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Abstract 
 
 In this paper, we explore the theoretical properties of Stokes’s solution to the 
geodetic boundary value problem in Helmert’s modification.  We show that the 
formulation embodied in Helmert’s “second condensation method” should remove the 
widespread objection to Stokes’s approach – that topographical density has to be 
known very accurately if an accurate geoid is to ensue – by reducing the effect of 
topographical masses by several orders of magnitude.  The study draws heavily on 
several papers of ours on partial aspects of the Stokes-Helmert scheme that have been 
recently published.  
 
 
Introduction 
 
 Whether the geoid can be determined to a “sufficient” accuracy has been 
vehemently discussed in geodetic circles for many decades.  The main objection, by 
those who do not think it can, has always been that the mass density distribution “within 
the earth” will never be known accurately enough to allow us to compute the geoid to 
any reasonable level of accuracy.  This was the main reason that Molodenskij’s quasi-
geoid and the theory of its determination were in vogue for several decades, while the 
potential accuracy of Stokes’s approach was questioned. 
 
 With the arrival of GPS and its capability to measure ellipsoidal height differences 
fairly accurately, the interest in this debate has been renewed.  In recent years, different 
groups have been trying to compute either an accurate geoid or an accurate quasi-
geoid.  The ultimate goal of these efforts is the determination of a geoid/quasi-geoid 
with an error of one centimetre or less.  
 
 Here we discuss those aspects of Stokes’s approach that represent to many people 
the theoretical limitations to a higher accuracy obtainable with this approach.  We put 
aside the questions of gravity data accuracy and density requirements; naturally, these 
requirements would have to be considered seriously in any computational attempt to 
compile a “centimetre geoid”.  We also leave out the question of orthometric height 
accuracy.  We are convinced, however, that if the theory cannot guarantee the 
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centimetre accuracy, there would be little point even in trying to collect gravity data to 
the satisfaction of these requirements. 
 
 The biggest theoretical obstacle in Stokes’s approach to the geodetic boundary 
value problem solution is the presence of topography.  Stokes formulated his famous 
solution [Stokes, 1849] at a time when gravity data were sparse, and its practical 
application could not even be contemplated.  Thus accuracy was not foremost in 
Stokes’s mind.  The fact that the presence of earth topographical masses violated the 
basic assumption behind his solution, which is that of the harmonicity of disturbing 
potential outside the boundary, the geoid, was not perceived as an important flaw in the 
theory. 
 
 The first serious attempt to remedy this flaw can be attributed to Helmert [1884].  
Helmert suggested that the earth’s topography can be replaced by an infinitesimally thin 
layer of an areal density equal to the product of the mean real topographical density 
and height.  This layer, which he called the “condensation layer,” could be located 
anywhere on or beneath the geoid without violating the required assumption of 
harmonicity.  In the “second condensation method” that Helmert formulated, the 
condensation layer is placed right on the geoid. 
 
 We elected to analyse this second Helmert condensation technique used in 
conjunction with Stokes’s approach as the most straightforward method to solve the 
geodetic boundary value problem.  We shall be referring to the combination of these 
two ideas as the “Stokes-Helmert scheme”.  To be sure, there have been other notable 
methods advanced by other geodesists, such as Bjerhammar [1963], Krarup [1969], 
Sansó [1977], Moritz [1980], not to mention Molodenskij et al. [1960] who, as 
mentioned above, really defined and then solved a slightly different boundary value 
problem.  That we opted for the Stokes-Helmert scheme should not be seen as a 
judgement passed on the other methods.  As we shall see below, Helmert’s second 
condensation technique is probably the most natural approach, and it lends itself to an 
easy physical interpretation.  The Stokes-Helmert scheme, when presented in a proper 
manner, is thus readily understood even by non-specialists. 
 
 
Formulation of the problem 
 
 Let us begin by denoting the earth’s gravity potential, composed of gravitational 
(attraction) Wg and centrifugal acceleration Wc potentials, by W.  One of the 
equipotential surfaces of W, the one that approximates the mean sea level most 
closely, is given a special significance.  We denote it by  
 
  W = Wg = const.  (1) 
 
and call it the geoid.  We are interested in describing as precisely as possible both Wg 
outside the earth and the geoid.  
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 To this end, we introduce an analytical reference field U, called the normal field, with 
one of its equipotential surfaces; namely, 
 
  U = Wg ,   (2) 
 
having the shape of a geocentric biaxial ellipsoid.  We shall refer to this ellipsoid also as 
the reference ellipsoid.  The normal field is selected so that it satisfies the following 
Poisson equation outside the generating ellipsoid: 
 
  22 2U ω=∇   . (3) 
 
Normal gravity ��

��
γ  is simply the gradient of U 

 
  ��

��
γ   = grad U  (4) 

 
with its magnitude equal to γ. 
 
 The difference between the gravity and normal potentials is called the disturbing 
potential T, and we can write 
 
  T = W – U (5) 
 
with T being about five orders of magnitude smaller than W.  If it were not for the 
presence of the earth’s atmosphere, the disturbing potential T would satisfy the Laplace 
equation outside the earth. 
 
 We can now attempt to solve for T and obtain, at any given point, the potential Wg 
by adding U and subtracting Wc, both of which we can compute to an arbitrarily high 
accuracy since their analytical prescriptions are known.  Also, once T on the geoid (Tg) 
becomes known, we can use Bruns’s formula [Bruns, 1878] 
 

  N =
Tg

γ 0
  , (6) 

 
where γ0 is the normal gravity on the reference ellipsoid, to obtain the separation N 
between the normal field generating (reference) ellipsoid and the geoid.  Thus the 
problem is reduced to that of the determination of T on and outside the geoid. 
 
 Bruns’s formula is valid only when the normal potential U is selected so that its value 
U0 on the reference ellipsoid equals to the value W0 of the actual potential W on the 
geoid.  If this is not satisfied, then a constant value correction has to added to all 
computed geoidal heights N.  As can be readily shown, Bruns’s formula is accurate to 
better than 1.5*10-7 [m-1] N2.  The inaccuracy stems from the derivation of the formula, 
which reads as follows: 
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��

Tg = W0 −Ug =U0 −Ug =
∂U
∂H g

N +
1
2

∂2U
∂H2

g

N 2 +�   . (7) 

 
The above accuracy estimate is arrived at through two realizations: that the first 
derivative of U along the plumbline, i.e., with respect to height H, is equal, to a high 
enough degree of accuracy (see below), to negative gg, and that the second derivative 
is equal, again with a sufficient degree of accuracy, to the vertical gradient of normal 
gravity at the geoid which equals approximately to 0.3 mGal/m.  Since the largest 
geoidal height (in absolute value) is about 100 m, we will consider this error, which may 
reach up to 1.5 mm, negligible when the geoid is sought to an accuracy of 1 cm. 
 
 Gravity observed at the surface of the earth provides the information needed to 
solve the new problem.  Since gravity g is merely the magnitude of the gradient of the 
gravity potential W, we can write 
 
  g = |grad W| = |grad U + grad T|  .  (8) 
 
The observed values g can now be corrected for the effect of atmospheric attraction.  
This may be done at least one order of magnitude more accurately than is the accuracy 
of gravity observations [Ecker and Mittermayer, 1969].  It remains to be seen whether 
this accuracy is sufficient to give the geoid to the desired accuracy.  The detailed 
investigation of this point was considered outside the scope of this paper.  In the 
following, we will assume that the correction for atmospheric attraction effectively 
removes the influence of the atmosphere in our problem; and that the hypothetical 
disturbing potential T* that corresponds to the corrected gravity g* can be taken as 
being harmonic outside the earth: 
 
  ∇2T * r( ) = 0  , for r outside the earth  . (9) 
 
 If we wanted to solve only for T outside the earth, we could use g* at the earth’s 
surface as a boundary condition, solve the Laplace problem for T* (eqn. (9)) outside the 
earth, correct the resulting T*  for the effect of atmospheric attraction, and be done.  
What we also need, however, is the actual T at the geoid, i.e., inside the topographical 
masses.  This would imply a formulation involving Poisson’s equation and thus an 
adequate knowledge of the density distribution within the topographical masses.  Such 
knowledge, unfortunately, does not exist.  A more hopeful way is to introduce Helmert’s 
idea of a condensation layer on the geoid, which relaxes the accuracy requirement for 
the density distribution. 
 
 
Helmert's model 
 
 Let us introduce the model of the real earth that corresponds to Helmert’s second 
condensation technique and call it Helmert’s model.  Helmert’s model consists of the 
same distribution of masses inside the geoid as that of the real earth and the model has 
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no atmosphere.  On the one hand, to this mass distribution we add the condensation 
layer on the geoid, whose areal density σ at any point is given by 
 
  σ = ρH   , (10) 
 
where ρ  is the mean actual density of the topographical column of (orthometric) height 
H above the point.  On the other hand, we subtract the topographical density 
distribution.  This model is not meant to approximate the real case; rather, it is meant to 
provide the appropriate tool that would allow us to solve the Laplace problem 
everywhere above the geoid. 
 
 Let us now denote the potential of the topographical masses by V t  and the potential 
of the condensation layer by V c .  The difference  
 
  V = V t  – V c  (11) 
 
is the potential that essentially distinguishes the real earth from the Helmert model of 
the earth.  As we shall see in this paper, we are required to evaluate this potential only 
above and below the topographical masses.   
 
 It is important to stress here that the condensation should be carried out with the 
real mass density considered in eqn. (10).  Only when real density is considered do we 
get the total effect of topography modelled correctly.  This is of course the crux of the 
problem: any inaccuracy in modelling the mass density will have an effect on the 
resulting geoid as we will see from the pertinent equations towards the end of this 
paper.  It should be also mentioned at this stage that the condensation prescribed by 
eqn. (10) changes slightly the total mass of the earth, as well as its centre of mass and 
its moments of inertia.  To ensure that the centre of mass is left undisturbed by the 
condensation — an important condition for the validity of Stokes's solution — a little 
different condensation scheme would have to be used.  Detailed discussion of this 
point, however, is considered beyond the scope of this paper. 
 
 Helmert’s earth obviously has a gravity potential Wh  given by 
 
  Wh  = W – δT* – V ,   (12) 
 
where δT* is the difference between T and T*, i.e., the gravity potential of the 
atmosphere.  Once again, we shall assume that δT*, which is about one order of 
magnitude smaller than V, can be evaluated accurately enough from existing models of 
atmospheric density.  By analogy with the real earth, we can now define Helmert’s 
disturbing potential as 
 
  Th  =  Wh  – U   (13) 
 
and substituting from eqns. (12) and (5) we also have 
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  Th  = T* – V  = T – δT* – V  .   (14) 
 
 Now, the Helmert disturbing potential is harmonic outside the geoid, i.e.,  
 
  ∇2T h = 0   . (15) 
 
This can be seen from the last two terms in eqn. (14); these terms make T, originally 
harmonic outside the atmosphere, successively harmonic outside the topography and 
then outside the geoid.  To solve for Th , we can solve the Laplace problem (outside the 
geoid) for which we must have some boundary conditions on the geoid.  
 
 Considering eqn. (13), we can write 
 

  gg
h = −

∂W h

∂H
g

= −
∂U
∂H g

−
∂T h

∂H
g

  . (16) 

 
Here, the derivative of U along the actual plumbline can be replaced by a derivative with 
respect to the corresponding normal plumbline, with an error of (1 – cos θ) γ, where θ is 
the angle between the two plumblines , i.e., the deflection of the vertical.  At the geoid, 
the deflection of the vertical is at most 10 arcsec, and the error caused by the 
replacement is thus at most 1 µGal.  We shall consider negligible any effect on gravity 
smaller than 1 µGal, since it may contribute, under the worst circumstances, only about 
1 mm to the geoidal height.  Hence, with a negligible error of less than 1 µGal, we get  
 

  gg
h = γg −

∂T h

∂H
g

  . (17) 

 
We can now express the normal gravity on the geoid γg by means of normal gravity on 
the reference ellipsoid γ0, again using the Taylor series expansion 
 

  
��

γ g = γ 0 −
∂2U
∂n2

0

N +�   , (18) 

 
where n stands for the direction of normal plumbline; and the derivative is taken on the 
reference ellipsoid, hence subscript 0.  The higher order terms amount to less than 
0.3 µGal and again can be safely neglected.  Replacing N by Tg / γ0 from eqn. (6) and 
substituting for Tg from eqn. (14), we get  
 

  γ g = γ 0 −
∂2U
∂n2

0

T g
h +Vg + δT g

*( )
γ0

  . (19) 
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 The term ∂2U / ∂n2|0, the second derivative of the normal potential along the normal 
plumbline, may be replaced by the negative vertical gradient of normal gravity at the 
reference ellipsoid.  This gradient can be derived from Bruns’s equation [Bruns, 1878], 
which is exact and reads 
 

  
∂γ
∂n

= − 2 γJ +ω2( )  , (20) 

 
where J is the mean curvature of the normal equipotential surface passing through the 
point of interest, and ω is the earth's angular spin velocity.  Realizing that on the 
reference ellipsoid, J is the mean curvature of the ellipsoid itself, we can write 
 
  J0 = 2 / (RM + RN)  ,  (21) 
 
where RM  and RN  are the radii of curvature of the reference ellipsoid in the meridian 
and prime vertical directions [Van��ek and Krakiwsky, 1986; eqns. (7.14) (15.58)].  
Substituting in eqn. (20), after some development we get 
 

  
∂2U
∂n2

0

= −
∂γ
∂n 0

=
2γ0

a
1+

ω2a
γ0

+ f cos2φ +
f 2

16
11+12cos2φ + cos 4φ( )

� 

� � 
� 

� � 
  , (22) 

 
where a, and f are the major semi-axis and flattening of the reference ellipsoid, 
respectively, and φ is the geodetic latitude of the point of interest.  This equation is 
correct to the order of f 3 .  This means that it differs from the exact form only by a term 
of the order of 10-5 µGal/m, which, when applied to a maximum H can cause an error 
smaller than 0.1 µGal. 
 
 Substituting back to eqn. (17), we obtain finally 
 

  gg
h − γ0 +

1
γ 0

∂2U
∂n2

0

V g + δTg
*( )= −

∂T h

∂H
g

−
1

γ0

∂2U
∂n2

0

T g
h   . (23) 

 
Let us denote the left-hand side of this expression by ∆ghg , and call it Helmert’s gravity 
anomaly.  The first term on the right-hand side can be written as  
 

  −
∂T h

∂H
g

= −
∂T h

∂r
g

  . (24) 

 
This replacement is accurate to the order of 1 – cosβ, where β is the difference 
between geodetic and geocentric latitudes [Bomford, 1971] given as 
 
  β = f sin22φ ,   (25)  
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and the error of the approximation is 5.5*10-6 sin22φ.  
 
 The second term on the right-hand side of eqn. (23) can be approximated as 
 

  
1

γ 0

∂2U
∂n2

0

T g
h =

2
R

T g
h   , (26) 

 
where R is the mean radius of the earth.  This approximation is much coarser than the 
one in eqn. (24).  The error, introduced by this “spherical approximation,” can be 
evaluated as the difference between the correct expression and its spherical 
approximation, which can be obtained from eqn. (22) as 
 

  
1

γ0

∂2U
∂n2

0

−
2
R

� 
� 
	 


 
� 
� 
T g

h = DS =
2
a

1+
ω2a
γ 0

+ f cos 2φ −O f 2( )� 

� � 
� 

� � 
−

2
R

� 
� 
	 


 
� 
� 
T g

h   . (27) 

 
Here, the second term in the brackets is known as the “geodetic parameter” m 
[International Association of Geodesy, 1981], which is of the order of f.  The second 
order term O(f 2 ) is smaller than 1.6*10-5 and can again be safely disregarded.  
Defining the mean radius R of the earth as 
 

  R = a2b( )1/3
= a 1− f( )1/3 = a 1−

f
3

+ O f 2( )� 
� 

� 
� 
  , (28) 

 
after a few elementary operations, we arrive at the following expression for the above 
difference D S : 
 

  DS =
2
R

m + f −
1
3

+ cos2φ

 
� 

� 
� 

� 
� � 

� 
� � 
T g

h   . (29) 

 
The maximum value of this difference is about 160 µGal.  We will show later how to 
correct for this approximation and how the accuracy of the solution can be arbitrarily 
improved.  
 
 Using approximations (24) and (26), we can now rewrite eqn. (23) in a more familiar 
form, i.e., as 
 

  ∆gh = −
∂T h

∂r
g

−
2
R

T g
h   . (30) 

 
which represents the version of the fundamental gravimetric equation [Heiskanen and 
Moritz, 1967] valid for the Helmert model.  
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Evaluation of Helmert's gravity anomaly 
 
 Helmert’s gravity on the geoid gg

h
, needed to assemble the Helmert anomaly in eqn. 

(23), is obtained by first transforming the observed surface gravity into the Helmert 
model and then reducing it (still in the Helmert model) onto the geoid.  Mathematically, 
the transformation of actual gravity, corrected for the atmospheric attraction effect, to 
Helmert’s gravity gh  is achieved by taking the gradient of eqn. (12); namely, 
 
  gh = grad W − δT * −V( )   . (31) 
 
This equals to  
 

  gh = g * −
∂V
∂H

+O
1
2

grad2 V
g *


 
� 
� � 

� 
  , (32) 

 
where the last term on the right-hand side is going to be definitely smaller than 1 µGal 
because |grad(V)| is certainly smaller than 40 mGal.  The last term then can be safely 
neglected.  For surface gravity transformation, the derivative in this equation is 
obviously evaluated at the earth’s surface; it is then called the direct topographical 
effect on gravity [Heiskanen and Moritz, 1967].  
 
 We have shown [Martinec and Van��ek, 1993b] that the leading term of the direct 
topographical effect can be written as 
 

  
∂V H ,Ω( )

∂r t
= − 4πG ρH2 (Ω) +

G
2R

ρΩ'� (Ω'){ H2 (Ω') −H2[ ]K (H , ψ ) +  

  (33) 
  +H 2 ρ[Ω'� (Ω') − ρ]K (H ,ψ )}   , 

 
where G is the gravitational constant, Ω stands for a horizontal position given by latitude 
φ and longitude λ, and the integration kernel K is equal to 
 

  K (H , ψ) = − ( j + 2)
j =0

∞
�

R
R + H

 
� 

� 
� 

j +2
P j (cos ψ)    , (34) 

 
where ψ is the angular distance between points Ω and Ω', and Pj is the Legendre 
polynomial of degree j.  Equation (33) is accurate to 5.5*10-6 sin2φ (cf. eqn. (24) and the 
text after it).  We reiterate that eqn. (33) describes only the leading term in the 
development and higher order terms may have to be considered if an accuracy of 
1 µGal is required.  The direct topographical effect can also be readily expressed in a 
spatial form as shown in Martinec and Van��ek [1993b].  All the integrals here, as well 
as in the higher order terms, are regular. 
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 The reduction of the Helmert gravity at the surface gt
h

 onto the geoid (done in 
Helmert’s model) can be accomplished by developing the surface gravity into a Taylor 
series 
 

  

��

gg
h = gt

h +
∂2W h

∂H 2
g

H +
∂3W h

∂H3
g

+�  . (35) 

 
This can be done because Helmert’s potential Wh above the geoid satisfies a Poisson 
equation with a constant right-hand side (equal to 2ω2) and all the derivatives with 
respect to height thus exist.  This process is called in the literature the downward 
continuation of (Helmert’s) gravity. 
 
 The evaluation of the second and higher derivatives in eqn. (35) is not all that 
straightforward.  Substituting for W h  from eqn. (13), we can write 
 

  

��

gg
h − gt

h =
∂2U
∂H2

g

+
∂2T h

∂H2
g

� 

� 
� 
� 

� 

� 
� 
� 
H +

1
2

∂3U
∂H3

g

+
∂3T h

∂H3
g

� 

� 
� 
� 

� 

� 
� 
� 
H 2 +�  . (36) 

 
The second derivative of normal potential U along the actual plumbline can be replaced 
by the second derivative with respect to normal plumbline to yield the negative vertical 
gradient of normal gravity given by eqn. (22) with an error that can be easily evaluated 
as – γθ2 (cf. the text after eqn. (16)), small enough to be neglected.  The third derivative 
may be written as 
 

  
2

6

gg
3

3

m
Gal10*4.48

na
1

H
U µ−==

−

∂
∂γ

∂
∂  (37) 

 
with a sufficient accuracy.  Higher order derivatives of U contribute even less and can 
be safely neglected. 
 
 It should be noted here that, in the literature, the quantity 
 

  HH
n

U
2
1

n

U
gg

g
3

3

g
2

2

tg �
�

�

�

�
�

�



++=

∂
∂

∂
∂  (38) 

 
is referred to as the “free-air gravity” on the geoid.  When normal gravity γ0 is subtracted 

from it, the difference is called the free-air gravity anomaly, denoted by ∆gg
F .  Clearly, 

we can write Helmert’s anomaly (eqn. (23)) also as 
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��

∆gg
h = ∆gg

F − δgt
* −

∂V
∂H t

−
1

γ0

∂2U
∂n2

0

V g + δT g
*( )+

∂2T h

∂H2
g

+
1
2

∂3T h

∂H3
g

H +�

 

� 
� 

� 

� 
� H   , (39) 

 
where δg* = g – g*.  
 
 The direct topographical effect ∂V / ∂H|t has been shown to contribute at the very 
most only about 2 metres, and usually much less, to the resulting geoid [Martinec and 
Van��ek, 1993b].  Thus, to evaluate the geoid to the accuracy of 1 cm, it is necessary to 
know the topographical effect to an accuracy of at most 0.5%.  This implies that lateral 
changes of vertically averaged density in topography have to be known to this accuracy.  
This is likely to pose a problem in high mountains, where the topographical effect is 
larger.  In flat areas, where the topographical effect reaches at most only a few 
decimetres, density variations do not have to be known better than to some 5%, which 
should be routinely achievable.  We would like to repeat that this is the real 
accomplishment of Helmert’s modelling.  The introduction of the condensation layer 
with a realistic density model reduces the classical problem of inadequate knowledge of 
topographical density, alluded to in the introduction, by 3 orders of magnitude, and 
gives us a real possibility to determine the geoid to the desired 1 cm accuracy. 
 
 The fourth term on the right-hand side is sometimes called the secondary indirect 
effect of topography [Heiskanen and Moritz, 1967] on gravity.   At most, it can 
contribute some 0.3 mGal, and it can be written to a sufficient accuracy as  
 

  
1

γ 0

∂2U
∂n2

0

Vg =
2
R

Vg   . (40) 

 
The necessary accuracy of the density model in the evaluation of this term is of the 
same order of magnitude as that in the direct effect evaluation. 
 
 The most troublesome term in eqn. (39) is the last one, which we call the downward 
continuation of anomalous gravity, or simply Dg.  In this term, the vertical derivatives of 
T h  cannot be evaluated before the Laplace problem is solved; the Helmert disturbing 
potential is not known beforehand.  They have to be evaluated from (the first iteration 
of) the Laplace solution.  This would then start the iterations, which should converge 
since the Dg correction to free-air anomaly is sufficiently smaller than the anomaly 
itself.  This, however, is not the only problem with Dg.  It turns out that the Taylor series 
itself oscillates (succesive terms have opposite signs) and may converge, in the 
absolute sense, only slowly.  Thus possibly higher than third derivatives would have to 
be taken in this series to ensure sufficient accuracy of the solution.  Therefore, a better 
approach is necessary as we shall discuss below. 
 
 The downward continuation of anomalous gravity may be written in a more 
straightforward manner as 
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  Dg =
∂T h

∂H
g

−
∂T h

∂H
t

  . (41) 

 
Since T h  is harmonic between the geoid and the earth’s surface so is r ∂T h /∂H 
[Heiskanen and Moritz, 1967] and we can solve for r ∂T h /∂H|t as a function of 
r ∂T h /∂H|g.  The functional relation is given by a Poisson integral 
 

  r
∂T h

∂H
t

=
R
4π

∂T h ′ Ω ( )
∂r

′ Ω 

� 

� 
� 

g

κ H , ψ( )d ′ Ω   , (42) 

 
where the replacement of H by r in the derivative is, once again, justified.  The Poisson 
kernel κ is equal to 
 

  κ H , ψ( ) = (2 j +1)
j =2

∞
�

R
R + H

 
� 

� 
� 

j +1
P j cos ψ( )  . (43) 

 
From this equation we can write directly the final (exact) expression for Dg in a closed 
form as shown in Martinec and Van��ek [1993c]. 
 
 The two remaining terms, – δg*t  and – 2/R δT*g, reflect the atmospheric attraction.  
In the second term, we use the same approximation as we did in the secondary 
topographical indirect effect.   Again, these terms are small, and we assume that they 
can be evaluated to a sufficient accuracy from existing atmospheric models. 
 
 
Stokes's solution of the Laplace problem 
 
 We are now ready to discuss the solution of the boundary value problem posed 
above.  We want to solve the Laplace eqn. (15) for Helmert’s disturbing potential 
outside the geoid with the boundary condition prescribed by eqn. (30).  The two 
remaining hindrances that have to be addressed before the solution can be formulated 
are:  
 1) Helmert’s gravity anomaly in eqn. (30) can be evaluated to the required accuracy 

of 1 µGal except for the downward continuation of anomalous gravity from the 
earth’s surface to the geoid, that is, the Dg term.  

 2) The fundamental gravimetric equation, which spells out the relation between the 
boundary data ∆gh on the geoid and the unknown function Th, is only 
approximate, with DS being the approximation error. 

Let us discuss the second hindrance first. 
 
 As shown above, the first term of eqn. (30) is accurate to the relative order of f 2 .  
Since the anomaly will be at most of the order of 102 mGal, this inaccuracy translates to 
about 0.5 µGal on the left-hand side.  The error in the first term thus can be safely 
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neglected.  The error D in the second term is much larger (up to 160 µGal) but still 
considerably smaller than the anomaly itself.  It thus can be treated as a correction to 
Helmert’s anomaly and, since it is a (linear) function of the unknown potential T h  at the 
geoid, it can be solved for iteratively in the same way as the Dg term under 1). 
 
 Let us now summarize the above.  Denoting the part of Helmert’s anomaly that can 
be evaluated without the knowledge of the downward continuation of anomalous gravity 
by ˜ ∆ gh  and transferring the effect DS (eqn. (29)) of spherical approximation on the left-
hand side, eqn. (30) can be rewritten as 
 

  ∆gh −DS = ˜ ∆ gh − Dg − DS = ˜ ∆ gh + δ∆gh T h( )= −
∂T h

∂r
g

−
2
R

Tg
h   . (44) 

 
Here, the correction δ�gh(T h ) to the approximate Helmert anomaly, being a function of 
Helmert’s disturbing potential and being much smaller than the Helmert anomaly itself, 
can be evaluated iteratively.  Under the assumption that the direct topographical effect 
and the secondary indirect effect can be evaluated to a sufficient accuracy, eqn. (44) 
provides a good enough tool to yield a T h  accurate enough to get geoidal heights to 
the required 1 cm accuracy. 
 
 The boundary condition (30) on the geoid (for the Laplace eqn. (15)) is of the usual 
mixed type, and the Laplace problem can be solved exactly by the classical Stokes 
technique [Stokes, 1849].  We note that the first degree spherical harmonic of T h  is 
missing if an appropriate condensation is selected as noted earlier, and the mixed type 
Laplace problem gives the correct solution up to the zero-order term (scale).  The zero 
order term has to be evaluated separately, as usual.  The resulting first iteration T h (1) is 
obtained either in a spectral, or in a spatial (closed) form.  There should be no problem 
in obtaining the (iterated) solution T h  to a sufficient accuracy, probably after only one 
iteration.  
 
 Let us point out here that, if the solution is sought in the spatial form (in terms of the 
Stokes integral), then the effect DT h

 of the Dg on T h , can be obtained from the same 
Stokes integral applied to Dg instead of the gravity anomaly.  The Stokes integral over 
Dg can be relatively easily evaluated to give a more convenient formula to use 
compared to equation for Dg.  Since the Stokes integration represents a numerical 
smoothing process, the integration kernel tapers off to zero (with the distance from the 
point of interest) much more rapidly than its counterpart in eqn. (42).  In other words, 
the actual integration does not have to be carried out too far away from the point of 
interest.  
 
 A similar treatment can be devised for the effect DS of the spherical approximation.  
This treatment, however, is considered beyond the scope of this paper. 
 
 
Evaluation of the geoid 
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 Once the Helmert disturbing potential is obtained to the desired accuracy, it has to 
be transformed back from the Helmert model into the original model that depicts the 
real earth.  In other words, Tg

h  has to be transformed back into Tg to allow us to apply 
the Bruns formula (6) and obtain the geoid.  This transformation is easily done using 
first eqn. (14) to get 
 
  Tg

* = T g
h +Vg   , (45) 

 
and then transforming the disturbing potential reduced for atmospheric attraction, T*, to 
the real disturbing potential T by 
 
  Tg = T g

* + δT g
*   . (46) 

 
 Here Vg is called the primary indirect effect of topography on potential.  Its 
magnitude is comparable to that of the direct topographical effect introduced earlier, 
and it can be evaluated to the same degree of accuracy.  In spatial form, the leading 
terms of the indirect effect read [Martinec and Van��ek, 1993a]: 
 

  
��

V g Ω( ) = 2πGρH2 +
3
4

G
R

ρ ′ Ω ( )H2 ′ Ω ( ) −H2

�0′ Ω 

� 

� 
� 
� 

� 
� R2 d ′ Ω   

   (47) 

  
��

+H 2 Ω( ) ρ ′ Ω ( )− ρ
�0′ Ω 

� 
� 
� R2 d ′ Ω 

� 

� � 
    ,  

where 
 

  
��
�0 = 2R sin

ψ
2

  . (48) 

 
Higher order terms may have to be considered here, to get the geoid solution to a 
sufficient accuracy.  All the integrals in eqn. (47) and the higher order terms, are regular 
and, once more, a limited knowledge of density is acceptable because the effect is 
small. 
 
 The term δT g

*  may be called the indirect effect of atmosphere (at the geoid).  It is 
about one order of magnitude smaller than the indirect effect of topography, and thus 
hopefully can be evaluated to a sufficient degree of accuracy from existing atmospheric 
models. 
 
 Once the real disturbing potential at the geoid is known, it can be converted to 
geoidal heights by the Bruns formula (6).  We note in passing that Bruns’s formula 
applied to T h , instead to T, yields what is referred to in the literature as a co-geoid; it 
should, in our context, be called more appropriately the Helmert geoid.  Real disturbing 
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potential outside the atmosphere is obtained as a harmonic continuation of Tg.  Actual 
gravity potential W for any given point outside the atmosphere is then obtained simply 
from eqn. (5). 
 
 
Conclusions 
 
 From our analysis, it seems clear that the theory for geoid computation using the 
Stokes-Helmert approach is good enough to give geoidal heights to a centimetre 
accuracy everywhere, except in the highest mountains where 5 to 10 cm probably 
would be a more realistic goal.  Using the Helmert idea of condensation of topography 
onto the geoid, the need to have an accurate knowledge of topographical mass density 
is replaced by a requirement for an approximate mean lateral density model good to 
about 5%.  This, of course, makes the scheme viable. 
 
 In all of the discussion above, we have not addressed the question of gravity and 
height data accuracy.  Neither have we dealt with the data density required for the 
numerical integration of Stokes’s convolution integral.  Yet, in any practical application 
of the theory described here, the effects of data distribution (irregularity and 
sparseness) and data accuracy are likely to be very significant. Systematic errors in 
orthometric heights of gravity points (mainly due to the oversimplified model for the 
vertical gradient of gravity used in the evaluation of these heights), represent a serious 
source of distortion in the resulting geoid.  These errors can reach more than one metre 
and their effect on the geoid will be almost unabated; this effect may prove very difficult 
to model. On a more optimistic note, from our earlier experience with the compilation of 
the geoid for Canada [Van��ek and Kleusberg, 1987], we have learned that the effect of 
gravity data inaccuracy is mostly between 3 cm and 10 cm.   
 
 The other problem we have not investigated here is the effect of numerical errors in 
the actual computation due to truncated integration and the pre-ordained sizes of 
surface cells.  This effect, once again, can reach up to the one decimetre level and has 
to be dealt with carefully in any practical application.  The investigation of these 
aspects, however, was considered beyond the scope of this paper.  
 
 Finally, we realize that a practical evaluation of the geoid will have to use a 
combination of terrestrial gravity (as described here) and satellite determined long 
wavelength field features.  The inclusion of this type of information will have an impact 
on all the formulae given here; most of the corrections and reductions will be somewhat 
smaller, and potential problems with their applications will be somewhat attenuated.  
This investigation too will have to wait for another paper. 
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