < + oo) = f ~(x) dx = l 2-4 
_co 
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Figure 2-l. 

")( 
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The probability that x is less than or equal to x is the value of ,o 

~ (x ) and is represented by the total area under the curve from - 00 

0 

to x shown as the shaded area in Figure 2-2. Note ~(-oo)=O; ~(+oo)=l. 
0 

Frequency distributions have two important characteristics called 

central tendency and dispersion, and two less important characteristics 

called skewness (or departure from symmetry) and kurtosis (or peakedness). 

Measures of central tendency include the arithmetic mean (or simply 

the mean), the median (the value dividing the distribution in two 

equal halves), the mode (the most frequently occurring value), the 

geometric mean and the harmonic mean, of which the mean is most often 

used. Measures of dispersion include the standard deviation, the mean 

deviation and the range, of which the standard deviation is most often 

used. 

The expected value of a 'function f(x) is an arithmetic average of 

f(x) weighted according to the frequency distribution of the variate x 

and is defined 

00 

E [f(x)] = f f(x) ~ (x) dx 2-5 
-oo 

Expected values have the following properties 

E [k f(x)]= k E[f(x)] 2-6a 

E [E[f(x)]] = E [f(x)] 2-6c 

E [H(x)] = ~E [f(x)] 2-6d 

The ~ ~ of a distribution is the expected value of the variate 

x itself 
00 

~ = E (x] = f X ~ (x) d X 2-7 
-00 
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Figure 2-2. 

~(x) 
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The nth moment of a distribution about its origin is defined 

00 

E [xn] = f xn ~ (x) d x 2-8 
-00 

The nth moment of a distribution about its mean is defined 

00 

E [(x-~)n] = f (x-~)n ~(x) d x 2-9 

The second moment about the mean is called the variance. 

2-10 

and the standard deviation a is defined as the positive square root 

of the variance. 

The moment generating function or m.g.f. of a variate xis defined 

as 

00 

M(t) = E[etx] = f etx ~(x) d x 2-lOa 

Moments of a distribution can be deduced directly from the moment 

generating function. For example, the mean of a distribution is 

~ = E[x] 

and the variance is 

= dM (t) 
dt = M' 

teo 
(0) 2-lOb 

2-lOc 

A distribution can be completely defined by specifying any one 

of;the frequency function ~(x) (or p.d.f.); the cumulative distribution 

function ~(x); or the moment generating function M(t). 

2.3 MULTIVARIATE FREQUENCY FUNCTIONS 

Thus far we have considered only univariate distributions (dis-
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tributions of a single variate x). We will now extend the above 

results to multivariate distributions (distributions having several 

variates x1 , x2 , . 

population). Let 

x associated with each individual in the n 

X 
n 

be the vector of variates. Then the multivariate frequency function 

(also called the joint density function) is defined 

where 
xo 

1 dx1 

xo = xo dX = d~2 2 

xo dx n n 

and Pr(X0 < X < X0 + dX) is the probability that 

X0 < X < X0 + dxl 1 - 1- 1 

X 0 < X < X 0 + dx n- n- n n 

all hold simultaneously. The multivariate cumulative frequency function 

(also called the joint cumulative distribution function) is defined 

2-12 
-oo -oo 

::: p..,. ()( ~ Xo) 
If the variate vector X can be partitioned into two vectors 

and 
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such that 

then the two sets of variates x1 and x2 are called statistically 

independent. 

The expected value of a multivariate function f(X) is defined 

00 00 

E[f(X)] = f J f(X) ~(X) dx1 dx2 
_oo _oo 

dx 
n 

The mean vector of a multivariate distribution is defined 

j.ll E[x1 ] xl 

u = j.l2 = E[~2) = E ~2 = E[X] . 
X . 

ll, E[x ] X n n 

2-13 

2-14 

The second moments of the elements of X about their means forms a 

symmetric matrix called the covariance matrix (also called the variance-

covariance matrix). 

~ = E[ (X-U ) (X-U )T]= 
X X X 0 21 °~ 2-15 

where cr? is called the variance of x 
~ i 

and a .. is called the covariance between x. and xj 
~J ~ 

= E[(x.-J.l.) (x.-J.l.)]= E[x. x.]- E[x;] E[xj] , 2-17 
~ ~ J J ~ J ~ 

and a .. =a .. since E is symmetric. 
~J Jl X 

The correlation coefficient between xi and xj is 

. a .. 
lJ 2-17a 
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and has values 

-1 < p •• < +l 
- 1J-

2-l7b 

If x. and x. are statistically independent 
1 J 

<P (x. ,x.) = <P 1 (x.) <P 2 (x.) 
1 J 1 J 

and 

E[x. x.) = E [x.] E [x.] 
1 J 1 J 

so that 

In fact the covariance crij and the correlation coefficient pij are 

measures of the statistical dependence or correlation between x. and 
1 

X. • 
J 

2.~. THE COVARIANCE LAW 

Assume we have a second variate vector Y linearly related. to X 

by 

Y = C X 2-18 

Then 

Uy = E[Y] = E[CX] = C E[X] = C li:x 2-19 

and 

T . T 
Ly = E[(Y-Uy) (Y-Uy) ] = E[(C X- C Ux)(CX-CUl) ] 

= E[C(X-Ux) (X-Ux)T CT] = C E[(X-Ux)(X-UX)T]CT 

or 

2-20 

This is known as the covariance law (also called. the law of covariances 

and law of propagation of covariances). 
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If Y is nonlinearly related to X 

Y = F(X) 2-21 

then we choose some value X0 and replace F(X) by its 'l'aylor's series 

linear approximation about X0 , that is 

Then 

and 

Y - uy - c ( x ·- ~ ) 

where 

'Thus 

which is identical to the covariance law (equation 2-20), with 

<lF c =ax 

2. 5 S'rATISTICAL POINT ESTIMATION 

2-23 

A characteristic of a given distribution (for example its mean 

or variance) is a statistic of that distribution. A distinction is 

drawn between population statistics (also called population parameters, 

or simply parameters), which are usually denoted by Greek letters, 



22 

and sample statistics (also called simply statistics), which_are usually 

denoted by Latin letters. For example, the population standard 

deviation is denoted by cr,and the sample standard deviation by s. 

Statistical estimation is that branch of the statistical method 

which is concerned with the problem of inferring the nature of a 

population from a knowledge of samples drawn from the population. A 

sample s;t;a.tistic· e vrhos.e value is used to infer the value of a. population 

statistic e: :i:s called an estimator (or point estimator) of e:, and is 
A 

denoted e:. The value of e is called an estimate of the value of e:. 

Sample statistics which might be used as estimators include sample 

mean, sample variance, sample standard deviation, sample median, and 

sample range. The most often used estimators are the sample mean and 

the sample variance, which for a sample consisting of n observations 

of a single variate x are usually defined 

- 1:.~ X = X 2-24 
n :i i 

2 ...l_E (x.-x) 2 s = n-1 i ~ 
2-25 

If we were to draw another sample from the same population, it 

would be surprising if the sample mean and variance of this new sample 

were identical to the mean and variance of the original sample. We 

see that the value. of a sample statistic will in general vary from 

sample to sample, that is the sample statistic itself is a variate .and 

will have a distribution, called its sampling distribution. We now 

have three distributions under consideration: the distribution of 

individuals in the population; the distribution of individuals in a 

single sample; and the distribution of the value of a .sample statistic 

over all possible samples. 
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Consider the sampling distribution of the sample mean statistic, 

called the sampling distribution of means. This distribution 

itself ha$ a mean and varj_ance. ~rhe mean (or expected value) is 

- 1 1 1 
E[x] = E[- E x.] = - E E[x.) = - E ~ = ~ 

n i l n i l n i 
2-26 

that is the expected value of the sample mean is the population mean. 

The variance is 

- 1
2 E[(E x.)(E x.)]- ~2 

n i l j J 

= 12 (0 E[x2J.] + .4. E[x. x.])- ~ 2 
n l . l¥J l J 

But 

2 
E [x. ] = 

l 
E[x.] E[x.] 

l J 

and 

.~. E[x. x.] = n(n-1)~ 2 . 
l'!"J l J 

Therefore 

var(x) = 
1 a2 

2 (n(a 2+~ 2 ) + n(n-1)~2) - ~2 = 
n 

2-27 
n 

Consider now the sampling distribution of the sample variance 

statistic, called the sampling distribution of variances. The mean 

(or expected value) of this distribution is 

But 

1 [ ( 2 = -1 E LX. 
n- i J. 

a2 
= - + ~2 • 

n 
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Therefore 

2-28 

that is the expected value of the sample variance is the population 

variance. 

An 1.mbiased estimator is an estimator whose expected value (that 

u; the mean of the sampling distribution of the estimator) is equal to 

the population statistic it is estimating. We have seen that the 

sample mean as defined above is an unbiased estimator of the population 

mean and that the sample variance as defined above is an unbiased 

estimator of the population variance, that is 

where 

where 

E[~) = J.l 

E x. 
i l 

1 
n-1 

E (x.-x) 2 
i l 

2-29 

2-30 

A particular population statistic may have several possible 

estimators. There are a number of criteria for deciding which of these 

is the "best" estimator. The minimum variance estimator is the 

estimator whose variance (that is the variance of the sampling 

distribution of the estimator) is less than that of the other possible 

estimators. Another criterion is the maximum likelihood estimator, 

the definition of which we will leave until Chapter 6. 
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2.6 STATISTICAL INTERVAL ESTIMATION AND HYPOTHESIS TESTING 

So far we have discussed only point estimation, that is the 

inference of the value of a population statistic E from the value of 

a sample statistic e. Statistical estimation includes two other 

procedures, called interval estimation and hypothesis testing. 

~ 

In point estimation, we specify an estimate E~r the population 

statistic E. In interval estimation we specify a range of values 

bounded by an upper and lower limit. 

within which the population statistic is estimated to lie. If the 

probability 

2-31 

then the interval between e1 and e 2 is called the lOOa.% confidence 

interval for E. For example if a.= 0.95, the interval is the 95% 

confidence interval. This means that the statement that E lies 

between e1 and e2 will be true 95% of the time that such a claim is 

made. 

In hypothesis testing we make an a priori statement (hypothesis) 

about the population (for example that it is normally distributed 

with mean~ and variance cr 2), and then based on the value of the sample 

statistics, test whether to accept or reject the hypothesis. There 

are four possibilities 

a) hypothesis true and accepted, 

b) hypthesis true but rejected (called a Type I error), 

c) hypothesis false and rejected, 

d) hypothesis false but accepted (called a Type II error). 
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If the probability of a Type I error is 

P (hypothesis true but rejected) = a 2-32 r 

then lOOa% is called the significance level of the test. This 

probability can often be determined from the sampling distribution, 

and is the probability that a sample from the hypothesized population 

will have values for the sample statistics which indicate that the 

sample is from some other population. 

If the. probability of a Type II error is 

Pr (hypothesis false but accepted) = S 2-33 

then (1-S) is called the power of the test. This probability can be 

determined 6nly for a restricted class of hypotheses. Therefore, 

although a Type II error is more serious than a Type I error, usually 

less can be said about its probability of occurrence. 

To·· summarize statisticaL estimation, po.int estimates can be 

made without .assuming a particular population distribution, however, 

both interval estimation: and hypothesis testing require that a 

particular population distribution be assumed or specified. 
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3. S'rATISTI CAL DISTRIBUTION FUNCTIONS 

In th5.:3 Chapter we introduce several distribution functions each 

of which serve~> as a mathematical representation of the variation of 

a given random variable over some domain. When one random variable is 

involved, the distribution is called univariate, while in the case of 

several random variables the distribution is called multivariate. 

We will discuss some special distri.butions which are derived from 

basic mathematical functions; they are the normal,chi-square, student's 

(t), and F distributions. 

'rhh; Chapter is based on Hogg and Craig [1965] and Hamilton [1964]. 

3. 1 THE NORMAL DISTRIBU:riON 

3.1.1 The Distribution Function 

The basic mathematical function from which the normal distribution 

function is deduced, is 

00 

2 I = f exp (-y /2) ely 3-1 
-00 

The integral is evaluated by first squaring it, that is 

00 2 2 
f exp (- y ;z ) ely dz , 3-2 

_oo -oo 



28 

and then transforming from Cartesian to polar coordinates as follows: 

[ Y] = r [c~s6] 
z s~ne 

Thus 3-2 becomes 

I2 
27T 00 2 

= f f exp(-~ ) r dr d6 
0 0 

21T 
= f d6 = 21T 

0 

and 

Knowing the value of the integral I, 3-1 becomes 

00 2 
f . 1 1/2 exp(-=}-) dy = 1 . 

-oo ( 2ir) 

By making the following change of variable in the integration, 

y = x-a 
b 

b > 0 

we see that the integral now becomes 

00 

f 
_oo 

3-3 

3-4 

3-5 

3-6 

3-7 

3-8 

This integral has the properties of a cummulative distribution function 

(c.d.f.); its corresponding probability density function (p.d.f.) is 

~(x) 
1 = _.;:::__ 

b(21T)l/2 

2 
exp [- (x-a) 

2b2 
where -oo 

3-9 

This p.d.f. is said to be that of a continuous normal random variable. 

3.1.2 The Moment Generating Function 

The moment generating function (m.g.f.) of a normal distribution is 



and by letting y 

00 

M(t) = f 
-00 

00 

= f 
-co 

= x-a - bt 
b 

29 

tx 
~(x) dx e 

tx 1 exp [ e 
b(21T)l/2 

we have 

2 x = by + b t + a 

2 
(x-a) ] dx 3-10 

2b2 

M( t) 
00 2 2 

= f exp[ t (by + b2t + a)] 1 exp [ _(by+b t) ] bdy 
- 00 b(21T) 1/ 2 2b2 

b2t2 00 1 ~ = exp [at + ---2- ] f 112 exp( 2 ) dy, 
_oo (21T) 

3-11 

and the final result for M(t) is: 

M(t) 3-12 

From equation 2-lOb, the mean ~ of distribution is related to its 

moment generating function by 

~=M'(O). 

For the normal distribution 

M'(t) = M(t) (a,+ b2t) . 

By setting t=O, the result is 

-, ~-=-M-1 (-0-) =-a---,1 3-13 

From equation 2-lOCthe variance cr2 of a distribution is related to the 

m.g.f. by 

cr 2 = M"(o) - [M' (o) ] 2 . 

For the normal distribution 

thus 
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proof for the above is as follows. 

Given the cumulative distribution fUnction 

~(w) = Pr (X-H ~ w) = Pr (x ~ wa + p) a 

or in integral form 

1 wo'+p 1 ( )2 
· ~ ~ w) :: f exp (- x-p ] dx 

-~ a{2~) 1/2 2a 2 

With the change of variable y = (x-lJ).IIa 

!1i (w) 

and the corresponding p.d.f. is 

cp (w) = ~' (w) ' 

cp ( w) 3-17. 

Comparing the above equation to 3-15 it is evident that p = 0 and 

a2 = 1, thus the proof is completed. 

The graph of n(O, 1) has similar characteristics to n(lJ, a 2); 

that is substituting ll = 0 and a2 = 1 we get: 

1) symmetry about the vertical axis through x=O, 

2) maximum value of 1/[(2~) 1/2 ] at x=O, 

3) x axis as horizontal asymtote, 

4) points of inflection at x = ~a. 
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3.1.5 Computations Involving the Normal Distribution 

We have seen that the mean ~ and variance cr2 are two parameters 

of a univariate normal p.d.f. To facilitate computations, precomputed 

tables have been prepared by statisticians, the arguments of which are 

in part a function of the parameters of the distribution. The arguments 

of the normal distribution (Appendix B-1) are the probability Pr and 

the abscissa value c. The abscissa value is a particular value of the 

independent variable of the p.d.f. which corresponds to a given prob-

ability value. 

The direct problem is to enter the table with an abscissa value 

and exit the table with a probability value; while the inverse problem 

is to enter with:a probability and exit with an abscissa value c. 

Basic to the solution of problems associated with the normal 

distribution is the following relationship between the theoretical 

probability Pr, the abscissa value c, and the tabulated probability N. 

If a random variable xis n(~, cr2), then the probability that xis less 

than or equal to some value c is computed from (see Figure 3-2): 

Pr(x ~c) (x-~ c-~) = Pr--<--cr - cr 

(c-IJ)/cr 1 w2 
= I exp(T) dw 

-00 (21T)l/2 

= N (c-~) cr 



Figure 3-2 

~(w) 

0 c w 
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The value N for the above integral is tabulated for a random 

variable n(O, 1). Normalization, that is (x-~)/cr, allows probabilities 

associated with x[n(~, cr 2 )] to be expressed and computed in terms of 

probabilities of w[n(O, 1)]. 

Example 1 - Direct Problem, One Abscissa 

Given: x is n(2, 16) that is ~=2, cr 2=16 

Required: Pr (x ~ 4) 

Solution: 

Pr (x-);1 < c-~) = N (£=.!!.) = N ( 4-42 ) = N(0.5) 
cr-cr cr 

from Table B-1 N(0.5) = 0.6915". 

Example 2 - Direct Problem, Two Abscissa 

Given: x is n(2, 16) that is ~=2, cr 2=16 

Required: Pr (1~ x ~ 4) 

Solution: 
c -~ c -~ 

= Pr (-1- < ,?C-J.l .<· _2_) 
cr-cr- cr 

c -~ c -).l 
( X-);1 2 ) (·X-II < _1_ ) = Pr · < -- - Pr ~ cr- cr cr- cr 

c -~ c -~ 4 
= N (~ ) - N (~) = N( 42 ) N( 142) = N(0.5) - N(..,0.25) 

= N(0.5) [l-N(0.25)] = N(0.5) + N(0.25) - 1 

From Table B-1 N(0.5) + N(0.25) - 1 = 0.6915+ 0.5987- 1 = 0.2901. 

Example 3 - Inverse Problem, One Abscissa 

Given: x is n(2, 16) that is ~=2, cr 2=16 

Required: Find c such that Pr ( :x ~ c ) = 0. 95 

Solution: 

Pr ( X-);1 < C-ll) = 0. 95 
cr - cr 



From Table B-1 (d-]J) = 1.645 
a 
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c = 1.64)a + JJ = 8.56. 

Example 4 - Inverse Problem Two Abscissa 

Given: xis n(JJ, a 2 ) 

Required: Find c such that :Pr:.Cix-].11 < c- JJ) = Pr[-(c-]J) ~ x-]J;,_c-JJ] = 

Solution: 

From Table B-1 

Pr ( C-]J < .Y.-]J) < C-:;]l ) : 0 • 95 
a-a -a 

= 0.95 

Pr (~-JJ < c-]J) - Pr (~ < _c-]J) = 0.95 
a-a cr- cr 

N(C-}l) - [1 - N (~)) = 0.95 
(J (J 

N (C-]J) 1 + 0.95 0.975 = = (J 2 

(C-:-}l) = 1.96 
1!1 

c = 1.96 (J + }l 

(Note when }l = 0, c ~ 2cr for Pr = 0.95). 

3.1.6 Multivariate Normal Distribution 

The normal distribution pertaining to a single random variable 

has been given. When several parameters (random variables) are being 

estimated simultaneously, the normal distribution characterizing all 
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these parameters together is called a multivariate normal distribution. 

An example of this is in the case of a geodetic control network where 

the coordinates of all the stations are peing estimated. and are thus 

considered as random variables and are said to have a multivariate 

normal distribution. 

Form random. variables, the m.-dimensional multivariate normal 

p.d.f. is 

(X-U)T 2:-l (X-U) 
~ (X) = C exp [- x 

2 

where the vector of random variables is 

with corresponding means 

and covariance matrix 

the constant 

E = 
X 

rnxm 

X = 
mxl 

u = 
mxl 

X ·m 

\.11 

3-22 

3-23 

3-24 

3-25 

3-26 
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Note the similarities of the univariate normal p.d.f. (3-15) with the 

multivariate normal p.d.f. (3-22), namely 

a) (....1) 1/2 
2 

0" 
vs. 

b) 1 
(21T)l/2 vs. 

c) (x-~) 2 

2. cr2 vs. 
2 

For zero means the multivariate normal, p.d.f. is 

cj>(X) 
xTf~x · = C exp (- 2 ) . 3-27 

3.2 THE CHI-SQUARE DISTRIBUTION 

3.2.1 The Distribution Function 

The Chi-Square distribution is a special case of the gamma 

distribution, with the latter being derived from the following 

integral called the gamma function of a: 

CX> 

rr a-1 -y 1 (a) = f y e dy , 3-28 
0 

where the integral exists for a > 0 and has a positive value. When 

a = 1 

CX> 

r(l) = f e-y dy = 1 3-29 
0 

and if a > 1, then integration by parts shows that 

r(a) = (a-1) ~ ya-2 e-y dy = (a-1) ~(a-1). 3-30 
0 
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Further, if a is a positive integer and greater than one, 

r(a) = (a-1) (a-2) ... (3) (2) (l)r(l) = (a-1)! 

Making the change of variable y = x/a in the integral for r(a) for 

a > 0 yields, 

r(a) 
oo a-1 
I (~) ( X) 1 = exp -- - dx 
o a a a 

and 
00 

1 = I 1 a-1 ( x) dx x exp --B 3-31 

Note the integral equals unity. Since the above integral meets the 

requirements of a cumulative distribution function, the corresponding 

p.d.f. is 

1 !j> ( X ) = -"'-"---
r(a) sa 

a-1 x 
X exp (-B)!(O <X< oo) 3-32 

= 0 elsewhere 

and is said to have a gamma distribution with parameters a and a. 

As mentioned earlier, the Chi-square distribution is a special case 

of a gamma distribution in which 

\) 

a = 2 

v being a positive integer, and B = 2. Thus from 3-32, a random variable 

x of the continuous type is said to have a Chi-square p.d.f. if it has 

the form 

!j>(x) (v/2-1) -x/2 (O ) X e ! < X < oo 3-33 

= 0 elsewhere . 

Note the distribution is defined by the parameter v which is called the 

number of degrees of freedom. The number of degrees of freedom is a very 

practical quantity and has a relationship to the least squares estim-

ation problem discussed in Chapter 6. A continuous random variable having 

the above p.d.f. is written in abbreviated form as x2 (v). 
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3.2.2 The Moment Generating Function 

The moment generating function for the Chi-square distribution 

is derived from the basic definition as 

00 

M(t) = f etx $(x) dx 
0 

00 

1 
(~ -1) 

f 
tx 2 

( -~) dx = e 
r(~)2 v/2 

X exp 
0 2 

00 ()!· -l) 
cx(l-2t)) 1 2 dx. 3-34 = ~ r<Y-)2 i/2 

X exp 
2 

2 

The change of variable y = x(l-2t)/2 or x=2y/(l-2t), yields 

M(=t) 

Computing 

and 

= ; 2/(l-2t) 
v/2 

0 r(.Y.)2 
2 

~ 00 .{_L_\ f . 1 

= \1 - 2t/ o r(~) 
P- ~ e-y dy 

1 M(t) = -~-
v 

(l-2t )"2' 

M' (t) 

3-35 

the mean and variance of the Chi-squared distribution respectively 

become 

ll = M' ( 0) = v 3-36 
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3.2.3 The Graph of the Chi-Square Distribution 

The graph of a x2 distribution has the following characteristics 

(see Figure 3-3): 

a) a value of zero when x=O, 

b) a maximum value in the interval 0 < x < co, 

c) the positive x-axis as an asymtote, 

d) has one point of inflection on each side of the maximum. 

3.2.4 Computations Ihvolving the Chi-Square Distribution 

The possible arguments with whicch to enter the Chi-square table 

are the Probability Pr, the abscissa value x~ and chi-square distribution 

parameter - the degrees of freedom ~. The direct problem is to 

enter the table with x2 and v and exit with Pr, while the inverse p 

problem is to enter with Pr and v and exit with x2 • 
p 

The use of the tables (Appendix B-2) is based on the following 

relationship between the probability Pr, x~, and v. If a random 

variable X is x2 (v), then the 

pr (x < x2) = 
- p dx 

The above integral has been precomputed and the results tabulated in 

the body of the table for particular values of x2 which correspond 
p 

to different values of v and Pr; these values x~ are called percentiles 

of the chi square distribution, and Pr takes on certain probability 
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Figure 3-3. 

0 
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values between 0 and 1. 

Example 1 - Direct Problem, One Abscissa 

Given: x is x2 (10) that is V = 10 

ReQuired: Pr (x ~ 18.31) 

Solution: From Table B-2 

x2 (lo) = 18.31 
0.95 

Pr == 0.95 

Example 2 - Direct PrQblem, Two Abscissa 

Given: x as x2 (20) that is V =20 

ReQuired: Pr (3lt.17~x~9-59) 

Solution: From Table B-2 

x2 
o.975 

= 34.17 and x2 = 9.59 
0.025 

Pr (x 2 ~ x ~ x2 

0.97) 0.025 

= Pr (x ~ x2 ) 
0.975 

Pr (x ~ x2 
0.025 

= 0.975 - 0.025 = ~ 

Example 3 - Inverse Problem, One Abscissa 

Given: X is x2 (10) that is \) = 10 

ReQuired: x2 such that Pr (x < x2 ) = 0.90 p - p 

Solution: 
Pr ( x ~ x2 = 0.90 

0.90 

F'rom Table B-2 
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ExaJ!lple 4 - Inverse Problem, Two Abscissa 

2 Given: x is X (20) that is \) = 20 

Required :-x;.-,x! ( 2 2 such that Pr < x"x ) = 0.99 xP - - p 
I 2 1 2 

Solution: 
xp2 and x2 will be chosen such that the 

1 p2 

remaining probability of 0.01 is divided 

equally, thus 

P1 = 0.005 and P2 = 0.995. 

Pr (x6.oo5 < x < x6,995) = 0.99 

Pr (x ~ x~.~95 ). ~ Pr (x ~ X~.005 ) = 
= 0.995 - 0.005 = 0.99 

2 
From Table B-2 x0•005 = 7.43 

2 x0 •995 = 4o.oo 

3.3 The Student's t Distribution 

3.3.1 The Distribution Function 

The (student's) t distribution is derived on the basis of 

the normal and chi-square distributions, and is useful in the statis-

tical procedures to be described in Chapter 5 . 

Let us first consider two random variables w, which is n(O,l) 

and V", which is x2 ( v); w and 11' are stipulated to be statistically 

independent. The joint p.d.f. of w and vis the product of the two 

individual p.d.f. 's, namely 

( .Y. -1) 
1 .. 2 (v) 

I t:<. v· exp _ .....-2 r(~-)2-v· F 
2 

3-38 
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00 < w < 

:] r 0 < V' < 

= o elsewhere. 

Next consider the definition of third variable t as 

3-39 

The p.d.f. corresponding to the. two original variables w and V' 

can be transformed into a new p.d.f., e.g. in terms of the new 

variables t and u through the transformation equations 

t = w ' u = V', 
(v-/'i)l/2 

3-40 

or 

w = 
tul/2 
~1/2 , V' = u. 3-41 

The Jacobian of .the transformation (see lvells [1971)) is 

dLJ dL\J 
1/'::. 

t ( ) -1/2 
()t uu (~) - Ll.\1 

\) 2 

fJI= = = (})1/2, 3-42 av av 
at au 0 l 

and the new p.d.f. is 

3-43 

= o elsewhere. 
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Since we are interested in t only, u is integrated out of the 

above expression; the following result is then the marginal p.d.f. 

corresponding to t: 

"" 
$(t) = I $(t,u)du 

-"" 

t2 
exp [- ~ ( 1 + v ) ] du • 

The change of variable in the integration 

2 
z = u[l + (i_ )]/2 

yields 

$ ( t) 

$(t) 

\) 

= r[(v+l)/2] 

< 1T~ >112r <~> 
2 

1 

(l+t2/v)(v+l)/2 

3-45 

3-46 

1)/2-1 I 2 .\ 
exrt...,~h + t2 ;}dZ 

3-47 

' - "" < t < "" 3-48 

The random variable t is said to have the above t distribution if 

where w is n(O,l) and vis x1(v), and is written in the abbreviated form 

t(v). Note that the degrees of freedom vis the single parameter 

defining the distribution. 

3.3.2 The Graph of the t Distribution 

The graph of the t distribution is rather complicated in that it 

is an intricate combination of a normal curve and a chi-square 
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curve. It is similar tofue normal curve in the following respects 

(Figure 3-4): 

1) cj> ( t) ha.s values for -co < t < co 

2) the maximum value of cj>( t) is at t = 0 ' 

3) ha:s the t axis'as its ho:dzontal asymtote, 

4) has two points of inflection one on each side of the 

maximum. 

3.3.3 Computations Involving the t Distribution 

As for the chi-squar~ distribution, the arguments for entering 

the t table (Appendix B-3) are Pr, tp, and v. The direct and inverse 

problems are the same. 

The use ,of the tables is based on the .following relationship 

between Pr, tp, and v. If a random variable xis t(v), then the 

tp 
= f cj> ( t) dt ' 

_co 

where cj>(t) is the t p.d.f. of 3-48. The body of the table contains 

percentiles tp of the t distribution corresponding to certain degrees 

of freedom and probabil.ity.values between 0 and 1. 

Example l - Direct Problem, One Abscissa 

Given: x is t(lO) that is v = 10 

Required: Pr (x ~ 1.372) 

Solution: from Table B-3 t = l. 372 0.90 

• • p.,. ::: 0.90 
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l''igure 3-lJ.. 

~(t) 

t 
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Example 2 - Direct Problem 

Given: x is t(lO) that is v = 10 

Required: Pr ( ~~ ~ 2.228) 

Solution: From Table B-3 t 0 •975 = 2.228 

therefore Pr (x ~ t 0 •975 ) 

= 1 - Pr Cx ~ t 0 . 975 ) 

= 1 0.975 = 0.025 

since x can also be negative Pr = 2(0.025)=~ 

Example 3 - Inverse Problem, Two Abscissa 

Given: x as t(l4) that is v = 14 

Required: tp such that Pr(-tp < x < t ) = 0.90 
- - p 

Solution: Pr(-tp ~ x ~ tp) 

= Pr (x ~ tp) - Pr (x .5 -tp) 

= Pr (x ~ tp) - [1- Pr (X~ tp)] 

= 2 Pr (x ~ tp) - 1 = 0.90 

or Pr (x ~ tp) = 0.95 

From Table B-3 t 0 . 95 = 1.761 

3.4 THE F DISTRIBUTION 

3.4.1 The Distribution Function 

The F distribution is derived on the basis of two chi-square 

distributions and is the last of the basic distributions to be 

covered in this Chapter. 
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Let us first consider two independent chi7square random variables 

u and v having v1 and v2 degrees of freedom, respectively. The joint 

p.d.f. of u and v is 

<jl(u, v) = 1 ~- ~ ~- 9-(u+v)/2 u LJ v e 

0 < u < co 

0 < v < co 

= 0 elsewhere. 

Next consider a new random variable 

f = 
u/v1 

v/v2 

3-49 

3-50 

whose marginal p.d.f. <jl{f) is to be determined. The transformation 

equations are 

or 

f = 

f·v z 
1 u=-

z = v 

v = z 

with the Jacobian of the transfermation being 
au au ·vlz -- ---
at az 

av 
az 

= 
0 

The joint p.d.f. of the random variables f and z 

3-51 

3-52 

\),£ -
\)1 zv1 

= 
v2 

1 3-53 

is then 
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<j>(f,z) = $(u,v) det(J) = 

3-54 

[ 
v1 f 1 v1 z 

exp -2z ( - + 1) -
\.1 2 ' "2 

The marginal p.d.f. $(f) is obtained by integrated out z~ nanely 

co 
$(f) =I $(f, z) dz 

-"" 

By making the follmving change df variable 

$(f) becomes 

2y 

0 

( 
v1f/v2+1 

and after integrating, 

<j>(f) = 

v1 /2 

r[(vl+v2)/2] (vl/v2) 

v \.1 
r(.l:. ) r(_g_ ) 

2 2 

(o<f'<co) 

= 0 elsewhere. 

) dy ' 

3-56 

(v1+v2 )/2-l 

) e 
-y 

3-57 
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The random variable 

where u is x2(v1 ) and vis x2(v2), is said to have the above F distribu

tion, and is written in the abbreviated form F(v1 ,v2 ). Note that two 

degrees of freedom v1 and v2 are the sole defining parameters of this 

distribution. 

A very useful fact is that 1/f has an F distribution with parameters 

v2 and v1 • This result can be proved by a procedure similar to the one 

used above. That is, F ('V v ) = F1_p(v2 , v1 ). Note also 
p 1~-- 2 . 

1 

3.4.2 The Graph of the F Distribution 

The graph of the F distribution is rather complicated as it is 

an intricate combination of two chi-square distributions. · It has the 

characteristics (Figure 3-5) similar to the chi-square distribution. 

3.4.3 Computations Involving the F Distribution 

The possible arguments with which to enter the F-tables (Appendix 

B-4) are the probability Pr, the abscissa value F , and the two 
p 

degrees of freedom v1 and v2 . The direct problem is to enter the 

table with Fp, v1 and v2 , and exit 1vith Pr. The inverse problem is 

to enter with Pr, v1 and v2 , and exit with Fp. 

The use of the tables is based on the relationship between Pr, 

Fp, v1 , and v2 , that is, if xis F(v1 , v2 ), then 

Fp 
= 1 cj>(:r) df , 

0 



Figure 3-5. 

cj;(f) 

0 

f=- 'DISTRI BUTtoN 
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where ~(f) is the F p.d.f. given by 3-58. The above integral has been 

precomputed and the results tabulated for particular values of F 
p 

which correspond to different values of v1 and v2 and Pr; these values 

are called the percentiles of the F distribution, where Pr takes on 

certain probability values between 0 and 1. 

Example 1 - Direct Problem, One Abscissa 

Given: x is F(5, 10) that is v1 = 5 and v2 = 10 

Required: Pr (x ~ 2.52) 

Solution: From the first of Tables B-4 

F0 . 90 (5, 10) = 2.52 

Pr = 0.90 

Example 2 - Inverse Problem, One Abscissa 

Given: x is F(4, 8) that is v1 = 4 and v2 = 8 

Required: Fp such that Pr (x ~ Fp) = 0.95 

Solution: From the second set of Tables B-4 

F0 •95 (4, 8) = 3.84 

Example 3 - Inverse Problem, One Abscissa 

Given: x is F(4, 8) 

Required: 

Solution: 

or 

Fp such that Pr (x < F ) = 0.05 - p 
1 1 

Pr ( x ~ F p) = Pr ( x ~ F ) 
p 

1 1 ) Pr (- < --x- F 
p 

= 1- Pr ( ~ ~~) = 0.05 
p 

= 0.95 
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Recall that if xis F(4,8) then lis F(8,4), which gives a second 
X 

1 
probability statement for ;• that is 

From the second of Tables B-4 

1 therefore, equating the two probability statements for -we can solve for 
X 

F , that is 
p 

Given: 

Required: 

Solution: 

1 = = 0.166 6.04 

Example 4 - Inverse Problem, Two Abscissa 

X is F(5,10) 

F and F such that Pr (F < x < F ) = 0.90 
pl P2 Pi- - P2 

Pr (F < x < F ) = Pr (x < F ) - Pr (x < F ) 
pl - - p2 - p2 - pl 

F and F will be chosen such that the remaining probability of 
pl p2 

0.10 is divided equally, thus 

a) 

b) 

Pr (x < F ) = 
- p2 

Pr (x < F ) = 
- pl 

0.95 where Fp2 = F0 . 95 (5,10) 

0.05 where F = F0 . 05 (5,10) 
pl 

Taking a) from the second of Tables B-4 

Taking b) Pr 

F0 . 95 (5,10) = 3.33 

(x < F ) = Pr ( l > .1:_ ) 
- p X - F 

1 pl 

= 1 - Pr (-h < Fl ) = 0. 05 
X -

pl 

1 1 
Pr (; 2_ F-) = 0.95 

pl 
1 

and Pr (; 2_ F0 . 95 (10,5)) = 0.95 as in example 3. 

From the second of Tables B-4 F0 . 95 (10,5) = 4.74 and from 

we have F0 . 05 (5, 10) = 4~74 = 0.211. 
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3.5 SUMMARY OF THE BASIC DISTRIBUTIONS 

t(v) 

F = 

n (0, l) 

= n (o, l) 

( x2 ( v) /vJI2 

x2(vl)/vl 

x2(v2)/v2 



4. DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES 

We have introduced the normal, chi-square, student's (t), and 

F distributions in Chapter 3. Any random variable having a p.d.f. 

corresponding to any of these distributions was said to have that 

particular distribution. We now introduce several very useful 

random variables which are functions of these random variables. A 

function containing one or more random variables that does not 

depend upon any unknown parameter is called a statistic. Two examples 

of statistics are 

n 
y = L x. 

i=r 1 

where the x. are n(~, ~),and 
1 

x. - ~ 

y =( 1 ) 
a 

where ~ and a are known. 

2 

Two other statistics are the mean of the sample 

n . 
X + X + X L X· 
-=1~--~2~------~n~ = ~ X = n n 

and the variance of the sample 

2 n 
s = L 

• J.•l 

- 2 
(x. - x) 

1 

n - l 
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In thi~ Chapter, we will derive the distributions of these and 

other statistics_which serve two purposes: 

1) used in the derivations of the distributions of other 

functions of random variables, 

2) used as "test statistics" in Chapter 5 on hypothesis 

testing. 

4.1 DISTRIBUTION OF A NORMALIZED NORMAL RANDOM VARIABLE 

Given: 

independent 

A random sample x1 , 

d 
and x. -+ n(Jl, cr 2 ) 

l 

xn, where the xi are all 

Required to 

prove:~~---x-~_v ___ ~ __ n __ C_o_,_·_l_)~ 
Proof: The proof was given .. in section 3 ,1 where the main idea 

was to take the p.d.f. of x and make the change of variable y=(x-Jl)/cr 

in the integration. The resultant p.d.f. had Jl = 0 and cr 2 = 1 (3-17). 

Comment: This result is used for further derivations in Sections 

4-3, 4-4, and 4-10, and for hypothesis testing in Chapter S. 

4.2 DISTRIBUTION OF THE SAMPLE MEAN 

Given: A random sample x1 , x2 ..• xn, where xi are independent 
d 

and x. -+ n (Jl, a2) 
l 

Required to prove: 
_ d 0 2 
x-+n(Jl,-) 

n 

Proof: The moment generating function of x is 
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M(t) = E ( exp [ ~ (x1+x2+ . +xn) 1} and 

t t t 

for x. statistically 
1 

- Xl] ( - X2) - X :"1 independent M( t )= E[en E en . . E [en n_, 

For x. C.i.istributed as n ( 11, g), the m.g. f. is ( 3 -II.) 
1 

M(t) = E[e tx] [11t 
o2t2 

] = exp +--
2 

thus in the present case for x 

a2 (~) 2 
n 

~+ M( t) IT [ 11 . 1 n = exp 
i=l 1 n 2 

1 
n 

t2 l: a2 
ln 2 

1 i 
11.h+ 

n 
= exp[ (-l: 

n• 1 1.. 

a2 t2 
M(t) exp [11t + n = 

2 

since 11 - 11 - - 11 = 11 and o2 = o2 = 1 - 2 - · · · - n 1 2 • • a2 = o 2 • We 
n 

recognize that the form of the m.g.f. is still normal and has 

parameters 11 and o2/n, thus it is proved that xis n(l1, o2/n). 

Comment: We use the above result in a subsequent derivation in 

Section 4.3. 

4.3 DISTRIBUTION OF A NORMALIZED SAMPLE MEAN 

Given: A sample mean - d 2 x-+ n (11, a /n) 

Required to Prove: 

Proof: From section 

-
X - 11 d 

( 0' 1) -+ n 
a/rn 

4.1, d o2) if X. -+n (11, 
1 

d (x. - 11)/o-+ n(O, 1). 
1 

then 
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The only difference in this case is that the variances are scaled by 

1/n. 

Comment: We use this result in further derivations in Section 

4-8 and in Chapter 8. 

4. 4 DISTRIBUTION OF THE SQUARE OF A NORMALIZED NORHAL RM"'DOM VA.._lUABLE 

Given: x ~ n (~, o2) 
r-''----::::-2 -----r 

( X-~) ~ 2 ( ) Required to Prove: ~ X 1 
~~·0~----------~ 

Proof: d From section 4.l'W'= ("-~)/o + n (0, 1), so the c.d.f. of 

2 
v w is 

~(v} = Pr (w2 ~ v) = Pr (- IV$ w $ IV ) 

2 
e-w 12 dw 0 < v 

=0 ,v<O. 

Next we perform the change of variable w 1/2 = y ; the result is 

~ (v) = ; --=1::___ :yl/2 e -y/2 dy 0 < 'V 

The associated p.d.f. is ~(v) = ~'(v), namely 

~(v) =----~1 __ "12-,\ -v/2 v~ ~ e , 0 < v < oo • 

(-rr)l/2( 2 )1/2 
• o elsewht!-re 

Comparing the last expression with that of the basic form of x2 p.d.f. 

(3-33), we see that the degrees of freedom v = 1, and knowing that the 
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gamma function r(~) = ~112 , the x2 p.d.f. form of [(x-~)/a]2 is verified. 

Comment: We will use this result for further derivations in 

Sections 4-6.and 4-7. · 

4.5 DISTRIBUTION OF THE SUM OF SEVERAL CHI-SQUARE RANDOM VARIP~LES 

Given: A random sample y 1 , y 2 ··. ~ • • y n where y i are independent 

d 
andy.~ x2 (v.) • 

J. J. 

Required to prove: 

Proof: 

1 ------t 
n d . 
E y. ~ x2 (vl + "2 + ••• v ) 
1 J. n 

n---' 
The moment generating function of E y. is 

1 J. 

= E [etyl] E (etY1 

Since the m.g.f. of a x2 variable is (3-35) 

.... [ tyn]· 
L e • 

M.(t) = (l-2t)-v/2 

the m.g.f. for this case is 

4-6. 

v )/2 
n • 

which corresponds to a chi-square random variable with 

v degrees of freedom. n 

We use this result for a further derivation in Section 

4.6 DISTRIBUTION OF THE SUM OF SQUARES OF SEVERAL NO&~IZED 

NORMAL RANDOM VARIABLES 

Given: A random sample x1 , x2 ••• xn" where xi are independent. 
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and x. ~ n (~, o2) 
l 

Required to P~r~cov~e~=------~--------~ 
2 

n ( x. -~\ d 2 
E _1_"} -+ X 
1 a 

(n) 

Proof: From section 4. 4 if y. = ((x. -J.l) /a, 2 then y. ~ x2(1). l l' ~ l 

From Section 4.5 

\1 ) 
n 

In our case v1 = v2 = \1 = 1 thus 
n ' 

n 
E y. 
1 l 

n 
= E 

1 

X. - ~ 
1 ) 

cr 

2 

Comment: We use this result for a further derivation in Sections 

4-7 and 4-10, as well as for hypothesis testing in Chapter 8. 

4.7 DISTRIBUTION OF A FUNCTION OF THE SAMPLE VARIANCE 

2 n (x.-x)2 
Given: The sample variance s = E 1 where the 

1 n-1 

d 
x. -+ n ()..l, cr 2 ) 

l 

Required to Prro~v~e~:~--------------~----------~ 
2 n (x.-x) 2 

s = E lcr2 ~ x2(n-l) 
cr2 1 

(n-1) 

Proof: We begin by writing 

n n 
E(x.-).1) 2 = E (x. - x + x- ~)2 
l 1 1 1 

n 
= E[(x.-i) 2 + (x-J.l)2 + 2(x.-i) (x-J.~)] 

l l l 

n n n 
= E(x.-i) 2 + E(x-J.1) 2 + E 2(x.-i)(i-J.l) 

l 1 1 1 1 
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But 

n n 11 X. n n n x. n 
r(x.-x) = E(x.-r 2..) = r x.- r r 2.. = rx.-
l ~ l ~ l n l ~ l l n l ~ 

Therefore 

n 
r (x. -~) 2 

~ 
l 

n 
= r (x.-x) 2 + n(x-~)2 

l ~ 

Dividing by o2 yields 

n n 
r(x.-~) 2 r (x.-x) 2 (- )2 
1 ~ 1 ~ + n x-~ 

~~:----- = 
o2 

= (n-1) s 2 + n(x-p) 2 

o2 o2 

Writing the m.g.f. of this equation 

M(t) = E[:·xp [t 

and we can ite* 

From section 4.6 

and section 4.4 

n 
r ( x. -~) 2 
1 ~ 

so that these have the corresponding m.g.f. 's 

n 
r 
l 

(1-2tr·n12 and (l-2t)-l/2 

xi = 0 

* Since~ s2 andn(~-~) ar~ statistically independent [see Hogg 
and Cra~g, 1965 , p. ~33] . ,_ 
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Therefore 

Thus the m.g.f. of (n-l)s2Jcr2 is 

This m.g.f. corresponds to a chi-square random variable with n-1 

degrees of freedom. Therefore 

(n-l)s2 d 2 
-+ X (n - 1) • 

a2 

Comment: This result is used for a subsequent derivation in 

Section 4-9 and for hypothesis testing in Chapter 8. 

4.8 DISTRIBUTION OF THE RATIO OF THE NORMALIZED SAMPLE MEAN 

TO (s/~-) 

a) - d ( a2 
Given: x-+ n ).l, -) 

n 

b) X-).l d 

c/IIFi' 
-+ n (0, 1) 

c) (n-1) 2 d s -+ x2 (n-1) 
a2 

Required to Prove: 

) 1/2 
(X-).l n = ~ t(n-1) 

s 

Proof: The result for the above follows immediately from the 

definition of at random variable. Recall from Section 3.3 that 
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n(O, 1) ~ t (v) 

[x2 (v )/v]l/2 

and in the present case we have 

n (0 1) d 
-+ t (n-1) . 

[x 2 (n-1)/(n-1~112 

Comment: This result is used in 'lypothesis testing in Chapter 5 . 

4. 9 DISTRIBUTION OF THE RATIO OF TWO SAMPLE VARIANCES l<'ROM THE SAME POPULATION 

(n1-l) 2 
sl d x2 (n1-l) Given: a) -+ 

a2 
2 

(n --l)s 
~ x2 b) 2 2 

(n.2.-l) 
a2 

Required to Prove: 

Proof: The above result follows immediately from the definition of 

an F random variable. Recall from Section 3.4 that 

and in the present case we have 

x2 (nl-1 )j(n1-1) J. __ ;:;:..__ __ ....;__-+ 

x2 (n2-1)/{n2-l) 

Cominent: This result is used in Chapter 5. 
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~~ .10 DISTHIBln'ION OF A MUI.'riVAHIATE NOHMAL QUADHATIC FOHM 

Given: The quadratic form XT z:-1 X (equation 3-27) ) where X X lxm mxm mxl 
is a vector of rn normally distributed random variables with zero means 

and variance - covariance matrix EX. 
mxm 

Hequired to Prove: 

-1 
L,(. 

mxm 
x Q: x2 (m) 

mxl 

Proof: First make the orthogonal transformation of X to Y by 
mxl mxl 

Y = T-l X 
mxl mxm mxl 

T 
= T X; X == TY 

-1 
such that in the process EX is diagonalized and the variables Y 

mxl 
made independent. The quadratic form becomes 

T -1 x z:x 
lxmmxm 

X 
mxl 

= YT ( •rrr E)? 
mxm mxm 

2 
y2 

+ . 

T ) y 
mxm mxl 

2 
Ym 

. + 
02 

m 

are 

yi d n (0, l) according to Section 4.1, where each - + 

Yi 2 d .2 and that (·-) + )( (1) 
0. 

0. 1 

according to1 Section !.~.l-r, and finally according to Section 4 .. 6, it follows 

that the sum of m random variables (each distributed x2(1)) is distribu-

ted as x2 (m). 

Comments: This result for quadratic forms is the basis for statis-

t.ical testing in multivariate least squares estimation problems discussed 

in Chapter 8. 

l+ .11 SUMMARY OF' DISTRIBU'I'IONS OF FlJNC'I'IONS OF RANDOM VARIABLES 

'I'his is a summary of all distributions introduced thus far. In 

Chapter 3 we derived the normal, chi square, Student's (t), and F 



66 

distributions; these are special distributions and are the basis for 

the distributions of functions of random variables given in this Chapter. 

The latter are summarized in Table 4-1 in such a way as to show their 

uses in: 

1) subsequent derivations, 

2) hypothesis testing. 



Section 
Derived 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 
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Table 4-1. Interplay of Random Variables - Their Uses 

d 
n(ll, o2 ) X. + 

]_ 

d 
x. + n(ll, o 2 ) 

]_ 

x ~ n(ll, o2 /n) 

~ n(ll, o2 ) x. 
]_ 

y. ~ x 2 (v.) 
]_ ]_ 

x . ~ n ( l1 , o2 ) 
]_ 

x. ~ n()l, o2) 
]_ 

x ~ n(ll, o2 /n) 

d x. + n(ll, o2 ) 
]_ 

multivariate 
normal 

Random Variable 

X. -ll d 
~ + n(O, 1) 

n 
L x. 

- 1 ]_ d 
o 2 /n) X =--+n(ll 

n ' 

-X-ll d ( 1) 1/2 + n 0, 
o/(n) 

x.-ll 2 d 
(1) (-]_-) + x2 

0 

n 
E y. ~ x 2 (v1+v2+ .. v ) 
1 J. n 

n x.-)l 2 d 
x 2 (n) L (-]_-) + 

1 0 

n 
(x. -x)2. 

2 L 
(n-l)s 1 ]_ d 

0'2 = o2 + x 2 (n-l) 

-X - ll ~ t(n-1) 
s/rll 

2 
sl d 

n -1) - + F(n -1, 
2 1 2 

s2 

XT -1 X d 
x 2 (m) E . + 

lxm ~ mxl 

Used in 
Derivation 

,,. , 

·~ 

,, 

,, ,l' 

,, 

, ,,. 
, 

Basis for 
Multivariate 
Testing 

Used For 
Statistical 
Test(Chap.5) 

5.2 
5.3 

no 

5.4 
5.5 

no 

no 

5.8 

5.9 
5.10 

5.6 
5. 7 

yes 

Chap. 8 
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5. UNIVARIATE INrrERVAL ESTIMA.TION AND HYPorrHESIS 'I'ESTING 

5.1 INTRODUCTION 

Hecall from Section ?.5 that point estimation deals with the 

estimation of population parameters from a. knowledge of sample 

statistics. 
2 

For example the sample mean x a.nd sample variance S are 

1mbiased point estimators for the population mean J.l and population 

variance 
2 

a , that is, 

X :: )J :: 

A2 
= C5 

n 
L 
l 

::: 

n 
L 
l 

X. 
l 

n 

-2 
(x. - x) 

l 

n- l 

In this chapter we treat interval estimation which is the determination 

of the region or limits associated with point estimates. 

Recall from section 2.6 that interval estimation involves a 

probability statement 

p 
r 

E: < e ) = a z 



where Eisa statistic of a known p.d.f., a is a probability value between 

0 and l which must be specified (often a= 0.95), and e1 and e2 are 

abscissa values of the known p.d.f. which are determined by the 

specified a. Note, finding e1 and e2 given the p.d.f. and a is the 

inverse problem described in sections 3.1.5, 3.2.4, 3.3.3 and 3.4.3 

for the normal, chi-square, t and F distributions respectively. The 

interval 

is called the confidence interval. If a = 0.95 for example,it is called 

the 95% confidence interval. In general E is not a single statistic, 

but is a function of several statistics, the values of all but one of 

which are computed or specified. Therefore, the confidence interval 

for the unknown statistic (say ~) in e is found by operations on the 

inequalities in the above confidence interval to yield 

[f (e1 ,E) < ~ < f (e ,E)] . 
- - 2 

It often happens that an a priori hypothesis about the value of 

the unknown statistic ~ can be made. The hypothesis 

H 
0 ~ = ~H 

is called the null hypothesis H and is read '~the mean ~ is hypothesized 
0 

to have the particular value ~H." The alternative hypothesis is 

Hl : ~ T ~H . 

The confidence interval can be used to determine vhether the null 

hypothesis should be rejected. If the hypothesis is rejected, then the 

probability value a in the probability statement is called the significance 

level of the test. Failure to reject the hypothesis does not mean that 

the hypothesis is true. No statement about the hypothesis, the hypothesis 
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test, or the significance level can be made if the hypothesis is not 

rejected. 

In this chapter, we will restrict our discussions to population 

distribution functions which involve only one random variable-univariate 

case (for example the set of measurements of the distance between two 

points). This concept is extended in Chapter 8 to include population 

distribution functions involving several random variables, and is 

called multivariate interval estimation. 

Interval estimates are the basis for hypothesis testing and are 

developed in this chapter for the following quantities: 

l. a single observation, x. 
1. 

2. the population mean, )J 

3. the sample mean, x 

4. the population variance, 2 
0 

5. the sample . s2 var1.ance, 

6. the ratio of two population variances, 2 2 
(o/o1 ) 

7. the ratio of two sample variances, 2 2 
(S/S1 ). 

We make extensive use of the distributions of random variables 

given in Chapter 4 in the remaining portion of this chapter. 

EXAMINATION OF A SINGLE MEASUREMENT X. 1. 

IN TERMS OF THE MEAN JJ AND VARIANCE o2 

Consider a single measurement x. as being a sample drawn from a normal 1. 

population with known mean )J and known variance o2 , that is 

d 2 
xi+ n (JJ,O ) 

From section 4.1, we know that 
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X. - ~ d ( ) 
l + n 0,1 . 

0 

The associated probability statement is 
xi - ~ 

Pr (-c ~ ~c) = a 
0 

whi.le the confidence i.nterval for x. is 
l 

[ [ ~- C 0 < X. < )J + C 0) 

·---l---------1. 

The bounds of this confidence interval are evaluated from 

(1) the known value for the mean ~ 

( 2) the known value for the variance 
2 

0 

( 3) the tabulated value of c (Appendix B-1) corresponding 

to n(O,l) and 01.. 

rrhis confidence interval is used to test the hypothesis 

H : X. = 
0 l 

5 . 3 EXAMINATION OF 'rHE MEA..TIJ ~ IN TERMS 

OF AN OBSERVATION X. AND VARIANCE 
l 

0 
2 

2 The mean ~ can be examined in terms of the variance o 

observation x. as follows. Consider a random sample where 
l 

From section l~ .1, we know that 

d 
+ n(O,l) . 

'rhe associated probability statement is 

Pr (- C < xi - ~ ) 
~ c = a , 

0 

and Q. 11 



while the confidence interval for lJ is 

a < lJ < x. + c a] . 
- - l 

The bounds of the interval are evaluated from: 

( l) 

(2) 

( 3) 

the measurement value x. 
l 

the known value :for the variance a2 

the tabulated (Table B-1 Appendix) value of c corresponding 

to n(O,l) and a.. 

The above is used to test the hypothesis 

H 
0 

5.4 EXAMINATION OF THE MEAN lJ IN TERMS 

OF THE SAMPLE MEAN X AND VARIANCE a1n 

'rhe mean ll can be examined in terms of the known variance a 2/n 

and sample mean x . From section tf. 3, we know that 

d x - lJ + n(O,l) . 

a/R 

The associated probability statement is 

Pr (-c 

while the confidence interval for ll is 
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[i - c 0 I .~ ~ < x + c 0 / ] 
(n)l 2 (n)l 2 

The bounds of the interval are evaluated from: 

(1) the computed value for the sample mean x, 

(2) the known value for the variance J7 n 

(3) the tabulated value for c (Table B-1 Appendix corresponding 

to n(O,l) and a. 

This confidence interval is used to test the hypothesis 

5.5 EXAMINATION OF THE SAMPLE MEAN X IN TERMS 

OF THE MEAN ~ AND VARIANCE o2/n 

The sample mean x can be examined in terms of mean .~ and variance 

2 
o /n as follows. Again we begin by considering that from section 4.3 

X - ~ 

o/~· 

d 
+ 

n (0,1) . 

The associated probability statement is 

Pr (- c < x - ~ ~c) = a , 
-~~ 

while the confidence interval for x is 

(~- C O/ <X<~+ C 
(n)l 2 



'rhe bounds of the interval are evaluated from: 

the known mean~. 

2 
the known variance cr /n, 

(1) 

( 2) 

( 3) the tabulated value for c (Appendix B-1) corresponding 

to n(O,l) and a. 

The above is used to test the hypothet>is 

5.6 EXAMINATION OF THE MEAN ~ IN TERMS 

2 
OF 'I'HE SAMPLE MEAN X AND SAMPLE V MIANCE s 

The mean )J can be examined. in terms of the sample mean x and. SQ.Mf/e 

2. 
variance 5 as follows. From section 4. 8 

- d 
X-~ 

s/R 
-+ t(n-1) . 

'l'he associate probability statement is 

Pr (- t X - ~ 
< t ) < = a • p - s/ .[7l1 - p 

while the confidence interval for ~ is 

[ x- t : s t 
s J I 

~).l < X + 0 

p .[(\1 p {hl/ 

The bounds of the interval are evaluated from: 

( l) the computed value for the sample mean x, 

(2) the computed. value for the sample variance s2, 
(3) the sample size n, 
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the tabulated value of t (Appendix B-3) corresponding 
p 

to t(n-1) and et. 

The above is used to test the hypothesis 

H : ll = ilH • 
0 

5 . 7 EXAHINATiml OF THE SAMPLE MEAN X IN TERMS 

OF THE MEAN ll AND SAMPLE VARIANCE s 2 

The sample mean x can be examined in terms of' the mean 11 and 

1 · s2 f 11 samp e var1ance as o ows. Again . from section 4.8 
d 

X - ll 

siR 
-+ t(n-1) . 

The associated probab.ility statement is 

Pr (-t < 
x-~ 

< t ) = C1 p- $/R - p , 

while the confidence interval for x is 

[ ll- t s < X< ll + t (n sl1/2] • p 
)1/2 

p 
(n 

The bounds of the interval are evaluated from: 

(1) 

{2) 

(3) 

the kno~ mean ~, 

2 the computed value for the sample variance S , and sample size n, 

the tabulated value t (Appendix B-3) corresponding· 
p 

to t(n-1) and a. 

The above is used to test the hypothesis 

H : x = xH. 0 . 



5.8 EXAMINATION OF THE VARIANCE o2 IN TERMS OF THE 

MEAN 1..1 AND SEVERAL :MEASUREMENTS x1 , x2 , ... , xn 

The variance ~2 can be examined in terms of the mean~ and 

several measurements x1 , x2 , ..• , xn- as follm-rs. From section 4. 6, 

we know that 

2 
d 2 

x c n>· 
n x. - 1..1 
E ( J. ) 

a 
1 

The associated probability statement is 

2 
2 n x. - 1..1 2 E( J. ) ) Pr ( ·x < < X = a. ' pl 1 

a p2 

while the confidence interval for 2 is a 
n n 
E 2 

I: 2 (x. - JJ) 
(1 

(xi - JJ) 2 1 J. ] < a < . 
2 

2 

X p X p 
1 

2 

The bounds of the interval are evaluated from: 

(1) the known mean 1..1, 

(2) the several measurements x1 , x2 , .•. , xn, 

{3) 2 
the tabulated values x p and 

1 
2( 1 - a. . to x n), p1 = 2 ' and p2 

2 x p (Appendix B-2) corresponding 
2 

-ff-oC -T 

The above is used to test the hypothesis 

H : 
0 

2 a 
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5. 9 EXAMINATION OF THE VARIANCE ci IN TERMS 

OF THE SAMPLE VARIANCE s2 

The variance ~2 can be examined in terms of the sample variance 

s2 as follows. From section 4.7, we know that 

2 
(n - 1) S 

2 
a 

d 
-+ x2 (n-1) . 

The associated probability statement is 

Pr ( 2 
X p 

1 

(n - 1) s 2 2 <...:......;--=.:,._;.-<x )= 
2 - p 

a 1. 

2 while the confidence interval for a is 

r (n - 1) s2 < 0 2 < (n - 1) s 2 ] 
2 - - 2 

X p X p 
2 1 

The bounds of the interval are evaluated from: 

(l ' 

(1) the computed value of the sample variance S2 , 

(2) the sample size n, 

(3) the tabulated values x2P and x2 (Appendix 
1 p2 

2( ) l-ex l+a(. to x n - 1 , p1 = =--2~ and p2 = ~ 

The above is used to test the hypothesis 

H : 
0 

2 
a 

B-2) corresponding 
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5.10 EXAMINATION OF THE SAMPLE VARIANCE S2 

IN TERMS OF THE VARIANCE o2 

The sample variance s 2 can be examined in terms of the variance 

2 o as follows. Again from section 4.7, we know that 

(n - 1) ti 
2 

0 

d 2 
-+ x (n - l) . 

The associated probability statement is 

Pr ( 2 
X p 

1 

(n - 1) s2 2 < ~-~__.;::- < X ) = 
tr 2 - p2 

while the confidence interval for s 2 is 

ll ' 

2 2 
2 o < 52 2 o J 

XP (n-1) 5..XP (n-1) • 
1 2 

The bounds of the interval are evaluated from: 

(l) the known value of the variance o2 , 

(2) the sample size n, 

(3) the tabulated values x2p 
1 

and x2 
p2 

(Appendix B-2) 

corresponding to A.2 ( n - 1) , p1 = 1 

The above is used to test the hypothesis 

H : $2 = 52 • 
o H 

- ll 

2 
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5.11 EXAMINATION OF THE RATIO OF TWO VARIANCES (o~l0~) 

IN TERMS OF THE SAMPLE VARIANCES S~ AND S~ 

The ratio of two variances 0~l0~ can be examined in terms of the 
2 . 2 

sample variances s1 and s2 as follows. Using section 4.9, we can 

write that 

(nl - 1) s2 
( 1 ) I (n1 - 1) 2 

01 d 
-+ F (n1 - l, n2 - 1) , 

(n2 - 1) s2 
2 ) I (n2 - 1) ( 

2 
02 

d 
-+ F ( n1 - 1 , n2 - 1 ) . 

The associated probability statement is 

Ct ' 

2 2 
while the confidence interval for 02 I 01 is 

The bounds of the interval are evaluated from: 

(l) 

( 2) 

the computed values of the sample variances s~ and s~ ' 

the tabulated values of F and F (Appendix B-4) corresponding 
pl p2 

= 1- Ct -~· 2 ' and p2 - 2 
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The above is used to test the hypothesis 

2 
Note that if in the above a :::: 

1 

i3imp.ly sample variances of the same 

ratio o~ I o~ = 1 . 

2 2 2 2 
02 = 0 ' then sl and s2 are 

population (n (p,o 2 )), and the 

5.12 EXAMINATION OF THE: RATIO OF 'rWO SAMPLE VARIANCES (.siiS~) 

IN TERMS OF THE VARIANCES oi AND o~ 

The ratio f t l · s 2 1b2 b · d · t o.. ·wo samp .e varlances 1 ... 2 can e examlne 1.n erms 

2 2 4 of the va.riances o1 and 0 2 as follows. Again using section . 9, we 

can write that 

2 2 
Sll0l d 
--- ->-') 2 
SCI 

2 °2 

F ( n1 - l , n2 - l) . 

The associated probability statement is 

a ' 

while the confidence interval for s21s2 is 
l 2 

2 2 
01 sl . 
- <- < F 

2 -$2 - p2 
0 2 2 

] . 

'rhe bound.s of the interval are evaluated from: 

(l) the values of the variances 0i and 0~ , 
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( 2) the tabulated values of F and F 
pl p2 

corresponding to F(n1- 1, n2 - 1), 

The above is used to test the hypothesis 

H : 
0 

(Appendix B-4) 

~ r+o<. 
pl = 2 and p2 =~ 

2 Note that when cr1 = 2 a2 , the bounds of the confidence interval 

become described by the F percentilies. 

5.13 EXAMINATION OF THE RATIO OF TWO VARIANCES (a~/a~) 

IN TERMS OF SEVERAL :MEASURE:MENTS FROM TWO SAMPLES 

2 2 The ratio of two variances o2/o1 can be examined in terms of 

measurements x1 , x2 , ... , xn
1 

sampled from a population which is 

2 
n( 11i, o1 ), and measurements x1 , x2 , ... , x sampled from a population 

n2 
2 which is n(]..l 2 , o2 ). 

nl 
E 

(xi 1 

and 

n2 
E 

(xi 1 

Using section 4.6, we know that 

2 
]..11) d. 2 

-+ X (n1 ) ' 2 
01 

2 
- 11 ) d. 2 2 
2 -+ X (n2 ) 

01.. 

Further, using section 3.4, we know that 
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(l) 
= (2) -+ 

d 

The associated probability statement is 

Pr ( F < ( l ) < F ) 
pl - (2 ) - p2 

= a 

while the confidence interval for cr~/crT is 

2 
- ]..l ) 

l 

n2 )2 
n2 

E (x. - ].12 '2. }:; (x. 
nl l ~ 02 nl l ~ 

F < < F 
pl n2 nl - 2 - p2 n2 nl 2 al }:; (x. - ]..l ) E (x. l ~ l 

l ~ 

2 
- ]..l ) 

2 

The bounds of the confidence interval are evaluated from: 

(l) the sample sizes n1 and n2, 

(2) the means J..ll and ].1 2 of the two populations, 

( 3) 
of 

differences of the measurements the sumAsquares of the 

( 4) 

each of the respective means J..ll and ].1 2 , 

the tabulated values of F and F (Appendix B-4) 
pl p2 

corresponding to F(n1 , n2 ), P1 = l - a 
2 

The above is used to test the hypothesis 

H : 
0 

from 
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5:14 SUMMARY OF UNIVARIATE CONFIDENCE INTERVALS 

In table 5-l we summarize univariate confidence intervals and 

hypothesis testing according to 

a) column one - the chapter section discussing the particular 

confidence interval, 

b) column two - the quantity being examined by the confidence 

interval, 

c) column three -the quantities which must be known for the con

fidence interval, 

d) column four - the statistic, 

e) column five - the confidence interval. 



Quantity 
Section Examined 

5.2 single 
observation x. 

l 

5.3 mean J..l 

5.4 mean J..l 

5.5 sample mean x 

5.6 mean ].l 

5.7 sample mean x 

5.8 variance cr2 

TABLE 5-l. UNIVARIATE CONFIDENCE INTERVALS 

Known Confidence 
Quantities Statistic Interval 

x.-]..l d 
[J..l-CG < X. < ]..l+Ccr) 

J..l' cr - 1--+ n(O,l) 
cr - l-

xi' cr as above [x. - ccr < J..l < x. + ccr] 
l - - l 

- X - J..l ~ n(O,l) - cr - cr ] 
n, x, cr [x - c - < J..l < x + c -

a/Ill rn- - rn 
cr - cr ] 

n, J.l, cr as above [J.l - C - < X~ ].1 + C -rn- rn 

- x - J..l ~ t(n-1) [- s - s ] 
n, x, s x-t -<J.l<x+t-

s!in" prn-- Pin 

n, ].l, s as above [ s - s ] ].l-t -<x<]l+t-
Pin- - Pin 

n x. - ].1 2 d n 2 n 2 
n, xi,J..l E( 1 ) -+ x2(n) 

1 cr E(x. - ].l) E(x. - ].1) 
1 l 1 l 

[ < cr2 < ] 
x2 - - x2 

p2 pl 

OJ 
+:-



Section 

5.9 

5.10 

5.11 

5.12 

5.13 

Quantity 
Examined 

variance o2 

sample 
. 2 varJ..ance s 

ratio of two 
variances 
o2 /o2 

2 1 

ratio of two 
sample 
variances 
s2fs2 
1 2 

ratio of two 
variances 
o2/o2 
2 1 

TABLE 5-l (continued) 

Known 
Quantities! Statistic 

n, s 
2 

(n - l)s ~ x2(n - 1) 
o2 

n, o as above 

nl, n2, 

s2/sl 

2/o2 1) 
; sl 1 ~ F(nl-l,n2-

2;02 

nl, n2' 

0/02 

nl, n2, 

xi' ~1' 

~2 

I I 

52 2 

as above 

nl 2 
Z (xi-~1) 
1 

of nl ~ F(n1 ,n2) 
n2 2 
Z (xi-~2) 
1 

2 o2 n2 

Confidence 
Interval 

[x2 o2 p .. 
1 

< o2 < 
2 

(n - l)s ] 
- - 2 

X p 
1 

2 
2 2 ° ] 

< s .::_X p2 (n-1) 

2 2 2 
[FP (s2/s1 )::. (o2/o1 ) ::_Fp (s2/s1 ) ] 

1 2 

2 2 2 
[Fp (o1/o2 ) ::. (s1/s2 ) ::. Fp (o1/o2 ) ] 

1 2 

n2 n2 
2 2 

nlz (xi-~2) o2 nlZ (xi-~2) 
[F 1 < ~ <F 1 ] 

P1 nl - 01 - P2 ' nl 
2 2 

n2~ (xi-~1) n2~ (xi-~1) II 

CP 
\J1 



86 

6. LEAST SQUARES POINT ESTIMATORS: 

LINEAR MATHEMATICAL MODELS 

In this Chapter we follow the approaches of Schwarz [1967] and 

Hamilton 11964] in discussing the linear.mathematical model 

AX-L=V (6.1) 

where nLl is called the observation vector and is the column vector 

whose elements are the observed values, nvl is called the residual vector 

and is the column vector whose elements are the unknown measurement 

errors (inconsistencies), uXl is called the solution vector for which we 

want a point estimate and whose elements are the unknown parameters, 

and A is known and is called the design matrix. Note that there are n 
n u 

observations and u unknowns. The least squares estimation process is 

applied only when there are redundant measurements, that is n > u. The 

number (n - u) is called the redundancy or number of degrees of freedom. 

In addition to these quantities we also have weights associated with 

each of the observations L. The weight matrix P is the matrix whose 

elements are these weights. 
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6.1 THE LEAST SQUARES UNBIASED ESTIMATOR FOR X 

The least squares criterion states that the "best" estimator X of X 

is the estimator which will minimize the sum of the squares of the 

weighted residuals, that is 

VT P V = minimum (6.2) 

where from Equation 6.1 we have 

V = A X - L (6.3) 

Combining Equations 6.2 and 6.3 we have the criterion 

~ = (A X - L)T P(A X - L) = minimum (6.4) 

To minimize this function we set 

" 
lt= a2 a(AX-L) .. ,., 
ax a(AX-L) ax 

A 

L)T p = 2(A X - A = 0 
' ' 

or after transposing and separating 

AT pAX- AT p L = 0 (6.5) 

Equations 6.5 are called the normal equations. If (AT P A),called the 

matrix of the normal equations, is nonsingular then there is a unique 

least squares estimator for X which is 

(6.6) 

An estimator X of X is called unbiased if 
A 

E [X] = X (6.7) 

The estimator X of Equation 6.6 will be unbiased if 

the expected value of the residuals is zero, that is 
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E [VJ = 0 (6.8) 

in which case, from Equation 6.1 

E [V] = E[AX-L] = E[AX] - E[L] = AX - E[L] = 0 

or 

E [L] = AX , (6.9) 

where we have used the relation E IX] = X, which is trivial since X is 

the "true" value. 

From Equation 6.6 

A 

thus by definition X is an unbiased estimator of X.* 

6.2 CHOICE OF THE WEIGHT·MATRIX P 

So far we have not specified how the weight matrix P should be 

chosen. If E [V] = 0 then the covariance matrix of the "true" values of 

the residuals is 

(6.10) 

Also if E [V] = 0, from Equation 6.9 

E [L] = A X 

and from Equation 6.1 

L - E IL] = -V 

and the covariance matrix of the observations 

* Note tQat we have made no statements about the weight matrix P as yet. 
Hence X is unbiased, independent of the choice of P. 
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T T 
z:L = E [ (L-E[L] )(L-E IL]) ] = E [VV ] = z:v 

have the same covariance matrix, 
,.. 

mean that E1 = l:~ where V 

least squares process. 

We set 

z:L 

where a? is variance, 
1. 

= 

is the 

a2 
1 

(J21 

as should be expected. This 

estimator of V which results 

(Jl2 

(J2 
2 

(6.11) 

does not 

from the 

and a is the standard deviation associated with the observation 2., 
i 1. 

and crij is the covariance between observations l/,i and l/,j. 

The variance of an observation is larger when it is less accurately 

determined. In combining many observations more importance should be 

attached to those having smaller variances. One reasonable choice for 

the weight matrix P therefore would be to set 

(6.12) 

In this case values must be assigned to the variances and covariances 

in z:1 before a least squares estimation can be made. The values arise 

from a knowledge of the measuring instruments and procedures being used. 

It is often possible only to assign relative values among the variances 

and covariances, so that we know z:1 only to within a scale factor, that 
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is if 

~L = a2 
0 

Q (6.13) 

we know the relative covariance matrix Q but not the variance factor a2. 
0 

In such a case if we use 

p -l a2 -l = Q = ~L 0 
(6.14) 

in Equation 6.6, then we have 

A 

=(AT -l A)-l AT -l (AT -l A)-l AT -l 
X a2 ~L a2 ~L L = ~L ~L L 

0 0 
(6.15) 

that is, the variance factor drops out and either weights 6.12 or 6.14 

result in the same estimator X. 

6.3 THE MINIMUM VARIANCE POINT ESTIMATOR FOR X 

If for an estimator X of X, a matrix B exists such that 

X = B L (6.16) 

that is, the elements of X are linear functions of the observations, then 

X is called a linear estimator of X. 

The minimum variance estimator X of X is the linear unbiased 

estimator whose covariance matrix 

A A ~ ~ T 
~X = E [ (X - E [X] )(X - E [X] ) ] ( 6 .1 7 ) 

is "less than" that of any other linear unbiased estimator of X. We 

need some criterion by which we can decide when one matrix is "less than" 

another matrix. One such criterion useful for square matrices, which is 
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conveniently a scalar quantity, is the sum of the diagonal elements, 

called the trace of the matrix. Therefore we will define the minimum 

variance condition to be 

Trace (I:x) = minimum , (6.18) 

and we will now proceed to find the matrix B in Equation 6.16 which will 

satisfy this condition. 

We have already seen that if E [V] = 0 then X is unbiased, that is 

,.. 
E [X] = X. 

From the linear condition of Equation 6.16, and from the assumption E[V] = 0 

,. 
E [X] = E [BL] = B E [L] = B A X 

Therefore 

B A= I (6.19} 

From the co~"ariance. l13.w,. since 

X = BL 

then 

(6.20) 

The problem may now be stated that we want to find that value of B 

such that 

T Trace (BI:1B ) = minimum 
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under the constraint 

B A - I = 0 

We will use the standard method for solving such minimization problems, 

called the method of Lagrange, which will be fully explained. in Chapter 

7. 'rhe procedure is that we form the variation function 

BE BT + 2(B A- I) K 
L 

where K is a matrix of undetermined. constants, called Lagrange multi-

pliers, and we then set 

a Tr(<jl) = 0 
aB 

and. from the peroperties of traces (Appendix E) we have 

so that 

or 

Tr (¢) = Tr (BELBT) + 2 Tr (BAK) - 2Tr (k) 

..:..;a'I=,r'---'-'( B=AK.:;::.:-...c..) rr T - =KA aB 

aTr (K) = 0 
aB 

a'rr ( p) = 
aB 

B - -

But from Equation 6.19 
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B A I Kr AT -1 A = = - EL 

or 

'l' (AT -1 A)-1 K = - EL 

and 

(AT -1 A)-1 AT -1 B = EL EL (6.21) 

finally giving us 

B L (AT -1 A)-1 AT -1 L X = = EL EL (6.22) 

as the minimum variance estimator of X. By comparing Equations 6.6 and 

6.22 we see that the least squares estimator is the minimum variance 

-1 estimator when P=EL . 2 -1 Note that when P=cr0 E1 the equivalence between 

equations 6.22 and 6.6 is still valid, since the variance factor drops 

out of equation 6.6. 

6. l+ THE MAXIMUM LIKELIHOOD POINT ESTIMATOR FOR X 

If the observation errors V have a normal (Gaussian) distribution, 

then their probability density function can be written 

<I>(V) = C exp [- t (V- E[V])T E~l (V- E[VJ)] (6.23) 

where the constant C has been defined in equation 3.26. If 

E [V] = 0 

(6.24) 

It can be seen that the least squares criterion 

Afr _ 1 A 

V E 1 V = minimum (6.25) 
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A 

leads to a maximum probability density <P(V), also called a maximum likeli-

hood. Therefore the estimator X of X which satisfies 6.25 is ealled the 

maximum likelihood estimator of X. 

6.5 UNBIASED POINT ESTIMATOHS FOH THE VAHIANCE FACTOH 

AND 'rHE COV AHIANCE MA'I'RIX OF X 

In this section we will show that unbiased estimators exist for the 

variance factor o~ and the covariance matrix of the unknowns J.:X given by 

A'I' A 

;2 v p v 
= 

0 n-u 
(6.26) 

L:A = ;2 (AT PA)-l 
X 0 

(6.27) 

where 

(6.28) 

The covariance matrix for X is given by 

(6.29) 

If E [V] = 0 we have seen·that X is an unbiased estimator, that is 

A 

E [X] = X (6.30) 

therefore 

( 6. 31) 

Now from Equation 6.6 the expression for X is 

(6.32) 

which can be written 

X = B L (6.33) 
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where 

(6.34} 

From the covariance law we have 

and thus 

(6.40) 

and i:f 

(6.41) 

then 

(6.42) 

and 



Therefore 

(6.44) 

is an unbiased estimator of EX if and only if an unbiased estimator ~; 

of a 2 can be found. We will spend the remainder of this section showing 
0 

that such an unbiased estimator is given by Equation 6.26, that is we 

will show that 

1 
= --n-u 

or 

First we recall the normal equations (Equation 6.5) 

which can be written 

or 

" T 
(AX - L) PA = 0 

and from which 

and 

Based on these relations we now show that 

where 

V=AX-L 

V = AX - L 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 
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We begin by considering 

"'T A ,... T A 

V P V = (AX - L) P(AX - L) 

From Equation 6.49 the first term is zero. From Equation 6.50 the 

second term is XT AT PAX. Therefore 

Next we consider 

VT P V = (AX - L)T P(AX - L) 

(6.55) 

From Equation 6.51 the second term is XT AT PAX. From Equation 6.50 the 

third term is XT AT PAX. Therefore 

"" T T "" = (X - X) A PA(X - X) 

which can be written 

The next step is to prove that the value of the quadratic form 

'·y't. A Y is equal to ·th'e trace· of the product Y YT A, that is-

YT A Y = Trace (Y YT A) 

(6.56) 

(6.57) 

(6.58) 
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The quadratic form 

is a scalar, therefore it is equal to its trace 

T T Tr (Y A Y) = Y A Y. 

From the properties of traces (Appendix E) we see 

J 
so that 

T T Trace (YY A) = Y AY 

Applying this to Equation 6.57 we have 

"'T "' T "' ... T T 
V PV = Trace (VV P) - Trace ((X - X)(X - X) A PA) • (6.59) 

This is true for any weight P. If we define Pas in Equation 6.28 then 

from Equations 6.38 and 6.43 

(6.60} 

and using Equation 6~11F:.Equation 6. 59 becomes 

"'T A T 1 .. A T 1 
V PV = Trace {VV a2I:-V ) - Trace {{X-X){X-X) a2t-... } 

o o -x (6.61) 

and the expected value of this equation is 
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E[~TP~] 02 ( T -1) o2 
A " T 1 

= E[Trace VV EV ] - E[ Trace ((X-X) (X-X) l~ J)J 
0 0 

02 (E[VVTE-1]) - 02 " " T 1 
= Trace Trace (E[(X-X)(X-X) ~ )]) 

0 v 0 

02 T] -1 02 " " T 1 (6.62) = Trace (E[VV EV ) - Trace (E[(X-X)(X-X) J~i 1) . 
0 0 

Therefore if there are n observations and u 

unknowns (taking into consideration Equations 6.11 and 6.31) 

= o2 (Trace I - Trace I ) 
o n u 

= o2 (n - u) 
0 

Therefore the correct P must be used to obtain an unbiased ; 2 , 
0 

(6.63) 

and we have shown Equation 6. 46 .is true, which means that Equation 

6.26 defines an unbiased estimator of o2 , and from Equation 6.44 we see 
0 

that Equation 6.27 defines an unbiased estimator of EX. 

6.6 SUMMARY 

In this Chapter we have shown that for the linear mathematical model 

AX-L=V 

i) the least squares estimator X of X is 

ii) this estimator is unique if (ATPA) is nonsingular 

iii) this estimator is unbiased if E [V] = 0 

iv) this estimator is the minimum variance estimator of X if 
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P = cr2 -1 
o ~L 

v) this estimator is the maximum likelihood estimator of X if V has a 

normal distribution 

vi) the least squares unbiased estimator V of V is 

V=AX-L 

" vii) the least squares unbiased estimator cr2 of the variance factor cr 2 
0 0 

is 

where 

p = (12 L:-1 
o L 

viii)the least squares unbiased estimator L:" of L:" is X X 

where 

p = (12 L:-1 
o L • 
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7. LEAST SQUARES POINT ESTIMATORS: 

NONLINEAR MATHEMATICAL MODELS 

In Chapter 6 we concentrated on demonstrating the statistical sig

nificance of the least squares point estimators under a variety of 

assumptions, and assuming a linear mathematical model. 

Nonlinear mathematical models occur far more frequently than do 

linear models. Therefore in this Chapter the emphasis is shifted to 

considering the steps required to obtain expressions which can be used 

for numerical calculations from nonlinear mathematical models. There 

are three steps: Linearization of the mathematical model; derivation 

of the normal equations from the least squares criterion; and derivation 

of expressions for the least squares point estimators from the normal 

equations. It is only these last expressions which are coded into a 

computer progrrum , or otherwise set up for numerical computation. 

In dealing with nonlinear mathematical models it is usual to specify 

an initial approximation to the solution vector, which we will denote by 

X0 , and then to determine a correction to this value, which we will denote 

by X. We will call the sum of the two the total solution vector 

X = X0 + X (7 .1) 

Similarly we will often want to refer to the sum of the observation 
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vector L and the residual vector V as the total observation vector 

L = L + V . (7.2) 

7.1 LINEARIZING THE MATHEMATICAL MODEL 

Mathematical models expressing the relationship between the total 

observed and solution vectors X and E have the general form 

F(X,L}=o (7.3) 

which is the mathematical model of what is known as the combined method 

for reasons which will soon be clear. The vector function F represents 

r equations relating n observations and u unknowns. The method of least 

squares can be applied only when n + u > r > u. The quantity (r - u) is 

called the redundancy or number of degrees of freedom. 

If the observed quantities can be explicitly expressed as functions 

of the parameters X the mathematical model becomes 

F(X) = E , (7.4) 

and the method is called the parametric method (also called the method 

of observation equations, the method of parametric equations, and the 

method of indirect observational. In this case the vector function F 

represents n equations (one equation per observation), and the redundancy 

is given by (n- u). 

If the mathematical model consists of conditions between the 

observed quantities, that is 

F(L 1 = o , (7. 5) 

then the method is called the condition method (also called the method 

of condition equations, the method of conditional observations, and the 

method of correlates). In this case the vector function F represents 
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(n- u) equations (one equation per degree of freedom). 

Linearization of these models is accomplished by replacing the 

nonlinear functions F by their Taylor's series linear approximation, 

expanded about the point defined by the initial approximation to the 

solution vector (X0 ), and the measured values of the observation vector 

(L). 

For the combined method linearization gives 

F (X, E) = F (X0 , L) + .£!:.. X + .£E V = 0 

ax xo,L aE xo,L 

or 

W + AX + BV = 0 , 

where rWl = F(X0 , L) is called the misclosure vector and 

A r u 

or 

aF =- and B r n = aF are called the design matrices. 
aE xo,L 

For·the parametric method linearization gives 

F (X) - E = F (X0 ) + .£!:.. X - (L + v ) = 0 
ax xo 

W + AX - V = 0 , 

-- aaFxl where w1 = F(X0 ) - Land A 
n · n u xo 

or 

For the condition method linearization gives 

F(L) = F(L) + aF V = 0 
aE 1 

(7.6) 

(7. 7) 
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W + BV = 0 , (7. 8) 

aE L 
where w1 = F(L) and B n-u n-u n 

aF =-

The parametric and condition methods are the classical methods of 

least squares estimation and are special cases of the combined method. 

Many problems can be solved by either method. The condition method has 

two drawbacks. Specifying the (n- uJ conditions to be used is usually 

difficult compared to writing the parametric equations involved. If a 

solution for the unknown parameters are desired, as is usually the case, 

then after the condition method solution is complete, further work must 

be done to obtain this solution. 

On the other hand the condition method requires the solution of 

only (n - u) equations rather than n equations for the parametric method. 

This consideration overrode the drawbacks in the days of hand computations, 

and most least squares work was done by the condition method. However 

with the use of the digital computer the advantage of fewer equations has 

been erased, so now the parametric and more recently the combined methods 

are usually used. The three methods are summarized in the following 

table. 

Combined 

Mathematical Model F(X, E) = 0 

number of equations r 

number of observations n 

number of unknowns u 

linearized math model W+AX+BV = 0 

Parametric 

F(X) - E = 0 

n 

n 

u 

W+AX-V = 
special case 
of combined 
w.ith 

{B = -I 
r = n 

0 

Condition 

F(L) = 0 

n - u 

n 

w+ BV = 0 
special case 
of combined 
with 

{A = 0 
r = n- u 
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7.2 LINEARIZATION EXAMPLES 

In this section we give two examples of mathematical models and 

their linearization: One using the combined method only; one using both 

parametric and condition methods. A third numerical example, using both 

combined and parametric methods is given in section A.2 of the Appendix. 

Example One. This example is the fitting of the "best" straight 

line to a set of data points, using the least squares criterion. The 

combined method is the only one which can be used. The mathematical 

model 

y. = mx. + b 
]. J.. 

relates r sets of observed coordinates (xi, yi) to a straight line with 

slope m and intercept b. There are r equations, n = 2r observations, and 

2 unknowns. The total solution vector is 

;l.xl = X0 + X 

the total observation vector 

E = L + v = 
1T I 

m mo 

= = 
b bo 

is 

xl xl 

yl yl 

= 

-X X r r 

y 
r 

m 

+ 

b 

vl 

v2 

+ 

and the combined method mathematical model consists of r equations like 

f.(x, E)= i i. + b- ~- = o 
]. ]. ]. 
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which, after linearizing about CX0 ' L) becomes 

AX+ BV+W=O 

where 

xl 1 

rA2 = 

X 1 r 

[:0 -1 0 

-~] B = r 2r 0 mo 

and 

m0 x 1 
+ bo - y 

Example Two. This example illustrates the use of both parametric 

and condition methods. The triangle ABC has known points A and B at 

(0, 0) and (:xg, 0) and unknown point Cat (xc, yc). The three interior 

angles of' the triangle are measured. 
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The total solution vector is 

X X X 
c 0 

x = X0 + X = = + 
:tl -

yc yo y 

the total observation vector is 

-
a.l a.l vl 

E L + V -= = ().2 = ().2 + v2 3 I 
-
~3 ().3 v3 

and the parametric equations are 

a.l = arctan <Y./ic) 

().2 = arctan cY/(xB x ) ) 
c 

- CX.c!Y. c) + arctan((xB- xJ/yc) ().3 = arctan 

which, when linearized about (X0 , L) becomes 

V=.AX+W 

where 

-y X 
0 0 

2+ 2 
xo Yo 

2+ 2 
xo Yo 

Yo x -x 

3A2.= 
B o 

2 2 2 2 
(xB-x ) + y (xB-x ) + y 

0 0 0 0 

Yo Yo -x (xB-xo) 
0 

2+ 2 2 + 2 2 2 2 + 2 
xo Yo (xB-xo) Yo X +y (xB-xo) Yo 0 0 

and 
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'· 1 - arctan (Y o/fvB-x \) - a 2 3wl - ~- Ci 

arctan (xo/y } + arctan «-B-xd/y ) - a 3 0 0 

Applying the condition method, there is only (n - u) -· (3 - 2) = 1 

condition which is 

or 

where 

and 

BV + W = 0 , 

B = [1 
I 3 1 1] 

Note however that once this has been solved for V we will still have no 

knowledge of X. 

7. 3 DERIVATION OF 'rifE NORMAL EQUATIONS 

'l'he normal equations express the relationship between the least 

squares estimators X of the solution vector X and V of the residual 

vector V (and as we shall soon see the estimator K of the vector of 

Lagrange multipliers K) and the known quantities P, A, B and W. The 

normal equations result from applying the least squares criterion 

(7.9) 

to the linearized mathematical model, which for the general case in thj.s 
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Chapter is the cvmbined method 

AX + BV + W = 0 . (7.10) 

Mathematically this is called the extremal problem with constraints; 

that is we wish to find an extremum (a maximum or minimum value) for one 

function when the variables are related to each other by other functions. 

The standard method for handling such problems is called Lagrange's 

method. We will describe this method using a simple two dimensional 

example. 

Suppose we want to minimize the function 

(7.11) 

subject to the constraint 

f 0 (x, y) = ax + by + c = 0 . 
c. 

(7.12) 

Applying Lagrange's method we perform three steps: 

i) form the variation function 

where k is an undetermined constant called the Lagrange multiplier. 

ii) set the derivatives of thevariation function to zero 

.E.! = ax 2ax + ka = 0 and ~- 2by + kb = 0 

iii) solve the three equations 

t' 1 x y)=Cl 2\ ' 

for the three unknowns x, y, k. 

::1,h 
.:::..:t:. = 0 ax 

aq, 
'- = 0 ay 

The point (x, y) so determined is an extreme point of f 1 (x, y}. The 
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value of k so determined is closely related to the value of f 1 (x, y) 

at the extreme point. For our example the. solution is 

-c -c 2c 
x= ,y= ,k=--a+b a+b a+b 

Let us interpret this process geometrically. The first function 

(Equation 7-ll) is a family of ellipses, and the second function 

(Equation 7.12) is a single straight line. What we have done is to find 

the particular ellipse which just touches the straight line, and the 

solution (x, y) is the point of tangency between the ellipse and the 

straight line, as shown in Figure 7.1. 

so/u.hol'l. 
potttt 

Figure. 7 .l 

Extending this method to the combined case we want to minimize the 

· function 

subject to the r constraints (because we haver equations) 

AX + BV + W = 0 . (7.13) 

" " Geometrically we want to find the solution point (X, V) in hyperspace 

which is the point -of tangency between one of the family of hyperellipsoids 
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defined by 

"T " 
V PV = constant 

and the hyperplane defined by Equation 7.13. 

Following the same procedure as in the simple example above, we 

form the variation function 

where K is the least squares estimator of K, a column vector of r Lagrange 

multipliers, and has been multiplied by a factor 2 for convenience. 

Setting the derivatives of ~ with respect to X and V to zero we have 

it = 2VT p + 2KT B = 0 
av 

which, when transposed and divided by 2 becomes 

and 

p v + BT K = 0 

~ =2KTA=O, 
ax 

which when transposed and divided by 2 becomes 

We now want to find a simultaneous solution of. the three equations 

AX+BV+W=O 

PV + BT K = 0 

AT K = 0 

(7.15) 

(7.16) 

for X, V and K. These three equations can be combined into the single 

hypermatrix equation (a hypermatrix being a matrix whose elements are 

themselves matrices) 



p 

B 

0 

b 

A 

0 
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v 

K + 

X 

0 

w 

0 

= 0 . (7 .17) 

This hypermatrix equation represents the normal equations for the combined 

method in their most expanded form. For the parametric method B and BT 

are replaced by -I to get the normal equations in hypermatrix form 

p 

-I 

0 

0 

A 

0 

v 

K 

X 

+ 

0 

w 

0 

= 0 . (7.18) 

For the condition method A = 0, which reduces the normal equations to 

(7.19) 

Note that in all three cases the hypercoefficient matrix has been con

structed to be symmetric, with a nonsingular upper left element. This 

is a necessary condition on the structure of the hypercoefficient matrix. 

It would be possible (for small problems at least) merely to program 

this one equation directly to solve for X, K, and V as partitions of the 

hypersolution vector (for the combined case} 

v 

K 

X 

=-

p 

B 

0 

0 

A 

0 

-1 0 

w 

0 

(7.20) 

However, the time required to invert matrices goes up as the cube of 

their size, so it always is more efficient to invert the smallest 

possible matrix, not the largest as we have here. Also this hyper-
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coefficient matrix consists in large part of zero elements, the storage 

of which in a computer is unnecessarily wasteful. Therefore in the next 

section we will derive more explicit expressions for the solutions for 

X, K and V. 

7.4 DERIVATION OF EXPLICIT EXPRESSIONS FOR 

THE SOLUTION TO THE NORMAL EQUATIONS 

In this section we will derive expressions for the estimator X of 

the solution vector X, the estimator K of the vector of Lagrange multi

pliers K, and the estimator V of the residual vector V. We start with 

the hypermatrix equation 7.17, treat the hypercoefficient matrix as a 

partitioned matrix, and use the rules for inverting partitioned matrices 

to eliminate V and K from the solution. Once an expression for X is 

obtained it is back-substituted to obtain expressions for K and V. This 

procedure is equivalent to the more familiar elimination and back-sub

stitution technique which does not use hypermatrices. However the 

approach used here is a standard step by step procedure which will be of 

great advantage when we consider more complicated mathematical models in 

Chapter 9. 

The hypermatrix Equation 7.17 

p BT 0 v 0 

B 0 A K + w = 0 (7.21) 

0 AT 0 X 0 

is of the form 

NY + u = 0 ' 

''Which :"can -be -part-itioned 
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[::] 
+ 

[ ::] = 0. 
(7.22) 

The two matrix equations can be stated separately 

(7.23) 

(7.24) 

If N1i :.'is nonsingular, then from Equation 7. 23 

and elimin?-ting Y1 from Equation 7.24 

or 

(7.25) 

To eliminate V we partition hypermatrix Equation 7.21 so that 

p I BT 0 v 0 
------------- A 

B 0 A K + w = 0 . 
0 I ·r 

A 0 X 0 
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Then from Equation 7.25 

0] 

= 0 ' 

or 

(7.26) 

To eliminate K we partition hypermatrix Equation 7.26 so that 

y = K 
l 

Then from Equation 7.25 

or 

h 

[-~-) + t] = 0 . 

The first equation from hypermatrix Equation 7.26 is 

from which 

The first equation from hypermatrix Equation 7.21 is 

from which 

(7.27a) 

(7. 27b) 
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v = - (7 .27c) 

Equations 7.27 are the expressions for the least squares estimators 

using the combined method. For the parametric method B = - I, therefore 

equations 7.27 become 

A 

K = P (AX + W) (7.28) 

1" " 
V = P- K = AX + W 

For the condition method A= 0, therefore Equations 7.27b and 7.27c 

become 

(7.29) 

These solutions for X and V must be added to the initial approx-

imation X0 and measured values L to obtain estimates of the total 

solution vector 

" 
X = X0 + X (7. 30) 

and the total observation vector 

" E = L + v (7.31) 

7.5 DERIVATION OF EXPRESSIONS FOR COVARIANCE MATRICES 

In this section we will apply the covariance law (Equation 2.23) to 

derive expressions for the covariance matrices of the random variables 

W, X, K, V, given the covariance matrix ~L for the observations L. 

From the definition of the misclosure vector W, the design matrix 

B, and the total observation vector E 
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W = F (X0 , 1 ). 

B 
aF = 
aL X0 ,L 

E = L + V , 

it is obvious that from the covariance law 

where 

B . 

Therefore 

E = B E BT ·I W · L . 
(7.32) 

From Equation 7-27a 

and therefore from the covariance law 

where 

and 

Therefore 
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which cancels to become 

!:"' = 
X 

(. T(·· T)-1 )-1 A BE1B A . (7.33) 

From Equations 7-27b 
A 

K = G*(AX + W) 

and therefore from the covariance law 

where 

CK = C* (ACX + I ) 

= · o~(BrLBT)-l[I- A(AT(B rLBT)-1A)-l AT(BrLBT)-~ . 

Therefore, after simplifying 

From Equation 7-27c 

A -1 T "' 
V = - P B K 

therefore from the covariance law 

or 

(7.34) 



119 

(7.35) 

Setting 

in Equations 7.32, 7.33 and 7.35 

(7. 36a) 

(7. 36b) 

l:V = cr~P-lBT(BP-1BT)-1 [ BP-1 - A(AT(BP-1BT)-1A)-1AT(BP-1BT)-1BP-~ 
(7. 36c) 

Recalling the discussion of section 6.5, equations 7.36 become 

unbiased estimators only when the a priori variance factor cr2 is 
0 

replaced by the unbiased estimator 

where v is the number of degrees of freedom. 

For the parametric method B =-I and Equationr7.36 become 

l: = a2 -1 p 
w 0 

l:" = a2 (AT p A)-1 
X 0 

l:" = a2 (P-l - A(ATP A)-lAT) . v 0 

For the condition method A= 0 and Equations 7.36 become 

(7.37a) 

(7. 37b) 

(7.37c) 
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(7.38a) 

(7. 38b) 
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8. MUL'l'IVARIATl!~ INTERVAL ESTIMATION AND HYPOTHESIS TESTING 

8.1 INTRODUCTION 

In Chapter 5 we treated the problem of univariate interval 

estimation which involved population distribution functions containing 

only one random variable. In this Chapter we treat multivariate interva.l 

es'tirJ.ation, which is an extension of the univariate concept to include 

population distr::Lbution functions containing· several random variables. 

Multivariate point estimation was discussed in detail in Chapters 6 

and 7. An example of this type of problem is the solution for the 

coordinates of points in a network containing a redundant set of obser-

vations among the points. On· the other hand, multivariate interval 

estimation involves these man~-· points or the determination of a confidence 

region for these points taken all together, taken in groups, or considered 

one at a time (for example, an error ellipse about a point in two dimensions, 

or an error ellipsoid. for a point in three dimensions). We will develop 

confidence regions for the following quantities (assuming the observations 

to be normally distributed): 

1) 

2) 

3) 

the variance factor cr 2 
o' 

ratio of two variance factors - (cr~)2 /(cr~) 1 , 

the quadratic form for 1 deviations from the estimated solution 

vector X when the variance factor is known: 
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(X - X}T ~l (:X - X) , 

4) the quadratic form for the deviations from the estimated 

" solution vector X when the variance factor· ie not known: 
' 

,... m ,., 1 ,.. 
T(X- X).L t:i (X- X)]/u • 

Before we begin the Chapter proper, a brief statement on quadratic 

forms is in order [Wells 1971, pp. 36-40]. A quadratic form is presented 

by 

where 

X = k 
lxu uxu uxl 

X 
uxl 

= 

X 
u 

is a uxl vector of random variables, A is a uxu symmetric matrix, and 

k is the value of the quadratic form. The quadratic form can be taken 

as the equation of an ellipsoid in u dimensions; this aspect will receive 

special attention in Section 8.5. 

8.2 EXAMINATION OF THE VARIANCE FACTOR 

The variance factor, cr2 can be examined in terms of the estimated 
0 

residual vector V and weights P. Recall the relationship of the 

covariance (;) and weight (P) matrices, namely 

" ,..2 p-1 
L..L. = v 0 

and 
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The estimated variance factor o2 is computed from 
0 

o2 :;,Tpy 
= 

0 \) 

A 

where V is the estimated residual vector and v is the degrees of freedom. 

Recall for the'univariate case with known mean~ (Section 4.6) that 

n x.-~ 2 
}:; ( __ :L_) Q: X 2 ( n) 
l cr .. 

Note that the number of observations n equals the degrees of freedom. 

With unknown mean, that is x taken as an estimator of~' the random 

variable 

- l. 
2 n r-· -x) d (n-1) ~ = }:; _:t_ + x2 (n-l) 

cr 2 l a 
8-l 

Note in this case that the degrees of freedom is n-1 instead of n as 

the degrees of freedom have been reduced by one due to the fact that ~ 

is unknown and is estimated by x. 
For the multivariate case, u unknown parameters are to be estimated, 

that is 

AT [A X = X 
1xU.. 1 

A 

x2 ••••• x J 
u 

The combined and parametric cases are used ,as the estimation technique; 

in the combined case of r equations, the degrees of freedom v = r-u, 

while in the parametric case v = n-u. 

The probability statement for the above chi-square random variable 

is 
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= Ct 

while the associated confidence interval for a2 is 
0 

\)~2 
0 

The bounds of the interval are evaluated from: 

the known degrees of freedom\), 

8-3 

1) 

2) 

3) 

the computed value of the estimated variance factor cr 2 , 
0 

the tabulated values of x2p1 and x2p2 (Appendix B-2) 

corresponding t. 1-a. I u< 
toX(\)),P1 = 2 and P2 = 2. 

The above confidence interval is used to test the null hypothesis 

The relevance of the above relate& to the choice of the weight matrix, 

that is P, = 2 -1 If a0 is taken as unity then P = EL Hypothesized 

values of a 2 may be made which implies a change of scale of the covariance 
0 

matrix It should be noted that rejection of H 
0 

could be due to phenomena other than the incorrect scale of the covariance 

matrix, that is 

l) shortcomings in the mathematical model, 

2) non-normal distribution of the random variables in the 

residual vector. 

The above two items can also be treated as null hypotheses-of course 
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keeping in mind that it is only possible to test one at a time. 

A2 AT A 
The confidence interval can as well be written for 0 or V PV as 

0 

follows: 

02 02 
2 0 < ~2 < x2 _9.] 8-4 X P1 \) - 0 - P2 \) 

x2 02 < VTPV < 2 02 
pl 0 - X P2 0 

8.3 EXA~INATION OF THE RATIO OF TWO VARIANCE FACTORS 

The ratio of two variance factors (0~) 2 /(0~) 1 can be examined in 

terms of two sets of estimated residuals: (a) vl with a nlxnl weight 

matrix 

{ ~~ _, 
pl = \~.J, [l., ' 

where [Land (02 ) are the covariance matrix and variance factor respect-
1 0 1 

ively for measurement set one, (b) v2 with a n2xn2 weight matrix 

where [l and ( a2 ) .are the covariance matrix and variance factor, 
" 0 2 

respectively for measurement set two. 

Recall from section 5.11 for the univariate case that 

d 
-+ 
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For the multivariate case in which u unknown parameters are to be 

estimated, the statistic of interest is 

( a2-) 
0 1 

= 
I (a2 ) 

0 l 

I (a2 ) 
0 2 

parametric and combined cases, respectively. 

d 
-)-

The probability· statement invo.l·ving the above random variable is 

(~2) I (a2) 
Pr ( F p l < _O~l=--------=-O_].._ 2_ F P2) 

- ( &2) I ( a2) 
0 2 0 2 

== a 

with associated confidence interval for (a 2 )21(a2 ) being 
0 Ol 

< F 
-- P2 

(o;)l 

1'he bounds of the interval are evaluated from: 

8-5 

8-6 

1) the computed values of the hro estimated variance faetors 

( ~ 2 ) and (cr 2 ) 
l 0 2 ' 0 -

2) the tabulated value of Fpl and Fp2 (Appendix B-4) corresponding 

l + a 
2 

~~he null hypothesis to be tested is 

H • 
0. == 

8 .l1 EXAMINATION OF DEVTATIONS FROM THE ESTIMATED SOLUTION 

VEC'rOR. X \-lEEN THE VARIP.NCF FACTOR IS Kl\TOVJN 

We can test deviations from the least squares estimate X of the 
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parameters)(.These deviations are represented as the difference between 

the two uxl vectors, X-X. The quadratic form (see Sections 3.1.6 and 4.10). 

~ T -1 A d 
(X-X) ~X (X-X) + x2 ( u) • 

Note that the variance factor o2 is assumed known since 
0 

where ~ is the weight coefficient matrix computed from the design and 

weight matrices. In the next section, we will introduce a test where 

o2 need not be known, that is its estimatecr2 is used. 
0 0 

The probability statement is 

The associated confidence region is simply the arglli~ent of the 

probability statement whose bound is the tabulated value 

(Appendix B-2) corresponding to x2(u) and p = a. 

The null hypothesis is 

that is if the computed value 

8-7 

then the null ~ypothesis is rejected. 

8.5 EXAMINATION OF DEV!ATIO~S FROM TrP ESTIMATYD SOLUTION 

VECTOR X WHEN THE VARIANCE FACTOR IS NOT KNOWN 

A 

The estimated solution vector X can be examined even when the 

variance factpr o2 is not known, that is only the relative variances 
0 
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of the measurements need be known and not the absolute variances. lve 

will use the relations: 

,., 

EX = o~ QX and EX = cr~ ~ 
below. 

The ratio of two chi-squared random variables divided by their 

respective degrees of freedom dE;!fines the F-statistic we need, namely 

,., )T -1 (A ) 
(X-X E..-.. X-X /u 2 ( ) 

~ Q: X u /u Q: F (u, v) 
x2 (v)/v 

and after simplifying the first ratio we get 

(X-X) T~/cr;) Q~1 (X-X)/u (x-xr ~1 (X-X) a2 
0 1 = --

u Az cr2 

(:n 
cr 

0 0 

A rA-I(A ) (X-X EX X-X d 
= -+ :F(u., V) 

u 

The probability statement involving the above random variable is 

Uc-x)T f.~1 (x-x) 
Pr ( 0 ~ ------"...._ __ 

u 
< F ) = a. 
- p 

while the associated confidence region is given by 

(X-X)T ~~1 (X-X) 
[OS < F ] . 

u - p 

8-8 

8-9 

The bound of the region is computed by table look-up of F (Appendix B-4) 
p 

corresponding to F(u,v) and p = ct. The limits of this confidence region are given 

by the equation of the hyper-ellipsoid, 

A T A-1 A I (X-X) EX: (X-X) = ll. Fp , 8-10 
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vrhere \1 Fp is the constant of the hyper-ellipsoid. Note 1-a is the probability 

that this region does not include the true value X. 

If the origin of coordinate system is translated to correspond to 
A 

the position described by the vector X, then the above equation becomes 

&.l,F 
p 

In t>w dimensions u = 2 and 

is 

is 

ol 

E~ 1 X 
2x2 2xl 

.0 12 

= 2 F p 

[ '2 'r [:j [xl x2] 
021 

At 
o2 

the equation of an ellipse. 

Similarly in three dimensions 

XT E-1 X = 3 Fp x 
lx3 3x3 3xl 

A2 
_, 

ol 0 12 ol3 

[xl x2 x3] 0 21 
A2 
o2 0 23 

" 1\ A2 
0 31 0 32 o3 

xl 

x2 

x3 

the equation of a tri-axial ellipsoid. Note 

8-ll 

= 2 Fp 8-12 

= 3 Fp 8-13 

that in the above two 

examples, the equations will contain cross product terms since the off 

diagonal elements are non zero. An equation without cross product 

terms can be found by rotating the coordinate system through a special 

angle e, where e is computed from the components of one of the eigen 

vectors [Wells 1971]. The eigenvectors give the direction of maximum 

and minimum variances, the latter are the eigen values. For example 

after performing the eigen value problem on the two dimensional case 
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above, the e~uation for the limits of the confidence region is given by 

the equation 

0 
-1 

8-14 

where (y1 ,y2 ) lie along the axes of the rotated coordinate system defined 

by the eigenvectors of tx" . 

To summarize the results for this confidence region, first the origin 

of the coordinate system was translated to the position given by the 

vector X, and secondly this coordinate system was rotated uhrough an 

angle e, given by the eigen vectors. Tests of hypothesis are made by 

considering the null hypothesis . 

H0 : X = Xu 

that is, if the computed value 

then the null hypothesis is rejected. 

8. 6 StJ1.ft-1ARY OF MULTIVARIATE CONFIDENCE REGIONS 

Table 8-1. summarizes t.he multivariate .c.onfidence regions 

discussed in this Chapter. The first column of the table gives the 

quantity examined, the second indicates whether the variance factor is 

assumed known, the third gives the statistic or random variable upon 

which the confidence region is based, and finally the fourth column 

gives the confidence region itself. 



Quantity 
Examined 

variance 
factor 

a2 
0 

(Section 8.2) 

ratio of two 
variances 
(a~) 2 /(a;)1 , 

(Section 8.3) 

deviations 
from estimated 
\?olution vector 
X 
(Section 8.4) 

deviations fron 
estimated 
solution 

A 

vector X 
(Section 8.5) 

Table 8-1. Summary of Multivariate Confidence Regions 

a2 
0 Known 

under 
hypothesis 

ratio 
under 

hypothesis 

yes 

no 

Statistic 

vTL~1v ~ x2(v) 

(;2) /(a2) 
0 1 0 1 

(02) /(a2) 
0 2 0 2 

~ F (vl' v2) 

A T -1 (A ) d 2( ) (X-X) LX X-X ~ X u 

A T A ... A 

(X-X) EX(X-X) 
~ F (u,v) 

u 

Confidence Region 

v&2 v&2 
[ ___Q_ < a 2 < ____2.. ] 

2- o-- 2 
XP2 Xpl 

( ;2) (a~) 2 
0 2 < --. 

[FP1(""2) - (a2)1 
ao 1 o 

.S.. FP2 

(;2) 
-~] 
IA2) 
~ao 1 

A T -1 A 2 
(0 < (X-Y:.) z:,.. (X-XH)~X ) 

- ."H X P 

(x-x.l i::;:1 (x-x.t> 
[0 .::_ X 

u 
< F ] 
- p 

'• 

1-' 
w 
1-' 
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9. PARTITIONING THE MATHEMATICAL MODEL 

Not all problems in least squares estimation can be conveniently 

represented by the combined method mathematical model of Chapter 7 

F(X, E) = o . 

The additions to this model which can and have been made are 

innumerable. These "additions" are in fact really different schemes for 

partitioning the above mathematical model. In this Chapter we will 

consider four of these partitioning schemes, and subject each to the 

three steps of Chapter 7: Linearization, formation of the normal 

equations, and derivations of expressions for estimators. 

We will illustrate the use of each of these four additions by con

sidering their application in positioning by satellite. We will assume 

that observations L have been made on satellites from one or more ground 

stations by some means which we need not specify here. These observations 

are related both to the ground station coordinates and to the satellite 

coordinates, which together make up the elements of X. 

9.1 ELIMINATION OF "NUISANCE" PARAMETERS 

If we are not particularly interested in the satellite coordinates, 
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except for their role in determining the ground station coordinates, we 

refer to them as "nuisance" parameters. We want to eliminate them from 

the solution, so we partition X into the ground station coordinates, 

denoted by x1 , and the satellite coordinates, denoted by x2. Then our 

mathematical model is 

F(x1 , x2, 1) = 0 

where 

xl = xo + xl 1 

x2 = xo + x2 2 

1 = L + v 

and the observations L have weight matrix 

p = a2 -1 
0 ~L 

We linearize by replacing F(Xl' x2, L) by its Taylor's series linear 

approximation, expanded about the initial approximations X~ and X~ and 

the observed values L. 

v = 0 

or 

(9.2) 

where the misclosure vector W = F(X~, X~, L) and the design matrices 

, and B = aF 

This mathematical model is equivalent to partitioning the A matrix 
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and X vector in the linearized combined method mathematical model 

W + A X + B V = 0 
I 

such that A = [A~A2 ] X = [ ~;l and AJ!-1 and A2f-2 are conformable for 
' 

multiplication. 

The normal equations are derived by setting 

"T " 
V P V = minimum 

under the constraint 

The variation function is 

where K is the estimator for the vector of Lagrange multipliers. 

Setting the derivatives of ~ to zero we have: 

or 

or 

or 

~ = 2VT p + 2KT B = 0 
av 

" T " 
P V + B K = 0 

= 0 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 
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The normal equations are 

p BT 0 0 v 0 

B 0 A2 Al K w 

0 AT 0 2 

+ = 0 ' (9.8) 
0 x2 0 

0 AT 
1 

0 0 X 0 

which can again be seen to be a partitioned version of the normal equations 

for the combined method 

p 0 v 0 

B 0 A K + W = 0 

0 0 X 0 

Eliminating V from Equation 9.8 by the methods of Chapter 7 

-BP-lBT A2 Al K w 

AT 
2 0 0 X + 0 = 0 (9.9) 

AT 
1 0 0 xl 0 

Eliminating K from Equation 9.9 

A~(BP-lBT)-1A2 AT(BP-lBT)-lA 
2 1 x2 AT (BP-lBT)-lW 

2 

+ = 0. (9.10) 
AT(BP-lBT)-lA 

1 2 
AT(BP-lBT)-lA 

1 1 xl AT (BP-lBT )-lW 
1 

Rewriting Equation 9.10 in simpler notation 

N22 N21 x2 u2 
+ = 0 (9.11) 

Nl2 Nll xl ul 
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where 

Eliminating x2 from Equation 9.11 

(9.12) 

From the first of Equations 9.11 

or 

(9.13) 

From the first of equations 9.9 

or 

(9.14) 

F.rom the first of equations 9. 8 

p v + BT K = 0 

or 

(9.15) 

The estimators for the total solution vectors are given by 
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9.2 ADDITIONAL OBSERVATIONS 

If both ground and satellite coordinates are of interest then the 

mathematical model is again 

F(X' E) = 0 

However let us assume that we have two sets of observations from the same 

ground stations. These may be separated by time ("old" and "new" 

observations) or by technique (two different kinds of observations). The 

mathematical model now is 

where 

Fl(X, El) = 0 

F2(X, E2) = 0 

X = X0 + X 

and the observations 11 have weight matrix P1 

P = a2 ~-l 
2 o L 

2 

= ~ 2 ~-l d L h v 0 u 1 an 2 ave 
l 

by their Taylor's series linear approximations, expanded about the 

initial approximation X0 and the observed values 11 and 12 

aF 
= F (X0 , L ) + __l 

l l ax aEl xo L 
' l 

(9.16) 
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or 

the design matrices 

aEl xo L 
' l 

0 , 

(9.17) 

This mathematical model is e~uivalent to partitioning the A and B 

matrices in the mathematical model 

W + AX + BV = 0 , 

so that 

and V, W, and P must also be partitioned, giving 

-- [pl OJ ' = 0 ' p 
0 p2 

which is the same as E~uations 9.17. 
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The normal equations are derived by setting 

(9.18) 

under the constraints 

(9.19) 

The variation function is 

where K = [ ~] is the estimator for the Lagrange multipliers. 

Then 

or 

(9.20) 

or 

(9.21) 
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or 

Ais + 
T" 

0 (9.22) A2K2 = . 

The normal equations are 

pl 0 BT 
1 0 0 vl 0 

0 p2 0 BT 
2 0 v2 0 

Bl 0 0 0 Al Kl + wl = 0 (9.23) 

0 B2 0 0 A2 K2 w2 

0 0 AT 
1 

AT 
2 0 X 0 

which are a partitioned version of the normal equations for the combined 

method of Chapter 7. 

Eliminating V1 from Equation 9. 23. 

p2 0 BT 
2 0 v2 0 

0 
-1 T 

-BlPl Bl 0 Al Kl wl 
+ = 0 (9.24) 

B2 0 0 A2 K2 w2 

0 AT 
1 

AT 
2 0 X 0 

Eliminating v 2 from Equation 9. 24 

-1 T 
-BlPl Bl 0 Al Kl wl 

0 
-1 T 

A2 K2 w2 0 • (9.25) -B2P2 B2 + = 

AT 
1 

AT 
2 0 X 0 
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Eliminating K1 from Equation 9·25 

= 0 . 

(9.26) 
Eliminating K2 from Equation 9.26 

or 

( 9. 27) 

From the first Equation of 9.26 

(9.28) 

From the first Equation of 9.25 

(9. 29) 

From the first Equation of 9.23 

( 9. 30) 

From the first Equation of 9.2~ 

(9. 31) 
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The estimator for the total solution vector is 

" X = X0 + X (9. 32) 

9.3 ADDITIONAL CONSTRAINTS BETWEEN UNKNOWN PARAMETERS 

Assume we have knowledge of some relationship between the unknown 

parameters other than that contained in the mathematical model 

F(X, E) = o 

(for example we know that the satellite coordinates all fall on an 

elliptical trajectory). If this relationship is represented by a math-

ematical model 

F(X) = o 

then the complete relationship between X and E is specified 

where 

Fl(X, E)= 0 

F2 (X) = o 

X = X0 + X 

E = L + v 

2 -1 and the observations L have weight matrix P = cr0 ~L • 

(9.33) 

We linearize both F1 (x, E) and F2 (x) by replacing them by their 

Taylor's series linear approximations, expanded about the initial 

approximation X0 and the observed values L 

aF 
F1 (x, E)= F1 (X0 , L) + _1 

ax 
v = 0 

aE 



143 

X = 0 

or 

(9.34) 

where the misclosure vectors w1 = F1 (X0 , L) and w2 = F2 (X0 ) and the 

design matrices 

, and B 

This mathematical model is equivalent to partitioning the A matrix 

in the mathematical model 

W + AX + BV = 0 

so that 
B 0 

A = and setting B = 
A2 0 0 

and W must be also partitioned, giving 

which is the same as Equations 9.34 

The normal equations are derived by setting 

AT A 
V PV = minimum (9.35) 

under the constraints 



(9.36) 

'l'he variation function is 

where K -· [~ll is the estimator for the Lagrange multipliers. 

K2J 

or 

(9.37) 

or 

(9.38) 

The normal equations are 

p BT 0 0 v 0 

B 0 Al 0 Kl wl 

AT AT + = 0 (9.39) 
0 

1 
0 2 

X 0 

0 0 A 
2 

0 K2 J w2 

whieh are a partitioned version of the normal equation for the combined 



method of Chapter 7. 

Eliminating V from Equation 9-39 

-BP-lBT Al 0 Kl wl 

AT T 
0 A2 X + 0 = 0 . 

1 ( 9. 40) 

0 A2 0 K2 w 

Eliminating K1 from Equation 9.40 

[
AT(BP-lBT)-lA 

1 1 

A2 

Eliminating X from Equation 9.41 

- A (AT(BP-lBT)-lA )-lATK + 
2 1 1 2 2 

(W2 - A2 (A~(BP-lBT)-1A1 )-lA~(BP-lBT)-~1 ) = 0 , 

or 

K = (A (AT(BP-1BT)-1A )-1AT)-1 {w -A (AT(BP-lBT)-1A )-lAT)BP-lBT)-~) 
2 2 1 1 2 2 2 1 1 1 1 . 

From the first Equation in 9.41 
(9.42) 

(9.43) 

From the first Equation in 9.40 

(9.44) 

From the first Equation in 9. 39 
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The estimator for the total solution vector is 

A 

X = X0 + X . (9.46) 

9.4 WEIGHTING UNKNOWN PARAMETERS 

One tacit assumption which we have made all through these notes is 

that the mathematical model itself is complete - that is it perfectly 

represents the relationship between the unknown parameters and the 

observations. In many simpler and well established applications of least 

squares estimation this is no doubt true. However for very complex 

relationships, and particularly in new applications where the relation-

ships may not yet be fully known, this is not a valid assumption to make. 

For example in the previous section we assumed that satellites follow an 

elliptical trajectory. In fact the trajectory is only approximated by 

an ellipse, so that in this case our mathematical model was incomplete. 

One way in which to incorporate this uncertainty into the least 

squares estimation process is to treat the unknown parameters not as 

completely unknown, but as partially known. That is our "initial 

approximation" X0 is no longer the arbitrary thing it used to be, but 

is now a "preliminary estimate". And rather than having infinite a 

priori variances, we assign a priori variances to 

this preliminary estimate X0 , which reflect the uncertainties we feel 

might exist in the mathematical model. What this accomplishes in effect 

is to assert that the resulting least squares estimates for the unknown 

parameters must fall within the limits specified by these variances of 

the preliminary estimate. In other words the unknowns have become 
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"pseudo-measurements". 

In practice this means that our mathematical model 

F(X, L). = 0 ' 

where 

X = X0 + X 

E = L + v 

will have a linearized form 

W + AX + BV = 0 , (9.48) 

but that the "residual vector" is now 

and the weight matrix is now 

where 

and 

( E xobeing the a priori covariance matrix of the unknowns ) . 

This mathematical model is equivalent to partitioning the B matrix 

in the condition method mathematical model 

W + BV = 0 

so that 

B = [B A] 

and 



148 

W + [B A] [~]=0 

The normal equations are derived by setting 

under the constraint 

W + AX + BV = 0 (9.50) 

The variation function is 

·where K is the estimator for the Lagrange multipliers. 

Then 

or 

(9.51) 

or 

(9.52) 

'I'he normal equations are 
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0 v 0 

0 X + 0 = 0 ' (9.53) 

B A 0 K w 

which are a partitioned version of the normal eQuation for the condition 

method of Chapter 7. 

Eliminating V from EQuation 9.53 

(9.54) 

Eliminating X from EQuation 9.54 

or 

(9.55) 

From the first of EQuation 9.54 

X - - (9.56) 

From the first of EQuation 9.53 

v - - ( 9. 57) 

These expressions are unsatisfactory however, because they should reduce 

to the simpler expressions for unweighted parameters by merely setting 

Px = 0. 

However in that case PX is -1 
singular and PX does not exist. There-

fore we will reformulate the normal eQuations in such a way that our 
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expressions will not 
-1 

include PX , that is 

Pv 
BT 0 v 0 

B 0 A K + w = 0 (9.58) 

0 AT 
Px X 0 

Eliminating V from Equation 9.58 

(9.59) 

Eliminating K from Equation 9.59 

or 

(9.60) 

and 

(9.61) 

v - -

and the final· estimator for the weighted·solution 'V"ecto:r> is 

(9.63) 
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10. ST.EP BY STEP LEAS'r SQUARES .ESTD1ATION 

As mentioned in Chapter 1, even the largest fastest digital 

computer is incapable of simultaneously solving systems ·which may 

incorporate several thousand equations. In this Chapter, the problem 

of chopping a large system into smaller systems is discussed. We will 

take it for granted that any chopping scheme must yield the same final 

re~mlt as would have been obtained from a simultaneous solution. 

Step by step least squares estimation is not a new concept [see for 

example Tobey 1930; Tienstra 1956; Schmid and Schmid 1.965; and Kalman 

1960]. It has gone under many names, some of which are differential 

a<hi_1:!stm~nt, phased adj~lstment, seguential adjustment and Kalman filtering. 

There are differences :in detail between some of these methods, but 

basically they all involve the derivation of expressions for the current 

least squares estimate i.n terms of the previous estimate plus a 

"correction" term, using the rules of matrix partitioning. 

In this Chapter, we will not attempt to be exhaustive, but will 

derive a sequential expression for the solution vector X following 

Kraki wsky [ 1968]. 'ire will then show this result to be equivalent to 

the Kalman filter equations for the case where the unknown parameters 

are not time variable. 
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10.1 SEQUENTIAL LEAST SQUARES EXPRESSIONS 

We will consider the parametric mathematical model 

F(X) - E = 0 

which when linearized becomes 

AX - V + W = 0 

Applying the least squares criterion 

we obtain the normal equations 

p -I 0 0 

... 
-I A K w = 0 10-1 

0 0 X 0 

We now partition the system into the previous set of equations 

(quantities subscripted k-1) and those that have just been added to 

obtain the current estimate (quantities subscripted k). Note that P, A, 

W, V and K are partitioned because there are new observations and thus 

... 
new equations, however X is not partitioned because it is assumed that 

the new observations are related to the same parameters. 

0 -I 0 

0 0 -I 

-I 0 0 

0 -I 0 

0 0 

0 

0 

... 
K 

k-1 

-... 
X 

0 

0 

+ 

0 

10-2 

= 0 

We will denote by Xk-l the estimate obtained only when the previous 

observations are used. We will denote by Xk the estimate obtained when 
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all observations are used. The problem now is to find a sequential 

A 

expression for xk. 

The first step is to find the previous solution by setting 

Pk = Ak = Wk = 0. The normal equations then reduce to 

pk-1 -I 0 vk-1 0 

-I 0 Ak-1 Kk-1 wk-1 0 10-3 + = 
0 

T 
Ak-1 0 xk-1 0 

and the solution is 

xk-1 
-I 

uk-1 = -Nk-1 l0-4a 

/\ 

Kk-1 = P k-1 (Ak--1 xk-1 + wk-1) l0-4b 

1\ 
v = Ak-1 xk-1 + wk-1 k-1 

l0-4c 

where 

( T )-1 
Ak-1 pk-1 Ak-1 l0-4d 

Next we rearrange the current system, equation 10-2 

A 

pk-1 0 -I 0 0 vk-1 0 

0 pk 0 0 -I vk 0 

-I 0 0 Ak-1 0 Kk-1 + wk-1 = 0 

T AT 
A 10-5 0 0 Ak-1 0 xk 0 k 

/\ 
0 -I 0 Ak 0 Kk wk 

A 

Eliminating vk-1 and vk from equation 10-5 
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-P-1 
k-1 Ak-1 0 Kk-1 wk-1 

T AT 
,.. 

Ak-1 0 xk k 
+ 0 = 0 10-6 

-1 " 
0 ~ -P Kk wk k 

" from 10-6 Eliminating Kk-1 

rk-1 ~1 [~1 + [~-1] = 0 10-7 
-1 

Ak -P k 

Eliminating Xk from 10-7 

but from equation 10-4a 

Therefore 
-

. Kk = (P-1 +A ~--l AT)'~1 (A. X .+ 1-1) 10-8 
k k k·-1 -K k. k-1 k 

From the first of equations 10-7 

or 

or 

10-9 

From the second of equations 10-5 

or 

10-10 
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'Eo find a. sequential expression for the eovariance matrix of the estimated 

solution vector, we have from equations 10-8 and 10-9 

where 

1 T 1 -1 T -1 
C2 = - N~-1 Ak (P~ + Ak Nk-1 Ak) . 

By the covariance law 

-1 0 CT 
Nk-1 

-1 
1 

Nk = [~ = [Cl C2] Xk -1 CT 0 pk 2 

where we have ignored th.e variance faetor and set 

Multiplying out 

And lastly from equation 10-10 

[v~pk Vk·~P~l~ ·I 10-12 

We will now compare equations 10-8, 10-9 and 10-ll"with the Kalman 

Filter equations, as given for exa.11ple by Sorenson ( 1970 J. 
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10.2 THE KALMAN FILTER EQUATIONS 

For a broad class of problems in electrical engineering, usually 

called "optimal control problems", not only does the estimate of the 

"state-space vector" (analogous to the unknown vector X in these least 

squares estimation notes) change as new data becomes available for 

least squares estimation, but also the actual value of this vector 

itself changes with time. Therefore, in optimal control problems there 

are two time dependent factors - the actual value of the state-space 

vector is changing continuously, and new· observed data is being accumulated 

continuously from which new estimates of the new value of the state-

space vector can be made. 

During the past ten years, the big news in optimal control has been 

the Kalman filter [Kalman 1960]. 

We will now review Kalman's equations (using optimal control 

notation) and then simplify the equations by dropping the time dependence 

and rewriting in our notation. 

The time dependence of··the state vector is expressed by the math-

ematical model 

10-13 

where xis the state-space vector (solution vector), 

4l k is the transfer function between kth and (k+lhh states k+l, 

(plant model), 

{wk} is the plant white noise sequence (residual vector). 

The linearized mathematical model between the state vector and the 

measurement data is expressed by 

10-14 
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where zk is the measurement vector (misclosure vector), 

Hk is the design matrix, 

{vJis the measurement white noise sequence (residual vector). 

The covariance matrices of Wk and Vk are denoted ~ and Rk 

respectively. The Kalman least squared estimation problem can now be 

stated as follows: defining the estimate (not necessarily least 

squares) of the state xi found by using all data z0 , z1 . . . z.j as 

x . 1. , the problem is· 
l J 

" a) to find the least squares estimate xk/k of the current 

state xk using all data up to and including the current set zk, 

b) to express this estimate only in terms of the current 

measurement zk and the previous best estimate xk-l/k-l , 

c) to ensure that this solution is as rigorous as that 

obtained by processing all the data z0 , z1 zk simultaneously. 

In the absence of new data the predicted estimate is 

x = ~ x k/k-1 k, k-1 k-1/k-1 10-15 

The Kalman equations can now be stated as 

10-17 

p ~ p ~T + Q 
k/k-1= k, k-1 k-1/k-1 k, k-1 ~-1 10-18 

10-19 

where Kk is the "gain matrix", 

Pk/k-l is the covariance matrix of the error in the predicted 

estimate xk/k-:1.' 

Pk/k is the covariance matrix of the error in the least squares 
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h 

estimate xk/k. 

Dropping the time variability of the state vector means we can 

ignore equations 10-13, 10-15, and 10-18 above. For the rest, the 

notation conversion is 

Kalman These notes Kalman These notes 

h 

zk -W k xk/k xk 

Hk Ak pk/l' 
-1 

Nk 

X pk/k-1 
-1 

xk Nk-1 

h 

vk -V k Kk no equivalent 

-1 ~ 

Rk pk no equivalent Kk 

Rewriting equations 10-16, 10-17 and 10-19 in our notation: 

10-20 

10-21 

10-22 

which can be seen to be equivalent to equations 10-8, 10-9 and 10-11, 

although the definition of Kk is different in the two cases. 
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APPENDIX A 

NUMERICAL EXAMPLW* 

A.l Statement of the Problem: 

An observer on a plane surface measures the directions to distanit, 

landmarks whose coordinates are known. The observer is close to the 

origin of the coordinate system. The values of the measurements made 

are tabulated in Figure A-1. All observations have a standard deviation 

of 0.1 degrees. The mathematical model relating the measurements to 

the unknown parameters is 

tan (a. + z) = 
~ 

where (x , y ) are the unknown observers coordinates, (x., y.) are the 
- 0 0 ~ ~ 

known landmark coordinates, a. are the measured directions from observer 
~ 

to landmarks, and z is an unknown orientation angle between the measure-

ment coordinate system and the coordinate system to which the landmark 

and observers coordinates are referred. See inset in Figure A-1. 

We will use units of radians and meters in our example. Then 

L = L + V where 

26.7047 * */180 

L = in radians 

a10 168.6730 * TI/180 

and 

*data taken from Bennet, J.E. and J.C. Hung (1970). "Application of 
Statistical Techniques to Landmark Navigation". Navigation Vol. 17, 
No. 4, page 349, Winter. 
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LANtHARK 
Noe x~kml 
1 2 
.... 4 ,(. 

J -2 

4 -5 
5 6 
6 2 

7 -6 
8 5 

·9 -6 
10 -5 

y 162 

5 

X 

MEASURED DIRECTION 

;r{kml ~degrees2 

1 26.7047 
-2 -26.5795 
8 103.8340 

-2 -157.9978 
8 53.1393 
e: 68.2511 .; 

6 135.0673 
-6 -50.3190 

-10 -120.8734 
1 168 .• 6730 

ILLUSTRATIVE EY_M.!PLE 
... _fi'R'U.r.e. A"'::"~ --



vl 

v = where the v. are in radians 
l. 

vlO 

and we will choose 

0 X 
0 

xo = 0 so that x = X = yo 

0 z 

where (x ' yo) are in meters and z is in radians. Finally E = cr 2 I 
0 L 

where cr 2 = (0 .I * n/180 )2 in radians 2 , since we have assumed all observ-

ations to have the same standard deviation (0.1 degrees). 

A.2 Linearization of the Mathematical Model: 

We can use either the combined or parametric method. Using the 

combined method, the ith equation is 

f.(x,E) = tan(a. + z) -
l. l. -

X. - Xo 
l. 

where the (x.,y.) are constants and thus unbarred. 
l. l. 

= 0 

After Linearization this becomes AX + BV + W = 0 where the ith rows of 

A, B and W have the form 

A. = [ a:i 
l. ax 

0 

B. = [()~i 
l. ()a. 

l. 

af. 
l. d:i] 

az 

()f. ] 

aa:o 

= r~ 2 x. 
l. 

1 
X. 

l. 

2 sec 
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W. = f . ( X0 , L ) = 
1. 1. 

yi 
tan a. -

l. x. 
l 

Using the parametric method we rewrite the model as 

from which 

a = arctan 
i (

Yi - Y-o) - z 

f.(iC)- L. 
1. 1. 

X. X 

(
y. 

= arctan 1 

X. 
1. 

1. 0 

- z - a. 
1. 

= 0 

and after linearization we have AX - V + W = 0 where the ith rows of A 

and W have the form 

[a~i Clf. a~i] [ yi -x. -l] A. 1. 1. = = 
1. 2 2 2 2 ax ay Clz xo x.+y. x.+y. 

0 0 1. 1. 1. 1. 

W. = f. (X0 ) - L. = arctan c·i) - a. 
l. 1. 1. X. l. 

l. 

The parametric method was used to produce the computer printouts 

which follow. 

A.3 Solution 

The nonlinear mathematical model 

F(X) - E = 0 

has been linearized about the initial approximation X0 and observed 

values L to give the linearized model 



with weight matrix of the observati..ons (assuming o 2 -· 1) 
0 

2 -1 
I:> -o·" 10 10 ·- 0 £..1 

-I 
~L 

Matrices X0 , L, A, W and P are shown in •rable A-1. 

'rhe least sctuares estimators are: 

10v1 = AX + w 

lOEl 
1\ 

= L + v 

A VTPV VTPV 
02 --· ::: 

0 n - u 7 

A 

Matrices X, X, V, L, and L:)C are shown in Table A-2 

These results may be sumrnarj_zed as follows: 

a) The solution vector is 

b) 

x ·0.63 meters 
0 

= -0.25 meters 

z -0.32 x 10-3 radians =-1.1 arcminute 

A 

The variances (diagonal elements of L:A) are 
X 



1 
2 
3 

o.o 
o.c 
o.c 

to L, 
RC~ 1 0.46f1E4~4r~C ~0 
RC~ 2 ~0.463ESS7EE5C CC 
RC\6. 3 O.l812t:4!:lit:C Cl 
RC~ 4 -0.275758lc21C C1 
RC~ 5 0.9274e57472C CO 
~C~ 6 0.1lgl2Cc413C 01 
RCw 7 Oo23=73ESCS7C Cl 
RC~ 8 -o.e7e2~222€3C C0 
RCw 9 -0.21C~c3€ccec 01 
RC\'t. -·--·-·Ta---o-~·-2"94.3ES(2T<;"C~- Ci 

.RC'II 
RC\', 
RC\\ 
RC"' 
RCY. 
RCW 
RC'r\ 
RC'11 
RC\\ 
RCw 

RC~ 
FL'I. 
RCY. 
RC'I. 
RC~ 
h (',.a. 

RCY 
J; (\', 

RC"' 
RCw 

1 
2 
3 
4 . ··-· 5"" 
6 
7 
8 
g 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
0.2CCCCCCCCOC-03 

-O.lCCCCCCCOOC-03 
o.1t'ic47C:csc-c3 

-~.c8gceet724C-04 
o.acccccccc~c-c4 
Oo17~4137S31C-C3 
Oo8323233323C-C4 

-o.~e~6CtEe74C-c4 
-0.7352S4ll76C-C4 

0.384f.l!:3e46C-C4 

10 w, 
1 

-0.24273317~7C-C2 

TABLE A-1 
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2 
-C.4CCCCCCCCOD-C3 
-Co20CCCOCOOOC-03 

C o2gttll7t.471C-04 
Co 1 7 ';} '1 1 ~ 7~.:; 1 r.- Q 3 

-t.6c~ccccoooc-c4 
-c.r.asE551724C-04 

C.E::332:33333C-C4 
-C.8lg~7~1311C-04 

Co44ll'ic47CcC-C4 
C.l~23C7E<;23C-C3 

-C.lCCCCO~OCOC 0~ 
-o.tooocoocaoc 01 I 
-C.lOCCCOOOOOC 01 f 
-C.lCCCCOOCCCC 01 t 
-c.toccooooooc 01 : 
-o.tccccoocooc 01 : 
- c .1 0 c c c 0 0 0 0 0 0 OD 
-c.tocooooaooc 01 - c • 1 c tc_t_o o c coco 1 
-c.tccccoooooc 01 I 



1 
~C~ 1 O.f3~1~3412fC CO 
RC~ 2 -0.2523S43427C JO 
""R<-;C:;,-,\A.i-'----.;;;3----0 • .3 2 ::1 c I c 4 ~ 8:- c 3 

1 
RCw 1 O.t231S2412CC CC 
RC~ 2 -0.2523943427C CQ 
-R~C-;:1.\ ___ ...;3:;---_...;.,00 ?. 2 1 C 7 C I, 52 C C3 

1\ 

IO V, 
1 

RCW 1 -0.1EE7f2E2S2C-02 
RC~ 2 o.~6144c1C~~C-C3 
RC~ 3 0.3S1ESS1431C-C2 
RCW 4 -0.32ES~32~C2C-C2 
RC~ 5 0.227376S7S3C-C3 
RCw 6 -0.46777E~S~EC-C3 -¢·c-v. -----.,-----.;.-6 ~- e·2· c 1· e. ·e: ·:::·t:-~-6-c:.:.:· c 3 
R C W'H E U ~8! V ~~ 2 9 • 2,4 !::;:4"6 8-9,5.00 ()"":'"':.v_2 ~ ~:· 
RC~ . 9 -0.1312fCS324C-02 
RC~ 10 Oe5S5EC7787SC-C3 

RC\\ 
RC~ 
;.;: c ~ ... 
RCw 
RCw 
RCW 
RC\1. 
RC\11 
RCw 
RC .... 

" -Jti 
1 

1 o.4e41S73t2!:C 
2 -0.46233E3424C 
J ~.tetct<..LlC.7c: 

4 -0.27cOE~1354C 
5 Oo927cE31242C 
6 O.l1SC73EE2~C 
7 o.23!:6e4e:;::oc 
8 -o.e7~7 i7~:=c:~:c 
9 -1.211CS51413C 

10 0.2St.44<;5Cl7C 

0.12794507540 
Oo1E277Ec7<.HD 

" 3 ~x3 
1 2 

cc 
co 
Sl 
Cl 
co 
'Jl 
0 1 
cc 
~1 
Cl 

1 0.53C7141~24C C2 C.1045S12246C 02 
··2 · -- · · ··-·o ~ 1 c -4 5 <; 1 2 2 4 c c ·- o 2 ·- ·-- c • 2 1 7 2 3 c: 7 c; 2 1 c · · o 2 
3 Oel5cC174412C~C2 -C.2Et4ecC551C-C3 

TABLE A-2 

3 
C.15E0174413C-02 

-C.2614560551C-03 
-C.6lglQ30316C-06 

~-
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"2 53 meters 2 a = 
X 

0 

/12 21 meters 2 
a = yo 

1\2 -6 2 a = 0.62 x 10 radians z 

c) The standard deviations are 

A 
a = 7-3 meters xo 

,. 
4.6 meters a = 

Yo 

1\ 
2.6 arcminutes a = z 

d) The 95% confidence interval for the a priori vaxiance factor is 

[ 
""T .... 
V PV < 

X~ -975 .... 
< 

[ 12.79 < 0 2 < 12.79 J 
16.01 - 0 - 1.69 

Therefore the hypothesis 

is not rejected. 

H : a2 = 1 
0 0 



APPENDIX B 

STATISTICAL TABLES 

taken from Natrella, M.G. (1966). "Experimental Statistics", U.S. 
National Bureau of Standards Handbook 91. 
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TABLE B-1. CUMULATIVE NOR.MAL DIS'TIUBUTION --· VALUES OF Pr 

Values of Pr corresponding to c for the normal curve. 

The value of Pr for (--c) equals one minus the value of Pr for (+c). 

c 
l I I I_ .06 1 I .00 .01 .02 .03 .04 .05 .07 .08 .09 

.0 .5000 I .5040 .5080 .5120 .5160 .5199 .52391 .5279 .5319 .5359 
• 1 .5:398 I .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 
.2 .5793 . 58:32 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .644.3 .6480 .6517 
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224, 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.a .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8:389 

'1.0 .841.3 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 . 90-19 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236· .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .H332 . 93-15 .9357 .9370 .93s~ I .H394 .9·106 .9418 .942H .9441 
1.6 .9452 .9-163 .9474 .!l-184 .949n .9505 .9515 .9525 .9535 . 95,15 
1.7 .9554 . 956-4: .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641. .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .979:3 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .9861 .98134 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9D20 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9H3G 

2.5 .9938 I .99-10 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 I .9955 .9956 .9957 .995H .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 
I 

.9987 .9987 .9988 .9988 .9989 I .9989 .9989 .9990 .9990 
3.1 .9990 I .9991 .9991 .9991 .9992 .99921 .9fl92 .9992 .9993 . !)!)!);j 

3.2 . 9~)93 I . ~JB93 .9994 .9994 .9994 I . !39~)4 . 9CJ94 .9995 .9995 I .9995 I 
3.3 .9995 . 9~l95 .9995 .9996 .99961 .99961 .9996 .9996 . 9996 1 . 9~l97 
3.4 .9997 . ~l997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 I .9!l98 



"' I x2 'v .00 , 
--!---

l . 0000 

2 1.0100 
3 . 0717 
4 .207 
5 .412 

6 .6 
7 .9 
8 1.3 
9 1.7 

10 2.1 

11 2. 6 
12 3.0 
13 3. 5 
14 4.0 
t 5 4 .G 

16 5.1 
lB 6.2 
20 7.4 
24 9.8 
30 13.7 

40 I zo. 7 
60 I 35.5 

120 183.8 

39 

76 
89 
4 
3 
6 

0 
7 
7 
7 
0 

4 
6 
3 
9 
9 

1 
3 
5 

1'71 

'!'ABLE B--2. PERCENTILES OF 'rHE x 2 DISTRIBUTION 

Values of x2 corresponding to Pr. 
p 

X2ot x~{t:> x:o:. x2to x29o x\, 

I --
.00016 1.00098 .0039 .0158 2.71 3.84 
.0201 .0506 .1026 .2107 4.61 5.99 
.115 .216 .352 .584 6.25 7.81 
.297 .484 .711 1.064 7.'78 9.49 
.554 .831 1.15 1.61 9.24 11.07 

.872 1. 24 1.64 2.20 10.64 12.59 
1.24 1.69 2.17 2.83 12.02 14.07 
1. 6[} 2.18 2.73 3.49 13.36 15.51 
2.0fl 2.70 3.33 4.17 14.G8 16.92 
2.56 3.2.5 3.94 4.87 15.99 18.31 

3.05 3.82 4.57 5.58 17.28 19.68 
3.57 4.40 5.23 6.30 18.55 21.03 
4. 11 5.01 5.8B 7.04 19.81 22.36 
4.GG s.63 1 

6 r-<7 7.79 21.06 23.6g ,;), 

5.23 6.2G 7.26 8.55 22.31 25.00 

5.81 6.91 7.96 9.31 23.54 26.30 
7.01 8.23 9.39 10.86 25.99 28.87 
8.26 9.59 10.85 12.44 28.41 31 .41 

10.86 12.40 13.85 15.66 33.20 36.42 
14.95 i 16.79 18.49 20.60 40.26 43.77 

22.16 24..13 26.51 29.05 51.81 ss. 76 I 
37.48 : 40..18 43.19 46.46 74.40 79.08 

X~m 

5.02 
7.38 
9.35 

11.14 
12.83 

14.45 
16.01 
17.53 
19.02 
20.48 

21.92 
23.34 
24.74 
26.12 
27.49 

28.85 
31.53 
34.17 
39.36 
46.98 

59.34 
83.30 

86 . 92191. 58 . 95.70 100.62 140.23 I 146.57 152.21 
' i ! 

For large degrees of freedom, 

x~. = 1 (z, + ,;2;-·-:::-:Tr approximately, 

where I' = degrees of freedom and z1• is given in Table A-2. 

X~s9 x~99> 

6.63 7.88 
9.21 10.60 

11.34 12.84, 
13.28 14.86 
15.09 16.75 

16.81 18.55 
18.48 20.28 
20.09 21.% 
21.67 23.59 
23.21 25.19 

24.73 26.76 
26.22 28.30 
27.69 29.82 
29.14 31.32 I 
30.58 32.80 

32.00 34.27 
34.81 37.16 
37.57 40.00 
42.98 45.56 
50.89 53.67 

63.69 66.77 
88.38 91.95 

158.95 163.G4 

AduptNi 'dth permi.<~.~ion rrorn·lfl!r(•c!·.~:-'ion to Stati.•;,'ioll At~al!rl.'li.s (:~d t•d.) hy \V. J. Dixon and 1'''. J. 1\.{asscy, JL, Cop~·right, !957, 
!\iC'Gr.;,w-1-lill Book Company, Inc. 
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TABLE B-2 cont 1 d. PERCENTILES OF THE 

x2 01 STRI BUTt ON 

PROBABILITY FUNCTIONS 

PERCENTAGE POINTS OF TilE x2-DISTRIDUTION-VALUES OF 
x21N TERMS OF Q AND • 

\ 
• \ Q 0.995 0.99 0.975 0.95 0.9 0.75 0.5 0.25 
1 i -5~ .3. 92704 ~-4)1.57088 ~-4J9.82069 ( -.3) 3.9.3214 0.0157908 0.101531 0.454937 1 • .323.30 
2 -2 1.00251 -2) 2.01007 -2 5.06.356 0,102587 0.210720 0.575.364 1.38629 2.77259 
3 -2 7.17212 0.114832 0.215795 0.351846 0,584.375 1.2125.34 2.36597 4.108.35 
4 0.206990 0,297110 0.484419 0.710721 1.06.362~ 1.92255 3.35670 5.38527 
5 0.411740 0.554300 0.8.31211 1.145476 1.610.31 2.67460 4.35146 6.62568 

6 0.675727 0.872085 1.237.347 1.63539 2.20413 .3.45460 5 • .34812 7.84080 
7 0.989265 1.23904.3 1.68987 2.167.35 2.83.311 4.25485 6.34581 9.03715 
8 1.344419 1.646482 2.1797.3 2.7.3264 .3.48954 5,07064 7.34412 10~2188 
9 1.734926 2,087912 2.70039 .3.32511 4.16816 5.89883 8,34283 11.3887 

10 2.15585 2.55821 3.24691 3.940.30 4.86518 6.73720 9,34182 12.5489 

11 2.60321 3.05.347 3.81575 4.57481 5.57779 7.58412 10.3410 13.7007 
12 3.07382 3.57056 4.40.379 5,22603 6.30.380 8.43842 11.3403 14.8454 
13 3.56503 4.10691 5.00874 5.89186 7.04150 9.29906 12.3398 15.9839 . 
14 4.07468 4.66043 5.62872 6.57063 7.7895.3 10.165.3 1.3.3393 17.1170 
15 4.60094 5.22935 6.26214 7.26094 8.54675 11.0.365 14.3389 18.2451 

16 5.14224 5.81221 6.90766 7.96164 9 • .31223 11.9122 15.3385 19.3688 
17 5.69724 6.40776 7.56418 8.67176 10,0852 12.7919 16.3381 20.4887 
18 6.26481 7.01491 8.23075 9.39046 10.8649 13.6753 17.3379 21.6049 
19 6.84398 7.6.327'3 8.90655 10.1170 11.6509 14.5620 18.3376 22.7178 
20 7.43386 8.26040 9.59083 10.8508 12.4426 15.4518 19.3374 23.8277 

21 8.03366 8.89720 10,2829.3 11.591.3 1.3.2396 16.3444 20.):372 24.9.348 
22 8,64272 9.54249 10.9823 12.:n8o 14.0415 17.2396 21.3370 26.0393 
23 9.26042 10.19567 11.6885 1.3.0905 14,8479 18.1.373 22 • .3369 27.1413 
24 9.88623 10.8564 12.4011 13.8484 15.6587 19.0372 23.3367 28.2412 
25 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 24.3366 29.3389 

26 11.1603 12.1981 13.8439 15.3791 17.2919 20.8434 25.3364 30.4345 
27 11.8076 12.8786 14.5733 16.151.3 18.1138 21.7494 26.3363 31.5284 
28 12.4613 13.5648 15.3079 16.9279 18.9392 22.6572 27,3363 ,)2.6205 
29 13.1211 14.2565 16.0471 17.7083 19.7677 23.5666 28.3.362 33.7109 
30 1.3.7867 14,9535 16.7908 18.4926 20.5992 24.4776 29.3360 34.7998 

40 20.7065 22.1643 24.4331 26.5093 29.0505 3.3.6603 39 • .3354 45.6160 
50 27,9907 29.7067 32.3574 34.7642 37.6886 42.9421 49.3349 56.3336 
60 35.5346 37.4848 40.4817 43.1879 46.4589 52.2938 59 • .3347 66.9814 
70 43.2752 45.4418 48.7576 51.7393 55.3290 61.6983 69.3344 77.5766 
80 51.1720 53.5400 57.1532 60.3915 64.2778 71.1445 79 • .3343 88.1.303 

90 59.1963 61.7541 65.6466 69.1260 73.2912 80.6247 89.3342 98.6499 
100 67.3276 70.0648 74.2219 77.9295 82.3581 90.1332 99.3341 109.141 

X -2.5758 -2.3263 -1.9600 -1.6449 -1.2816 -0.6745 o.oooo 0.6745 

[ 
0 

( )rl r I • QC:\:21,.).,. 22r ; . r e-:q2-1 dt 

From E. S. Pearson and H. 0. Hartley (editors), Biometrika tables for statisticians, vol. I. 
Univ. Press, Cambridge, England, 1954 {with permission) for ({ > 0.0005. 

Cambridge 
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TABLE B-3. PERCENTILES OF THE t DISTRIBUTION 

~ I t.w I t.70 I t.so I f.PO I t.P> I t.97(> I t.99 I t.995 

1 .325 .727 I 1.376 3.078 6.314 112.706 31.821 63.657 
2 .289 .617 1.061 1.886 2.920 I 4.303 6.965 9.925 
3 .277 .584 .978 1.638 2.353 I 3.182 4.541 5.841 
4 .271 .569 .941 1.533 2.132 

I 
2.776 3.747 4.604 

5 .267 .559 .920 1,L176 2.015 2.571 3.365 4.032 

6 .265 .553 .906 1.440 1.943 I 2.447 3.143 3.707 
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499 
8 .262 .546 .889 1.397 1.860 i 2.306 2.896 3.355 
9 .261 .543 .883 1.383 1.833 I 2.262 2.821 3.250 

I 
10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169 

11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106 
12 .259 

I 
.539 .873 1.356 1.782 2.179 2.681 3.055 

13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012 
14 .258 .537 .868 1. 3.15 1.761 2.145 2.624 2.977 
15 .258 .536 .866 1.341 1.753 

I 
2.1.31 2.602 2.947 

16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921 
17 .257 .534 .863 1.333 1.740 I 2.110 2.567 2.898 
18 .257 .534 .862 1.330 1.734 I 2.101. 2.552 2.878 
19 .257 .533 .861 1.328 1..729 I 2.093 2.539 2.861 
20 .257 .533 .860 1.325 1.725 

I 
2.086 2.528 2.845 

21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831 
22 .256 .532 .858 1.321 1.717 

I 
2.074 2.508 2.819 

23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807 
24 .256 .531 .857 1.318 1. 711 2.064 2.492 2.797 
25 .256 .531 .856 1.316 1.708 2.060 

I 
2.485 2.787 

26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779 
27 .256 .531 .855 1.31.4 1.703 2.052 2.473 2.771 
28 .256 .530 .855 1.313 1. 701 I 2.048 2.467 2.763 
29 .256 .530 .854 .1.311 1.699 2.045 2.462 I 2.756 
30 .256 .530 .854 1.310 I 1.697 2.042 2.457 2.750 

40 .255 .529 .851 1.303 1.684 2.021 I 2.423 2.704 
60 .254 .527 .848 1.296 I 1.671 2.000 

I 
2.390 I 2.660 I 

120 .254 .526 .845 1.289 i 1.658 1.980 2.358 2.617 I 

00 .253 .524 .842 
I 

1.282 I 1.645 1.960 2.326 2.576 
I I 

Adaptt-d hy ftf'rmiR..<Jion from /nlrmllll'tillrt to St(lti,'(ti('al..tn•IIJI-ti,'l f~d 1-d.l h,.· \\·. J. Oixun and F. J. ~fa~~Py, Jr .• Copyrh:ht. 1957, ~fcGraw .. Hill nook 
Cornr•any, Inc. t;ntri<'S ori.:inally lrom Table Ill ol Stati.<liral Tablrs h>· R A. t'ishPr and F. Yatt .. , 19:18, Olivl'r and Boyd, Ltd., l-ondon. 
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TABLE 8-1- PERCH·HIU:S OF THE F DISTRIBUTION 

F.90 (n~o n2) 
FP 

n, = degrees of freedom for numerator 

i ·~I I I I I I I. I I'.' I I 1 I 2 3 . 4 . s I 6 7 8 9 : 10 I 12 I 1 s I 20 24 ! 30 I 40 I 60 I 1 20 . ci; 

1--+---1----1 ' I I I I ----------

1 I I I I i I I I I I I i i ! 
1 3!1.86 49.50 53.59 55.83 57.2-1 58.20 58.91 59.44 59.86160.19\60.71 ioL22!61.74 162.oo :62.26 62.5:! ;62.7!1 163.06 ~63.:33 
2 ~-~:! ~-()~ ~-.I? I ~-~4 ~-~!) i ~-~:l I ~-:!51 ~-:~~ ~-~8 i ~-:~:) ~-~-~ ~-~21 ~--:~I~--:~. ~.4~ i ~.-17 I ~.4; ! ;.·1~ ~-·1:1 
3 I ,)..h 1 .>.46 .>.3J 1 .) .. HI .}..n 1 .)._x, .)._7 1 ·>--·> j .>.-·! 1 ,)._.! <>.-- .>.~O .> .• x 

1
.J.l:s ·>.11 1 .>.16 1 .~.1., 1 <>.1·· .• >.J.l 

4 4 ~ 1 1 .•. , .J l'J 1 11 1 -t O" 4 01 1 ·1 •1s ·1 <JC 'l <J.J · 'l •1·> ·s uo 3 s7 1 ., s 1 3 ii'' 3 s·> 1 ·1 i'O 1 ·J "•· 3 ~s '! ~,. 

• 1 .-~~ :~-~~ .,·6:,!1' 3··: .. ,,' 3·.~! 3··o 1 :,·3·~~3··:~·:, 3··:3·'11 3··:3o- 3···)" 3·~,. ·3":,·1 3·1;; ·~·::i:~·;si~·;:l3·~.,.1 ~-;~ ., I .. . v •• I< ,). - • ,,_ .... ) • .. ,, • I . • ... . • - • • . -I . _.. • . - . • • ' • i • . ,. . I . - •. 
6 1 :l.7S 3.46 :L2!l 3.11\ 3.11 :3.05 3.01 2.98 2.!16 1 lUl-l 2.90 2.87 2.!!-1 2.82 I :u~O I :!.78 2.76 2.74 :!.7:! 
7 ., 3.5!1 3.:!6 3.07 2.!)6 2.88 2.83 2.78 2.751 2.72. 2.70 ~.67,2.63 ::!.59 2.58 I 2.56: ~.54 2:51 I 2.49 I 2.·17 
8 :l.-t6 3.11 ., 2.9~ 2.81 I 2.7:! 2.67 2.62 ~.59 2.561 2.50 2.50 2.46 2.-12 2.-10 ,2.38 I 2.36. :L34 i 2.32 I 2.29 
9 ! 3.:l6 :3.01 . 2.81 2.69 2.61 :!.55 2.51 2.47 l 2.44 I 2.42 2.38 I 2.34 2.30 2.28 2.25! 2.:!3 I 2.21 ! 2.18! 2.16 

I I : I ' I I ! ~ ! ! I 

:!.!):.! :.!.7:! :!.61 2.521 2.-tG I 2.41 I 2.38 2.:l:i l ::!.:l:~ '.· ~.28 I 2.2-! I 2.:!0 ,2.18 j ~.16! 2.1:3: 2.11 I 2.08 I 2.06 10 :L2!l 
11 :3. :!:! 
12 :L 18 
13 :L 1-1 
14 3.10 

1 s a. 07 
16 :3.0;) 
17 :LO:l 
1 8 :l. 01 
19 :!.!1!1 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

•) q7 
:;·;16 
:;·;l:l 
:;·;1·1 
~:;1:! 

:!.!J:! 
2. !II 
:! .!10 
:!.SH 
2.8!1 

30 
40 
60 I 

120 i 

:!.88 
•) 84 

~:7!) I 
:! . ";,) I 

2. 71 I /. i ! 

2.1'16/ 2.66 2.54 2.-l;i 2.3!) :!.:l-11 2.30 I 2.:!7 I 2.:!.) i 2.:!1 II :.!.17/ ~.1:! 2.10 I 2.08 2.05 I 2.0:3 i 2.00! 1.!17 
2.t'1j 2.61 :! .. 48 :!.:l!J I 2.:l3 2.:!8 I 2.24 2.211 2.1!1 I2.1Ei :!.10 ,2.061' 2.0·1! 2.01 1.99 ,1.96 I 1.!)3 i 1.!l0. 
2.76. 2.,i6 2.43 2.35 2.28 :2.2:1 2.:w 2.16 2.14 1 2.10 ,2.05 2.01 UJS\1.96 l.!Ja. 1.90 jLs8 I UG 
2.73 2.52 2.3!1 2.31 2.24 2.19 2.13 :2.12 2.10 12.05 2.01 I 1.96 1.9-1 ! 1.91 l.S!J! 1.86 l.li31l.XO 

2.70 :!.4!1 2.36 2.271 2.21 ~.16 2.12 2.091 2.06,2.02 I 1.!17 I l.!J211.!JO 11.87 1.85 · 1.82 11.79 I 1.76 
2.67 2..16 :!.33 2.24 2.18 2.1:!! :!.0!.1 2.061 2.0:! l.!l!l 1

1

1.!14\1.89 1.87,1.84 l.tH 11.78: 1.75! 1.72 
., 61 ·> 'l ., 31 ., ·)·} ·> 1~ ., It) ., <JC' ·> o·) ! ., oo 1 1 '16 1 'li-1 1 "6 1 "l 1 •·1 1 ,._. 1 ~~ ~ 1 7·> 1 1 <··~ - • >· - • .,. - • - • -- 1 - • •> -. -. l , - • cl I -. I .. .. . ,, . o· . o . • o 

1 
. j,) I • - • >. 

., 6"' •) I"' •) ·)(~I •) "'0 ' •) 1'3 •) ov I •) ()' I ., 0) 1 ('V 1 "'l 1 '<) I 1 <..I~ • 1 '1 1 ~-· 1 ,~ 1 ,., 11 6'1 1 t:t: -· - -··- -·-· -·- 1 -· • -· o -· ·• -· ( 1 .. ),, ·"' .ti. I ·'"' .li I .lo • ,,) • •- • . .vu 
:!.61 :!.40 :!.27 i 2.1s i 2.11 

1 

2.06 2.02 1.us! l.!JG i 1.91 /1.86 1.s1 1.79 1.76 1.7:! i 1.70 1 1.67 l.Ga 

2.Ei!l 2.:18 2.25J 2.161 2.09 2.0·! 2.00 11.!)61 1.\l-l 1.8!1 11.8-t 1.7!) 1.77 i 1.74 1.71 ;11.6811.64 1.61 
·> ~1 ., '!6 ·• ·>·3 I ., I' ., O" ., o·• 1 'J" 1 'J:' i 1 •1·) 1 "7 1 "'! 1 "" 1 "" , 1 '"'"' 1 6'1 1 6G 1 s·> 1 "'l -. ,) -.. -. -· -. .. I -. 0 I -. - '. " ... ) I .. - . 0 I . "' . I" . I,) . • j- • • • I . - .. ) . 
2.56 2.:15 2.22 2.1a 2.06 2.01 1.97 ul:l l.!JO I.SG un 1.7<; I 1.1:1 1 1.10 1.67 1.61 1.60 1.:;7 
~. ~;, ~. :l:l ~. 2,1 I ~.I 1 I ~. 05 ' l.)J!J . 1. ;)5 I 1. ;12 I l. 8!~ 1. 8:1 I 1. so 11.7 f i 1. 22 ! 1. ~!l 1. ~I) i 1. ~:! : 1. ~!l i l. ~:; 
--·>-1 - .. !.! -.LJ I __ JO -.0·1/ 1 .. 181 l . .J·II 1 . .11 I 1.s;s 11.S.lll.78 1.7.! 1 1..0 1 1.67 l.u·ll 1.61, 1..>7 ~1 1 .. ).! 

I ' ' I I ' i I ! I ' 
•) ··~ a) •y) .j J ) ! •) Qt' I ., o·J I ')" I 1 'J'l 1 ·,q ( l x~ II s·> 11 ""7 1 '"'·) r 1 "'') ' 1 Gf 1 f'l 11 ~(' i 1 i.G I 1 :"'"·} :;·:!:, :;·:- :;·hi :;·.I I :;·-I ·;'.I ·;:,I -~·.I · .. ~. ·',- .I. ··~-.' -~~~-I . . : . :· -~-~I -~ I ·:!.;.. 
:;·~- :;·~! :;·IZ: :;.08! ~.011 1.;1~ ,. 1.;1- l.~X 1.~~ ll.l'i1 1.7~ 1.~1 l.bti jl.f..} 1.~1 I l.~X! 1.~~ II..'? -··'! __ .w -.11 

1 
__ o7j __ oo 1..1., I..Jl t.x7/ I./I., 1.so 1.7<> 1.10 1.67!1.6-t 1.60 1 1..,7 1.'!.! ll..JJ 

2.r,o 2.2~1 :!.16 2.0!i :!.oo 1.!14. I.!JO 1.87 1.84 1.79 1.74 1.69 1.66. l.ti:l 1.5!111.56. 1.:.:! I.-18 
2.~)0 2.28 :!.151 2.06 l.!J9 l.!l:l\ l.X!l I 1.86 I 1.8:!11.78 1.7:l,l.{i8 l.G51l.ti:! 1.5$ i 1.55jl.51 1.-17 

2.-1!1 2.28 :!.14 I :!.o,; J1.!1S t.!l:l,I.ssj u;5 1.82: 1.77 I 1.7211.67 1.6-1: I.?I 1.~1: 1.5·1! 1.50 11..16 
~-f;l ~.2:~ I ~.O!J 2.?~ l.!J:l 1.8l 1.8:! 1 1.7!1 1. 7G jl.~~ 1 1.~6 1.?1 1.~7 ! I. a-~ , l.a1 ! 1.17 ! 1.~~ . 1.;;: 
_,,l.l -.ll'i -.04/l..lal 1.87, l.X_, 1.771 1.7-111.7lll.b6[1.h0 l.;d l.al!l.·lh.1.H 1 1..10;1.3.>jl·-·l 
:!.:!5 :!.l:l l.!J!J . l.!JO 

1
. u;t 1 1.77)1. n I Ui8j t.G:>. I. GO 1.5511 Al:i 

1
J..t5 j 1..11 1 1.:n 1 1.:!2 11.26 , 1.1!1 

:!.30 :!.Ol:i l.!l4 i 1.85 1.771 1.72 1.671 1.63 1.60 11.55 11.49 1.42 1.38 1.34 11.30 11.24 I 1.17,1.00 

1-' 
--< 
w 
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TABlE i)~(Continued). PERCENTilES OF THE F DiSTRIBUTION 

F OS (nl, n:-) 

n1 = degrees of freedom for numerator 

I ! I ! I i j i I I I I I i I i I 
' 2 II 3 i 4 I 5 ,1: 6 I 7 I 8 : 9 ! 10 1 2 I 1 5 I 20 i 24 30 I 40 I 60 I 120 i "' 
I ! 1 l 1 I I 1 ! f I I I l 

,--~. : ' ' ' I ~--~--~--~--~--I--,--,--,----~·--
! • I I I I I I I l I ' I ' 

I i 0 ~ Ci :"' 1')? ~ .. 9 ') A h j,, ') :-' • , ') !') :" ( 11')" 1 I ... 1 ' :- I" -·) I) ·.)... !•}"" 1 161.4 IL9 .. l d.).7 ~~~4.o 230.- -8-.. 0 1,_36.8 ·~:i8.9 "'40.u !24 •. 9 "'43.9 A.) .. l "'"'8.0 !249., ,2-JO.t 2.l1.1 ,2.)-.- --J3.3 ,..,,J·L3 
2 1s.51 11(·?~ !1~ .. 1~ 1 1;~-~!! r~.:3o 11}!.;38! 1:J.:~;! 1~.:lz JI~.:Js11~.~o \I:~.·~!! l!i.i~1 l!~+iil~.·L>: 1:1AG: 19.·:?! l!i.-~~~ l!l.·!~l E~.~o. 
3 I 10.13 ' . .J .. J.J 1 .J.<:S 1 .1.12 I .J.Ol 1 ;:;.,J.i! 8.~.J I 8.:-i:J '. :-\.81 I u. ,g 1 8.7 ... , 8.1v• 8.661 8.6·1'. 8.6~ 8.'J:l 8.<>L. S.:J.J:· .. 8 .. ):31 
~ •1

1 7.71! G.J·1 i 6.:)!! I 6.:3~)! 6.Z6j 6.16! 6.0~) I 6.01j G.DO! 5.961 5.911 5.S6i 5.801 5.771 5.7GI .1.72: 5.69 5.6Gi 5.6:l 
I ! I I I I l ' l I I ! I I ! I : ! 

5 I 6.61 l 5.79 l f>.41 5.191 5.05 4.!JG i 4.88 I 4.8~ i 4.77j 4.741 4.681 4.G2i 4.ii6[ 4.5:31 4.501 4.46! 4.43: -lAOi 4.361 
r Cl{ I :"" .. I """" i• ' ')l \ ., l •) .f - ! ' r. i ... l ,,....] ' ' I 4 .... ~1 • r • ,... : • ,... 6 I ;),;;.) ,J.i-l i •l.l(> I 4 .. ,.3, 4,.,.)1 4."'0 I 4 . ..1 I 'l.Lll 4.10 i -1.01) I 4 .. 00 ,) .. l·ll 3.811 3.S·I· .LXll .l.l.{i .L7.1 1 3.dl· .l.GI 
i i~ ,... j • i 1 •) j ' ( !""' • ,,... ! • i ' ~· ' • j ,..,.., ' ,.. \ 0\ 4 1 ' ~ 1! " ' ' • • r ' ' \ ' • ... ' •)o'! 7 1 ,,_,J 4. d, 4 .. l·> I 4.L 1 .. l.J• r .Lilt: .l.7.J 11 .3./.l I 3.6X 1 .l.6·1 1 3.'"1 J.;;l1 ., .. J••I .l.•l,r .• ,_.lx: .. l .. H 1 .J .. lO· .J.2.t! .3 .... ,, 

~ ' " 'l'' ' 1 '(' I ' 0~1 'l o' 'l G'l 1 'l "" I 3 -o 3 ' ' 3 'l<l I '' 3- 1 '3 ·>c·• ':l .,.,, 'l 1- 3 '·>' 'l 0 " 'l 0' 'l 0 ·I ., '' 7 ' ·> 'J'l o ! .) .. ., ..... 
1 

• .·- l l ·:~:. ! •• o·t , .. 1 ••• )o I .~; .. Lt't ~ •• " d, a •. o: .. A1\ •• -L.l , . ;>I .1 .... \ , • :) 1 •• ·t; •. 1 1- :... •• !1! -··· 
9 I"''/ 4'JGI ~''(i' 3~3 1 3AS• 337 3'><)! 3')'3 1 ''1" ~~'' 3071 "0" •>ol! ') 0 0 ·>·"I •)L>•>' •)ro, .,r-, ,,,.,, 

I V . .l. ... ! .... ! 0.0)! •• t) l ·""! •.•. '·"""'! ·-''i •).U. ·~ • .l·i::j .~~~ ~).dj .::.,,;"±! -··': "'-~bi -.O•)j ..... l •. ,.~ ...... i•)j ..... l11 : i i i ! I I i I i i I ; . I : . . 
10 : ·1.~JG 1 4.10 i 3.71 1 :L48 1 3.:J:J I a.22 i 3.14 1 3.07 i :3.02 1 :2.!18 1 2.9li z.s;,l 2.77: 2.74 1 2.7o' 2 GGi 2.621 z.:,s: 2 5-1. 
11 i 4.S·l 1 3.~Js! 3.ii:JI 3.36! 3.20 I 3.09 1 3.01 1 2.95 1 z.~lo! 2.8:> I 2.7!JI 2.nl 2.6'>1 2.6li 2.:d z:s:1l1 2.4!J' 2.451 2:4o' 
12 ! 4.7:)' 3.89 I 3.4~1 I 3.26 I 3.11 I 3.00 I 2.91 I 2.8:) I 2.80 I 2.75 I 2.69( 2.62J 2.ii4! 2.511 2.·i7, 2.4:l 2.:38[ 2.3il 2.30 
t3 1 4.67! 3.81 I 3.41: 3.181 3.0:) 2.92, 2.83 1 2.77 1 2.71 1 2.67 I 2.601 2.53! 2.461 2.421 2.:Js 1 2.341 2.30!. 2.25! 2.21 
14 I 4.60 I 3.74 I 3.34j 3.11j 2.96 2.85 2.76 I 2.70 I 2.65! 2.60 I 2.5:lj 2.46j 2.39'1. 2.351 2.31'1 2.27i 2.22 2.181 2.13 

I I I i I' i I I I : i . I I 
:- 1 n •). , l e ,.. 1 .... g :- < l • r- . ~ r , A(\! ') , , ! , ( ; '> 'J :--1 9 ·> ! ') .. : f 1 ! .- ~ 15 4.v4 1 3.68 i .~.-9 l 3.06! 2 .. 10 J 2.19 II 2.11 2.o4 J 2.;).), 2 .. Yt 1 2.4S! 2 .. ,v, _,;3.3: 2.2.), .., __ .,, -.~01 -.16, .2.d, 2.01 

16 4.4>J II 3.6:lJ 3.24 I 3.01! 2.85 i 2.74' 2.66 I 2.59! 2.54j 2.4!)! 2.421 2.3G; 2.28[ 2.241. 2.l!Ji 2.l:)t 2.11' 2.06[ 2.01 
l - 4 ,- · 3 -g 3 •Jf' I 2 96 I 2 "1 j 2 "'0 I •) Al I 2 c,- 1 ~ ' 0 2 4" I 2 'jQl 2 '''' ') ')n! 2 1°' 2 1"' ? '01 •) 0~' '' 01' 1 '16 I • '1:•) 'I •. :) I ·- ..... v l • ! • 0 • l !' -. tJ . ,).) ! ..... '":1:.:1 \ • .) I •• 0, • ._} 1: ..... ...,,ji • .;;~ • ·): .... .l ·I .:.... • .) ~. i ••. 

u 4.41, 3.55. :3.161 2.93! 2.77
1 

2.66 1 Vi8j 2.51 1 2.451 2.41 t 2.:Hi 2.27i 2.19! 2.15; 2.111 2.061 2.02 l.!i7l 1.92 
t9 4.3SJ 3.521 3.1:31 2.90 i 2.74 2.63 11 2.54 1 2A8 1 2.42

1
· 2.381 2.31'1 2.2:31 2.1s1 2.111 2.07! 2.03 1.981 1.931· 1.88 I . ' I I I I I I I I ' : 

20 4.35 i 3.491 3.10 I 2.87jl 2.71 II 2.60 J 2.51 \ 2.45 1 2.391 2.35 I 2.281 2.2oj 2.121· 2.08!1 z.o4. 1.99! 1.951 1.901 1.84 
21 4.32 I 3.47 i 3.07 i 2.84 2.68 2.57 2.49 II 2.42 I 2.:37 2.321 2.2Gi 2.1~ 2.10 2.05, 2.01i l.!J61 UJ2! 1.871 1.81 
22 4.:30 i 3.44 I 3.051 2.821 2.66 I 2.55 I 2.46 2.40 I 2.:J41 2.30 I' 2.2:3i 2.1G, 2.07J 2.0:l' 1.98 l.!Hi l.S!li 1.8-li 1.78 
23 4.28 I 3 .... '21 3.0:~ I 2.80 2.64 I 2.5:l I 2.44 II 2.87 I 2.32 2.27 2.201 2.1:$: 2.05J 2.01:. 1.96. l.!Jl; 1.86; 1.81: 1.76 

• ! 1 ,..,. l j •1 •) ,... '/ i • h ' i) < £ ').. ( C) ! 'I 'I ( : .. l.. ... - ( I x_, I .-.qi ... I'"!'< 24 ·L261 3.40 3.0~ I 2.11:\, "·6-1 2.;:,1, 2.L 1 2 .. 3:>: ~ .. 30 1 2.~u I 2.18: .:..111 .... 0.31 1..181 J..94, 1.1:\J: l.,A1 l.1 .. 1 L<·l 
l i ! i i I ; ! I ! j ! j ! I ! 

2s 4.2·1 I 3.39\1 2.991 2.76 I 2.60 I' 2.491 2.40 l 2.:34 i 2.2s 1 2.241 2.161. 2.0:Ji 2.011 1.961 1.92!. 1.87J. 1.82;. 1.77! 1.71 
26 4.23 I 3.3:' 2.98 II ~.741 ~-~9 2.471 2.39 I 2.321 2}~ I 2.~2 I r15! ;.o7! 1.9£1 1.~?! 1.901 1.8~1 1.~01 1.751 1.69 
27 4.211 3.3v 1 2.96 2.73 2.->71 2.46 'I 2.371 2.31 •.· 2.2::> I 2.20 1 2.131 ~.061 1.91! 1.9.3, l.881 1.8-±1 1.,91 1.73; 1.67. 
28 4.2\l I 3.34j 2.9:>' 2.71 2.56 2.45 2.361 2.28; 2.241 2.19J 2.121 2.041 1.961 1.91j l.S7 1.82: 1.77: 1.71: 1.65 

1 I) • ,.... -- ,_ I li - I ') ' •)•) ? ; ? ' ! ... ' ~ ( ' .. -! 1 ' ,--' .... . 1 ~ 29 ... 18 3.33 i .:..93j 2.10 1 2.uu I 2.'!3 1 2.3;) 
1 

2.~8 1 2 . .-w 1 2.18 f -.10
1
. ~.03: 1.94:. 1.80: .1..8:)1 ~·.Sli 1. 1:): l.101. i.G·, 

! I i '1 1 i l I I i I · ; ! 1 

3 1.1-· 3'3'7 1 ?<J''j ?G9 ?"3 ..,42 ?33· 2·>-·1 2?'1·)·6 1 ')O'J' "Oil 193' '8'J' lSi' 1-'l1 l"'l 16«1 16" 0 • . I I •.• - I "' .• " -. I ~. ;,), I. -. I -. l . ~I . . ~1 - ,l I - •• ' -. I • . I. l. . . :. . ·. I . I.. . ,. . . ''I • -

40 4 0° I 3 •)') I •) 8' ') Gi I ') ·1" ') 31' <) 2' l 2 , " ; .., '') " 0° I 2 oo! l 'J''I 1 84· 1 -<)' 1 --i' • 6<'1 1 6·1! 1 co' 1 '1 . o . • . ..... .... . 'i: , .... • A- ... • ;) ..... • • ""'. .J . J. o I ..... ..:. ..... ...., . I o I. • I .• ~. • j • i. i • J l 1 . ~ ( . I .• )ol . •J 
i•1 - •>,... ,....- oi~!~,-j, n '•)~! (f {•)' ·,i, ... n,... .... ro .•• -l -u: ~·· ,....; •(l 

60 4.00 1 .,b ~.16! 2.:.'312 .. 31!' 2.2ai 2.11,2.10'.· -.o.,, l.JJ, 1.9-; 1.?>· •. ·1 1.1;,1 1.101 <.6;,1 1.'1 .. 1 l..,.l .• 1.4q l .. l., 
120 3.n 1 3.o7

1 
z.GiS I 2.45j z.2~ 2.17J 2.09 2.02 l 1.% I 1.91 I u.;:ll 1.7~ 1.661 1.61! LuG! 1.sol l.·t:l: 1.:3:Ji 1.2~ 

., 3.84 1 3.oo z.Go 2.:!7 2.21 1 2.10 1 2.01! 1.~<1 ' 1.88! 1.831 1.75: 1.67J 1.57t 1.521 1.46! 1.39 1 1.a2 1.221 1.0 
I I i . I l I [ I ' I ; I ! I ! 

Adapted with permission from Biometrika Tables. for S!atistir1·an.'{, Vol. I (Zd cd.), f·dited by E. S. Pe;1rson nnd H. 0. Hartlf'y, Copydght 1958, CamlJridhf~ tr:r.iV("'rs;ty Prc.~s. 
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TABlE B-4 (Continued). PERCENTILES OF THE f DISTRIBUTION 

F_975 (nl, n2) 

n1 = degrees of freedom for numerator 

1 2 1 3 1 4 1 - 5 1 -6 1 7 -I 8 1 9 1 , o 1 12 1 1 5 1 20 1 24 1 30 1 40 1 60 1 , 20 1 >0 

!--4--, --, ~-,------4--~--i~--.-:--,--,--l--,--1--l--l--,--,-
l I ' ' I I I ' I I I i 

II 647.8 I 799.51 864.2 89!!.61921.8 I 937.1 1948.2 . 956.7 ~)63.3 I 968.6 I 976.7 I 984.9 I 9~)3.1 I 997.2 !1001 11006 i1010 11014 j1018 
38.511 39.00,. 39.17. :~9.25i 3!J.301 39.:33 :l9.361 39.371 39.39! 39.401 39.411 39.43j :3!J.451 39.46! :J!J.46f 39.47! :l~J.48 1 :l9.49j 3!J.!i0. 

1 17.44, 16.04 15.44! 15.1o1 J4.88i 14.731 1-1.62 14.5-l! 14.47! 14.42. 14.:l-1 14.2'>1 14.17 14.121 I-tos, 1-LO-ij l:l.9~J! 1:u•;,: n:Jcl 
1 
2 

1 l'l ')')I 10 0"1 O !'8i 1\ 60' 9 '>J:I Q 21J"I <J Q7 8 ():-;I 8 (\(j! 8 8'1 8 '7CI 8 6~1 8 -gl 8 Cl' 8 461 "41· 8 n.;• <> '>1' 0 ")<~ I -·--~ . ,)1 "·" j a. I ·"''I .. '! •. -~' .. '! "''I . " . • ;;! . oj .vol .. J il . i o. I ... ),! o.v i o.-v 

II 10.01
1
- 8.-131 7.761! 7~391 7.W 6.981. 6.8: 6.76i 6.681 6.621 6.52! 6.43j 6.331 6.28, 6.2:Ji 6.18/ 6.121 6.071: 6.0:! 

8 ....... ,..·)" 660 6''3' r:o<;;l 58'/ "70 ·sol--., -4" "3~J "27 -1-1 ·r·)· -o-~ "01 1 4"6' 4<~0 4s· .v1, /.-0 . 
1
. ·- j iJ.J., . - ,). iJ. 1 ;J.IJ-1. :). "I iJ. I. 0. j 1> •. ,, 0. -~- 1). q ,). I .v ! ... 1 • 'l 

•
1 

s.o7
1
- 6.:J4 5.89 5.52~ 5.2H 5.12 4.99i 4.!!0i 4.82!1 4.76 4.671 4.571 4.47, 4.42 4.:l6i 4.31 4.2Gi 4.:w: 4.14 

7 c~ 6 or.:r i. A•) r.: oc 4 Q•)'l 4 scj 4 "3/ 4 1·~! 4 'lG 4 301 4 ')0 4 101 4 001 •) ()Ci 3 O{'f 3 Q-4"! ..... '7V 3 "•)'! 'I r;-··" . Jl ;).''~1 0. • ·"'- • ,) .v• ·'·''.I ·" 'I •' I ·- i • ! • I •J., .)I • .0.11 ·"''! cl. 'ol • • I" • • >I 
. ~ ., "71 r. o·· 4 n21 1 '81 4 391 4 2"' 4 1~ 4 0'' 3 <JG 3 vnl 3 ~.-,I ') 6~1 3 61 1 3. CCI 3 -· 3 '"I ,, .,.. '3 ,,., I "".':. '>· o. vj .I I . -" I .. -~ . ~,1 . vi . "i .. J. '.o'j .I 'i v. ~~ . \ .. Jui .all . ·''"i •J.•J·'l . ··'-'! 
.
1
1 6.~!4; 5.46i 4.83/ 4.47l 4.2-...' 4.07! 3 .. 9~'i1 3.l'Sj 3.781 3.721 3.62! 3.52! 3.42 3.:n!1 :i.:lii 3.26!

1
- 3.:Wi 3.1-111 3.os· 

6 ~z· - ''61 4 6''' 4 2R 4 0' '3 ~Si 'l 7 3 6"1 3 "fl1· 3 r.•>' 3 '3' ""'''1 3 2"ll 3 ln "1''' 3 06 3 ool 2 °4· 9 8" ·'I 0.- • ''I . ·I . ·•. '·"': •· j •· "I .. a .. l ···'·.''j ... i "'··>·JI . '• . II "· -; •· ' .· I ·"'! •· o 
1 s.s5 5.Io! 4.471 4.12; 3.89 3.731 3.61 3.51, 3A4J :3.37 3.2~ 3.181 3.o71 3.021 2.96! 2.nj 2.H51 2.79j 2.72 

I
I 6.~_1 1 4.971 4.~'?1 4.ooJ 3.7~ 3.~oj 3.~~~ 3.~;;1• 3.~!1 3.2~ ~-I~ ~-?~j' 2.951 2.~91 ~-8~1 ~.78j ~.721 2.~~1 ~-6~ 
, 6.;30I 4.861 4.2-<ij 3.891 3.6oJ 3.;J0I 3 .. l8JI 3.-"1 3.'-'ql 3.1'-l! 3.0o 2.9;J 2.841 2.191

1 
-.7;:,! 2.67! 2.61! 2.o.Jj 2.-L 

I ! . - I ! ·I ' I 'I I I I I 
1 6 '?01 4 r"'!,...r 4 1" 3 ~o· r\ j"r 3 -ql 3 ')fl 3 ''0' 3 .. 'JJ 3 or: 2 "61 2 R61 "~r-:: 2 ~o~ "s.•: 2 ~Qr 2 ~·>r· '} .'s· ') .. o ' ·-I ./1, • '" "·"I ,).-)~, '·'*-! ·---1 -~I .. j"'' . )\ ·"! .~' <..IU, ·'. __ ,., •. ) .. 1 .·>- -·*' -·" 
! 6.12i 4.69! 4.08! 3.7:Ji 3.::;0: 3.3-ti 3.22j 3.121 3.0;)1 2.!J9j 2.8~li 2.7!Jl 2.68j 2.6:3! 2.57' 2.51, 2.'1;) 1 2.:)8 2.:):! 

6 ()'1 1(;21 40ij 3GG' 31" 3''81 31~' 30''' ')'"'I '''l''' ·><NI ,,~zl 26'' 2"61 C)~o! ''4'1 .,.Jv! 2''''' "''" ·~·.i: 1 , __ .) • • • >t •. ·~~ •• -~...i , •. b 1 • 'Oj .... ;;~._) ........... : ~.v .... 1 -.1 ·~ ... l ,;) i '-"··J ..... '*-! ..... ~ o: .•J ... : w.-.Y 

5.DSi 4.56! 3.951 :3.61! 3.381 :3.221 3.101i 3.01; 2.9:3; 2.87.
1
1 2.771 2.6.7'

1
. 2.5Gl 2.50i 2.441! 2.38i.· 2.32' 2.26~1· 2.1~1 

r. 9''' 4 "lj 3 gol 3 "6' 3 3''1 3 1nl 3 o- '' n~' ·' 8"1 '? 8'1 2 n2; '> G'' 2 -,j "1"• 2 39 2 3''• 2 2"' 2 ''0 2 13 v. _, .i) I . I .. ;) i .. --'1 . 'I .. ;)I .... ;;t>i "-· ''i -· -, .I i -· ~I .<Li "'•' ai . I . o)l . II ·- I • 

5.871 4.46 3.8~ 3.511 3.29\ 3.131 3.D11 2.91i 2.811 2.771 2.681 2.57 2.46i 2.411 2.35\ 2.29j 2.22! 2.16: 2.0!) 
5.83' 4..12: 3.82- 3.481 3.23! 3.09 2.97, 2.87! 2.Eol 2. 731 2.641 Z.:iaj 2.42/ 2.371 2.31! 2.25J 2.18: 2.111 2.0-1 
5.79\. 4.:381 3.78/ 3.441 3.221 3.051 2.931 2.8-1\ 2.761 2.70·1 2.60, 2.')0: 2.:39! 2.33.. 2.27!. 2.21' 2.14! 2.01;: 2.00 
......... ~ 4 3" 3 7 r- 1 3 411 3 1" 3 O?l 2 901 2 8'' 2 7•J! 2 r:7 2 r--t CJ 4nll 2 361 2 '1 '1' 2 24' ? 18' 2 1"1 1 '> 04' 1 'J~ :>.1 a1 • ::., •• ·Y. • • o. . _

1 
• j ·' ~1 ., .,, .o . ..J q -· 1 • 1. ..J,. . 1 -· ' 1 • I .... ; •• 1 

:; ~'), 4 '3'11' 3 ~,21 3 381 3 ,_ 2 1<9 2 Snl 2 781 2 -,ol 2 641 2 C)A' 2 44'1 2 -~·) 2 27' 2 ')11 2 lc); 2 0"' 'J o·l·: 194 
v.l- •' "- • \ • I .101 .~ j • • ! • I • ~ •' '! • •V'JI • ~ ·- l • ' 1 • '-'! -· l • 

I I i I ! I I i I ' I I I I ' ; 
5.691! 4.29: 3.69i 3.35! 3.13'! 2.971 2.85j 2.75: 2.fi8i 2.61j 2.51! 2.411

1 2.301 2.241 2.18i 2.12i 2.05! l.H8i 1.91 
~.ss 4.:::!1 s.6!! ?·?31 3.1o 2.9~1 2.~21 ~-z~: ~.s01 z.~~~ 2.4£'

1
- ~-a~1 2.2~1 ~.22 1 2.1s1 z.o~i 2.os: 1.9G! 1.s~ 

~.63j U-.; 3.6:;-l· .3.~11 3.08, 2.9<;1 2.~0! 2.11: 2.631 2.?!! 2.4 !, -.3oi 2.~~~ 2.191 2.1~! 2.0 ~~ 2.?0: 1.931 1.8y 
o.~li 1.~21 3.6 ... , 3.291 3.06·,· 2.901 2.18/ 2.6~[ 2.~~~ 2.~1)1 2.4~1 ~-311 2.2,:;1 2.1 zll 2.1~: 2.0~1 1.981 1.9~1 1.~-3 
5.v9i 4.20: 3.611 3.27 3.04 2.88 2.761 2.611 2.a;~1 2.o3' 2.4"!' .::.32' 2.211 2.1vl 2.0;~1 2.0il1 1.96; 1.89, 1.81 

I ! \! I' I I I I I il ' I i i '1: ! 
5 • ..,l 418' 3·a. 32"! 30"· 28"'1 .-.n,.-1 21'."' 2""~1 .-,-.1 241' 231 ?CJO! 2'4' 2071 '>011 l<l4• 187. 1~" •• 01~ • I .:).}1 . ;)! ,1 ·>j ~ f .::../;J~ .D·J: .t)lj J.,t.Dl • l .. ! ........ I .l ' • : -'• ... I ..... ! • I ,L-1 

5A2i 4.051 3.461 3.1:3! 2.90I 2.74 2.6211 2.53: 2.4i'ii z.:JH! 2.291i 2.18!' 2.07, 2.0111 J .94i 1.88i l.f.Ol 1.72! 1.64 
"991 3'J3' 33' 30 11 n~g 2631 ')f"'1t ?41 1 "'.,3 2')/""!'i ')1" 206 19'' 188 lS·JJ 1'74~ "6"""! 1 -Rl 148 o.~ 1 ···•' ..... • ~· ~~..11 ... ~ .. J.1 -· ., -·"·1 __ ,, -· •I • 1 ••• ,, • 1 • - •• 1 1. •1 Lu~' . 
- 1·· ., 8oi 3 2"1 2 89j 2 6~' 2 5')1 2 3''' ') ~"' 2 z·>· z 1"1 2 o-: 1 94 , 8')' 1 ~s. 1 r;g: 1 r-1' ·1 ""' 1 431 1 311. :). 'Ji <). ' • 0 . . • I • _, • "I ~-·>tl; • "'I . Oj • "I •. i •. -: .I ' ·~· i .D I •. )'-'1 • I •. 
5.02! 3.G9! 3.121 Z.Bj 2.5 2.41, 2.29! 2.19! 2.11 2.05

1
1 1.94, 1.831 1.711 1.641 1.57J 1A8j 1.39! 1.27j 1.00 

\ ! l ' I ' ' I ! ' I ' ' ' . 
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5 
6 .. 7 .2 
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TABLE B-4 (Continued). PERCENTilES OF THE F DISTRIBUTION 

F. 99 (nl, 1'12) 

n1 = degrees of freedom for numerator 

nt/ j j I I' [ I i I I I I I \ I I [ I ! 

I 1 2 'j 3 I 4 s I 6 I 7 i 8 ! 9 I 1 0 l_:..:_jl 2 I 1 s I 20 i 24 I 30 i 40 i 60 I i 20 II "' 
I I I I I I I I I 1 I I ! ---.----------------,--'--- ----~~---~---,---·----'----1 I ,. I ,, I I I ! i I I ! I i i I i i I 
1
4052 14999.5 !5403 5625 5764 15859 15928 15~)32 '6022 160;)6 [6106 J6157 IG209 [62:l5 [6261 :szs7 16313 i633!J f6366 

2 98 co, <)" 001 Cj<) 1 "1[ nQ ?'-l "9 '301 9'~ 3'31 ')<l "G' 00 ""l 1l9 no[ <W 401 '"' 4') 99 43' ''" 'cj 'l9 461 "9 ,~, 9'l 47' 99 481 9° 491 9" C(] 

I ,i.l' • "· 'v! • •·• "---~i.li ;; •• I "" • '···•J! .,,,,,;II. • .. )., . •.. J. i ""· ~~ .. ·- I ""·'*i.l "'' ' " .'>li c. i . I "· j O' •• HJ 
3 3U2I 30.82!· 29.46i 28.711 28.241 27.911 27.67[ 27.49[ 27.3.51 27.23i 27.0.'), 26.871 26.69: 26.60! 26.50i 26.41; 26.321 26.22 26.1:3 
4 21.20 18.00 16.691 15.98! 15.521' 15.211 14.981 14.801 1<1.66. 14.551 14.371 14.20, 14.021 13.93i 13.841 13.75j 13.65! 13.561 13.46 

i I I I I i I I i I I I l I I ! 'i 

s I 16.261 13.271 12.061 11.39! 10.97 10.671 10.461' 10.29[ 10.16j lO.os11 9.89j 9.721 9.551 9.47li 9.381
!' 9.291 9.2011 9.11 9.02 

61 13 ~-l 109'>' <)~~! 91C• 8~- 84~l ;<<1f' 8ln~ 7<!8> 7°~ ~7''l 7"61 "40 7''1 7')3 714· 706 69711 6'-'-" . .IJI . ~~ ,.lo, •• ;~ .It> • II c.~·.JI •• v. ... 1 .oij 1. ""' •• J I I. ·•> ·- • ' • 1 • .oo 
7 I 12.25, 9.:i51 8.45! 7.85! 7.46; 7.191 6.99! 6.841 6.72!! 6.621 6.47) 6.3111 6.161 6.07! 5.9911 5.91.1 5.8211 5.74 11 5.651 
S 1 !1?6. 86" 7"91 70'1 5r.3· 63~ 61k1 60''' "91 "Ol ·5~· ""2 •nsl "'J8. 520 "1'71 "03' 4°" 4"'6 1 ..... 1 . V[ .~). • i .o 1 . lj .... c) . t)l ;.>, D.o , ~. '! D.O t>.J b .... 1 • 1 ::.>. ""! V. : .... U! .o 
9 1 10.56! s.021 6.99, 6.421 6.061 5.801 5.611· 5.47[ 5.351 5.261 5.11! 4.96!' 4.811 4.n: 4.65 1, 4.£57: 4.48! 4.4o: 4.:nl 

I I I I I I : ; ! I I I I I I . I I 
10 ! 10 0' 1 ~ ~s 6 rrl - 'J91 - 64· - ~QI c ')()' - nr,l 4 n•l ·' ;;:r: 4 "' 1 4 rrol 4 ·!'I 4 '3'' 1 4 ')CI 4 l"i 4 08: A oo' 3 ,,.) ] . 'i) I.D· j •• J,lj ::> •• 'I 0. j t) ...... "l •)·-··\ ,),l)_,i ,.;•t •i.e•>; .11; •• )Q ,' 1.1 •• •Jj ,...,,), . lj • i "'t. , • ,,11 

r·-~ " . .,. , •)•)' - ,..., -. ·""~ ... "1 'f•! ;. ,..._ j ~ ... ,~· A. , ').. .. ' •) • < ! • : • ~ ., : 11 1 9."''' ~od 1 6.-~, a.G 1: ;,,:3;c1 ;,.0 11 4.;:>:;, "·.' 41 ·1.631 'L'Hi 4.~0: 4.~•> 4.10! 4.0-· .LH, 3.86 .l. 18. : 3.6.!, 3.Gol 
12 "'l'3' G "'3' c <Jrl - ·"' cAs· i 8')' 'G'l 1 -c' • '"" 1. '3"1 4 161 4 011 3 86' '3 "8' 3 ~a 3 G''' 3 ~4' 3 '"' 3 'l6 

3 9 07• 6 ~ol • "A' r. ')'' 4 86 4 6•>1 4 A <• A '\Oi 4 jQ• '1()' 3 1'6 3 8''1 3 661 3 cgl 3 '(' 3 431 3 ')4' 3 •)CI 3 1~ 1 ·~ l ·! 1 ' ~-~·t) ~--1, ,,(! ..... 1 -:~'~1 "% •• ! .... ;::! "*· l HJ l . .::.1 ·,.. j .v.l .. J_l l·,),...i •• 1 -~2~ :·' I ~ .. •: ,";.),I o),, ,)1. ,'),•t .. q. V.V )l •, ._.: ~l. '}f I. ,.).j\ "{,o.JJ/ i.• V: • 1 o , ,(. 1 ~of o I I •. i.... • -~ i 0 o":t•)j. 1 •' ., 

14 I 8)i6j 6.;H! D.D6, o.04J 4.691 4.46/ 4.-81 4.141 4.0•>i 3.941 3.801 3.66! 3.<>lj 3.43\ 3.3Di 3.- tJ 3.18) 3.091 3.00 
' I l I I ' I I I i I i : ! 

l 8 6°1 6 361 • 4'Ji 4 s· 9' 4 ·sl 4 3')' 4 1.1 ' 11 (''1 3 R"1 3 "0 3 6~ 'J .,,, 3 'l~: 3 ''"1 3 2'! 3 1'3' 3 n-1 ') ')f>i ., s~ S , ,'); ,o ;), _., , , j .~) ,, .... ( ' , !~ 'i.lJ I' oo'...:!Jj .0 ~ 1 • q •),;).;.., ,,_, tli o ,kvi , ..l; • • I. ,U:) _.,. [)i .0:.,..1. I 

16 ""'" 69'JI "•)<)' 4~~• 4441 4'>0' 40'3 '10"' •J~vl ''6°' 3""' 3411 3''6 3'S' 310' 30·>' zoo ?R4 .,~-o.:).Ji ..... , ~ ....... 1 . , q . ! .... 1 •• 1 .::).o,, 1 ·>-1o1 •> • • Ji .u:J; • . : ..... 1 • .1~..., • . . -i .J·J·1· ..... ~~ ; -· ':) 

17 84or 6111 "1" 467. 43' 1 4101 3°'3' '3-o' 3r.s1 '3""1 '316 '33'1 31'" 'l(l''' ')r,o ''9'' ·>~·;· 27"' ·>"' , . 1 , j :). • ~~ , ! , '-t'l o ••'') • • t ._; ~ •VI.) • .~,J; • ,' ! • , .;.. • , •Ji • , Oi ,;,V .1 .;...., -: ..... ~• : • ;): ..... v:) 
l & s·>•)' 60 11 CQ<l' ACS' 4'r 401· 3"" 3"'11 °(iOI 3.-11 °37' 'j•J•)I 301(1 '300' •><j•), •)<HI ,,.,.rr 'J66' ''"" 1.) ,..,.; I •' .lj o), v: "'J",o) j ,....,,): 0 i o ,Cd:) 0 ,I I o), , ,;) , U, 11 0 ,...,.oJj 0 c: 0 • I .... u ...,: ..,.,C':i:i .(,.,~o)j -· ; ..... ,.)! 
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APPENDIX C 

PROPERTIES OF EXPECTED VALUES 

Definitions: 

Given the random variable x with probability density function ~' 

then the expected value of a function f of x is 

00 

E [f(x)] = Jf(x) ~(x) dx for x continuous 

E [f(x)] = E f(x) ~(x) for x discrete. 

Given the random variables x, y with joint probability density 

function ~' then the expected value of a function f of x andy is 
00 00 

E [f(x,y)J~t f f(x,y) ~ (x,y) dx dy for x, y continuous 

E [f(x,y)] = E E f(x,y) ~(x,y) for x, y discrete. 

Properties(Theorems): 

Given a constant k 

E [k] = k 

E [k f(x)] = k E [f(x)] 

E [E[f(x))]= E [f(x)) 

E [E f.(x)] = E E [f.(x)] 
J. J. 
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APPENDIX D 

PROPERTIES OF MOMENT GENERATING FUNCTIONS 

Definition: 

Given the random variable x with probability density function ~. 

the moment generating function of ~ is 

M (t) = E [exp (xt)] 
X 

Properties (Theorems): 

Given a constant k 

exp ( kt ) M ( t ) 
X 

M_ (t) = M (kt) 
~KX X 

Given constants k. and statistica+ly independent random variables x. 
l l 

nw·(k.t). 
i xi 1 
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APPENDIX E 

PROPERTIES OF MATRIX TRACES* 

Definitions: 

Given a square matrix A, its trace is the sum of its diagonal 

elements 

Trace A= Tr(A) =Ea ... 
• l.l. l. . 

Given a matrix A and a square matrix F which is a product of' 

matrices including A, the partial derivative of the trace of' F with 

respect to the matrix A is a matrix whose elements are the partial 

derivatives of the trace, of' F with respect to the corresponding elements 

of A, that is if 

then 

ClTr(F) 
ClA 

Properties (Theorems): 

Given a constant k 

A = [a· .. ] 
l.J . 

= [a Tr(F) ] • 
aa.j 'l. 

Tr(kA) = k Tr(A) 

Given two matrices A and B conformable under addition 

Tr(A + B) = Tr(A) + Tr{B) 

Given two matrices A and B conformable under both multiplications AB and BA 

Tr(. A B) = Tr (B A} 

* A complete discussion of these properties of traces is found in 
Blaha, G. (1971). "Inner Adjustment Constrain·.~s With Emphasis on 
Range Observations11 , Reports of the O.S.U. Department of' Geodetic 
Science, Report No. 148. · 
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Given two matrices A and B conformable under both multiplications ATB 

T and AB 

T T Tr (A B) = Tr (A B ) 

From the above properties it is evident that similar matrices have the 

same trace, that is for any nonsingular matrix R, and any matrix A of 

same order as R 

Tr (R-l A R) = Tr (A) 

and in particular if R is the orthogonal matrix which diagonalizes A 

we have 

Tr (A) = I: 
i 

where A. are the eigenvalues of A. 
l. 

A. 
l. 

A property of the derivative of Tr (F ) is 

a Tr(F) 

a AT 
= 

a Tr(F) ] T 

aA 

For specific forms of F we have 

F = AB 
a Tr(A B) 
a A 

= a Tr (B A) = BT 
a A 




