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ABSTRACT 

 
We have developed an efficient method, Smooth Piecewise Algebraic Approximation (hereafter SPAA), 
to automatically compute a smooth approximation of large-scale functional scattered 2D observation 
points and tilt between them. The area of study is divided into patches and piecewise algebraic surfaces 
are fitted to the data. When the surfaces are approximated, a set of constraints is imposed in such a way 
that the resulting function is continuous only in the zero and first derivatives everywhere in the region, 
which results in a very short computation time. In other word, the surfaces are fitted simultaneously, 
using the constraints as set-conditions which the parameters of the surfaces must also satisfy. This 
method does not require a triangulation or quadrangulation of the data points and as such, it is very 
well suited for extremely large datasets. 
   This method has been successfully applied to the monthly mean sea level and re-levelling data in 
Canada to thereby compile a map of Vertical Crustal Movements (VCM) in the region. The VCM model 
obtained using this method accommodates different kinds of scattered geodetic data, while yielding the 
optimum approximation to them. Enforcing the continuity and smoothness throughout the surfaces, the 
VCM model of Canada highlights the long wavelength temporal variations of the crust in the region, 
mainly due to Post Glacial Rebound (PGR). As a result, using the method of SPAA, a more physically 
meaningful VCM is modelled.  
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INTRODUCTION 
 
 In order to predict the spatial vertical velocities, or uplift rates, a vertical velocity 
surface should be fitted to the scattered data of sea level linear trends and rate of 
levelling height differences (tilt). The problem of functional scattered geodetic data 
fitting can be described as follow: Given two sets of pairing points and individual 
points: 
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Where Ω  is a bounded domain in the plane. Their corresponding values ∆Vij=Vj-Vi,       
i, j=1,…,N and Vt, t=1,…,p, are also given as the relative and absolute vertical velocities, 
respectively. We want to find a method to construct a surface RS Ω: that meets as 
many as possible of the following goals: 
• Approximation: S should approximate different types of data while offering least 
square approximation. 
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• Quality: S should be of high visual quality (i.e., S should be continuous and 
smooth) and have convenient properties for further processing. 
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• Independency: the method should be independent of the choice of nodal points. 
• Usability: large number of geodetic data, where N is typically of the order of 105,      
        should be manageable. 
• Stability: the computation of S should be numerically stable, i.e., the method  
        should work for any distributions of scattered points. 
• Adaptiveness: the local variation and distribution of the data should be taken into  
       account. 
• Simplicity: the method should be easy to implement. 
 
   Although many approaches have been developed mainly in mathematics and 
computer sciences, (see for instance the survey and overview in [8], [17], [21]), the 
literature shows that it is a difficult task to meet all of the above goals by using one 
single method. Of utmost limitation of all the methods is that they can not be used for 
different types of data, point values and relative values (tilt) between points. Other 
limitations are severe restrictions on the number of data, restriction on the domain and 
distribution of the data and a limitation to handle large linear equation systems [11]. In 
order to review the related works, we have divided the methods of data fitting into two 
groups: 1- fitting a unified surface to the data, 2- fitting piecewise surfaces. In the 
following, some of these methods and the advantages and limitations of each technique 
in the context of Vertical Crustal Movements (VCM) are discussed. 

UNIFIED SURFACE FITTING TO THE DATA 

 
   The main idea is to provide an approximation surface, S(x, y), to the data. Generally, 
the surface can be expressed as: 
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where ψi  are some arbitrarily chosen, linearly independent functions (basis functions) 
of the position and ci are the best fitting coefficients to the observations [33].  
Different models can be produced by choosing different suitable basis functions. All of 
them have their own advantages and disadvantages and are appropriate to different 
deformation behaviours. Practically, the two dimensional algebraic functions would be 
used in most cases. The basic equation then becomes  
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where n is the degree of the polynomial, and cij are the sought coefficients [35]. Here, 
the algebraic functions are the simplest functions to deal with numerically and are 
adequate when the solution is confined to the regions where sufficient data exists; the 
poor behaviour appears only when the solution is used in an extrapolation mode.  
These models are more applicable in the compilation of a map of VCM as they can use 
both point and tilt data. In other words, different types of the data are used in one 
model. To get the details needed for the map to be meaningful, the order of the 
velocity surface would have to be too high to be numerically manageable. This would 
cause wild oscillations (artifacts) where there are no data. 
The radial basis methods are another active area of research for scattered point fitting 
[6]. Generally, by a radial function, we mean a function: 
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for some function .: RR →φ  Here d represents the dimension of the problem, i.e., 
d=2 in our case. In other words, the function value of g in a point ),...,,( 21 dxxxx =  
only depends on the L2-norm of x . An example of such radial methods is the Multi 
Quadric method (MQ) [12]. This method considers the vertical crustal deformations as 
one kind of continuous changes which can be approached precisely by the 
superposition of Multi Quadric functions: 
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where t is the present epoch of time; 0t is the pre-specified initial epoch of time, K is 
the kernel function, i is its running number and k is the total number of kernel 
functions; ic is the unknown coefficients. The general form of K is: 
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where ),( ii yx is the nodal point, δ is the smoothing factor, b is selected to determine 
the form of the function; usually, it is chosen to be equal to 1, ½ or -½ , etc. [19] 
   Special attention should be paid to the location of nodal points, which indeed 
controls the pattern of the surface. This method strongly depends on the choice of 

),( ii yx , and while dealing with tilt data, deciding about where to choose the nodal 
points is nontrivial. Figures 1a, b show how effectively the nodal point control the 
pattern of the surface. In this figure, two different sets of nodal points were considered 
for the computation, each consists of 18 points. 
   Another problem is that these methods usually require solving large, ill-conditioned 
linear system. Therefore, sophisticated iterative techniques are needed for the 
computation of the radial function interpolants [11]. 
 

 
Fig. 1. The vertical velocity surfaces obtained using the MQ analysis, using two different sets of nodal points.  

The blue dots show the location of data points. 

PIECEWISE FITTING METHODS 

 
   A practical way to avoid the problem of wild oscillations due to using a unified 
surface is to divide the area of study into pieces, and seek the velocity surface 
piecewise. One of the most common methods in this area is the use of Free-form 
Blending [24]. In this approach, the fitting is performed locally and the results are 
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merged to form a global approximation (See for example [30], [14]). These methods 
are fast and easy when there are dense data, but in the sense of sparse data, would not 
be applicable [14]. On the other hand, the function value in each vertex is to be known, 
while in geodetic datasets, the point values are available only in some of the elements. 
   Another common approach is the use of splines. There are several types of splines 
that can be used. The simplest approach in data fitting using splines is to apply tensor 
product splines [5],[7],[10],[9]. In general, the tensor product methods are 
straightforward to apply only for the data given on a grid [11].  Parametric bicubic 
splines are adoptively subdivided to approximate 3D points with a regular quadmesh 
structure [11], and multilevel B-splines are used to approximate functional scattered 
data points [18]. Other spline methods are based on simplex splines or splines of finite-
element type [36]. The simplest example of finite element splines are continuous 
piecewise linear functions with respect to a suitable triangulation of the planar domain. 
It is well-known that these methods which are based on piecewise linear functions can 
not exceed the approximation order 2. To achieve a higher smoothness and 
approximation order, polynomial patches of the greater degree have to be considered.  
   In particular, there are scattered data methods based on classical smooth finite 
elements such as the Bell quintic element, Frajies de Veubecke-Sander and Clough-
Tocher cubic elements, and Powell-Sabin quadratic element (see the above-mentioned 
surveys and more recent papers [3],[5],[25]. The above-mentioned methods based on 
finite elements require accurate estimates of the derivatives at the data points, which is a 
nontrivial task by itself assuming the data points are irregularly distributed. To 
overcome these difficulties, a global least squares approximation and other global 
methods are considered [5],[22],[36]. 
   The basic idea of the method used in this research is related to the approximation 
scheme of [33]. An essential difference is, however, that piecewise polynomials are 
used. This method is different from the standard spline, as the data points are neither 
triangulated (or quadrangulated), nor any interpolation scheme as for instance in [3] and 
[25] are used. In particular, there is no need of any pre-estimates of functional values at 
points different from the given data points. Instead, local least squares approximations 
are computed, directly in the polynomial form and then the remaining degrees of 
freedom are settled by continuity conditions, which results in very short computation 
times. Since this method does not even require a triangulation of the data points, it is 
very well suited for extremely large datasets. Theoretical aspects of the method are 
discussed in the following. 

SMOOTH PIECEWISE ALGEBRAIC APPROXIMATION 

 
   The procedure of fitting a surface to the geodetic data involves the use of both the 
point rates and the gradients simultaneously, together with their proper weights. The 
point rates are determined from some of the tide gauge data which were selected to be 
used in the point velocity mode, and the gradients come from re-levelled segments and 
tide gauge pairs.  
   In order to fit a surface to the geodetic data, it is advantageous first to transform the 
geodetic coordinates of φ and λ to rectangular coordinates x and y related to an 
arbitrary origin located to the centre of the region as 
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   Here, x and y are the easting and northing in a local Cartesian system, R is the Gauss 
radius of curvature, φ0  and λ0  are the geodetic coordinates of the origin of the grid. In 
general, we divide the area of study into p patches. A given polynomial in the mth 
(m=1, 2,…, p) patch looks as follows: 
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where mV  is the algebraic least squares velocity surface for patch m, fitted to the 
desired data (x, y). The pair ),( 00 mm yx  represents the position of the origin in patch m 
and mijc ,  are the unknown coefficients in patch m. 
If m and m ́ represents the two adjacent patches having common border mm ́ (Figure 2), 
then in order to piece the polynomials together, the following conditions must be 
satisfied: 
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(xmm’,k, ymm’,k) is the position of  kth nodal point in the border mm´ joining patches m and 
m´. Here, q represents the maximum number of the nodal points in the common border 
between patch m and patch m´. 
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Fig. 2. Two adjacent patches m and m´ and the nodal points in the common border between 

 two patches (Pmm´,1, Pmm´,2, …, Pmm´,k=q) 
 
    The conditions (10a) make sure that the piecewise polynomial fits to the nodal 
points (Pmm´,1, Pmm´,2, …, Pmm´,k=q) located in the predefined border mm´ between two 
patches m and m´. These conditions imply that the function is continuous everywhere 
in the region. Conditions (10.b) and (10.c) ensure that the polynomials are continuous 
in slope along x and y directions, respectively. The main mathematical model is Eq. (9) 
while all the conditions of Eq. (10) show the existence of constraints on the main 
model [16]. 
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One can rewrite Eq. (9) in a more suitable form for the velocity differences between 
two adjacent bench marks A and B (tilt). 
 

].)()()()[(),,,( 00
0 0

00,
j

mA
i

mA

n

i

n

j

j
mB

i
mBmijBBAAm yyxxyyxxcyxyxV

x y

−−−−−=∆ ∑∑
= =

 (11) 

 
The ‘observations’ on the left hand side of the equation are used to compute the 
coefficients by means of the least-squares method. To find the least square solutions, 
Eqs. (10) and (11) can be simplified in a general form:  
 

,0)( =lc,f                               (12a) 

                .0)( =ccf                                  (12b) 
 
   Here, l is the vector of observations which includes ),( ttm yxV  from the tide gauge 
observations and ),,,( BBAAm yxyxV∆ from the re-levelling data and paired tide gauges. с 
is the vector of unknown coefficients. It is assumed to be possible to solve for с, using 
only the main model of Eq. (12a). The auxiliary model fc consists of the constraint 
functions that are enforced. The above models are then linearised to yield: 
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with rank (A)=u   rank (B)=c   and rank (D)=d. 
 
   In Eqs. (10), r is the vector of the expected residuals. The matrices A and D are the 
Jacobian matrices of transformation from the parameter space to the two model spaces, 
valid for a small neighborhood of )0(c . The matrix B is the Jacobian matrix of the 
transformation from the observation space to the main model space. It is observed that 
Eqs. (13) are merely the differentional form of the original non-linear mathematical 
model Eqs. (12a) and (12b) and describe the relations of the quantities in the 
neighborhoods of )0(c , the point of expansion in the parameter space, and )0(w , the 
misclosure vector, where,      
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      In the presence of constraints, it is, in general, possible that u>c leading to rank of 
A being c. In such a situation, part of the development to follow (solution by 
partitioning) would not work. Therefore, we assume that u<c. The tasks of constrained 
fitting can now be formulated. The standard method for solving a minimisation 
problem subject to a set of constraints is the use of Lagrangian multipliers. The 
constraints fc(c) =0 are viewed as a hypersurface S upon which we wish to minimise 
f(c,l) =0. The variation function for finding the least-squares solution is written as, 
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where Cr=Cl  is the covariance matrix of the observations. Here, there are two sets of 
Lagrange correlates: k, kc, reflecting the fact that two models are present. The 
minimum with respect to r is found by the Lagrange approach [23],[34] as  
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Eq. (19) represents the solution from the main model ƒ alone. The corrective term 

(1)δδ−ˆ  in Eq. (16) arises from the enforcement of the constraints. 

SEQUENTIAL CONSTRAINTS SATISFACTION 

 
    The Lagrangian-multiplier method works adequately when the constraints are 
independent, but is less useful when they are not [1]. In this work, a sequential 
approach to select the optimum number of independent constraints is used. We assume 
that the constraints have been sorted into an order of priority: ),...,,()( 21 kcf cccc = , 
where 1c  is a vector of highest priority constraints, and kc  the lowest. We wish to find 
for ,0)( =lc,f by sequentially attempting to satisfy the constraints in their priority 
order.  
    The two problems: 0)( =lc,f  and 0)( =ccf  are solved simultaneously using the 
Lagrangian-multiplier method (see previous section) with more sets of constraints in 
different steps. Depending on the desired degree of freedom for the resulting velocity 
surface, while still securing the regular solutions, the computations end at that step.  

TESTING THE ERRORS 

 
   The next task is to obtain the covariance matrix 

δC ˆ
ˆ of the parameters. This is given 

by [23],[34] as: 
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The appropriate degree of the resulting surface is determined by testing the estimated 
accuracy, or the ‘a posteriori variance factor’. The latter is computed from 
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where r̂   is the vector of the least square estimation of the residuals and ν  denotes the 
number of degrees of freedom 
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FILTERING THE SOLUTION 

 
   Some of the computed coefficients may not be statistically significant on a certain 
level of probability and they should be filtered out in the first stage. In order to discard 
all the coefficients that are not significantly different from zero, one way is to 
orthogonalise the basis. Then each of the coefficients can be tested for statistical 
significance against its own variance. A certain level of significance, in terms of a 
multiple of the standard deviation can be assumed, and all the coefficients, 
insignificant on this level, can be discarded. Here, the Gram-Schmidt orthogonalisation 
is applied to the polynomial basis (ψi(φ,λ)), the significance tests for the coefficients is 
performed, and the solution is de-orthogonalised into the natural solution space [32]. 
The basis functions in Eq. (3), can be written as  
 

{ }.l21 ψψψ ,...,,≡Ψ                                                  (21) 
     
The above bases are then orthogonalised to obtain  
 

{ }.**** ,...,, l21 ψψψ≡Ψ                                                 (22) 
     
    
The coefficients for each individual patch are then evaluated in the orthogonal space as  
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These coefficients should be confirmed as significant. To test their significance, one 
can start from the following null hypothesis: 
 

.,...,1;0)(:
)1(*

0 liδEH i ==                                (24) 
 
where 

)1(*
iδ is the ith coefficient for each patch, computed in the orthogonal space. It is 

therefore possible to define a statistic that, if 0H   is true, follows a t (Student) 
distribution [2],[34]: 
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where )1(*

iδ
σ is the standard deviation of 

)1(*
iδ and ν is the degree of freedom, i.e., the 

number of redundant observations. The hypothesis 0H  is accepted or rejected 
depending on whether the absolute value 0t  is smaller or greater than a boundary value 
βt  at a chosen confidence level [2],[34],[19]. When 0H   is found valid, 

)1(*δ should be 
rejected. Otherwise, 

)1(*δ should remain in the model. After discarding the non-
significant coefficients from Eq. (21), we de-orthogonalise Eq. (21) into the natural 
space by 

.*
)1()1(

δTδ t=                                        (26) 
 
Here T is the transformation matrix from orthogonalised space to non-orthogonalised 
space.  
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MODELLING OF THE VCM IN CANADA USING SPAA 

 
      In order to fit a simultaneous surface to 2D measured data and the tilts between 
them in an “automatic” process, it was decided to divide the area of study into patches 
with regular shapes. In this study, some square and rectangular patches with different 
sizes were selected in which the border between two adjacent patches is always a 
straight line parallel to one of the coordinate axis. This way, the number of constraints 
for the continuity and smoothness would be reduced and consequently a higher degree 
of freedom would be achieved. Another advantage is that when dealing with a high 
number of data, this approach is more adoptable. 
   Therefore, the region of study, Canada, was divided into patches of different sizes 
depending on the number and the distribution of the data. The size of the patches was 
initially selected to be 2×2 degree and if there were not enough data in a particular 
patch, or the data were not well distributed, the adjacent patches were combined to 
create a bigger patch. This was done automatically in the Program SPAA-VCM by 
checking the number of data. Figure 3 shows the selection of the patches and the 
combinations of some of them. 

 
Fig. 3. The selection of the patches and their combinations. 

    
    The next step was to seek the vertical movement by different polynomial surfaces in 
each patch. The polynomials were joined together at the nodal points on the boundaries 
of the patches in such a way that a desired degree of smoothness (differentiability) of 
the resulting function was guaranteed. In this work, the continuity and smoothness 
conditions (Eqs. 10a, 10b, 10c) were satisfied. 
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    Several tests were made to determine the appropriate degree of the velocity surface 
to be computed for each patch. As an example, Table 1 shows the a posteriori variance 
factors for the degrees 2, 3 and 4 for a sample area in Eastern Canada (please see [16] 
for more details). All degrees of the polynomials yielded a posteriori variance factors 
between 8.1-8.5. The value n=3 was finally selected as the highest degree compatible 
with the data distribution in that area [16]. 
 
Table 1.  A posteriori variance factors of polynomial surfaces of degree 2, 3 and 4 for 

a sample patch in Eastern Canada [16] 
Degree of 

polynomials 
Degree 2 Degree 3 Degree 4 

a posterior variance 
factor 

8.4 8.1 8.3 

NUMERICAL INSTABILITIES 

 
    One of the basic concepts that should be discussed before explaining the numerical 
problems is the notion of the sensitivity to the data distribution. We wish to solve a 
numerical problem that arises from a practical setting, say solve Ac = l,  where A is a 
square matrix and l is the observed vector, and c is the vector of unknown coefficients. 
It is well-known that there is a unique solution if and only if matrix A is regular. 
Mathematically, there is nothing more to say. However, practically it is very important 
to know how sensitive the solution c is to perturbations in the data distribution which 
are presented in matrix A. If the mathematical solution is very sensitive to changes in 
the data distribution (i.e., the problem may be poorly conditioned) then it is not 
possible to guarantee that the computed solution is correct. Overdetermined systems of 
linear equations behave the same. If the problem is poorly conditioned, we may not 
find the unknown coefficients such that Ac is 'close' to l (in the least squares sense). 

 
Fig. 4.  Data distribution in two adjacent patches (A, B) which are ultimately joined together to avoid ill-

conditioned systems. 
 
      One frequent problem in VCM modelling using SPAA is that the system of normal 
equations might be ill-conditioned, which means that the solution is hypersensitive to 
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changes in the position of the data. This is the case especially for the initial solutions in 
patches with a poor distribution of data. For example in two adjacent patches, one (A) 
49°-51° North and 64°-68° West, and the other (B) 49°-51° North and 68°-72° West, 
there are 106 and 101 observation equations, respectively (Fig. 4). Theoretically, the 
system could be solved, with a reasonable number of degrees of freedom. However, 
due to the poor distribution of the data (all along one line), the matrices of observations 
are ill-conditioned.  
    One remedy is to combine the patch with a poor distribution of data with adjacent 
patch or patches, to create a patch with a more reasonable distribution of the data. In 
Figure 4, two adjacent patches (A, B) are joined to make patch A+B. In order to secure 
a numerical stability of the solution, the origin of the coordinate system should be 
chosen carefully. 
    To see the effect of different origins of coordinate systems on the standard deviation 
of the absolute term of the VCM in patch A+B, a cubic polynomial surface was fitted 
to the data in the patch (Figure 4). The origin of the coordinate system for the 
computation was assigned (1) outside the patch, (2) in the centre of the patch, (3) in the 
centre of mass of the data in the patch. Three different solutions were obtained and the 
covariance matrices for the computed coefficients were calculated. Table 2 shows the 
standard deviations of the absolute term of the VCM computed in patch A+B in three 
different coordinate systems.  

Table 2. Standard deviation of the absolute term of the VCM computed in patch A+B in 
three different coordinate systems. 

The origin of the coordinate system 
Standard deviation of the 
absolute term of the VCM 

(mm/year) 
    1-Outside the Patch      φ◦=46°00´00˝, λ◦=79°00´00˝ 553.0 

2-Centre of the Patch   φ◦=50°00´00˝, λ◦=68°00´00˝ 0.52 
3-Centre of the mass    φ◦=49°43´48˝, λ◦=67°55´12˝ 0.39 

 
The standard deviation of the absolute term for the VCM in this patch strongly 
depends on the location of the origin of the coordinate system. This is mainly due to 
the poor distribution of the data which made the design matrix poorly conditioned. For 
the modeling of the VCM, it was decided to choose the origin of the coordinate system 
of each patch in the centre of that patch itself or, where necessary, in the centre of mass 
of the data of the patch.  

RESULTS 

 
   The final map is the patchwork of 33 patches, and the cubic polynomials in most of 
the patches. The map of the VCM in Canada compiled using SPAA, which is confined 
to the distribution of data in the area, is illustrated in Figure 5. The map of the standard 
deviations of the computed VCM is shown in Figure 6. 
    The Post Glacial Rebound (PGR) hinge line, the zero line between rising and 
sinking land due to PGR, appears from the Gulf of St. Lawrence in the map of VCM 
(Figure 5). It follows the Atlantic coast line to the south of Canada. This gives some 
information about the deglaciation history of the ice model. The PGR hinge line then 
crosses the Great Lakes and continuous westwards along the southern border between 
Canada and the U.S. and creates a dome shaped uplift in northern British Columbia 
(Figure 5). This map is in good agreement with the map of gravity changes in Canada 
[26], the Glacial Isostatic Adjustment (GIA) models [31],[27],[28] and the rate of 
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geodetic height changes of [29]. A comprehensive comparison between this map and 
the geophysical models, and the geodynamical interpretation of the map are presented 
in [15]. 

 
Fig. 5.  Contour map of vertical crustal movements in Canada using Smooth Piecewise Algebraic Approximation. 

The Contours are in millimetre per year. The zero line is shown by thicker lines.  

 
Fig. 6. Pattern of the standard deviation of the predicted Vertical Crustal Movements in Canada. Contours are in 

millimetre per year [15] 
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CONCLUSIONS AND RECOMMENDATION 

     The method of Smooth Piecewise Algebraic Approximation (SPAA) avoids many 
of the limitations associated with traditional approaches of data fitting such as the 
requirement that the data be of point values, as it is seen in the MQ method [12] and in 
B-splines [9],[10]; or they should be in grids or at least well distributed [36]. SPAA is 
not restricted to the low degree polynomials for all the patches by which a uniformly 
smooth surface throughout the region is maintained, as seen in [35]; instead the 
smoothness (differentiability) of the resulting function is guaranteed by imposing the 
constraints and the degree of smoothness can be simply controlled by the number and 
degree of differentiability constraints in the model. The Vertical Crustal Model (VCM) 
model developed in this research gives some details of the movements. Enforcing the 
continuity and smoothness in the first derivatives throughout the surface, the VCM 
model can highlight the long wavelength spatial variations of the crust in Canada, 
mainly due to Post Glacial Rebound (PGR). Moreover, our VCM model is independent 
to the choice of nodes. Even by having scattered data, and the ill-conditioned equation 
system in some patches, a stable solution can be manageable to be obtained by 
changing the coordinate system.  
   The use of SPAA was shown to be useful in compiling a map of VCM in Canada, 
where different types of data were utilised. Since surface modelling is needed in many 
applications in Geosciences, Surveying and other disciples, and since geodetic data are 
usually distributed non-uniformly, it is strongly recommended that SPAA is used when 
dealing with scattered data of any types.  
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APPENDIX 
Splines 
    Let a be a positive real number and let n = 0,1,2,… be an integer. A spline of order n 
with nodes in aZ  is a function f defined in R which is of class 1−nC and is a 
polynomial of degree at most n when restricted to each interval [ja, (j+1)a] for Zj∈ . 
The space of all splines of order n with nodes in a Z will be denoted by )(aZS n [35A]. 
In computer graphics, a spline is a curve that connects two or more specific points, or 
that is defined by two or more points. The term can also refer to the mathematical 
equation that defines such a curve. 
Consider the set of points in the illustration below.  

 
Fig. 7. Spline curve [35A] 

It is easy to envision a curve (Figure 7) that approximately connects the four points. In 
the old days of mechanical drafting, a flexible metal or wooden strip (called a spline, 
and the term from which the present term derives) was used to construct approximate 
graphs such as this [35A]. 

Kernel  
   A kernel is a non-negative real valued integrable function K satisfying the following 
two requirements: 
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)()( uKuK =−              (A.2) 
 
for all values of u. The first requirement ensures that the method of kernel density 
estimation results in a probability density function. The second requirements ensures 
that the average of the corresponding distribution is equal to that of the sample used. If 
K is a kernel, then so is the function )(* uK defined by )()( 11* uKuK −−= λλ , where 

.0>λ This can be used to select a scale that is appropriate for the data [17A]. 


