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Abstract.  In this paper we formulate two corrections that 
have to be applied to the higher-degree reference spheroid 
if one wants to use it in conjunction with the Stokes-
Helmert scheme for geoid determination. We show that in 
a precise geoid determination one has to apply the 
correction for the residual topographical potential and the 
correction for the earth ellipticity. Both these corrections 
may reach several decimetres; we show how their 
magnitudes vary within Canada and we give their global 
ranges. 
 
 
 
Introduction 
 
In Vaníc?  ek and Martinec, [1994] we explain the idea 
behind the Stokes-Helmert scheme for precise geoid 
computation. We define the “Helmert potential” Wh as the 
difference between the real gravity potential W and the 
residual topographical potential, V. Neglecting the 
atmospheric attraction effects, the residual topographical 
potential in the Stokes-Helmert  approach is defined as 
 
 V = Vt – Vc  , (1) 
 
where Vt is the potential of topographical masses trapped 
between the earth’s surface and the geoid, and Vc is the 
potential of the “Helmert condensation layer” on the geoid; 
the use of Helmert’s second method of condensation is 
thus implied. 
 In Vaníc?  ek and Sjoberg [1991] we show how the 
classical Stokes theory for geoid determination, conceived 
for computing geoidal height above a reference ellipsoid, 
can be reformulated for a higher-degree reference field. 
We argue that a higher-degree reference field, with a 
higher-degree reference spheroid generated as an 
equipotential surface of the reference field (cf., with the 

standard Stokes technique), accords a better utilization of 
local gravity data. In particular, this generalization gives a 
smaller truncation error when the Stokes convolution 
integral, applied to the observed gravity reduced for the 
reference field, (cf., with the standard Stokes technique) is 
truncated to a spherical cap of small radius. 
 In this paper, we look at the possibility of generalizing 
the Stokes-Helmert scheme in a way that would take 
advantage of using a higher-degree reference field. We 
assume that the higher-order field is described by a set of 
potential coefficients and investigate the steps to be taken 
before the coefficients can generate the reference field. We 
show that the potential coefficients have to undergo 
several corrections before they can be used to generate the 
reference spheroid for the Stokes-Helmert scheme and 
before they can generate the reference gravity to be 
subtracted from the gravity observed at the earth’s surface 
and reduced to the geoid. 
 Throughout our derivations, we assume that the potential 
coefficients we are interested in using were obtained from 
satellite orbit analyses. The reasons for limiting ourselves 
to only a relatively low-degree reference field and to solely 
satellite-determined potential coefficients are explained in 
Vaníc?  ek and Sjoberg [1991]. The optimal degree of 
reference field we have settled on is 20, and we have used 
this cutoff degree extensively (cf., Vaníc?  ek and 
Kleusberg [1987] and Vaníc?  ek et al. [1990]). We use this 
cutoff degree L=20 also in this paper; the expressions for 
the corrections are given for an arbitrary degree L but the 
numerical results are obtained for L=20. 
 
 
Transformation of the Reference Field into the Helmert 
model 
 
Let us begin by writing the usual spectral expression for 
the gravity potential; namely, 



 

 (2) 

 
where GM is the geocentric constant, Wnm are the 
potential coefficients, r is the length of the radius vector 
from the center of mass of the earth, a is the major semi-
axis of the reference ellipsoid used, Ynm is the normalized 
spherical function of degree n and order m, and Ω is the 
geocentric direction defined by geocentric co-latitude θ 
and longitude λ. The reference potential consists of the 
first L degrees (for L read typically 20) of the above series 
and it is this potential that we are interested in 
transforming into the Helmert model (space) by 
subtracting, from it, the direct topographical effect. 
 The residual topographical potential (eqn. (1)) has been 
treated in detail by Martinec and Vaníc?  ek [1994]. Here 
we briefly show the derivation of the expression for the 
effect in a spectral form. The spectral form is more 
convenient here because the effect can then be easily 
subtracted from the reference field. We begin by writing 
the standard Newton integral for the potential of 
topographical masses in spherical approximation 
 

 (3) 

 
where G is Newton’s universal constant, R is the mean 
radius of the earth, ρ0 is the mean topographical density, 
H′ is the terrain height reckoned along the radius vector 
equal to a sufficient accuracy to the orthometric height, see 

(Vaníc?  ek and Martinec, 1994), and l is the spatial 
distance between points (r,Ω) and (R+z,Ω′). We know that 
the representation of actual topographical density ρ by its 
mean value ρ0 may be too coarse an approximation and we 
shall discuss this point later on.  
 We now turn to the mathematical details. Let us first 
develop the reciprocal distance l-1 into an infinite series in 
Legendre polynomials Pn(cos ψ)  
 

  (4) 

 
convergent for r > R+z. Here, ψ is the geocentric angular 
distance between Ω and Ω′.  Substitution of eqn. (4) into 
eqn.(3) yields 
 

 (5) 

which, for r > R+z, i.e., for points outside the Brillouin 
sphere (minimal geocentric spherecontaining all the earth 
mass), can be rewritten as 
 

 (6) 



 
Since the series is convergent, the integral in z may be 
easily evaluated using the binomial theorem, giving 
 

 (7) 

so that the final expression for the topographical potential 
at pointsoutside the Brillouin sphere becomes 
 

  (8) 

 
 The potential of Helmert’s condensation layer on the 
geoid, implying the use of Helmert’s second method, is 
now to be subtracted from Vt.  When defining the 
condensation layer, we first decide what form of 
condensation we want to employ. Here we choose to use 
the condensation scheme that preserves the position of the 
centre of mass. The reason for this choice is that when the 
direct effect is expressed in the spectral form, the terms of 
degree 1 are identically equal to zero. The spectral form of 
the reference field in Helmert’s space then does not 
contain terms of degree 1 either, and the field is properly 
expressed in geocentric coordinates as required in the 
Stokes theory [Vaníc?  ek and Krakiwsky 1986]. 
Wichiencharoen [1982] and Martinec [1993] show that the 
following condensation 
 

   (9) 
rigorously preserves the centre of mass. Here σ stands for 
the areal density of the condensation layer, and  is the 
mean density of the topographicalcolumn. 
 Now, the potential of the condensation layer can 
beexpressed as 
 

  (10) 

 
After substitution from eqn. (9) and taking the mean value 
of topographical density, we get 
 

 (11) 

 
As above, we can develop the reciprocal distance 
 

  (12) 

into a series of Legendre polynomials, and for r > R we 
finally obtain 
 



 

  (13) 
 
since the series in eqn. (12) properly converges. 
Subtracting the condensation layer potential from the 
topographical potential, we arrive at the residual 
topographical potential 
 

 
 

 (14) 

 
The summation over k converges very quickly, since 
H′«R, and we can safely truncate it at degree 3. Equation 
(14) can then be rewritten in a moretransparent form as 
 

 

 

 (15) 

 
It is now easy to see that the first degree term is equal to 0, 
as expected, and neglecting over the 3rd degree term, the 
residual topographical potential becomes 
 

 

  (16) 
where the first term is the zero-degree residual 
topographical potential V0.  Expressing the Legendre 
polynomials as sums of products of harmonic functions, 
 

 (17) 

we finally obtain  
 



 (18) 

where the higher than second degree terms in H were left 
out. This is possible because for the first L degrees, the 
error caused by this approximation is smaller than 
(L+ 1)/2*10-3, which, for L = 20, amounts to about 1%. 
The symbol (H2)nm denotes, of course, the harmonic 
coefficients of squared topography. We note that the value 
of V0 at the earth’s surface  can be evaluated from a 
global topographical model. Using the TUG87 model 
[Wieser, 1987], we obtain the value for the corresponding 
displacement of the equipotential surface 
 

 (19) 

 
 The transformation of the potential coefficients into the 

Helmert space (to get the  coefficients), which we set 
out to do, is carried out by subtracting the coefficients of 
the residual topographical potential 
 

 (20) 

from the corresponding potential coefficients Wnm of the 
reference field. When computing the reference spheroid of 
degree L in the Helmert space, the residual topographical 
potential above is replaced by the residual topographical 
potential on the geoid and divide by normal gravity γ0.  
The zero-degree correction above, N0, must then be 

subtracted from Helmert’s reference spheroid. 
 We have evaluated the residual topographical potential 
V on the geoid globally from the TUG87 model, for L = 20 
(including the zero-degree term), divided it by γ0, and 
found it to be between -13 cm and +18 cm.  A plot of the 
effect for the territory of Canada is shown in Figure 1. 
 A comment on the use of mean topographic density ρ0 is 
in order. From eqn.(20) it seems that to achieve the one-
centimetre accuracy everywhere in the world, regional 
density anomalies should be considered. In most parts of 
the world, including Canada, however, the mean 
lithospheric density of 2.67 g/cm3 used in our calculations 
above will be good enough. 
 
 
Evaluation of Helmert’s Reference Spheroid 
 
Let us now assume that the potential coefficients of the 
reference field have been corrected for the residual 
topographical potential and thus transformed into the 
Helmert space. The Helmert reference potential can then 
be written as 
 

 

  (21) 
 
We note that because the summation is finite, the validity 
of this expression is no longer limited to the outside of the 
Brillouin sphere; we can use this expression anywhere on 
and above the geoid. To compute the reference spheroid in 
Helmert’s space, we have to evaluate this series for 
 

  (22) 
where rg denotes the distance of the geoid from the centre 



of the earth; this is now clearly permissible. 
 To do so, let us write rg for the time being as 
 

  (23) 
where δ(Ω) is a quantity of the order of flattening of the 
reference ellipsoid, i.e., much smaller than 1. Then, for 
n=20, we obtain 
 

 (24) 

 
To an accuracy better than 5*10-3, δ may be taken as the 
leading term in the expression for the length of the radius 
vector of the reference ellipsoid, i.e., 
 

  (25) 
see, for instance Bomford [1980, p. 432]. The equation for 
the Helmert reference potential on the geoid becomes 
 

 (26) 

 
 It might be expedient to express this “flattening effect” 
in the form of a correction δWh to the Helmert reference 
potential Wh. From eqn.(26) we easily get 
 

 (27) 

 
We have evaluated this correction for the territory of 
Canada and the results, expressed in values of this 
correction are:  -88 cm and +65 cm. The potential 
coefficients (up to 20,20) used in this evaluation are taken 
from the GRIM4-S4P [Gruber and Anzenhofer, 1993] 
global solution. 
 The last task to be performed is to transform the total 
Helmert potential Wh to the Helmert disturbing potential 
Th. This is done simply by subtracting the appropriate 
normal potential from the Helmert potential. Division by 
an appropriate value of normal gravity, finally yields the 
desired reference spheroid. We note that it is the gradient 
of this potential that has to be subtracted from the observed 
gravity anomalies before they are convolved with Stokes's 
spheroidal kernel, see for instance Vaníc?  ek and 
Kleusberg, [1987]. It has to be mentioned that for a precise 
geoid determination the low degree secondary indirect 
topographical effect [Vaníc?  ek and Martinec, 1994], called 
sometimes the Bowie correction, also has to be added here. 
The mathematical treatment of this effect is considered 
beyond the scope of this paper.  
 To conclude, the (Helmert) reference spheroid in the 
Helmert space plays the same role as its counterpart in the 
real space [Vaníc?  ek and Sjoberg, 1991]. The only 
difference is that when the contribution coming from the 
local gravity data is added it to, we obtain not the geoid but 
the Helmert co-geoid, which has to be transformed into the 
geoid by adding the primary indirect topographical effect 
[Vaníc?  ek and Martinec, 1994]. 



 
 
Conclusions 
 
The reference spheroid in Helmert’s model plays much the 
same role as its real counterpart plays in the real space; the 
Helmert co-geoid is referred to it, thus reducing the 
magnitude of the quantities one works with and serving as 
a linerization tool. To compute the reference spheroid in 
Helmert’s model, we use potential coefficients derived 
from satellite orbit analyses up to a degree and order where 
there is still meaningful information in these coefficients, 
i.e., around 20. 
 We have shown that to compute the Helmert reference 
spheroid, the residual topographical potential  has to be 
added to the field generated by the potential coefficients. 
For the degree of the spheroid equal to 20, this effect may 
reach several decimetres and has to be considered if a high 
accuracy geoid is to be produced. A non-trivial constant 
correction of a magnitude of 4 cm, arising from the implied 
transfer of masses in the transformation from the real space 
to Helmert's space, should as wellbe considered. 
 When computing the reference spheroid, the generating 
potential coefficients must be corrected for the effect of the 
flattening of the geoid (co-geoid). In absolute value, this 
correction is almost around 1 metre and, once again, has to 
be considered when an accurate geoid is to be produced. 
We note that the irregularities of the geoid, other than its 
ellipticity, also contribute to this correction. These other 
contributions are below the “magic” 1 cm level, however, 
and are not considered at present. 
 The numerical results for both corrections shown in the 
paper were obtained for the selected degree of the 
reference field L=20. If a different degree is considered, 
the value of the corrections will change. We have not 
investigated the nature of such changes since it is our 
belief that the optimum degree (20) is unlikely to change in 
the foreseeable future. 

 Before the suitably corrected reference potential can be 
turned into the reference spheroid, an appropriate normal 
field has to be subtracted from it. This is a well-known 
operation and is mentioned here only for the sake of 
completeness. Finally, the reader is reminded of the fact 
that once the Helmert co-geoid is computed (in the 
Helmert model) with the help of the reference spheroid, it 
must be converted into the geoid by applying the indirect 
topographical effect correction. This step is outside the 
scope of this contribution. 
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Figure captions 
 

 
Figure 1:  Residual topographical potential 
effect (including the zero-  degree 
term) on the spheroid of degree 20 in Canada, 
computed   from the TUG87 global 
topographical model. The minimum and  
 maximum values are - 0.13m and  0.18m 
respectively, contour   interval is 0.02m. 
 
Figure 1: Ellipsoidal correction to the 
spheroid of degree 20 in Canada,  
 computed from the GRIM4-s4p global 
geopotential model. The   minimum 
and maximum values are  - 0.88m and  0.65m 
   respectively, contour 
interval is 0.10m. 
 


