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A b s t r a c t  
 

The compilation of proper input gravity data for the Truncation Filtering Methodology (TFM) from 

observed gravity is discussed. The aim of the TFM interpretation is to determine the anomalous 

density distribution, or at least some of its characteristics, below the earth’s surface in a studied region. 

It implies that the input data must be equal to the gravity effect (attraction) of all such anomalous 

masses of interest. Furthermore, the TFM requires that the input gravity data be given on a 

level reference surface, the position of which is further constrained by the requirement to stay outside 

all the anomalous masses, hence above all the terrain, in order to avoid downward continuation 

through anomalous masses. Such a requirement is imposed by the fact, that the TFM is a pattern 

recognition technique and the knowledge of patterns comes from synthetic modeling on a level surface 

without topography. Consequently the requirements imply that the input data needed are the gravity 

disturbances, corrected for the effects of topography and bathymetry, harmonically upward continued 

to a level surface tightly enveloping the topo-surface in the area of interest. Numerical procedures and 

several approximations in compiling such data are discussed. 

 

keywords: TFM, gravity disturbance, gravity interpretation, gravimetric inversion, pattern 

recognition  

 

 

1.  Introduction  

 

The Truncation Filtering Methodology (TFM) was introduced in 1995 (Vajda, 1995; Vajda and 

Vaníček, 1999; 2002) as a tool for interpreting gravity data. The methodology uses specially designed 

filters, by which gravity data are transformed into other quantities. The truncation filter has one free 

parameter (the truncation parameter), therefore the transformation results in a sequence of profiles or 

surfaces (Vajda and Vaníček, 1997; 2002) of the “post-filtered quantity”, when this parameter is varied 

monotonically within a selected interval of values. When the sequence of such profiles or surfaces is 

animated, dynamic patterns are observed. These patterns are signatures of the anomalous masses 

generating the gravity data. The TFM may be classified as a data enhancement and pattern recognition 

technique. The patterns often have an onset (a value of the truncation parameter at which they appear). 

From the onset of a pattern the depth of some characteristic feature of the anomalous mass density 

distribution may be determined. To be able to interpret such dynamic patterns, the relationship 

between the observed pattern and the source (anomalous masses) must be known apriori. This may be 

established by modeling (synthetic simulations) and case studies. Work is in progress to establish such 

a know–how or databank of patterns. So far this relationship is known only for point sources (Vajda 

and Vaníček, 1997; 2002). Point sources produce dimple patterns. The relationship between the depth 
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of a point source and the onset of the dimple pattern was established not only by computer simulations, 

but also by analytical derivations (Vajda and Vaníček, 1999; 2002). 

 

Originally, at the very beginning of developing the TFM, when the truncation filter in use was the 

Truncated Stokes Transform (Vajda and Vaníček, 1997; 1999), the input data were the gravity 

anomalies. However, such approximations were adopted in computer simulations and analytical 

derivations, that the gravity anomalies were actually approximated by gravity disturbances without 

explicitly declaring it. This was caused by taking the geoidal undulation (the separation between 

reference ellipsoid and geoid) to be zero in the first approximation. Later, the use of the Truncated 

Stokes Transform was extended to using a general truncation filter (the Stokes function as the kernel of 

the integral was replaced by an arbitrary function of the angular distance between the computation 

point and the integration point), and the gravity anomaly was replaced by the gravity disturbance 

(Vajda and Vaníček, 2002).  

 

In computer simulations the synthetic gravity data are computed either on a plane bounding the 

halfspace containing anomalous masses (planar approximation) or on a reference sphere bounding the 

anomalous masses (spherical approximation). Topography of the earth’s surface is not considered. 

Synthetic TFM sequences are computed from synthetic gravity data and the knowledge of “synthetic” 

TFM patterns is built based on these computer simulations. However, we want to interpret gravity data 

pertinent to the real world by means of TFM pattern recognition. In real world the observed gravity 

data are: (1) typically given on the topo-surface, as opposed to the reference plane or sphere, and (2) 

impacted by the effect of topographic masses, and eventually of the bathymetric density contrast. In 

this paper we shall examine how to handle these two issues in order to be able to interpret observed 

gravity data by means of the TFM, or in other words, in order to be able to match ‘observed TFM 

patterns’ with ‘synthetic TFM patterns’. 

 

2  Background 

 

Points and surfaces in our study are positioned using geocentric geodetic (Gauss-ellipsoidal) 

coordinates, vertical position being given by ellipsoidal (geodetic) height h  and horizontal position 

 ,  by geographical (geodetic) latitude and longitude, respectively. The International 

Reference Ellipsoid (IRE), such as GRS’80, is chosen both as the datum for the geodetic coordinates 

and as the normal ellipsoid, i.e., the reference body for normal potential, normal gravity, and a model 

normal density distribution. Gravity data are assumed already properly corrected for the gravitational 

effects of the atmosphere, tides, or other temporal effects. The discussed topographic and bathymetric 

corrections to a gravity disturbance are given by Newton-type volume integrals for attraction. 

Newton-type volume integrals herein are written in spherical approximation (e.g., Moritz, 1980, 

p. 349; Vajda et al., 2004; Novák and Grafarend, 2005) expressed in geodetic (not spherical) 

coordinates, taking the mean earth radius R = 6 371 km. The J kernel of the volume integrals for 

attraction is the vertical derivative of the reciprocal Euclidean distance L between computation  ,h  

and integration  ',' h  points (e.g., Vajda et al., 2006) 

 

  ',',, hhL        cos'2'
22

hRhRhRhR   ,     (1) 

 

 'cos'coscos'sinsincos    ,       (2) 



Vajda and Vaníček: Input gravity data for the TFM     revised after first review in CGG 

 latest edit: 19 February, 2008  page 3 

 

 

 )',',,( hhJ      )',',,(cos' 3   hhLhRhR   .      (3) 

 

The convolution integrals of the truncation filters are evaluated, either in geographic coordinates or in 

local polar coordinates, on the reference ellipsoid in spherical approximation. The surface increment 

at the unit sphere in geographic coordinates reads '''cos'  ddd   and in local polar coordinates 

    ddsRsRd sin1' , where s  is the radial distance from the local pole and   is azimuth. The 

surface increment on the RE is '' 2  dRd , while at a sphere of radius 'hRr   it is 

  '''
2
 dhRd . The volume increment is   ''''

2
dhdhRd  .  

 

The extension towards evaluating the Newton volume integrals in ellipsoidal geometry would be 

carried out by replacing the J kernel and the volume increment 'd  (of the volume integrals) by their 

respective (and more cumbersome) expressions in Gauss- or Jacobi- ellipsoidal coordinates (Vajda et 

al., 2004; Novák and Grafarend, 2005). For brevity, we will write the J kernel and the volume 

increment of the Newton volume integrals herein without their position arguments. The following 

surfaces, listed in Tab. 1, are particularly relevant in our study. The onshore and offshore regions of 

the globe ( 0 ) are denoted as L  and S , respectively, SL 0 .  

 

Table 1.  Surfaces of particular relevance in our study. 
 

surface definition domain 

reference ellipsoid (RE)   0h  
0  

topo-surface onshore (relief)   )( Thh  
L  

topo-surface offshore (geoid)   )( Nh  
S  

sea bottom   )( Bhh  
S  

 

Both the relief and sea bottom in the topo-correction and the bathymetric correction are reckoned 

from the RE, i.e., positioned (referred to) in geodetic heights (not heights above sea level). When not 

directly available, these are obtained by adding geoidal (or quasigeoidal) heights to the orthometric 

(or normal) heights, e.g., from a local or regional geoid model in the vicinity of the station and from a 

global geoid solution such as EGM96 (Lemoine, 1998) in the remainder to 0 . We shall use the term 

‘reference ellipsoid’ (RE) for both the body and its surface, trusting that the meaning will be clear 

from the context. 

 

We presuppose that a model normal density distribution  ,hN  inside the RE, meeting the 

constraint of generating normal gravitational potential in the exterior of the RE, generating normal 

gravity (both inside and outside the RE), which in addition is geophysically meaningful, can be found 

to at least a satisfactory approximation (Tscherning and Sünkel, 1981; Moritz, 1968; 1973; 1990) in 

the form of an ellipsoidally stratified normal density distribution with a PREM-like “radial” behavior 

(PREM being an acronym of the Preliminary Reference Earth Model), consisting of the top layer of 

an average crustal density 0  at least 11 km thick. 

 

3  Gravity data interpretation or inversion 
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The objective of inverting or interpreting gravity data is to determine the anomalous density 

distribution   (“anomalous masses”) below the topographic surface onshore or below the sea bottom 

offshore. To do that a physical link between the observables (gravity) and the unknowns (anomalous 

density) must be established. That can be achieved by the decomposition of the earth gravitational 

potential (e.g., Vajda et al., 2006; 2008) resulting in 

 

 ,hg BT  ,hABT  ,         (4) 

        

where BTg , called ‘BT garvity disturbance’, is a gravity disturbance corrected for the (global) effects 

of topography and bathymetry, both effects being referred to the reference ellipsoid, cf. (Vajda et al., 

2008, secs. 5 and 6)  

 

 ,hg BT     ,, hhg    ,hABT  ,      (5) 

 

g  being actual gravity observed at the observation point,   is normal gravity at the same point, and 

( BTA ) is the “topographic and bathymetric correction” based on the RE 
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0  being average crustal density, W  density of sea water, and 00   W . In Eq. (6) the first 

volume integral is the topographic effect of the so-called “solid topography” onshore, the second is the 

topographic effect of the so-called “liquid topography” offshore, and the third is the effect of the 

bathymetric density contrast offshore. All three effects are relative to the RE.  

 

On the right hand side of Eq. (4) we have the gravitational attraction of the unknown and sought 

(global) mass anomalies below the topographic surface onshore and below the sea bottom offshore 
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When the gravimetric inverse problem, formulated in terms of gravity disturbances by means of 

Eq. (4), is solved by direct inversion, the volume integral for the attraction of the unknown anomalous 

density distribution is discretised to turn the problem into a system of linear equations. The problem is 

non-unique and ill-posed. When the gravimetric inverse problem is solved by the forward modeling 

techniques, then the left-hand-side of Eq. (4) represents observed (observed and compiled) gravity 

data, while its right-hand-side represents synthetic (modeled) gravity data, computed from a selected 

initial anomalous density by evaluating the volume integrals of Eq. (7) (direct problem solution), 

which is iteratively fine-tuned so that the synthetic gravity matches the observed gravity. The problem 

is non-unique and ill-posed, but in forward modeling additional geophysical or geological constraints 

may ne more readily adopted.  
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Matching synthetic to observed gravity data is the core procedure in forward modeling techniques for 

solving the gravimetric inverse problem. The synthetic gravity data are matched with the observed 

ones and the model is iteratively tuned to minimize the misfit. Matching the observed with synthetic 

gravity data takes place at stations (observation points). The location of the stations is arbitrary, cf. 

Eq. (4). Therefore, the matching can take place on the relief, at the sea surface, on the sea bottom, or at 

the points of the trajectory of an airplane, when dealing with airborne gravity data, etc. Upward or 

downward continuation of gravity data is not necessary. The continuation of the gravity data to a level 

(reference) surface is necessary only if the gravity data are further processed by means of integral 

transformations defined at a level surface, or in pattern recognition techniques, where the knowledge 

of a pattern is respective to a level surface, just as in our case of the Truncation Filtering Methodology.  

 

4 TFM pattern recognition – synthetic TFM patterns 

 

The knowledge of the TFM patterns can be acquired through modeling – synthetic studies (computer 

simulations). A simplified model of a given geological setting is constructed in terms of the synthetic 

(model) anomalous density distribution  . This model assumes no topography, all anomalous masses 

dwell within a sphere (spherical approximation) or a halfspace (planar approximation). This model 

anomalous density generates the synthetic gravity data, i.e., attraction A , cf. Eq. (7), dropping the 

superscript “BT”, as there is no relief or sea bottom present in the modeling. These synthetic gravity 

data are computed on a reference sphere (spherical approximation), or a level plane (planar 

approximation), 0h . These synthetic gravity data are in the next step truncation filtered, i.e., they 

enter as input gravity data the integral transforms (convolution surface integrals) of the truncation 

filters to produce the respective synthetic truncation sequences (Vajda and Vaníček, 2002). The 

truncation filter 
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is a surface integral convolving the gravity data with an isotropic kernel (acting as a weight function). 

The kind of the kernel ( w ) specifies the kind of the truncation filter (ibid). This kernel is a preselected 

function of the radial distance s  (on the reference sphere) between the computation point   and the 

integration point ' . The gravity data are convolved on a spherical cap of radial radius 0s , called the 

truncation parameter, which is a free parameter of the transform. For a sequence of values of the 

truncation parameter a sequence of surfaces of the post-filter gravity quantity ( synZ ) is computed and 

animated (the so-called “truncation sequence” or “TFM sequence”). Subscript “syn” stands here for 

“synthetic”. In Eq. (8) the transform is written first in geographic coordinates, where the surface 

increment is '''cos'' 22  ddRdRd  , and next in the local polar coordinates of the computation 

point, where s  is radial distance and   is azimuth, and where the surface increment is 

   ddsRsRd sin' . The radial distance reads 

 

    'cos'coscos'sinsinarccos',   Rs  .     (9) 
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Since the kernel of the truncation filter is isotropic, in numerical evaluation of a truncation filter there 

is no need to compute the azimuths of the running integration points. The numerical integration can be 

more conveniently performed in geographic coordinates.  

 

Dynamic patterns in the synthetic truncation sequences synZ  are studied. These patterns are 

qualitatively, and – if possible – quantitatively related to the model synthetic anomalous density 

distribution (of the studied geological model). This simulation procedure is repeated for many more-

or-less simplistic anomalous density distributions (models) to build a databank of known TFM 

patterns. Different kinds of truncation filters (various kernels) may produce different patterns for the 

same model. The development of the databank of dynamic TFM patterns and the investigation on 

which filters are sensitive to which features of realistic geological situations is the subject of our 

research in progress, which is a task for a long run.  

 

5  TFM pattern recognition – observed TFM patterns  

 

Suppose we already have knowledge of dynamic TFM patterns that we gained by studying synthetic 

truncation sequences (of post-filter gravity quantities synZ ) generated by model anomalous density 

distributions (synthetic geological models), as described in Sec. 4. Let us now move to the realm of 

observed gravity data. Recalling Eq. (4) we realize that the match to the synthetic gravity data are the 

“observed” BT gravity disturbances, compiled from observed gravity by means of Eq. (5). Since our 

objective now is to “match” the synthetic TFM patterns (dynamic patterns in synthetic truncation 

sequences) with observed TFM patterns (dynamic patterns in truncation sequences computed by 

truncation filtering the observed gravity data, i.e., the BT gravity disturbances), in order to apply the 

pattern recognition techniques to solving the inverse problem, we have to compute the “observed 

truncation sequences”. However, at this moment a little complication arises.  

 

The knowledge of the dynamic TFM patterns was gained by synthetic modeling the gravity data on a 

reference sphere, not at the topo-surface. On the other hand, our observed gravity data are most 

commonly given at stations on the earth’s surface. However, integral transforms defining truncation 

filters are surface convolution integrals – they require the input gravity data be given on a reference 

sphere (in spherical approximation), or on a level plane (in planar approximation). Consequently, the 

BT gravity disturbances must be continued to a reference sphere (or a level plane). Harmonic 

downward continuation to the sphere 0h  is not possible, because the BT gravity disturbances are 

not harmonic below the topo-surface (Vajda et al., 2006; 2008). They must be harmonically upward 

continued to a reference sphere Rhh  , where the reference geodetic height Rh  is such, that the 

reference sphere resides above the topo-surface everywhere in the region of our gravity data 

interpretation. We want to have it just above the highest point in our region, but not higher, due to the 

attenuation of the useful signal with height in the upward continuation.  

 

The harmonic upward continuation can be performed for instance by using the Poisson integral (e.g., 

Hofmann-Wellenhof and Moritz, 2006, p. 247, Eq. [6–44]). The function that is harmonic and that is 

continued is     ,hghR BT . There is a further complication due to the fact that we want to 

continue from an irregular topo-surface to a reference sphere, not vice versa. Another option to carry 

out the continuation is to use an equivalent sources method (e.g. Xia et al., 1993; Ivan, 1994; Meurers 



Vajda and Vaníček: Input gravity data for the TFM     revised after first review in CGG 

 latest edit: 19 February, 2008  page 7 

 

and Pail, 1998), where the equivalent sources may be either polyhedra or point masses, or those in 

general represented by Spherical Radial Basis Functions (Klees et al., 2007 and references quoted in 

Introduction; Tenzer et al., 2008). The detailed treatment of the harmonic upward continuation of the 

BT gravity disturbances is considered outside the scope of this paper. We have initiated a numerical 

study to compare the performance of various methods for the continuation that shall be presented in a 

separate work.  

 

The BT gravity disturbances upward continued to the reference sphere Rhh  , 

 

  ,R

BT hhg   ),(T

BT hhg   ),(, TR

BT hhgD  ,    (10) 

 

where the BTgD  term is the harmonic upward continuation correction to the BT gravity disturbance, 

are exactly what we need as the input gravity data for the truncation filters to compute the “observed” 

truncation sequences 
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Here the subscript “obs” stands for “observed”.  

 

Now we come to the rationale of the TFM pattern recognition technique. When a dynamic TFM 

pattern is observed in a truncation sequence ( obsZ ) computed from observed BT gravity disturbances, 

and this pattern is recognized as known (from synthetic simulations), then this pattern relates to the 

sought unknown real anomalous masses in the same way, as the synthetic (known) pattern relates to 

the known model (synthetic) anomalous masses. Hence, the model anomalous masses (respective to 

the TFM pattern) become one possible solution to the unknown sought real anomalous masses. The 

fact that it is only one possible solution is implied by the non-uniqueness of the gravimetric inverse 

problem. If the dynamic TFM pattern has an onset that can be quantitatively related to the depth of a 

characteristic feature (element) of the model geology, in synthetic studies yielding a depth *d , then 

the depth of that element in the real geology, yielded by the observed TFM pattern, will obviously 

become Rhd *  reckoned from the reference surface Rhh   , or *d  reckoned from the RE.  

 

6 Additional approximations – regional and local applications 
 

6.1 Truncating the volume integral for the attraction of anomalous masses 

 

Let us first discuss the truncation of the Newton-type volume integral over anomalous density for a 

general case, when it is evaluated on the topo-surface. The case, when it is evaluated on the reference 

sphere, is then easily derived by putting 0)'( Th . In regional and local studies the synthetic gravity 

data, i.e., the attraction of the anomalous masses given by Eq. (7), which is also used in our 

simulations for building the databank of synthetic TFM patterns, may be evaluated as the contribution 
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of the anomalous masses from a “near domain”, due to (a) the integral being evaluated over anomalous 

density, and (b) the fast attenuation of the J kernel. The “near domain” is horizontally defined as a 

“near zone”, i.e., a spherical cap of the radius equal to a preselected maximum radial distance Ms . 

Vertically the “near domain” is bound from above by the topo-surface )'( Thh , and from below by 

some preselected maximum depth of interest Mdh  . The “near domain” is respective to the 

computation point, i.e., it moves with the computation point. Written in local polar coordinates of the 

computation point, the volume integral reads 
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Let us repeat that the “near domain” (respective to and horizontally moving with each computation 

point) is a 3D domain defined as )'(;'  TM hdh , Mss ;0 , and  2;0 , where Md  and Ms  

are respectively  the maximum depth (below the reference ellipsoid) and the maximum radial distance 

to which the contribution of anomalous masses is considered. In the case of gravimetric forward 

modeling techniques, that match synthetic with observed data on the topo-surface, the upper boundary 

of the “near domain” is the topo-surface. In our case of synthetic TFM modeling, considering no 

topography in the simulations, 0),( shT . It is more convenient to numerically evaluate the above 

volume integral in geographic coordinates, in order to avoid transforming the horizontal coordinates of 

running integration points into local polar coordinates, doing that for each computation point. When 

computing numerically the volume integral in geographic coordinates, all it takes is testing each 

integration grid cell whether it lies within the “near domain”. Recall that the “near domain” moves 

(horizontally) with the computation point. Therefore, if we want to compute synthetic gravity on a 

computation grid maxmin ;  , maxmin ; , we must have the anomalous density distribution 

given on a 3D integration grid which horizontally envelopes the computation grid in a radial distance 

everywhere by Ms . To fulfill these requirements we must be cautious of the convergence of the 

meridians on the globe.  

 

A different approach is often taken in the practice. A “local domain”, in terms of “integration grid”, is 

selected as )'(;'  TM hdh , maxmin ';''   , maxmin ';''    on which anomalous density is 

given. The attraction of anomalous density outside of the “local domain” is disregarded. Then the 

volume integral is computed in geographic coordinates in such a fashion, that each grid cell of the 

“local domain” contributes into the volume integral for each computation point of the computation 

grid. The “local domain” is fixed. The result of the “local domain” approach differs from the result of 

the “near domain” approach in terms of edge effects. 

 

In local studies, in the case of small enough Ms , the volume integral of Eq. (12) may be evaluated even 

in planar approximation (cf. Sec. 6.4). For our synthetic TFM modeling we are currently using the 

Mod3D modeling software (Cerovský et al., 2004), which adopts planar approximation and “local 

domain” approach. 

 

6.2 Truncating the volume integrals of the “topographic and bathymetric correction” 
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Rigorously speaking the topographic and bathymetric correction to gravity disturbance, Eq. (6), is to 

be evaluated over the entire globe. In regional and local studies the integration may be truncated to a 

spherical cap (the so-called near-zone), i.e., to some maximum radial distance Ms   from the 

computation point (such as the Hayford-Bowie limit of 167 km, or a different one), if the truncation 

error (the contribution to the volume integrals from the so-called far-zone – the remainder to the full 

sphere) can be neglected as trend of no interest. In addition, the near-zone may be split into sub-zones 

with different grid steps – the finer the closer we are to the computation point, due to the shape of the J 

kernel (which tapers off sharply with distance from the computation point). Also in the inner-most 

zone the volume integral may be expressed in planar approximation (cf. Sec. 6.4). A lot has been 

published about numerical aspects of evaluating the volume integrals of topographic corrections in 

geophysical and geodetic literature (e.g., LaFehr, 1991; Talwani, 1998; Novák et al., 2001; Grand et 

al., 2004; Hinze et al., 2005; Janák et al., 2006; Mikuška et al., 2006; and references quoted therein). 

We do not wish to repeat those concepts here. Although most of the published work regards 

topographic corrections referred to the geoid, the same numerical procedures apply also to our volume 

integrals in Eq. (6).  

 

6.3 Approximating BT gravity disturbance by Bouguer anomaly 

 

In the cases, when in local or regional applications the geophysical indirect effect (Chapman and 

Bodine, 1979; Vogel, 1982; Jung and Rabinowitz, 1988; Meurers, 1992; Talwani, 1998; Li and Götze, 

2001; Hackney and Featherstone, 2003; Hinze et al., 2005; Vajda et al., 2006) can be neglected as 

trend of no interest, then the BT gravity disturbance may be approximated by the Bouguer gravity 

anomaly (cf. Vajda et al., 2006, Sec. 9). 

 

6.4 Planar approximation 

 

In planar approximation the computation or integration points given by the triplet of geodetic 

coordinates  ,,h  become referred to in local Cartesian coordinates  xyz ,,  where the x-y plane is 

tangential to the reference sphere at the origin of the local Cartesian coordinate system  00 , , while 

the z-axis points upwards. If the y-axis is chosen as directed towards the north (y coordinates being the 

“northing”) and the x-axis as directed towards the east (x coordinates being the “easting”), the 

coordinate system becomes right-handed. The local Cartesian coordinates (of both computation and 

integration points) are obtained by the following mapping of the geodetic coordinates 

 

   TT
hRRzyx ),(),)(cos(,, 000    .      (13) 

 

In planar approximation the radial distance becomes planar distance 

 

 ',',, yxyxs    22
'' yyxx   .       (14) 

 

The Euclidean (spatial) distance becomes  

 

 ',',',,, zyxzyxL  22 'zzs   .       (15) 
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The negative vertical derivative of the reciprocal Euclidean distance, the J kernel, becomes 

 

 ',',',,, zyxzyxJ    ',',',,,' 3 zyxzyxLzz   .      (16) 

 

The surface increment becomes  
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and the volume increment becomes  
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The truncation filter in planar approximation becomes 
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For observed gravity, in the above surface integrals, the )',',0'( yxzA   is replaced by 

)',','( yxhzg R

BT   and subsript “syn” is replaced by “obs”. Also the harmonic upward continuation of 

the BT gravity disturbances can be performed in planar approximation (e.g., Hofmann-Wellenhof and 

Moritz, 2006, p. 248, Eq. [6–53]). In planar approximation the gravity disturbance itself, BTg , is a 

harmonic function.  

 

7  Conclusion 

 

The aim of the TFM interpretation is to determine the mass anomalies (anomalous density distribution) 

below the relief onshore and below the sea bottom offshore, or at least some of their characteristics, 

including depth estimates. Therefore the input data must be constructed such, that they are equal to the 

attraction of the anomalous density distribution of interest. It is the BT gravity disturbances that are 

equal to such an attraction, as proved by Vajda et al. (2006; 2008). As the truncation filters are surface 

convolution integrals, the TFM requires that the input gravity data be given on a “level” surface 

(reference sphere in spherical approximation or level plane in planar approximation). The position of 

the level surface is further constrained by the requirement to stay above all the anomalous masses, 

hence above the topographic surface in the region of interest. All these requirements lead to a necessity 

to compile the BT gravity disturbances and to continue them harmonically to a level surface tightly 

enclosing (from above) the terrain in the region of interest. The upward continuation also assures the 

feasibility of matching observed TFM patterns with synthetic TFM patterns that represent the know-

how of the TFM pattern recognition technique.  
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