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S u m m a r y :  The aim o f  this paper is to examine the physical laws which govern the motion o f  
a horizontal pendulum, mounted with the familiar ZOtlner suspension geometry and to establish the 
equations o f  its motion, It  is possible in this process to determine calibration parameters with greater 
precision and confidence and to demonstrate that procedures based  upon period measurement can 
inherently claim a precision superior to some modern alternatives. Moreover in approachh2g the 
problem from a theoretical viewpoint it is possible to pinpoint those features o f  design which give rise 
to the troublesome aberrations. This facility makes it possible to comment upon desipn improve- 
ments so that a closer approach may be made to an ideal instrument. 

1. I N T R O D U C T I O N  

As in all experimental geophysical work the problem of  calibration of horizontal  pendulums, 
when used for the measurement of ear th tidal tilts, is severe. The conventional instruments rely 
upon a simple relationship which exists between J ~ ,  the free period of the pendulum mounted  
vertically, and Y l ,  the operational period of  the pendulum mounted  horizontally but  also in such 
a way that  the pivot used for the determination of 9-  v lies in a line joining the contact  points of the 
suspension filaments with the support ing framework. More  recent instruments,  notably the 
Verbaandert /Melchior  quartz pendulums, are not  designed in a manner  which allows ~'~v to be 
measured, and are subject to an  initial calibration in the laboratory when their response to known 
tilts is related to operating period. In this case the known tilts are applied by an independently 
calibrated footstand, a crapaudine, which dilates and contracts in response to a changing head of 
mercury communicat ing with an internal cavity in the stand. Al though it is possible to have an 
automatic calibration system in such cases, whereby the footstand is used operationally and made 
to effect a displacement to the pendulum position at regular intervals, most instruments of this 
type rely for their sensitivity in toto or in part  upon the precision with which the operating period 
can be determined. Because of dissatisfaction in this procedure some current instruments have 
been designed in a more sophisticated way so that  the pendulum may be mounted in a less critical 
and sensitive fashion and its microscopic movements in response to tilt are  then amplified elec- 
tronically. The responsibility for  calibration and for stability is therefore partly shifted from the 
mechanics of the instrument  to the electronic components,  but this change in emphasis may not  
be altogether wise, merely introducing a new range of problems. 

Dissatisfaction arises from the fact that  it is not  easy to measure the operating period of 
a horizontal  pendulum since experience shows that  period is dependent in a complex fashion 
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upon the amplitude of swing. The phenomenon has received attention from many workers in the 
earth tide discipline notably Skalsk3~, Pfcha, Schneider, Mittelstrasse, Goloubitskij et al., and 
appropriate references are given in an appendix to this paper. Procedures have been devised to 
counter the problem, in particular Schneider derived a formula to represent the phenomenon, 
and this formula is vindicated by the present investigation. Nevertheless, such hypotheses, 
without exception, are empirically based in that they were suggested by the characteristic form 
of long term period measurement. Although physical and mechanical justification for the observed 
phenomena has been suggested by certain authors this has been intuitive, without the confirmation 
of theory which has always proved intractable. Inevitably a proportion of these deductions are 
now shown to be false. 
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Let the pendulum, with its supporting frame, be represented by a system of five points A', 
B', T, C, D where A', B'  are the points where the suspensions are attached to the pendulum 
beam, T is the centre of gravity of the pendulum beam, and C, D are the points where suspensions 
are attached to the supporting frame (Fig. I). 

Now consider the first co-ordinate system ~ ~ (C; x, y, z), rectangular and positive, linked 
with the supporting frame so that the - -z  axis passes from C to D (Fig. 1) and + x  is parallel 
with the vertical plane going through the "pivot"  and "sensitivity screw" (Fig. 1). 

Then consider a second co-ordinate system ~ '  ~ (T; 4, r/, ~), rectangular and positive, linked 
with the pendulum beam. Its orientation will be specified later. For the point T two equations of 
motion can be written: 

(1 ) ; (2 )  ; = ~ f i / J ¢ ;  ~ + o) x ~ = ~ N , ,  r .  
i = 1  i = 1  

Here: r refers to the radius-vector of T in N; ~# the mass of T (i.e., the mass of the pendulum 
beam); fi (i = t, 2 . . . .  , n) forces acting on the system TA'B" expressed in ~ ;  ~ the tensor of 
inertia of the pendulum beam in T; o~ the rotation of ~ ' ;  NhT (i = 1, 2 . . . .  , n) moments of 
forces fi towards T. 
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Let us denote vectors in N' by small latin letters and in M' by small greek letters. If  we denote 
time variations (derivatives with respect to time, i.e., speeds) in N' by ' and ~)' by * we can write 
for a free vector e: 

(3)  ~i = *~ + ~ x ~ .  

Denoting the radius vector of a point P in ~" by Op we obtain similarly: 

(4) t: = *Qp + to x eP + r r -  

Since ffp = rp - -  rT, using the same symbolism, we obtain for accelerations: 

(5) ~ = **~ + 2o, × *~ + ~, × ~ + ~ × ( ~  × ~), 

(6) i e  = i ' r  + **ee  + 2o) x *ee  + e) x el, + o~ x (69 x Qe)- 

Let us introduce now the vector called "moment  of motion" of the point i with respect to P: 

(7) a i, e = ( r , -  re)  x r / / [ , .  

1 / i  is the "mass of point i". Taking especially P ~ C we get ai,  c - -  r i × i'i,]g i. Since the "moment  
of f i"  ((i being a force acting in/ )  is defined by the following equation: 

(8) . , ,~  = ( , . , -  ,..) × f, 

and particularly the moment towards C: 

(9) hi ,  c = r i x f¢ 

we can write: 

(10) a i ,c  = n ~ , c .  

The moment of motion of the body d °, represented in our case by T A ' B ' ,  with respect to C will 
be given by: 

(11) °~,c = ,, =~,o,(,, × ~ , ) ~ e , .  

Substituting for r i and/ ' i  from (4) and considering *ffi = 0 (i.e. considering g rigid) we obtain: 

d fe g 

Eq. (11') can be rewritten as follows: 

+ [ [Q, × (o, × ~,)] ~ t i ,  
d ie~ 
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where ~" = J'ie¢ Jgl .  In (11") Si~s OiJ{i ~ ~ O T ~ /  = 0 and 

= - r h . i  ~i + ~i,  -~/i(~ t~ ~ ' i  = 3o~. 

Thus (11) acquires the final form: 

(11")  a -- (r  r x rr )J* '  + 3 to .  

According to (10) the moment of all the forces acting on d ° is given by the time derivatives of the 
moment of motion of ~ so that we can write: 

(12) = .  = × + + × 
i = 1  

Considering (9) and taking into account that hi, r = (r i -- r r )  x fi we obtain: 

(13) ~ n,, c = ~ ni ,r  + (r  r x i;r) J¢/ 
i = 1  i = 1  

which together with (12) gives us (2) with N replacing n. The eq. (1) is obvious. 

Let us, for simplicity, orient ~ '  in such a way that the axes ~, ~/, ~ will coincide with the main 
axes of the central ellipsoid of inertia of the pendulum beam. The matrix of the tensor of inertia 
thus degenerates into a diagonal form containing moments of inertia towards individual axes only, 
and (2) becomes: 

tn 

(2') 30 dJ = 2 Ni , r "  
, t= i  

2.  F O R C E S  A N D  T H E I R  M O M E N T S  A C T I N G  O N  P E N D U L U M  

In  the  fo l lowing pa rag raph ,  we shall  a t t empt  to formula te  the forces and momen t s  

act ing on  the p e n d u l u m  as they arise f rom the physics of  the ins t rument .  This fo rmula -  

t ion  will enable  us then to write the differential  equat ions  o f  mo t ion  (1), (2')  in the  

final fo rm val id  for  our  pa r t i cu la r  case. 

(a) G r a v i t y  f o r c e  can be taken  as act ing in T and expressed by the fo l lowing 

fo rmula :  

(14)  g - gdg(le, + J% + e3), 

where 9 is the g rav i ta t iona l  accelerat ion;  I is the angle between g and  axis z in the x z  

plane;  J is the  angle between g and  axis z in the y z  plane;  e , ,  %,  % are vector-uni ts  

in x, y, z axes. The  a p p r o x i m a t i o n  (14) holds  because the angles I and  J are always 

extremely small .  As g acts in T i t s  m o m e n t  N o is equal  to 0. 

(b) T e n s i o n  in  s u s p e n s i o n s  a s  a r e s u l t  o f  g r a v i t y  f o r c e  can be de te rmined  

f rom the cond i t i on  o f  equi l ib r ium in A' .  When  we neglect  z componen t s ,  knowing  
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from experiments that the overwhelming part of the motion takes place in the plane 
x, y, we can write for the absolute value fB of the reaction force acting in suspension 
B ' D  (Fig. ]): 

(15) f ,  cos V2 ~/[(xa - Xe) 2 + (YA - YB) 2] = 9 ~ {  ~ / [ ( x r  - XA) 2 + (Yr -- YA)Z] • 

Similarly for the absolute value fa  of the reaction force in suspension A 'C:  

(16) f a  = (OJ-g + f ,  cos yz) icos  Ya.  

All the other forces will be much smaller so that we can take T, A', B' lying ap- 
proximately in a vertical plane. Hence we can write: 

(17) X A = X r - -  AT cos 77, Ya = Y r -  AT sin77; 

xl~ = x T -  B T c o s $ ,  Ye = Y r -  BTsin77. 

Substituting (17) to (t5) we can write: 

(18) fe  = ( r o  - re , ) f s /12  = 9 J g  AT(12 AB cos 72)-i (rD - r s , ) =  f ; ( ro  - rs,). 

Similarly, for fa we can get: 

(19) lea = - ra , fa t l  , = gd/BT(I,  AB cos 7~)-' ( - r a , )  = --f,~rA,. 

Moments of these forces can be, according to (8), expressed as follows: 

(20) N 4 , r = ( r a , - - r T )  x fA =f~(rT x rA, ),  

(21) N e , r  = ( r e ' -  rr) x t'e =/l~(rl~, × ro + rD × r r  + r r  × re ') .  

(c) R e a c t i o n  a g a i n s t  t o r s i o n  in s u s p e n s i o n s  in a c r o s s - s e c t i o n a l  sense  
is obviously bound to provide moments in A' and B'. According to [11, p. 297], we 
can write for the torsion torque in a suspension: 

(22) MT = GJcC>ll ,  

where G is the modulus of torsion for the material used for the suspension filaments; 
J c  is the moment of inertia of a cross-section of the suspension filament; • is the 
angle of torsion; 1 is the length of the suspension. Taking for each suspension cb = 
= 77 - 770, where 77o is the initial twist of the suspension we can write the moments: 

(23)  NA,T = M T Z ; ' , A ,  -- G/ (77 --  77oA)Z?2r " , 

(24) Ne, ~ = M r I ~ ' ( r ~ ,  - I's•) ----" GJ~(77 - 77oe)t;2(r. • - rD). 

Note that from the geometrical point of view, this initial twist refers to the angle 
between the plane x z  and the neutral plane of the filament in an untwisted state. 
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(d) I n t e rna l  t o r s i o n a l  f r i c t i on  in suspens ions  in a c ross - sec t iona l  
sense is held to be responsible for the damping of the motion: In accordance with 
the frictional law it must be proportional to the speed of motion taken in the negative 
sense. It will add to the moments in A' and B' and can thus be expressed by the fol- 
lowing formulae: 

(25);(26) N ~ = K ~ l ; 2 ~ ,  • N ~ , ~  - -  K ¢ ; ; ; 2 ( ~ ,  - ~o) A,T ~ 

where K is a constant characteristic for the suspension filaments. 

(e) Air f r i c t i on  produces the same influence as the torsional friction in sus- 
pensions and can therefore be described by equations identical with eqs. (25) and (26), 
where only the coefficient K would have different meaning. Thus, we can deal with 
(25) and (26) only and interpret g as characterising not only the internal friction but 
also the air friction. 

(f) R e a c t i o n  aga ins t  t ens ion  in su spens ions  due to l o n g i t u d i n a l  bend  
is a very difficult physical phenomenon to deal With from the mathematical point 
of view. The authors were not able to arrive at any satisfactory formula and have 
therefore decided to neglect the phenomenon altogether. Yet, the indication is, as 
correctly pointed out by Skalsk~, that it may play a significant role in the quantitative 
interpretation of the present theory. All that can be said about the phenomenon is 
that it would have a form similar to the eqs. (23) and (24). 

3. D I F F E R E N T I A L  E Q U A T I O N  O F  M O T I O N  

It can be shown that the pendular motion of the pendulum can be described by 
differential equation of fourth order. Denoting the main moment of inertia of the 
pendulum beam towards the axis ¢ by cg¢ and d¢'/c£¢ by Q we have: 

(27) d4-~-~ + k3 d3-~ + (kl + Qk2xo + k4) d2~ + klk3 d~_O + 
dt 4 dt 3 dt 2 dt 

+ (klk2Qxo + k,k4 - Qk~)~ = Qk2J9 + k lk  5 + 0 + 

where 

(28) kl = (f~ + f£ ) / J [ ,  k2 = (f~ AT + f£ BT)/J¢, 

k3 = ~ : ( I i '  c o s  ~ - ; ; ~  c o s  ~ 2 ) / % ,  k4  = ~ t ~ ( t ?  ' c o s  ~ - 1 ; '  c o s  ~)/%, 

k s  = c y ~ ( O o A ;  ~ c o s  ~ - ~ , o ~ l ;  ~ c o s  ~)/% 

and ~? represents the non-linear terms: 

(29) 0 -= 1 Q k 2 ( ½ I g O 3  - j g ~ 2 )  . 
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Substituting for./'/in (1) from (14), (18) and (19) we obtain: 

0 9  ~ = [g - s;,,,,, + s; ( ro  - ~, , , ) ] /~/t .  

Limiting ourselves to the plane xy, making use of (17), and omitting suf~xes T we can write: 

(30) 57 = --(f[4 + f~)  <d/Z-ix + I9  + ( f~  A T  + f£  BT) d / - I  {~os ~ ,  

(31) J~ = - ( f J  + T B ) ~ Z - ' Y  + ag + (fJi A T  + / £  BT) d f  -1  s in i/s, 

Eqs. (30), (31) describe the motion of the centre of gravity in the xy plane. 

Considering the moments given by equations (20), (21), (23)--(26) we can rewrite (2) as follows: 

(2") 3069 = A ( r r  x ra, ) + f ~ ( r , ,  x r D + r D × r r + r r x rw)  + 

+ [G:~(,s,  - Oo~)/~ + K ~ / ; ~ ]  ,.,. + [G /~ (~ ,  - ,/,o.)/;~ + K ~ I ; ~ ]  (,... - , - ; ) .  

Because the distribution of mass in the pendulum beam is more or less symmetrical along the 
horizontal plane as welt as along the vertical plane passing through T, A', B', the ff axis of the uj, 
system can be taken as practically parallel to z. Thus only the ff component of ,~ot~ will cor- 
respond to the z component of the right-hand side of(2"). For the reason mentioned above (section 
2(b)) we can deal with the ~ and z components only. Taking le~ t = a3~ = ~) we get: 

(32) ~ = cg~-l{fA(xry a _ yrXa)  + f ~ ( x , y  D _ YnXo + XoyT -- XTYD + 

+ XTYI~ -- YTXB) + [G<.¢;c(~s -- O o a ) l [  2 + K ~ I [  2] za, + 

+ [G<,¢~(~s - V/So. ) I2 z + K ~ I 2  2] (zB, - z o ) } .  

Taking x D = Yz~ = O, z a, = --11 cos y,,  z 8, - -z  o = l 2 cos 72, substituting for x a, YA, XB, YB 
from (17) and omitting suffixes T we can write: 

(32') ~ = cg~-{(/]l cos 72 - / / ' c o s  y , )K~b + ( / ] ' c o s  ~2 - 

- I? ~ Cos y,)  c j < q ,  - (f;, AT + f~ BT) ~ sin 0 + 

+ ( f )  A T  + f/~ BT) y cos I/s + GJ~(t /soa/ i - '  cos ? l  - t/soBt2 ' cos ?2)}-  

This equation describes the angular motion of ,,~' and therefore also the angular motion of the 
pendulum beam. 

Making use of eq. (28) we can rewrite eqs. (30)--(32). 

(33); (34) 5~ + k l x  = k2 cos i/s + 19 ; Y + k , y  = k2 sin ~ + J r ,  

(35) } + k3~ + k ,O = d//cg~-'k2(y cos ~ - x s in O) + k s -  

Equations (33)--(35) represent the fundamental system which must be solved. Here all the 
coefficients (apart from Y and k s) are positive. J and k s could be either negative, zero or positive. 
Since a precise solution cannot be obtained, an approximate solution will now be attempted. 

In order to transform (33)--(35) into a more soluble form let us approximate to sin ¢/ by 
~, _ ~ 3  and to cos ~, by 1 -- ½~,2. we  can, thus, write: 

(33') ;  (34')  5i + k , x  -~ k 2 q- I9  - ½k2~//2 ; Y q- k l y  ~ k2~/ q- J 9  - -~k2@ 3 .  
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Eq. (33')can be regarded as practically independent from the other two and the relevant part of x: 

(36) x -~ ( k2  + I g  - ½k2(uZ)/k~ = Xo - ½ k 2 k ; ~ O  z 

substituted to (35). Hence we can write: 

(35') t} + k3~ + (~cg~-Ik2x  0 + k 4 ) ~  = J / / c g ' ~ l k 2 y  + k s  - 

- . /¢[cgT 'k2(½ytp  2 - ½ k 2 k [ ' t p  3 - ~Xo tP3) .  

Eqs. (34') and (35') represent a system of two interrelated differential equations which must be 
solved together. 

Let us rewrite the system (34') and (35') in the form of one differential equation of fourth 
order. Taking +(.A'/cg;) k 2 . (34') -t-k 1 . (35') ÷(d2/dt 2) (35) we obtain eq. (27). The terms of 
higher order in ~ in (35') are, for a small amplitude of ~, obviously much smaller than other 
terms in the equation. They can, therefore, be regarded as corrective terms influencing the result 
very little. Because their influence is small no significant error is made when substituting (k2~" ÷ 
+ Jg) /k  1 from (34') for y in the coefficient for ~2. Moreover, it can be shown that ~ is much 
smaller than the other corrective terms and may therefore be disregarded. 

The coefficients kl ,  kz can be rewrit ten as follows: 

k 1 = g / A B [ B T ( 1 1  cos ~1) -1 + AT(12 cos 7 2 ) - 1 ] ,  

k 2 = g AT BT/AB[( / ,  c o s y , ) - '  + (/2 cos72 ) -1 ]  ; 

they obviously depend upon  the geomet ry  of  the suspended beam only. So do, 

basically, the other  coefficients, a l though k a is addi t ional ly p ropor t iona l  to the 
constant  K,  characteristic for  internal friction in the suspensions and  the air friction. 

k4, ks are also p ropor t iona l  to the suspensions modulus  o f  torsion and  ks depends 
upon  the initial twist in suspensions.  Note ,  that  i f  we had also considered the influence 

o f  the bend  o f  the suspensions,  the fo rmulae  for  k4, k5 would have looked  different 
while eq. (27) would remain  unchanged.  

4. A FIRST APPROXIMATION TO THE SOLUTION 

Let  us, for  the first approx imat ion ,  neglect d~ completely.  Then we can seek a solu- 

t ion in the fo rm ~ = ~o + AO, where ~0 is a constant  t e rm representing the angular  
displacement  o f  tile beam with respect to the x z  plane at some arbi t rary  t ime when, 

for  instance, per iod measurements  are commenced .  Then  AO represents the swing 
o f  the beam.  Denot ing  the left hand  side of  (27) by L4(O) we can write: 

(37) L,(O) - O k o'g + k , k s .  

Making  use o f  (36) we obta in  for  ~'o" 

(38) - (Ok2Jg + k ks)/( ?k2Ig + k ,k , ) .  
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T o  f ind AqJ we shall  need  to solve the equa t i on :  

(39) L4(AO) = 0 .  

I t  yields fo l lowing  a p p r o x i m a t e  so lu t ion :  

(40) 
where  

(41) #~ = x / [ ( Q k z l g  + k~k , ) / (k  1 + Qk2x o + k 4 ) ] ,  

a n d  a~, a2, ¢~ ,  ~2  are some  i n t eg ra t i on  cons tan t s .  

The characteristic polynomial of eq. (39) is: 

A ~  - a 1 COS ( # i t -  ~1)  + a2 cos ( # f l -  q~2) 

(42) ,v + k3,  3 + + Qk2xo + + klk3   + 9.k21g + klk4 = O. 

The roots of this polynomial could be found numerically if we knew the numerical values of all 
the coefficients involved. Unfortunately, this is not the case since the value of constant K in k 3 is 
usually not available. To express the roots as functions of K would clearly be very cumbersome. 
Let us then content ourselves with the assumption that k 3 is much smaller than the other coef- 
ficients and can therefore be disregarded in the first approximation. Thus, (42) can be reduced 
to bi-quadratic form: 

(43) 24 +#z222 + z  2 = 0 ,  

where /12 is given by (41) and ~2 = Qk2ig + klk4 ' Since/12 >~ x we can evaluate the roots 
with sufficient precision as follows: 

(44), (45) 2x,2 "-- -bi•/#2 = _+i#1, 23,4 ~ _-t2"_i//2 • 

Hence Agt can be written, in a first approximation, as a pair of purely periodic motions with 
frequencies/q,/12 as expressed by eq. (40). 

Let us now examine the frequencies/t l , / t  2. Period 'Y'I defined b y / q  can be calculated from 
the following expression: 

(46) J ,  = 2 n / # , .  

If we denote 1' = I + Qklk4g-  lk22  and neglect k 4 comparing with k 1 @ Qk2x o we shall 
obtain: 

(46')  ~--~ - 2n  x / [ (k  , + Qk2xo) / (Qk f l ' g ) ] .  

Substituting k2/k 1 for x o from (36) we can write: 

(46") 9--, --" 2n  x / [ ( c g ¢ ~ ' - t x  o '  + Xo)/( l 'g)] .  

We know from the theory of the vertical pendulum that the period of swing 3 -  is given by 
formula: 

(47) ~-~ = 2n  # ( L / g ) ,  

where L is the "reduced" length of pendulum defined by: 

(48) L = cg/(JC/Xo) 
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with g~ denoting the moment of inertia towards the axis of swing. Using Steiner's theorem relating 
and ~f( 

(49) cg = cg~ + jC/x 2 

we can rewrite (46") 

(46") J ,  - 2rcx / [L / ( I 'o )  ] = x/( .Y-2/I ' ) .  

Thus we finally find for the reduced angle I '  

(50) r . -  J 9-; , 

where J-~ is the free period of  the pendulum mounted vertically and Y~ the operation- 

al period of  the pendulum mounted horizontally. The axis of  rotation in both cases 

must be, of course, identical with respect to the pendulum beam. 

It  remains to be mentioned that the second frequency/z z, represents the well known 
tremble with a period in the region of  0-2 =. We shall not take any special interest in 

it since we are investigating more particularly those laws governing pendulum 

behaviour which have a bearing upon the establishment of  the calibration factor for 
tilt. When measuring the free oscillatory periods of  a pendulum in its operational 

position, the initiation of  the tremble is in any case usually avoided. Even so, without 

further excitation, any tremble which does occur is inevitably attenuated very 
quickly. 

5. DAMPING OF AMPLITUDE AND ITS INFLUENCE 
ON THE MAIN FREQUENCY 

The complete solution of eq. (39) can be written as follows: 

(51) A~t - a I exp ( - ~ l t ) c o s  ( ~ 1 / -  41) + a 2 exp ( - ~ 2 t ) c o s  ( ~ 2 t -  qb2) ' 

where 

(52) 21 = Pl + d # l ,  P2 = [12 + d#2.  

The change of the mean frequency #1 due to the damping of amplitude is given by 
equation 
(53) d#z 2 ~ 2 

= ~ ~ 10~ 1 . 

It  typically attains a value of the order of  1 . 1 0 -  6 s -  ' (for metal pendulums) and can 

therefore be disregarded altogether, dp2 does not interest us here. 

We shall show that the damping of amplitude, known from experiments, is due to the presence 
of non-zero coefficients in the derivatives of odd order in (39). In showing their influence let us 
assume that the first approximation of the roots (21,2, 23,4) is adequate so that their increments, 
after taking account of odd order derivatives, can be expressed in the form of linear differences. 
Let us write for the new roots ~: 

(54) ,~ = 2 + d2 
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and neglect the higher powers of d2. Thus we can write approximately the characteristic equation 
of (39) as follows: 

(55) 24 + 4)~ 3 d2 + k3(). 3 + 322 62) + #~(22 + 22 d2) + 

+ ki1%(2 + d2) + x 2 = 0 .  

Subtracting (43) from (55) we obtain for d2: 

(56) d2 = -k3 (23  + k12)/(423 + 3k3)~ 2 + 2#~2 + kik3).  

Substituting 21, 2 from (44) for ); we obtain the complex increment in 21,2: 

(57) d,~1,2 = -k3(-T-i# 3 + ikl#l) /(T-i4#/  - 3k3# ~ ___ i2#~#~ + k,k3).  

Since obviously 4p 3 ,~ 2p~pi, 3g~ ,~ k t we then obtain: 

d2,.2 -" i(-T-klk3#,)/(klk3 +_ i2/122#1) (57') 

and subsequently: 

(57") d~q, 2 "-- 
2 2 2 2 2 4 • 2 2 2 2 -2klka#2#~/(klk3 + 4#1#2) ~ ll¢~Ic3#1/(klk3 + 4#2#24). 

Similarly, we could obtain a complex increment d23, 4 in which we are not interested. 
Thus it has been shown that the roots of (42) make a couple of pairs of complex conjugates. 

If we denote now the real parts of d2 by --at ,  --72 (both ~l and c¢ 2 are positive) and imaginary 
parts by d/tl, d/t 2 then the complete solution A~, of (39) can be written in the form of (51). 
Eq. (51) represents the second approximation, a pair of purely periodic, damped motions. 

Let us try now to establish the influence d/q of the damping effect on the main frequency/q. 
We can write from (57"): 

(58) d#1 = -k,k3cq/(2#1#~). 

The real part of (57") is giving a quadratic equation for k 3 (since K in the formula (28) for k 3 is 
not known, k 3 cannot be calculated directly) from which only the smaller root 

(59) k3 = 2:q#2/kl 

has physical meaning. Substituting (59) to (58) we obtain finally eq. (53). 

6. DAMPING OF THE MAIN PERIOD 

Hitherto we have been neglecting the terms o f  higher order  d~ in (27) given by (29). 

This is appropria te  only when A0 is very small. As this is not  generally the case in 

practice, when A0 often reaches several tens o f  minutes o f  arc, ~ cannot  be disre- 

garded. We are going to show that the non-linear terms are responsible for the 
damping  o f  the main period, which again is a phenomenon  well known and established 

empirically by many  authors  o f  papers on  earth-tide techniques. The main period Y 

varies according to formula:  

(60) ~-- - ¢-1 + c exp ( - 2 e V )  
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where 

(61) c = (5J21-2 + 3) J ' l a 2 / 4 8  . 

The eq. (60) has also been derived by Schneider [3] purely from experimental data. 
A similar formula,  namely 

(60') 3" = Y-1 + cl exp (-Czt), q ,  c2 = const. 

has been derived in [4]. 

In order  to t race the influence o f  higher order  terms we can take ~o = 0 without  any loss o f  
generality. This is permissible because our  choice of  the system ~ was purely arbi t rary  in the  sense 
that  the  p lane  xz  is freely directed. Therefore ,  the  result  canno t  be expected to be l inked wi th  
any  par t icular  direction.  Thus  we can rota te  the system ,N a round  z so that  the plane xz  will fall 
with the plane ~(  and g'o becomes zero, Exactly the same effect can be achieved by varying J in 
such a way that  Qk2Yg = - - k l k  5. 

Since we are interested in the influence on the main  f requency only, we shall deal  with the  
fol lowing equat ion  only: 

(62) L4( ) = +/2224;' + = 0 ,  

where  the order  of  derivative is given by roman  numerals .  This again is a permissible simplification 
because the coefficients o f  odd  ordered derivatives are very small indeed.  It can be shown that  if 
we consider  t hem at all the  resuIt will change  very little. 

N o  finite m e thod  is k n o w n  which might  solve the equat ion  (62). We shall use a var iant  o f  an 
i terative m e thod  at t r ibuted to L inds t r6m and Poincar6 described for instance in [12, p. 109--1121. 

Let us seek the  solut ion ~t o f  (62) in the form of  a series 

(63) 0 = ~ b(1) + ~ b(z) + ~(3) + ...  

with the main f requency co given by a similar series: 

(64) co = / 2 I  + de% + deo 2 + ... 

Let us consider  

(65) 0 (1) = a I c o s  09t + a 2 c o s / 2 2 t  

and take, for simplicity, a z = 0. This is al lowed since q q ,  ~2 can be made  zero by t rans forming  
the  t ime base, and  a 2 by suppress ing the  tremble.  The  presence o f  the  second periodic te rm in ~(1) 
is irrelevant in the  present  context .  

Let us rewrite (62), neglecting terms higher than  second order:  

2 2 (62') /2~co-,Otv + (/t2/22 + /2~) co-2On + /21/z2 ~ = _ ~ , ~ 2  _ 

- -  (1 - -  12t4(.0--4) 1//TM - -  [/22 - -  (/22/222 "{r- /214") (D--2] @ II , 

where  a¢ 1 = 1Qk2Jg  f rom (29). Taking co 4 z"  p~ + 4/,i  3 dCOl, co 2 ~ p~ ÷ 2/11 dco 1 and con-  
sidering that  P l  <~ /t2 we can write approximately:  

(62") /~,4(t)) --" - s¢1(~ , ° ) )  2 + (2/21/2~ dc91 +/2~) O (1) . 
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Here / t~  is a rudiment from the abbreviated form of ~4(~u) and must be disregarded completely. 
The fundamental  condition of the present method is that  there cannot  be any resonance terms on 
the right hand  side because we are dealing with the resultant frequency co in ~(1) from the very 
beginning, Thus 

(66) 2#~#~ dco~ = 0 

and therefore do) t = O. Solving the equation: 

1 2 1 2 (67) L~(~k (z)) = - a g l a l  z cos  2 cot = - 7 d , a ,  - z a g , a  1 cos  2cot 

we obtain: 

l d  ~ , 2 , , - - 2 , , " 2  1 2 2 c o t ( 1 6 p ~  3/*2/*2) -1 - (68) ~/(2) .__ - ~ 1 ~ ' 1 ~ 1  t'2 - ~ d l a  1 cos  

- ~ . g ~ a ~ ; ' ~ ; 2 ( -  1 + 1 cos 2cot). 

Considering one more term in (63), (64) and neglecting terms of higher than third order we 
can write: 

(69) L~(0  (3)) -" -2ag1~b(I)0(2)  + d 2 ( ~ ( * ) )  3 + 2/zl/z2 z dco2ff tl) , 

where d 2 = {kzlgQ from (29). Substituting for g,O), ~y(2) we obtain: 

2 3 - -2  - 2  2 (69') L 4 ( ~ / ( 3 ) )  ~" ( ~ i a 1 1 2 i  /A 2 "t- 2//~# 2 do) 2 a l )  cos  cot - 

. 1 ~ 2  3 - 2  - 2  
- -  3 ~ i a l / 2 1  /z 2 COS cot COS 2cot + ~¢2a~ cos 3 cot .  

The last equation can be rewritten as follows: 

2 3 - 2  - 2  9 2 1 ~ 2  3 - 2  --2 (69") J~4(@ (3)) --  ( a C l a l # l  ~/2 + -/-/1/z2a~ dcoz - ~ z / l a l p l  //2 q- 

a 3 COS cot + 1 3 _ g a / ~ a , / ~ ,  #2 ) c o s 3 c o t .  ~ 2 a , )  (aaC2a, , 2 3 - 2  -2  + 

F rom the above mentioned condition concerning the resonance term we obtain: 

5 2 - 2 (70) dco. -_ - ( ~ d ~ , ,  ~ ~,;~ + ~ , ~ , ; ~ , ; ' )  ,,~ . 

Solving (69") we derive: 

3"~,--4 --2 - - 2 / 1  ~,2 - 2  --2 (7 0 _ - . - a , ~  m ,~, t ~ ' ~  ~'~ + ~.~, ,~co~,cot .  l _ / - / ' t  ~/ 

The terms of higher order would not  contr ibute to this result to any important  extent and we 
shall not, therefore, proceed any further with our iterations. 

In this way we have established that  the non-linear terms in the eq. (27) can account for the 
damping of the main period. The main frequency co can be expressed as 

(64') co = / q  + do)2 

where do02 increases with the amplitude squared. In order to see the influence on the main 
period J let us write: 

(72) ,Y- = 2~t/co --" ~-a  - ~--~/(2rt)dco2- 
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Substituting for dco 2 from (70) and for ~¢1, ~¢2 then we obtain: 

~ - 2  2 2 (72') J - Y l  + J 1 / ( 2 r t # 1 # z ) ( S Q Z k ~ J 2 9 2 # 1 2 p ;  2 + ~ Q k 2 I g )  a ,  • 

Since Qkzlg " 2 2 z [11.112 (see eqs. (44), (45)) we obtain after some development: 

(72") J -  - - J - I  + ~Y-z#1/(2rc. 4 8 ) (  5 J z I - 2  + 3) a~. 

Taking here a 2 exp (--2c~1t) instead of a 2 we obtain immediately formulae (60), (61). 

Examining more closely (61), we obtain from (38): 

(73) J / I  = (Qk29IOo + k l k 4 0  o - k , k s ) / ( Q k 2 9 I  ) . 

07-2 /~7-2  Taking I "- ~, v /~,1 - k4 / (Qxog  ) we can write: 

(73') J / I  "- (J/ggXoOo:- ~ - cgcS~ks ) / ( Jdgxo  3-2 - ~g~JZk4). 

The denominator can obviously be either positive, zero or negative, corresponding 
to I either positive, zero or negative. A positive value of the denominator thus 
represents the case of a suspended pendulum, a negative value the case of an inverted 
pendulum. In the near proximity o f /  -- 0 we can expect very abrupt changes in period 
damping, depending on small variations of J and I. This seems to explain the strange 
behaviour of some pendulums under specific circumstances when the design is under 
stress by reason of the high sensitivity demanded by the user. Evidently, such a critical 
position (given by 5" 1) can be established from (73') for any pendulum. 

Straightforward application of formulae (60), (61) and (73') on results obtained 
for some pendulums yields too high a value of the initial twist 0oa, 00B of suspensions. 
This gives a hint that the inherent bend of suspensions has to be taken into account 
if we want to interpret the present theory quantitatively as welt as qualitatively. Note 
that if we considered the bend, the relationship between J / I  and 0on, 0o~ would no 
longer be mediated through k4 and k5 given by eq. (28), while eqs. (60), (61) and 
(73') would still hold true. 

It should be pointed out that all the formulae were derived under the assumption 
that the two fixing points D, E (Fig. 1) would remain stable during the swing of the 
pendulum. If  the design of the instrument does not ensure that, we may expect very 
peculiar phenomena to arise. The treatment of this problem as well as that of the bend, 
remains unexploited and will require better equipped and more experienced re- 
searchers than the authors of this paper. 

7. D E T E R M I N A T I O N  O F  S E N S I T I V I T Y  

To establish the relationship between 0o and J, is the ultimate aim for geophysicists 
studying the variations of tilt by means of horizontal pendulums. Since the interest 
lies in very slow time variations in J and 0o we shall use the formula (38). Substituting 
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(50) in to  (38) we ob t a in :  

1~'-2]~7-2 ,~-2 ~-2 
(38')  ~0 = " J  l : J ~  + k s J  , / (Qgxo~/~) .  

F o r  t ime  va r i a t ions  80o,  8 J  we can  write:  

= v / J , )  SOo, (74) 8a  ~-2 2 

which  is the  w e l l - k n o w n  a n d  widely used f o r m u l a  for  es tab l i sh ing  the requ i red  

sensi t ivi ty,  see for  i n s t ance  [13] .  

~ - v / J l  is n o t  g iv ing  the tilt  a long  the p e n d u l u m  beam,  f o r m u l a  T h u s  even t h o u g h  2 2 

(74) holds .  ~-~ in  (74) is, o f  course ,  the  ze ro -ampl i tude  per iod  d e t e r m i n e d  by  (60").  

D e s i g n  a n d  I n s t a l l a t i o n  I m p l i c a t i o n s  A r i s i n g  

f r o m  t h e  T h e o r y  n o w  E s t a b l i s h e d  

8. THE INITIAL TWIST AND BEND OF THE SUSPENSIONS 

The foregoing theoretical development makes it clear that the major cause of period damping 
arises from the initial twist, and also implicitly from the bend, of the suspensions. These pheno- 
mena must, after all, be the fundamental reason for the existence of a residual J, the angle 
between g and z in the yz plane. In particular, with a certain value of ~0, the numerators of:the 
right hand sides of eqs. (73) and (73') are reduced to zero and so consequently is J/I. This finding 
is consistent with experience in that the damping phenomenon is most marked in the behaviour 
of metallic pendulums where the filaments are non-integral components secured to beam and 
framework by clamping plates of other questionable mechanical means. It is also obvious that,  
other factors being equal, wire suspensions should be more prone to the fault than bands  and 
this again is in accordance with experience. Those instruments, such as quartz pendulums, Which 
have the advantage of integral construction, whereby all major components are connected' by 
fusion, suffer less in this respect since the procedure of fusing the suspensions should release the 
major tendency to an initial twist. The quartz pendulums are not entirely free from the fault, 
however, for two reasons. In the first place the anchoring points for the suspensions on framework 
and beam seldom allow the two suspensions to lie within a single plane and thereby induce initial 
bends. Secondly unless great care is exercised in installing the instrument in the field, the pr0¢ess 
of bringing the pendulum into its desired azimuth will induce an initial twist. In the latter con- 
nection it is also clear that the beam deviations from the operating azimuth should be restricted 
so that the common arrangement involving a triplet of recording lamps, which allow for substar~tial 
deviations from the initial azimuth, should be treated with reserve. Returning to the metallic pend u - 
lum case it has been found that a condition approaching that of the quartz pendulums can be 
achieved after fixing the supensions. With the beam unclamped, but restrained in an operational 
azimuth with respect to the supporting frame, heat treatment significantly reduces initial twists 
and bends. Certainly with tungsten wire suspensions this procedure has been carried out effectively 
with no apparent alteration to the breaking strain of the filaments nor change in suspension 
geometry. Nevertheless, a distinct advantage would be gained at a time of suspension fitting, if 
instrumental design allowed the whole structure to be tilted so that the line of each suspension in 
turn could adopt a vertical attitude. In each case the upper anchoring point could be secured 
first and the suspension allowed to hang freely under the tension of a suitable weight wl'/ile the 
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lower a t tachment  is secured. Again construct ion should pay particular at tention to the attitude 
of the suspension anchoring points which must allow the beam and its suspensions to lie as 
nearly as possible in a single plane. 

All the above considerations suggest that  when fitting the suspensions the ability to secure the 
pendulum beam as precisely as possible in an operational  attitude, horizontal  with respect to the 
supporting frame, parallel to the line pivot/sensitivity footscrew and normal  to the line pivot/drift  
footscrew, is fundamental  to the entire exercise. Suspensions, as free as possible from twist, should 
be fitted in this condit ion and thereby the fundamental  internal azimuth of the instrument is 
defined. It is then desirable that  installation procedures should be capable of recovering this 
internal azimuth and that  they ensure that  it coincides with the desired geographical azimuth of 
observation. Suggestion as to procedure would take the following form. 

The instrument  is set up and levelled in its operating sensitivity with the beam approximately 
horizontal,  so that  the line joining the two anchoring points of the framework is almost vertical 
(i.e. I is small). The beam is then secured in the fundamental  internal azimuth originally used for 
the fitting of the suspensions. A recording lamp is arranged and the contact point of the reflected 
beam with a vertical plane surface is noted. The beam is then released and the sensitivity screw is 
adjusted so as to give the min imum convenient sensitivity. During this adjustment I is steadily 
increased but the beam remains in an almost vertical plane since the fundamental  internal 
azimuth is, to all intents and purposes, normal  to the line pivot/drift  footscrew. With the same 
recording lamp, a second point  of contact with the plane surface is noted. Inevitably some 
angular displacement of the beam is noted indicating the extent to which the secured position of 
the beam fails to conform to the geometry of the footscrews. This displacement should be noted 
and should be capable of retrieval as one of the fundamental  constants of the instrument.  When 
installing the instrument  in its field station, the desired azimuth of observation may be achieved 
by theodolite survey of the instrument feet, allowing of course for the angular displacement 
previously noted. This procedure automatically takes care of any deviation of the plane of the 
mirror from that  normal  to the beam. 

The importance of design and procedural considerations may be illustrated by the record of 
period measurement obtained with operational instruments at Bidston in the recent past, but before 
~he implications of the present theory were fully realised. If  the change in period is expressed in 
the form A.Y- = c exp (- -2cqt)  the values of the parameter,  c, (obtained for the same amplitudes) 
which fit the observed sets are significant. A quartz pendulum, ORB 87, operating at a period 
of 30"46 seconds gave a value c = 194'7 msec. Later after the suspensions had been replaced and 
the instrument returned to the same station, with a similar operating period of 32'20 seconds, 
c was found to be 69'0 msec.The discrepancy in these figures seems to indicate inadequate control  
of beam attitude during the fitting of suspensions, the later exercise being more successful than 
the first. In the case of a second pendulum, a metallic Tomaschek/Schaffernicht  instrument  
operating much closer to its limit than the former instrument,  and fitted with tungsten wire 
suspensions which survived three installations, the following values were found: 

Station 1 c = 400-4 msec. Period 52.62 seconds 

Station 2 c = 170.1 msec. Period 52"74 seconds 

Station 3 c = 440-3 msec. Period 64"39 seconds.  

Here, since the suspensions remained unchanged,  the only apparent  variable is installation pro- 
cedure. Clearly at Station 2 the procedure happened to be more satisfactory than the other two. 
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9. SENSITIVITY CAL CU L A T IO N S 

The conventional method of determining the sensitivity of a horizontal  pendulum has been 
based upon the relationship ~-2/,~r2 given in eq. (74). Largely because of the difficulties of ~ V I  "~ 1 

establishing ~-1 with precision, the practice has found less favour in recent years and in the earth 
tide discipline as a whole greater reliance has been placed upon calibration pulses, for example, 
to the quartz  pendulum through the well-known "crapaudine dilatable" and even in the modern 
Askania vertical pendulum, where a displacement is caused by the shift of a metal bail by a known 
amount  within the pendulum. The latter procedures lend themselves readily to automat ion and 
allow sensitivity measurements to be made from the records under  laboratory conditions, thereby 
reducing time spent at  an underground station. The question which now arises is whether, in 
view of  the more complete understanding of  the theory of motion of the horizontal  pendulum, 
it would not be wise to return to the measurement of period as the basis of  sensitivity determination. 

All ear th tide records and particularly those of the horizontal  pendulum contain a troublesome 
noise level unless some mechanical or electronic damping procedure is adopted. Against  this 
background noise, the measurement of a discrete and infrequent event such as the displacement 
caused by a calibration pulse must cause anxiety. By comparison the t ime measurement of  several 
successive swings of  an oscillating pendulum scores highly in that  the multiplicity of events 
measured reduces the effect of r andom noise. It is likely therefore that  sensitivities derived from 
period measurement will represent the condition of an instrument at an epoch more faithfully than 
the measurement of pulses. If  instrumental  sensitivity were to remain nearly constant,  pulse 
measurements, averaged over an extended period, might produce adequate mean results for the 
durat ion of an experiment. Unfortunately,  sensitivities vary considerably within each experimental 
period. Drift is always present in any tiltmeter record representing real or apparent  tilt in the yz  

plane. Similar tilts occur in the xz  plane which, by changing the angle I, contribute variations to 
sensitivity. This places a premium on the ability to determine sensitivity with precision at frequent 
intervals throughout  the experiment if the per turbat ion of harmonic  constants, produced by 
harmonic  analysis of the record, is to be avoided. 

Moreover  all pulse generators must themselves be calibrated and in many cases this process 
itself is subject to significant uncertainties often of the order of I ~ .  There is therefore little or no 
latitude for the intrusion of any other uncertainty in its use, The crapaudine system is an interesting 
example of the difficulty involved. 

(a) The crapaudine itself is first calibrated by interferometric means whereby Moire fringes 
are counted as a mercury reservoire is raised and lowered discretely, thus causing a dilation or 
contraction of the crapaudine surface in response to the pressure generated in its internal mercury- 
filled cavity. 

(b) Later on such crapaudine is driven by a reservoire describing harmonic motion in a period 
of the order of 1 hour  while a pendulum is mounted  so that  its drift screw sits upon the crapaudine. 
The amplitudes of swing of the pendulum, so induced, are related to period and a calibration 
constant of the pendulum is obtained. 

(c) In addition it is possible to mount  a field pendulum on a crapaudine which receives a dis- 
crete pulse, typically twice per week for a durat ion of 3 hours on each occasion. 

The certainty of initial crapaudine calibration (a) is unknown but  reference to Ducarme [14] 
suggests that  repeated calibrations of the same crapaudine, even closeIy spaced in time, reveal 
discrepancies of the order of 1 to 2G for the older chromed crapaudines and 1 ~  for the stainless 
crapaudines. Moreover there seems to be evident that  the older crapaudines are temperature 
sensitive to an extent which is comparable with the above quoted uncertainties. The probable  
error of the pendulum calibration against period (b) is claimed to be of the order of 0-5~ al though 
this is an internally derived quanti ty and may be subject to further systematic error if, for example, 
the crapaudine response has a time lag and may not  fully respond to a harmonic  pulse of 1 hour  
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period. In this it is significant to note that procedures (a), (b) and (c) all rely upon different pulse 
periods so that a time lag in the crapaudine will produce, incompatible results. Procedure (c) 
must combat the noise problem previously mentioned and together with (b) relies upon the engi- 
neering ability to manufacture the instrument base to a high degree of precision. Any error in the 
spacing of the points of the pivot and drift screw create a proportional error in sensitivity unless 
this can be measured and taken into account. In use it is possible to estimate operational sen- 
sitivity by two means, firstly by measuring operating period and using calibration (b) and secondly 
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by operating the automatic crapaudine drive and using the measurement of  displacement pulses 
calibration (c). Figure 2 shows a comparison of these two calibration procedures using a quartz 
pendulum in the Bidston vault. At this station the noise level is admittedly high but then so is the 
tidal signal so that the overall signal to noise ratio is equivalent to that anticipated at most field 
stations. Appropriate comments would be as follows: 

1) There is a disparity between sensitivites determined by crapaudine and those determined 
by period measurement which rely upon a laboratory calibration (b) from a different crapaudine. 
Both crapaudines are of  the early chromed variety. The discrepancy is of the order of  7~.  

2) Although the overall pattern of variation in sensitivity is in agreement in the two systems 
the internal dispersion of the period measurement system is much less than that of the crapaudine 
pulse system, Here one should note the indication of mean errors of single observations indicated 
on the diagram which demonstrate quite dearly the ease with which period measurement can be 
determined with much greater precision than displacement measurements. Using the crapaudine 
system and taking pairs of observations only, that is in comparing the positive pulse with the nega- 
tive pulse in each cycle of the crapaudine drive the confidence limit of sensitivity calculation in 
this exercise emerged as ±1-6~ .  Real confidence limits are clearly much greater than this as 
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shown by the plotted dispersion. In contrast, the confidence limits of sensitivity determination 
by period, assuming a perfect calibration of type (b) above, are of the order of ± 1 ~ .  If the 
exercise were to be relieved of the uncertainties of the (b) calibration by using an appropriate 
theory of motion as developed in this paper, then it is clear that real confidence limits must be 
very close to this figure. 

3) It is important to note that the displacement pulse system allows little improvement in 
technique since the problems arise from the measurement of single displacements in the presence 
of noise. Pendulum damping or output damping might possibly give some improvement, although 
such procedures often create their own problems and uncertainties. It is possible also that sophis- 
ticated treatment of a digital output might also effect some advantage, but the basic problem re- 
mains. In contrast the data plotted in figure 2 and the confidence limits quoted above for period 
measurements rely upon the use of a simple manual stopwatch. More recently tests with an 
electronic timer using a quartz crystal have been shown to reduce confidence limits by one hail, and 
moreover it is clear that the automation of period measurements would greatly improve the pre- 
cision, probably by one order of magnitude. The use of a light spot follower with a fast recording 
speed is one technique which would make this possible and this is under test. The construction of 
a photocell sensing system for period timing is also a possibility which has been introduced 
elsewhere. 

The conclusion which must be drawn is that a period measurement system, as a basis for 
sensitivity calculation, has a greater potential than any pulse displacement system and further that 
a theoretical basis of pendulum motion is the closest means of approach to an absolute calibra- 
tion. There remain two points which require clarification. In the first place one must be assured 
of a precise determination of Yv- This presents no real difficulty if pendulums are provided with 
a knife edge for swinging in a vertical altitude and if a simple evacuated container with a photocell 
count.'r is provided for the purpose. At Bidston a typical precision attained in this procedure 
is 0-1 milliseconds using 10,000--20,000 swings. In the second place it is essential that the instal- 
lation of the pendulum in the horizontal altitude be accompanied by a precise measurement of the 
discrepancy by which the knife edge fails to lie in the line of the two anchor points C and D. 
This is readily achieved by theodolite observation with the assistance of a simple scale mounted 
parallel to, and closely behind, the pendulum beam. By such a measurement the experimentally 
derived value for ~-'v can be corrected, while maintaining the same order of precision. 

In recommending the above procedure for calibration it is possible to quote supporting 
evidence from experimental work at Bidston. Here at a surface station barely 6 metres in depth 
and below an occupied building, three metallic pendulums were installed side by side so as to 
measure the same directional component of tilt over a period of three months in the summer of 
1968. The analysis of their records gave the following reductions for the major lunar tidal consti- 
tuent, M2: 

Phase lag on equilibrium 
Amplitude in millisecs 

tide at Greenwich 

67"06 316"8 ° 
67.28 318"0 ° 
66.65 317'9 o 

It is clear from the above that the determination of sensitivities together with operating proce- 
dures managed to achieve an experimental precision of the order of 1~. It  can also be claimed 
that when variations in sensitivity during this period were interpreted as long period tilts in 
a direction normal to their recording azimuth these were consistent, one with another, and more- 
over fitted the long period drift shown by other instruments at the same station which had been 
installed in the complementary azimuth. The agreement of the above results should be assessed 
in the light of the peculiarly hostile environment of the Bidston vault where in particular tempera- 
ture changes range over approximately 5 °C. 
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Other factors are worthy of comment.  In the 1968 exercise, period measurements were made 
using 16 consecutive swings of the pendulum and with the aid of a manual  stopwatch. "Y-I, the 
zero amplitude period, was determined in each case by a simple linear fit to these observed quanti-  
ties. Since this time, experience has resulted in more sophisticated techniques. In addition to the 
improved timers to which reference has already been made, it is now the practice to divide the period 
measurements into two phases, separated by a pause used for at tention to another  instrument.  
This practice allows for significant amplitude, and consequently period, damping to occur during 
the measuring interval. Furthermore,  as a result of the greater knowledge of the pendulum theory 
now acquired, the J ' l  extrapolation is derived from a quadratic rather  than  a linear fit. It is 
therefore felt that  an overall experimental precision significantly better than 1 ~  can now be 
achieved. 

10. MISCELLANEOUS NOTES 

There remain several matters appertaining to instrumental  design which arise from this work. 
Their comprehensive treatment,  however; would not  be possible within the scope of this single 
paper. It is proposed that  brief references should now be made to the more apparent  considerations 
which occur to the authors.  

Mention has been made of the secondary frequency,/t2,  which may prove to be tiresome in the 
measurement of operating period, but  is no more serious than this. It has been stated that ,  given 
due care in the initiation of pendulum swings, a 2 can be kept within negligible limits and in any 
case it is rapidly dissipated. The phenomenon may be more significant if it happens to be excited by 
some external oscillation, perhaps a common microseismic frequency or possibly by a systematic 
content  of local noise which results from some natural  resonance in the immediate vicinity of the 
station. In order to improve sensitivity calculations or to clean up the recorded output  it may 
be desirable to ensure that  /t2 is not matched to these local perturbations.  Again it is not in- 
conceivable that  in certain instrumental  types, or with certain instrumental  output  devices, where 
there is risk of phenomena such as friction, stickiness or filter lag, it may be desirable to deliberate- 
ly encourage the generation of a 2 by local phenomena.  In such circumstances it may be advisable 
to control  the / t2  frequency by design considerations based upon eq. (41):/12 z" 4 ( k l  + Qkzxo). 

Much has been written elsewhere on the choice of material and dimensions of the suspensions. 
The findings here confirm the importance of striking the opt imum compromise between the 
modulus of torsion and mechanical strength while retaining low creep properties under stress and 
corrosive resistance. If  the present findings make any contr ibut ion in this field, they emphasize 
the importance of minimizing the torsional rigidity of the suspension perhaps even at the expense 
of its mechanical strength. In this way the aim is to seek a minimum value for J c  in k 4 and k5, 
see eq. (28). By this means the values of k 4 and k s in eq. (73') will be decreased so that  J/l  will 
depend as nearly as possible on ~0 only. Geary [15] investigates the problem of selecting a suspen- 
sion of small cross sections, of  opt imum shape but with a low shear modulus and has produced 
an  index of  torsional rigidity,/J, so that  supension ligaments of  identical breaking loads can be 
compared. So as to avoid ambiguity with other expressions in this paper this parameter  will be 
renamed /to here. Tungsten wire was selected for the Bidston instruments because its /t o value 
was 0'07, compared with 0'18 for pla t inum nickel wire, and 0'25 for both  phosphor  bronze 
wire and quartz fibre. Geary points out  however that  strip suspensions have many advantages over 
wire for this purpose since for the same cross section, and consequently for the same breaking 
load, strip has a lower torsional rigidity. For  example phosphor  bronze strip has a / t~  of 0-05, 
pla t inum nickel strip a / t  o of 0.036 and beryllium copper strip a / t  o of 0-024. The latter material 
will be investigated more intensively for use in future pendulum applications. In addit ion to the 
above mechanical properties, the advantages in clamping a strip, as opposed to a wire, are obvious 
as also is the inherent  implication with regard to initial twist and bend. Having selected the materi- 
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al it is still necessary to study problems of instrumental geometry leading to considerations of  
load and breaking strain so that dimensions may be minimized. Otherwise advantages gained in 
the choice of material will be lost, At Bidston it has been found satisfactory merely to ensure 
that the suspension is unlikely to undergo a stressing within ~ of its elastic limit. 

The theory of pendulum motion developed here does suggest that certain advantages may be 
gained by a re-examination of the design geometry of the horizontal pendulum. For  example it 
can be seen that increasing the length of both suspensions wilt effectively decrease all the coef- 
ficients k I to k s. This would influence J/I in eq. (73') and also, for that matter, /z 2 in eqs. (41) 
and (45). By differential changes in the suspension lengths l 1 and l 2 the k coefficients can be 
influenced separately and a measure of control can be established over all the appropriate para- 
meters cq, II~, ~2, J/I. Again earlier remarks have stressed the desirability of minimizing J but 
it should be noted that increasing I would have a similar effect. Moreover the implications of 
critical values of 1 together with small variations in J and t have alreadY been discussed in the 
comments in the text upon eq. (7Y). An intensivestudy of such design implications might result 
in a closer approach to an ideal instrument design but the general conclusion remains, namely 
that the operation of the Z611ner pendulum in its existing form is amenable to interpretation in 
terms of real tilts with a precision of calibration acceptable in the framework of geophysics. 
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