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Abstract. Geoid computation according to the 

Stokes-Helmert scheme requires accurate modelling 

of the variations of mass-density within topography. 

Current topographical models consider only 

horizontal variations, although in reality density 

varies three-dimensionally. The lack of knowledge 

of regional three-dimensional density distributions 

prevents evaluation from real data. In light of this 

deficiency, we attempt to at least estimate the order 

of magnitude of the error in geoidal heights caused 

by neglecting the depth variations by calculating, 

for artificial but realistic mass-density distributions, 

the difference between results from 2D and 3D 

models. 

Our previous work has shown that for simulations 

involving simple mass-density distributions in the 

form of planes, discs or wedges, the effect of mass-

density variation unaccounted for in 2D models can 

reach centimeter-level magnitude in areas of high 

elevation, or where large mass-density contrasts 

exist. However, real mass-density distributions are 

still more complicated than those we have modeled 

so far, and involve multiple structures. To expand 

on our previous work, we now present results for 

effects on geoidal height of mass-density structures 

involving multiple shapes and interfaces. We form a 

more complex structure by creating an array of 

discs. By this simulation we show that even in the 

presence of complex density distributions, vertical 

variations of topographical density will have only a 

centimeter level effect on the geoid. 
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1  Introduction 
 

The Stokes-Helmert method of geoid modeling 

requires determination of effects of all 

topographical masses in order to convert gravity 

anomalies to the Helmert space, and to convert the 

Helmert co-geoid from the Helmert space back to 

the real space. These calculations have traditionally 

used a constant value of topographical density (e.g. 

Vaníček and Kleusberg 1987), but numerous 

investigations have shown that to obtain a precise 

geoid the effects of density variations within 

topography must also be calculated (e.g. Martinec 

1993; Pagiatakis et al. 1999; Huang et al. 2001). 

These efforts have almost exclusively focused on 

horizontal density variations. Since the actual 

topographical density varies with depth, two 

dimensional topographical density models 

(2DTDMs) currently in use cannot accurately 

model the real density distribution. However, three 

dimensional topographical density models 

(3DTDMs) are not practical for real world 

calculations since the 3D density structure of the 

topography is known to a reasonably high 

resolution only over small areas (e.g. for local 

geophysical studies or prospecting), or to very 

coarse resolutions over large areas (e.g. the CRUST 

2.0 model developed by Bassin et al. 2000). 

Unfortunately, it is not yet possible to construct a 

3DTDM to a high enough resolution and over a 

large enough area to be good enough for geoid 

modeling (Kuhn 2003). 

Notwithstanding the current impossibility of 

applying a 3DTDM based on real data, we attempt 

to determine the potential shortcomings of 

2DTDMs and ultimately to delineate situations 

where those shortcomings will lead to significant 

errors in geoid determinations. Kingdon et al. 

(2009) recently showed that in the presence of 

single 3D bodies of anomalous topographical 

density, using only a 2DTDM might introduce 

errors of up to several centimeters in areas of high 

topography. In reality, topography does not consist 

of single bodies of anomalous density, but is a 

much more complex arrangement of bodies of 

varying densities. In this effort, we try to discover 

whether in extreme cases adjacent density bodies 

can either mitigate or reinforce each other's effects 

on the geoid. If even in this extreme case effects of 

adjacent masses cancel each other out, then we can 

suppose that 3DTDMs are rarely needed in real 

world applications. However, if the effects are 



significant then more work is necessary to define 

situations where 3DTDMs are needed. The 

investigation is done within the framework of the 

Stokes-Helmert scheme of geoid modeling, 

following the methodology discussed in Section 2. 

Section 3 will show and discuss our results using 

this methodology, and finally we will present the 

conclusions derived from our results and make 

recommendations for future work in Section 4. 

 

2  Methodology 
 
2.1  3D density modeling in the Stokes-Helmert 
context 
 
The Stokes-Helmert method of geoid computation 

requires a model of topographical density both for 

calculating the transformation of gravity anomalies 

to the Helmert space (called the Direct 

Topographical Effect or DTE), and for calculating 

the transformation of the Helmert co-geoid back to 

the real space (the Primary Indirect Topographical 

Effect or PITE) after the Stokes integration 

(Martinec et al., 1994a, 1994b). Existing models 

normally consider topography of constant density 

(usually 2670 kg m
-3

). For our modeling, we will be 

considering the variation of topographical density 

from the average values in a three dimensional 

sense. We label this anomalous topographical 

density . 

Each of the transformations required in the Stokes-

Helmert method comprises an evaluation of the 

difference between the effect of real and condensed 

anomalous topographical density at the location of 

each gravity anomaly. Here, we follow the same 

approach outlined in Kingdon et al. (2009), which is 

a generalization of the approach given by Martinec 

(1998). The DTE on gravity is calculated by the 

integral formula: 
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where DTE
  is the DTE on gravity at a point given 

by its geocentric radius r and a geocentric direction 

, representing its geocentric latitude and 

longitude.  is the anomalous density at an 

integration point with coordinates r', ', given by a 

3DTDM. rt(') and rg(') are the surface of the 

topography and the geoid, respectively. The 

function K(r,;r',') is the Newton kernel, equal to 

the inverse distance between the computation and 

integration points. 

The PITE on gravitational potential, PITE
 (R,) , is 

calculated by the formula: 
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Notice that the DTE is evaluated at the 

topographical surface, since this transformation is 

applied to gravity anomalies at the topographical 

surface. The PITE is evaluated at the geoid surface, 

which we approximate for the evaluation of the 

Newton kernels as a sphere of radius R = 

6 371 008.144 m, the mean radius of the Earth. 

Furthermore, the condensation density referred to in 

these formulas is calculated for a 3DTDM 

according to: 
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For our investigation, we convert the effects in Eqs. 

(1) and (2) into effects on geoidal heights. In the 

case of the DTE, the effect can be computed to a 

suitable precision by applying Stokes integration to 

the DTE on gravity: 
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where NDTE
  is the DTE on geoidal height, () is 

the normal gravity, and S([,']) is the Stokes 

kernel. 

In the case of the PITE, the effect on geoidal height 

is found by applying Bruns’s formula: 

 NPITE
 () 

PITE
 ()

 ()
. (5) 

These effects on geoidal height allow us to compare 

the effects of masses to some meaningful tolerance 

to determine whether they are significant. In this 

case, where we are looking for a 1 cm geoid, we 

will have to consider any effect over 0.5 cm to be 

significant. 

 



2.2  Numerical considerations 
 
The Newton kernel and its integrals and derivatives 

in Eqs. (1) and (2) can be computed numerically in 

various ways. For our computation, we use the 

prismoidal method (Nagy et al. 2000, 2002) for 

integration over the neighbourhood of the 

computation point, and 2D numerical integration  

(e.g Martinec 1998) farther from the computation 

point. 

In the prismoidal method, the anomalous 

topographical masses coming from the 3DTDM are 

divided into blocks, and the integral of the Newton 

kernel in planar coordinates over each block is 

calculated analytically. This formulation captures 

very well the behavior of the Newton kernel near to 

the computation point, and in that region is superior 

to 2D numerical integration, even though the 2D 

integration normally uses the more accurate 

spherical expression of the Newton kernel. The 

prismoidal formula is also faster than other 

analytical methods such as the polyhedral method. 

It is also faster in this particular case than the 

tesseroidal method, which must use a Taylor series 

expansion to greater than degree 2 to be sufficiently 

accurate very near to the computation point. 

Comparison of the planar Newton kernels used in 

the prismoidal approach and the spherical  Newton 

kernels shows that the kernels used to evaluate the 

DTE are more than 1 % different beyond 5 arc-

minutes from the computation point, and that those 

used to evaluate the PITE are more that 1 % 

different  beyond 15 º from the computation point. 

Fortunately, beyond these radii we can achieve 

sufficient accuracy using 2D numerical integration 

so these differences are moot. The 2D integration 

employs the radial integrals of the Newton kernel 

developed by Martinec (1998) to perform the radial 

integration of the Newton kernel over any given 

topographical column, thus evaluating the radial 

integral analytically. The horizontal integration is 

performed by dividing the integration area into 

cells, and summing the products of the values of the 

integrands in Eqs. (1) and (2) at the centers and the 

areas of each cell. This is faster than using the 

prismoidal formula, and provides sufficient 

accuracies for our preliminary investigation. The 

2D horizontal integration is suitable beyond about 

5 arc-minutes of the computation point for the DTE, 

and beyond 1 º of the computation point for the 

PITE. For our evaluations of the PITE, we use the 

prismoidal formula within 5 º of the computation 

point, to take greater advantage of its superior 

accuracy near the computation point. 

A problem remaining in all of our investigations is 

discretization error. With both of the methods we 

have chosen above, the actual mass distribution of 

the topography is represented as a series of 

rectangular prisms. Even with other methods, it is 

discretized, whether by division into tesseroids or 

into polyhedrons. Some methods may minimize the 

discretization error, but it always remains, and it is 

very difficult to quantify since its behavior changes 

for different mass distributions. We can mitigate 

discretization error by using a smaller cell or prism 

size in our integration procedures; by extensive 

testing we have found that for the discs used here a 

resolution of 1 arc-second x 1 arc-second is 

sufficient. However, for small discs a higher 

resolution would be necessary, and for larger discs a 

lower resolution would suffice. 

For the purposes of this investigation, we have 

tested our numerical integration against the single 

case of a disc, using analytical formulas for the 

DTE on gravity and PITE on gravity potential at the 

center of the disc. This is the point where the PITE  

caused by the disc is greatest, and a point where the 

DTE is very large. In this test, we find errors of up 

to 18 % in the numerical integration for the DTE 

and 5  % for the PITE in extreme cases, but 

normally less than 5 % for the DTE and 1 % for the 

PITE. The larger errors occur when the mass is very 

small, and consequently do not indicate a large 

magnitude of overall error. We consider such errors 

admissible for this exercise, as we only seek the 

order of magnitude of differences between results 

from 3DTDMs and 2DTDMs. 

 
2.3  Proposed tests 
 

Our question is: can the effect on geoidal height of 

a density body that, individually has a significant 

effect, be mitigated or enhanced by the presence of 

adjacent density contrast bodies? To investigate 

this, we take two extreme cases, each involving an 

array of anomalous masses. In case A, we choose 

masses that individually are known to have a 

particularly large DTE, and investigate the effect of 

the conglomerate of these masses on geoidal height. 

In case B, we choose masses known to have a large 

PITE. These two represent extreme cases, and will 

show in whether adjacent masses diminish each 

other's effect. 

In both cases A and B, we use an array of 

vertical cylinders as our density model. These are 

considered as anomalous masses, and are assigned 

alternating density contrasts of positive or negative 

600 kg m
-3

. The anomalous density outside the 

cylinders is zero. 



Our past work on individual mass bodies has 

shown us that both the DTE and PITE are greatest 

when: 

1. the topography involved is thick, 

2. anomalous density is distributed away 

from the geoid, and 

3. there is a large density contrast. 

Regarding the horizontal size of the bodies, for the 

PITE the larger the body the greater its effect will 

be, although the rate at which the effect increases 

becomes lower for wider bodies. For the DTE, by 

contrast, there is a range of horizontal sizes around 

3300 m  where the effect is normally the greatest. 

Thus, we use 3300 m as the disc diameter for case 

A. For case B we use 110 000 m as the disc 

diameter, beyond which the PITE does not increase  

very rapidly. In order to accommodate items 1 and 

2 in the list above, we choose flat topography 

2000 m thick, and use discs extending from the 

surface of the topography to 500 m depth. 

We calculate results over a 1 º by 1º  area for our 

case A simulation, and a 2 º by 2 º area for our case 

B simulation, both described in Section 3 below. 

We use a radius of 2 º for Stokes integration, and so 

our array of cylinders in case A extended over a 5 º 

by 5 º area to capture most of their effect. 

 

3  Results 
 
3.1  Case A 
 
The DTE on gravity for case A, as described in 

section 2.3, is given in Fig. 3.1. 

 

 
Fig. 3.1. DTE on gravity for case A. 

 

The adjacent masses do not significantly 

diminish the DTE, which reaches +/- 16 mGal. This 

is not surprising, since the derivative of the Newton 

kernel, used to calculate these effects, decreases 

very rapidly with distance from the source masses. 

However, we are ultimately interested in the DTE 

on geoidal height, resulting from the Stokes 

integration (Eq. (4)), and given in Fig. 3.2. 

 

 
Fig. 3.2. DTE on geoidal height for case A. 
 

We see that under the smoothing influence of the 

Stokes kernel, the adjacent masses largely attenuate 

each other's contributions to the DTE on the geoidal 

height, which reach about +/- 0.85 cm. This may 

not be the case for wider density anomalies, and it 

remains to find the maximum effect that masses can 

have in a simulation like our own. 

 
3.2  Case B 
 

The PITE on gravity for case B, as described in 

section 2.3, is given in Fig. 3.3. 

 

 
Fig. 3.3. PITE on geoidal height for case B. 

 

We see that for such large cylinders, the effect of 

adjacent cylinders of opposite mass is minimal. 

Here the effects reach +/- 5 cm, but for larger discs 



the magnitude would be greater and the attenuation 

even less significant. It is thus likely that effects on 

gravity will only increase for wider cylinders. 

 

4  Conclusions 
 
The DTE on gravity and the PITE on geoidal height 

for the anomalous masses in our simulations are 

neither significantly diminished, nor significantly 

increased by the presence of adjacent anomalous 

masses, even when there is an extreme density 

contrast. The PITE still reaches about 5 cm, and the 

DTE reaches about 16 mGal. This demonstrates that 

the error in the PITE resulting from using a 

2DTDM will not be diminished significantly by 

adjacent mass anomalies. 

The DTE on geoidal height is significantly 

diminished by the presence of adjacent masses, 

though it still approaches 1 cm level. However, this 

is entirely a result of Stokes integration, which was 

not considered in the development of our extreme 

case scenarios. With this in mind, larger bodies of 

anomalous density that still have a significant 

impact on the DTE on gravity may produce 

significantly larger effects on geoidal heights. This 

is now a new area for further investigation. 

It is clear from our results that even in complex 

distributions, 3DTDMs may be needed to achieve a 

one centimeter geoid. The next step is to further 

clarify what types of density anomalies can have a 

significant influence on the geoidal height. For 

example, what is the size of anomalous density 

bodies in arrays of various parameters that leads to 

serious shortcomings in 2DTDMs? Or, can we say 

based on the spatial frequency of the mass 

distribution whether we expect the effects of masses 

to cancel each other out? 
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