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Abstract. When height networks are being adjusted, many geodesists advocate the approach

where the adjustment should be done by using geopotential numbers rather than the orthome-

tric or normal heights used in practice. This is based on a conviction that neither orthometric

nor normal heights can be used for the adjustment because these height systems are not holo-

nomic, meaning - among other things - that height increments (orthometric or normal) when

summed around a closed loop do not sum up to zero. If this were the case, then the two

height systems could not be used in the adjustment; the non-zero loop closure would vio-

late the basic, usually unspoken, assumption behind the adjustment, namely that the model

claiming that height differences are observable is correct. In this paper, we prove in several

different ways that orthometric and normal heights are theoretically just as holonomic as the

geopotential numbers are, when they are obtained from levelled height differences using ac-

tual gravity values. This disposes of the argument that geopotential numbers should be used

in the adjustment. Both orthometric and normal heights are equally qualified to be used in the

adjustment directly.
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1 Motivation

The question whether the orthometric height (H) is or is not a proper coordinate, more pre-

cisely whether it is holonomic or anholonomic, has been sometimes debated in geodesy; this

has been related to a thorough analysis of the gravity field in geometric terms, which has been

performed in a number of basic works like Hotine (1969), Marussi (1985), Grafarend (1975,

1995). However, although the answer to the above question in the affirmative sense is very

clear and undisputable, it is from time to time raised again. This is due to a misinterpretation

of the equation

dW = −g dH (1)

which, without any further specification, is definitely wrong.

As a matter of fact, Eq. (1) is typically justified by a local argument as follows. Let us

take a pointP in space and the equipotential surface{WP = WP } through it; inP we can

define a local Cartesian triad (a Cartan frame) with theZ axis up (i.e., contrary to the gravity

vectorg = ∇W ) and theX andY axes towards the astronomical East and North directions,

respectively. If we analyze the variation ofW aroundP , we see that it varies only when we

move along theZ axis because in the other two directions we are tangent to the equipotential

surface. Since along the vertical, by definition,

dH = dZ (2)

Eq. (1) holds in that direction, becauseg(P ) = |∇W | andg points downward. The logical

error here is that, although Eq. (1) is true along the vertical, implying that, in a coordinate

system for which the plumbline is also a coordinate line,

−g(P ) =
∂W

∂H
(P ) , (3)

the same is not true when we move in the horizontal because then, as we shall see,dH is not

zero!

In addition, when we claim that equations like Eqs. (1) or (3) are valid, we tacitly assume

thatH is just a function of the pointP , i.e., that it is a holonomic coordinate, so we cannot
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use these equations to judge on this property, but rather we have to first clarify independently

that it is a holonomic coordinate and then state whether Eqs. (1) or (3) are correct.

The understanding of this point in geodesy is so fundamental that the authors deem it

useful to write this article, where what can be found in classical textbooks (Heiskanen and

Moritz (1967)) is highlighted and strengthened, pointing out where misunderstandings could

have originated.

On the other hand, whether Eq. (1) is wrong or not depends on the examined gravity

field, becauseH(P ), the curved distance computed along the plumbline of the pointP from

a reference equipotential (the geoid), is tailored onto the particular field considered.

For instance, it is obvious that Eq. (1) holds true for a purely spherical (non-rotating)

symmetrical model of the Earth, because indeed the monopole potential(µ = GM),

u = µ/r (4)

has spherical equipotential surfaces and purely radial gravity, so thatdH = dr and

du = − µ

r2
dr = −g dH . (5)

The question then arises whether the spherical potential is the only one for which Eq. (1)

holds true. Such a question is less trivial than what appears at a first sight. However, if we

remain in a hypothetical model of a non-rotating Earth, a general answer becomes straight-

forward by exploiting the so-called gravity space formalism.

2 A purely mathematical argument

The fact thatH is a true, holonomic, coordinate is just an application of the definition of a

coordinate system and it depends purely on whether the hypotheses implicit in the application

of the fundamental integration lemma, can be accepted or not.

Therefore, let us start with the basic definition.

Definition 1 A coordinate system in a domainΩ of R3 is a system of three real functions of

the point

P, (X1(P ), X2(P ), X3(P )),
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all of them defined inΩ in such a way that there exists a one-to-one correspondence (cf. (Marussi,

1985), (Grafarend, 1975))

P ⇔ (X1, X2, X3) (6)

.

Typically, we require some regularity property from a coordinate system, such as continuity

or even differentiability. For the moment we will assume that such properties are satisfied for

all systems discussed in the sequel, possibly except for some singular points – think of the

origin in a spherical coordinate system.

Remark 1 An anholonomic coordinate (H∗), on the other hand, is just a number assigned to

a pointP andto a path connectingP to some originP0. Typically, this is done by defining a

differential form

δH∗(P, d`) ≡ η(P ) · d` (7)

expressing only an increment ofH∗ when we move from the pointP to P + δP , such that

δP = d`, and then by stating that, given a curveΓ connectingP0 andP and assigning an

arbitrary but fixed value toH∗(P0) (e.g.,H∗(P0) = 0), we put

H∗(P, Γ ) = H∗(P0) +
∫

Γ

δH∗(P, s`) = (8)

= H∗(P0) +
∫

Γ

η(P ) · d` .

In this sense, an anholonomic coordinate is nota coordinate as long as Eq. (8) depends on

the pathΓ . In other words, if we wishH∗ to be independent ofΓ and therefore to be a true

coordinate, the integral ofδH∗ over any closed loop has to be equal to zero

∮

Γ

δH∗(P, d`) =
∫

Γ

η(σ) · d` ≡ 0 ∀Γ . (9)

One the most famous theorems of vector calculus is that of Stokes (Kaplan (1991)). It

claims:

Theorem 1 (GG Stokes)δH∗ is an exact differential, i.e., Eq. (9) holds for a smooth fieldη

in Ω if and only if

rot η = ∇∧ η ≡ 0 (10)
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and the domainΩ is arcwise simply connected, i.e., such that any loopΓ in Ω can be shrunk

to a point by a continuous deformation, without getting out ofΩ.

Just as a remark, we note that whenH∗ is known to be a coordinate, then Eq. (10) is

automatically satisfied since in this case

η = ∇H∗ (11)

and the rotor of a gradient is identically equal to zero.

Already on that purely logical ground we are able to draw the first conclusion, namely

that the orthometric height (H), as a pure function of a pointP in space, is indeed a proper,

holonomic, coordinate, under suitable regularity of the gravity field.

Conclusion 1 Assume that the gravity field of a spherical body is given in terms of a poten-

tial W obtained by adding to Newtonian potential, generated by a bounded mass-density, a

centrifugal potential12ω2(x2 +y2) (i.e.,z is taken along the axis of rotation); then it is known

(Miranda (1970)) that both the functionW and its gradientg = ∇W are continuous through-

out the wholeR3 and that at points far away from the barycenter, the following asymptotic

expressions hold

W ∼ µ

r
+

1
2
ω2(x2 + y2) + 0

(
1
r2

)
, (12)

g = ∇W ∼ −µr

r3
+ ω2(xex + yey) + 0

(
1
r3

)
.

In Eqs. (12) and (13), the terms0
(

1
r2

)
and0

(
1
r3

)
became respectively0

(
1
r3

)
and0

(
1
r4

)

as soon as we stipulate to place the origin of the coordinates at the barycenter of the masses

generating the field. Assume further thatω is small enough to allow the existence of a system

of equipotential surfaces{P ; W (P ) = const} that are smooth (at least with a continuous

normal) and closed, up to some surface enclosing all the masses (remember that equipotential

surfaces of a rotating body are quite complicated and include pieces of unbounded surfaces,

so we refer here to the bounded closed surfaces surrounding the origin). Let us callΩ the

bounded region between two equipotential surfaces

S0 ≡ {W = W0} (13)

Se ≡ {W = We} , We ≤ W0 ,
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such thatS0 is taken as a reference surface (the geoid), which is close to the surface of

the masses (partially inside), whileSe is totally external to the masses, so that we are sure

that there is one and only one equipotential surface that is passing through each point inΩ.

Assume finally that the plumblines, i.e., the trajectories orthogonal to the equipotentials in

the regionΩ, are a regular family of curves, defined in parametric form by the equations

ẋ = −∇W = −g , (14)

such that there is one and only one line passing through each pointP of Ω.

Indeed this is just one of the possible choices that are studied and described in literature

(e.g., Grafarend (1975)); all of them have to be equivalent, as for the description of the family

of the plumblines.

Then, given any pointP in Ω, we have the corresponding (unique) plumbline through

it and we also have only one pointP0 on S0 through which the same plumbline passes.

Accordingly, givenP we can compute the unique length of the arc of plumbline

H =
∫ P

P0

d` =
∫ P

P0

|ẋ|dt =
∫ P

P0

g dt . (15)

Therefore,H is a function ofP only, for a given gravity field,and is thus a true coordi-

nate.

A formula totally equivalent to Eq. (15) is

HP = −
∫ P

P0

dW

g
, (16)

which, in order to avoid misunderstandings, has to be clearly interpreted as anintegral along

the single plumbline that passes throughP . The equivalence between Eqs. (15) and (16)

comes from observing that, according to Eq. (14),

−dW = −∇W · ẋdt = |ẋ|2dt = g2dt , (17)

which substituted in Eq. (16) gives Eq. (15).

Remark 2 It is important to underline that Eq. (16)does not implya relation like

dH = −dW

g
, (18)
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as we shall prove more extensively in the next Section by explicitly computing the differential

of the functionH. Here, however, we provide a short proof by a reductionad absurdum.

Assume Eq. (18) to be true, then the equipotential surfaces should also coincide with

surfaces of constant orthometric height, because

dW = 0 ⇒ dH = 0 . (19)

If one assumes only thatW decreases along a plumbline, which is a by-product of the defini-

tion in Eq. (14), from Eq. (19) we could conclude that

W = W (H) (20)

and therefore

g = −dW

dH
(21)

is also a function ofH only. In this case,g should be constant on equipotential surfaces,

which runs contrary to experimental truth (observation).

A good visual perception of this fact comes from inspecting the free-air gravity anomaly

map of the oceans (Andersen and Knudsen, 1998). Therefore, Eq. (18) cannot be true for the

configuration of plumblines of the actual gravity field.

3 The differential of the orthometric height

The purpose of this Section is to derive the very classical formula (cf. Heiskanen and Moritz

(1967),§4.4)

dH = δL + δH∗ (22)

wheredH is the differential of the functionH = H(P ) whenP undergoes a displacement

dP = d`, whereδL is the leveling increment, the observable quantity, andδH∗ is the so-

called orthometric correction, denoted by the symbolOC. The reason why we want to redo

such a derivation is that we would like to highlight two interpretations ofδH∗ that are known

(cf. Grafarend (1997)) but not current, though very expressive of the meaning of such a quan-

tity from both the geometrical and the mechanical point of view.



8

Remark 3 In pursuing the above aim, we will verify at the same time thatHP is a differen-

tiable function, for realistic mass distributions, namely distributions with a bounded density

ρP . The basic statement here is that whenρP is bounded, with a number of discontinuity

surfaces, thenWP andg
P

= ∇W are continuous throughout the space, while the matrix of

second derivatives ofWP ,M =
[

∂2W
∂Xi∂Xk

]
, can present at most a logarithmic behaviour at

the surfaces of discontinuity ofρ, as we know from elementary computations of the potential

of a uniform prism (e.g., MacMillan (1958)).

Figure 1 near here

In order to proceed, we first carefully inspect Fig. 1. First, we see that

dH = HP+dP −HP = (HP+dP −HP∗) + (23)

+(HP∗ −HP ) = δL + δH∗

where

δL = HP+dP −HP∗ = eH(P ) · d` = (24)

= −g(P )
gP

· d` = −dWP

gP

is the leveling increment, whileδH∗ = HP∗ −HP is the orthometric correction amounting

to the variation of the orthometric height when we moveP on the equipotential{W = WP },

to reachP ∗.

Note that, for the sake of readability, the heightHP∗ , i.e. the arclengthP ∗P0+δP0, is not

drawn in Fig. 1. Also, please note that heredWp is not the increment ofWp along a particular

plumbline, but just its spatial differential fromP to P + δP .

Conclusion 2 If we combine Eqs. (24) and (23), we see that

dHP = −dWP

gp
+ δH∗

(PP∗) , (25)

which proves that Eq. (18) is awrong equation, unless

δH∗
(PP∗) ≡ 0 (∀δP ) . (26)

Indeed, ifδH∗ ≡ 0 in every direction, then the orthometric heights of points on{W =

WP } are all constant, i.e. the potentialWP is function ofHP and we return to the argument

of Remark 2.
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Now, to better understand the geometric significance ofδH∗, we can use the relation

HP = hP −N , HP∗ = hP∗ −N ′ (27)

to find

dH∗

d`0
=

(
hP∗ − hP

d`0

)
−

(
N ′ −N

d`0

)
(28)

which shows that, ifE is the reference ellipsoid,

dH∗

d`0
= εP − ε0 = [inclination of{W = WP } onE] (29)

− [inclination ofG onE] ;

namelydH∗
d`0

is just the inclination, in the directiond`0, of the equipotential surface through

P with respect to the equipotential throughP0, i.e., the geoidG.

Observe thatεp is just the Helmert deflection of the vertical in the direction ofd`0, with

opposite sign, at the pointP , while ε0 is the corresponding quantity at the geoid. Therefore,

recalling that

−εP d`0 = ∇0

(
TP

γP

)
· d`0 , +ε0d`0 = ∇0

(
TP0
γP0

)
· d`0 ,

(∇0 = horizontal gradient) (30)

from Eq. (28) one can expressδH∗ in terms of the anomalous potentialT . This will be further

worked out in Remark 5.

Here, we would like to show that yet another way of expressingδH∗ is (cf. Fig. 1)

δH∗ =
∫ P+δP

P0+δP0

dHQ+δQ −
∫ P

P0

dHQ = (31)

=
∫ P

P0

(
dWQ

gQ+δQ
− dWQ

gQ

)
,

because, by definition,dWQ+δQ = dWQ (see Fig. 1). On the other hand, we know that

(cf. Heiskanen and Moritz (1967) Ch. 2§3)

dgQ = ∇0gQ · d`0 = gQKQn(Q) · d` (32)

wheren(Q) is the principal normal of the plumbline (which therefore is tangent to the equipo-

tential surface) andKQ its principal curvature. In Eq. (32), we have taken into account that
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n · d`0 = n · d`, to a degree of relative accuracy reaching the level of∼ 5 · 10−8 when the

deflection of the vertical is 1 arc-minute. By using Eq. (32), we derive

δH∗ =
∫ P

P0

dWQ

g2
Q

gQKQnQ · d` = (33)

=

(
−

∫ P

P0

dHQKQnQ

)
· d` .

In Eq. (33), we immediately read that if one has to haveδH∗ ≡ 0, ∀P and∀d`, i.e., if

Eq. (18) has to be true, one must conclude that

KQ ≡ 0 , (34)

i.e., the plumblines have to be straight lines because they must have zero curvature.

Remark 4 By combining Eqs. (22), (32) and (33), we can see thatdH is a first-order dif-

ferential in the displacementd`, where the coefficients are continuous functions ofP . As a

matter of fact, by using the statement of Remark 3, we see thatδL involves only the vec-

tor g, which is continuous, whileδH∗ involves the second derivatives ofW , which have at

most logarithmic discontinuities; these however, once integrated along the plumbline yield

continuous functions, as we have maintained in Remark 3.

Remark 5 Here we would like to elaborate a little on the differential expression of the or-

thometric correction implicit in Eq. (28) and (30) showing its equivalence to a more ordinary

expression (cf. Heiskanen and Moritz (1967) Ch. 4,§4).

We start from

δH∗ = ∇0

[
TP

γP
− TP0

γP0

]
· d`0 (35)

and note that

F (P ) =
TP

γP
− TP0

γP0

=
∫ P

P0

(
∂

∂H

TQ

γQ

)
dH ∼= (36)

∼=
∫ P

P ′0

(
∂

∂H

TQ

γQ

)
dh ,

the last step being justified by the fact that the small change of integration path is applied to

a quantity already small at the first order.

In fact, dH−dh
dh is of the order of12ε2, while the integrand has the order of the ratio of a

gravity anomaly with normal gravity.
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On the other hand, we know from the fundamental equation of physical geodesy (cf. Heiska-

nen and Moritz (1967) Ch. 2,§13) that

∂

∂h

T

γ
= −∆g

γ
; (37)

hence Eq. (36) reads

F (P ) = −
∫ P

P ′0

∆gQ

γQ
dh . (38)

We use this relation in the following identity

δH∗ = ∇0F (P ) · d` =
[
∇F (P )− ∂F (P )

∂h
νP

]
· d` = (39)

= dF (P )− ∂F

∂h
δL = −d

(∫ P

P ′0

∆gQ

γQ
dh

)
+

∆gP

γP
δL

thus arriving to the sought-after expression ofδH∗ as a function ofT .

Moreover, we see that by integrating Eq. (39) along a path from a pointA to a pointB on

the Earth’s surface, we get the more common expression

OC(AB) =
∫ B

A

δH∗ = −
∫ B

B′0

∆g

γ
dh +

∫ A

A′0

∆g

γ
dh + (40)

+
∫ B

A

∆g

γ
δL ,

where the first two integrals run along ellipsoidal normals (or along plumblines, according to

our level of approximation), while the third integral has to be performed along the leveling

path on the Earth’s surface.

Conclusion 3 Although the orthometric height is a proper coordinate, with a continuous dif-

ferential, yet it is not related in an elementary form to observable quantities, like the leveling

incrementδL. The orthomeric correction (δH∗), necessary to relateδL to the differentialdH,

is intimately related to the knowledge of the mass-density between the actual topographic sur-

face and the geoid, and therefore to the modelling of the gravity field therein. In this sense,H

has to be considered as a derived quantity rather than a primary coordinate for the description

of geodetic height systems.
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4 Are there gravity fields with parallel equipotential surfaces?

Up to now, we have been able to understand that Eq. (18) is not correct for the actual gravity

field of the Earth, because otherwiseW andg should be constant on the same surfaces, which

is not true in our physical reality.

In addition, we have seen that if Eq. (18) would hold, then the plumblines should be

straight lines and the level surfaces should be geometrically parallel to one another, because

H should also be constant on these surfaces. We have already mentioned that there is at least

one physical situation in which such conditions are verified; a completely spherically layered

mass distribution in the case of anon-rotating body.

In this case, as the body itself has to be a sphere of some radiusR and we know that

W =
µ

r
, g =

µ

r2
; r ≥ R (µ = GM) , (41)

and, by using Gauss’s theorem,

W (r) =
µ

R
+

∫ R

r

g(s)ds , g(r) =
GM(r)

r2
(42)

with

M(r) = 4π

∫ r

0

ρ(s)s2ds . (43)

the total mass included in the sphere of radiusr.

In both regions, in and outside the sphere of radiusR, we have

dH = dr = −dW (r)
g(r)

. (44)

Therefore, it is only natural to pose the question whether this is the only case in which the

level surfaces are parallel, the plumblines are straight and thus Eq. (18) holds true.

It is not difficult to see that the introduction of a centrifugal term into the gravity formula,

however small the angular velocity, destroys the parallelism of the equipotential surfaces. As

such, our question is only meaningful if we disregard rotation. We then answer the question

whether it is possible that

dH = −dW

g
(45)

for a non-rotating potential, with the characteristics described in Conclusion 1, by applying

the so-calledgravity space formalism(cf. Sans̀o (1977)).
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Therefore, we define an adjoint potential

ψ = x · g −W (46)

and we consider it as function of the gravity vectorg. If we differentiate Eq. (46), also known

as theLegendre transform, we get

dψ = dx · g + x · dg − dW = x · dg , (47)

proving that

∇gψ = x . (48)

Substituting Eq. (48) back into Eq. (46) we get

W = g · ∇gψ − ψ = g
∂ψ

∂g
− ψ . (49)

On the other hand, differentiating Eq. (48) once more, we obtain

Ψ =
[

∂2ψ

∂gigk

]
=

∂x

∂g
=

[
∂g

∂x

]−1

= (50)

= W−1 =
[

∂2W

∂xi∂xk

]−1

.

Accordingly, outside the masses, one has

TrΨ−1 = TrW = ∆W = 0 . (51)

On the other hand, ifW has to be a function ofg only, due to Eq. (49), we see thatψ also

has to be function ofg only. Then it is just a matter of an exercise to see that

Ψ =
1
g

[ψ′I − (ψ′ − gψ′′)Pg] (52)

with

Pg =
[
gigk

g2

]
, ψ′ =

∂ψ

∂g
, ψ′′ =

∂2ψ

∂g2
. (53)

It is then straightforward to verify that

Ψ−1 =
[

g

ψ′
I +

(
1

ψ′′
− g

ψ′

)
Pg

]
. (54)
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Equation (51) then yields

TrΨ−1 =
2g

ψ′
+

1
ψ′′

= 0 (55)

or

2gψ′′ + ψ′ = 0 . (56)

To integrate Eq. (56), one has to take into account that whenr → ∞ the actual potential

has the asymptotic behaviour

W ∼ µ

r
∼ µ1/2g1/2 ; (57)

then, from Eq. (52), one finds that wheng → 0, ψ must have the asymptotic behaviour

ψ ∼ −2µ1/2g1/2 . (58)

The only integral of Eq. (56) having the behaviour of Eq. (58) at the origin is indeed

ψ = −2µ1/2g1/2 (59)

itself. Therefore, the corresponding relation betweenx andg is

x = −µ1/2g−3/2g ; (60)

By inverting Eq. (60), one gets

g = −µ
x

r3
, (61)

which proves that, at least outside the masses, the gravity field satisfying Eq. (45) has to be

purely spherical.

As for the part inside the masses, we just cut short the reasoning; as a matter of fact if

W = W (g), inside as outside the masses,ψ also has to be function ofg only too and Eq. (51)

then becomes

TrΨ−1 =
2g

ψ′
+

1
ψ′′

= −4πρ(g) . (62)

We do not know the exact analytical form of the integral of Eq. (62). However, the problem

can be reduced to a quadrature for a layer of constant density, i.e.. to the integration of

ψ′ = −
[

g3

ρ3
+

3
2

C

ρ
+

√
9C2

4ρ2
+

3Cg3

ρ4

]
+ (63)

−g2

[
g3

ρ
+

3
2
Cρ +

√
9
4
C2ρ2 + 3Cg3

]
− g

ρ
,
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whereC is a positive constant to be adapted to the boundary information thatψ′ has to be

equal to the radius of the bounding sphere. Whatever the integral of Eq. (64) is, we still must

have, because of Eq. (48),

x = ∇ψ = ψ′
g

g
. (64)

Now, Eq. (64) implies

|x| = r = ψ′(g) ⇒ g = F (r) (65)

and

g = F (r)
x

r
, (66)

which says again that the surfacesg = {const}, which coincide with level surfaces, have to

be spheres.

Conclusion 4 The relationdH = −dW
g , which is not true for the actual Earth, cannot be

satisfied by a rotating mass distribution, i.e., wheng is the modulus of the gravity vector

and not of gravitation only. Among purely gravitational fields, the above relation can only

be satisfied by a field with simple spherical symmetry outside the masses (monopole field)

and inside the masses down to the geoid; namely the “geoid” has to be a sphere and the

corresponding density distribution has to be spherically layered.

5 Orthometric and other height systems, with some operative conclusions

Since other than orthometric height systems are used in geodesy, it seems logical to close

this paper by mentioning them and by assessing their position with respect to the holonomity

problem.

In particular, we can consider dynamic and normal heights (cf. Vaniček and Krakiwsky

(1986)). As for dynamic heights the question is almost straightforward, because by definition

HD ≡ W0 −W(P )

γ
, (67)

whereW0 is a reference value (gravity potential on the geoid) andγ some reference constant

value, close to the actual gravity modulus.
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Indeed Eq. (67) implies

dHD = − 1
γ

dW (68)

yielding

∫

Γ

dHD ≡ − 1
γ

∫

Γ

dW = 0 (69)

for any closed loopΓ . Hence dynamic heights are holonomic.

As for normal heights, the problem is a little more intricate. Nevertheless, if we go back

to the very definition, i.e., the normal heighth∗P is the ellipsoidal height of a pointQ lying on

the same normal to the ellipsoid asP and such that

U(h∗, ϕ, λ) = W (h, ϕ, λ) , (70)

we see that, on account of the regularity ofU as function ofh∗, Eq. (70) can be inverted to

provide

h∗ ≡ h∗(h, ϕ, λ) . (71)

Sinceh∗ is smooth, due to the implicit function theorem (cf. Kaplan (1991)), we know that

its differential will be exact on account of the argument used in§2. Therefore, the conclusion

drawn for orthometric heights does not change too much with these systems. Of course for

HD andh∗, it is necessary to clarify how their differentials are related to the leveling incre-

mentδL, which is the observable quantity, in order to derive the expression of the corrections,

as we have already done for the orthometric height in§3.

For HD, the computation is particularly simple, since from Eq. (68) we can write (also

see Eq. (24))

dHD = − g

γ

dW

g
=

g

γ
δL = δL +

g − γ

γ
δL , (72)

showing that the differential dynamic correction (DC) is given by

δHD∗ = d(DC) ≡ g − γ

γ
δL . (73)

The integral form of Eq. (73) for a leveling line joiningA to B is therefore

DC(AB) =
∫ B

A

g − γ

γ
δL . (74)
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For the normal height, a similar, although slightly more complicated, expression can be

derived (see Heiskanen and Moritz (1967), Ch. 4,§6).

Remark 6 It is interesting to establish a connection betweenOC(AB) (Eq. 82) andDC(AB)

(Eq. 74), which is also pointed out in geodetic literature (e.g., Vaniček (1982)).

Let us introduce a pathΓ defined as

Γ = (A′0A) ∪ (AB) ∪ (BB′
0) , (75)

i.e., ascending along the ellipsoidal normal fromA′0 to A, moving along the leveling line

(AB) and then descending fromB to B′
0 along the new normal to the ellipsoid. We then

recognize that

OC(AB) =
∫

Γ

∆g

γ
sin IdΓ , (76)

whereI is the inclination of the path elementdΓ on the horizontal plane;

on (A′0A) , sin I = 1 , dΓ = dh

on (AB) , sin IdΓ = δL

on (BB′
0) , sin I = −1 , dΓ = −dh .

(77)

We now observe that a constantγ can always be chosen in such a way that

∫

Γ

∆g

γ
sin IdΓ ∼=

∫

Γ

∆g

γ
sin IdΓ ≡

∫

Γ

g − γ

γ
sin IdΓ . (78)

Accordingly, the orthometric correctionOC(AB) can be decomposed as

OC(AB) = DC(A′0A) + DC(AB) + DC(BB′
0) , (79)

which is the sought-after interpretation.

Remark 7 For any kind of height, we can always write equations like Eq. (22)

dH = δL + δH∗ , (80)

so that in a leveling network for any closed loopΓ , we can write a condition equation like

∫

Γ

δL +
∫

Γ

δHD∗ = 0 , (81)

or similarly for the other heights.
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In reality, however, we cannot use continuous equations, but rather have to write discrete

sums along a closed leveling line with benchmarks(P1 . . . Pn), for which it is true that

N∑

i=1

δH(Pi, Pi+1) =
N∑

i=1

δL(Pi, Pi+1) +
N∑

i=1

δH∗(Pi, Pi+1)

= 0 , (82)

with PN+1 = P1.

Naturally, the integral of the correctionδH∗ along a side of the leveling network cannot

be done exactly in general and only a discretized version of it can be used in Eq. (82), thus

introducing a discretization error. Simultaneously, the use of observed leveling increments in

Eq. (82) will also give a non-zero contribution due to measurement errors. In other terms, as

we know, the use of real data will call for a least squares adjustment in order to reduce the

influence of errors.

We come therefore to our last operative conclusion, taken from (Vaniček (1982)).

Conclusion 5 Any height system – dynamic, orthometric or normal – can be used in the

adjustment of leveling networks with the same justification as the geopotential numbers. The

only requirement is that the height differences needed for the adjustment be corrected for the

effect of actual gravity observed on the surface of the Earth.
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Fig. 1. Geometry of plumblines, equipotential surfaces, geoid (G) and ellipsoid (E); hP , hP+δP el-

lipsoidal heights;δL leveling increment;HP , HP+δP orthometric heights, i.e., arclenghtsPP0 and

P + δPP0 + δP0; dHQ, dHQ+δQ plumblines elements between two equipotential surfacesW =

WQ, W = WQ − dWQ; W = WP , W = WQ, W = WQ − dW equipotential surfaces;d` vec-

tor of the displacementδP, d`0 horizontal component ofd`; N, N ′ geoid undulations corresponding

to P0, P0 + δP0; εP deflection of the vertical and inclination of the sectionPP ∗ on the ellipsoid;

eH(Q), n(Q) tangent and principal normal unit vectors of the plumblineHQ.


