
On the removal of the effect of topography on gravity disturbance  as received in CGG 

On the removal of the effect of topography on gravity disturbance in gravity 
data inversion or interpretation  
 
Vajda Peter1, Petr Vaníček, Bruno Meurers 
 
keywords potential, gravitational effect, reference ellipsoid, geoid, density contrast, 

topographical effect, topo correction 
 
Abstract 
Four types of topographical corrections to gravity disturbance (to actual gravity) are 
investigated, distinguished by the density (real or constant�model) and by the lower boundary 
(geoid or reference ellipsoid) of the topographical masses. Each type produces a specific �topo�
corrected gravity disturbance�, referred to as �NT�, �NTC�, �NET�, and �NETC�. Our 
objective is to compare the four types and to study the physical meaning, in the light of gravity 
data interpretation/inversion, of these four gravity disturbances. Our method of investigation is 
the decomposition of the actual potential and actual gravity. It is shown, that the �NETC gravity 
disturbance� � i.e. the gravity disturbance corrected for the gravitational effect of topographical 
masses of constant density with the topo�surface as the upper boundary and the reference 
ellipsoid as the lower boundary � is rigorously and exactly equal to the gravitational effect of 
anomalous density inside the entire earth, i.e., below the topo�surface. The regions, where the 
four types of the topo�corrected gravity disturbance are harmonic, are studied also. Finally some 
attention is paid to areas over the globe, where geodetic (ellipsoidal) heights of the topo�surface 
are negative, with regard to the evaluation of the topo�correction and in the context of the 
gravimetric inverse problem. The strategy for the global evaluation of the �NETC topo�
correction�, or its evaluation in areas with negative ellipsoidal topography, is presented.  
 
 
1  Introduction 
 
In geophysics, particularly in gravimetry, one is concerned with acquiring some knowledge on 
the underground geological structure, or at least on some of its elements, given in terms of the 
anomalous mass distribution (density contrast). In practice gravity (the magnitude of the gravity 
vector) is observed, which is physically associated with (actual) gravity potential. If actual 
gravity is interpreted or inverted, real underground density is sought. It is, however, more 
advantageous to formulate the inverse problem in terms of anomalous gravity, which is 
physically associated with the disturbing (anomalous) potential, thus seeking the underground 
anomalous density.  
 
The disturbing potential is formed based on the selected (model) normal potential. The 
anomalous density is formed based on a (model) reference density. Inevitably there arises a link, 
which must be physically meaningful, between the reference density and the normal potential. 
The normal potential, following the most basic concepts of geodesy and geophysics, is 
generated by unspecified (undefined) normal masses (normal mass density) within the normal 
(reference) ellipsoid. Although the hypothetical normal masses inside the normal ellipsoid 
generate the normal potential, they are not uniquely determinable from the apriori chosen 
external normal potential. If looking for a solution to the normal mass distribution inside the 
reference ellipsoid, one faces a non�unique inverse problem (e.g., Vaníček and Kleusberg, 
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1985). Nevertheless, a specific solution � a model of normal density inside the normal ellipsoid, 
such that satisfies the external normal potential � can be selected (e.g., Tscherning and Sünkel, 
1980) and used as reference density, in order to define the anomalous density inside the 
ellipsoid.  
 
So far we have obtained reference mass distribution inside the reference ellipsoid. But what 
about the topographical masses above the ellipsoid? These masses reach altitudes of almost 
9 kilometers. Shall we aim at getting rid of them and of their effect on gravity, or do we want to 
define reference density also in the region above the ellipsoid and below the topo�surface, that 
would define anomalous density distribution, which would also become the target of our 
investigation in terms of gravity inversion/interpretation? We shall look into this issue herein. 
Notice, that if we choose a model reference (background) density of topographical masses (such 
as a constant density, horizontally stratified, or laterally varying density), the gravitational 
potential of the model reference density of the topo�masses is not part of the normal potential. 
On that account, it must be treated separately.  
 
At present, gravity observation positions are commonly referred either in �sea�level� 
(orthometric or normal) heights that refer to the �sea level� (geoid or quasigeoid, which is 
referred to a reference ellipsoid) as a vertical datum, or in geodetic (ellipsoidal) heights that 
refer to the reference ellipsoid as a vertical datum, the horizontal position being given by 
latitude and longitude. Having two vertical datums in use, a question arises: Should the lower 
boundary of the topo�masses be defined as the �sea level� or as the reference ellipsoid? We will 
investigate this topic.  
 
Hence, when anomalous gravity data derived from the disturbing potential, such as the gravity 
disturbance or gravity anomaly, are to be used in gravity inversion or interpretation, the 
objective of which is to find anomalous density below the topo�surface, the gravitational effect 
of the topographical masses must be accounted for, as it is too significant to be ignored. The 
treatment of the effect of topography is known as topographical correction applied to observed 
gravity data. In this paper we shall deal exclusively with gravity disturbances, paying no 
attention to gravity anomalies, although gravity anomalies are extensively used in geophysical 
applications. The objective here shall be to explore (revisit) the topographical gravitational 
effect on the gravity disturbance, in order to properly understand the interpretation of the �topo�
corrected gravity disturbance�. 
  
 
2  Theoretical background 
 
We shall base our investigations on the concepts of the theory of the gravity field (e.g., 
Kellogg, 1929; MacMillan, 1930; Molodenskij et al., 1960; Grant and West, 1965; Heiskanen 
and Moritz, 1967; Bomford, 1971; Pick et al., 1973; Moritz, 1980b, Vaníček and 
Krakiwsky, 1986; Blakely, 1995; Vaníček et al., 1999). Only some concepts, of particular 
importance in the context of our study, will be highlighted below. Hereafter all the discussed 
quantities will be considered as already properly corrected for the effects of the atmosphere,  
tides, and all the other smaller temporal effects.  
 
We shall refer the discussed quantities to a geocentric geodetic coordinate system, using 
geodetic coordinates � geodetic (ellipsoidal) height h , geodetic latitude φ , and geodetic 
longitude λ  (e.g., Vaníček and Krakiwsky, 1986, Section 15.4), cf., also Section 1 in (Vajda et 
al., 2004). If compared with the geocentric spherical coordinate system, we note that the 
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geodetic latitude differs from the spherical latitude. Sometimes the height of a point above �sea 
level� � orthometric height H  (above the geoid), or normal height NH  (above the quasigeoid) 
� shall be used in addition to the ellipsoidal (geodetic) height. The ellipsoidal height can be 
evaluated  as, cf. e.g. Fig. 5�1 on p. 180 in (Heiskanen and Moritz, 1967), 
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where the geoidal height N (height anomaly ζ ) is the height of the geoid (quasigeoid) above 
the reference ellipsoid. For brevity we shall often denote the horizontal position in geodetic 
coordinates as ( λφ,≡Ω

hR +

. Often we shall evaluate our quantities of interest in spherical 
approximation, cf. e.g. (Moritz, 1980b, p. 349). In spherical approximation the geocentric 
distance is , R being the mean earth�s radius. For the vertical derivatives we have in 
spherical approximation 

r =
rh ∂∂=∂∂=∂ , where n∂∂  is the derivative in the direction of 

the outward normal to the actual equipotential surface at the evaluation point, h∂∂  is the 
derivative with respect to the geodetic height of the evaluation point, i.e., the derivative in the 
direction of the outward normal to the reference ellipsoid passing through the evaluation point, 
and r∂∂  is the radial derivative, i.e. the derivative in the direction of the geocentric distance 
of the evaluation point. 
 
2.1   Potential, gravitation, and gravitational effect 
 
The earth�s gravity potential W  is the sum of the gravitational potential V  and the centrifugal 
potential. The real (actual) gravitational potential of the earth is generated by the real earth�s 
mass distribution and can be computed via the Newton integral for potential (e.g., Heiskanen 
and Moritz, 1967, Eq. (1�11)). For the exact formulation of the Newton integral in geodetic 
coordinates see e.g. (Vajda et al., 2004). Here we shall use the spherical approximation of the 
Newton integrals expressed in geodetic coordinates (Vajda et al., 2004, Section 4), as a good 
enough approximation for our purposes, since the ellipsoidal correction to the spherical 
approximation is by three orders of magnitude smaller (Novák and Grafarend, 2004). Hence 
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where G stands for Newton�s gravitational constant, ),( Ωhρ  is real mass density distribution 
inside the earth, i.e. below the topo�surface )(Ω= Thh , L is the 3�D Euclidian distance (e.g. 
Vajda et al. 2004, Eq. (22)) between integration points ( ), Ωh  and the evaluation point 

, and �earth� denotes the domain (region) containing all the earth�s non�zero mass 
density distribution (disregarding the atmosphere). Here 
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infinitesimal solid (volume) element in geodetic coordinates in spherical approximation. The 
integration over the entire earth means integrating in geodetic height from R− ( to )ΩTh , in 
geodetic latitude from π−  to 2π , and in geodetic longitude from 0 to π2  
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where  is the full solid angle, and 0Ω λφφ ddd cos=Ω .  
 
Gravity is the magnitude of the gravity vector. Gravitation is the magnitude of the gravitation 
vector. The difference between gravity vector and gravitation vector is the centrifugal 
acceleration vector. The earth�bound measuring device (land and ship�borne gravimeters) 
measures gravity, while the air�borne measuring device measures gravitation (upon removal of 
the on�flight accelerations). The measuring device is supposed to be always leveled along the 
actual equipotential surface passing through it; thus it measures the magnitude of the gravity 
vector at the observation point.  
 
The normal gravity potential U  is the sum of the normal gravitational potential, which we shall 
denote here non�standardly as V , and the already discussed centrifugal potential. The normal 
gravity potential is selected as a known, mathematically defined model of the earth�s actual 
gravity potential (e.g, Heiskanen and Moritz, 1967; Vaníček and Krakiwsky, 1986). The normal 
gravity potential defines a normal earth in terms of its gravity field and its shape. In general, the 
normal field represents a spheroidal reference field, but most commonly used, due to simplicity, 
is the ellipsoidal normal field of the �mean earth ellipsoid� (ibid). The mean earth ellipsoid is 
geocentric, properly oriented, and �level� (�equipotential�, cf. Heiskanen and Moritz, 1967, 
Section 2�7). That assures, that the ellipsoid as a coordinate surface (as a 3D datum for geodetic 
coordinates) is, at the same time, also the equipotential surface of the normal gravity field, such, 
that the value of the normal potential on the ellipsoid is equal to the value of the actual potential 
on the geoid. In this way a physically meaningful tie between (geodetic) coordinates and normal 
gravity is established. 

E
0

 
Therefore, rigorously, and particularly valid for global studies, the gravity data will have a 
correct physical interpretation only if their positions are referred to a �mean earth ellipsoid�. We 
say this because in geodesy, and in practice in some countries, often locally best fitting 
ellipsoids, that are not geocentric and/or not properly oriented (e.g., Vaníček and Krakiwsky, 
1986) are in use as datums for geodetic coordinates. For instance Hackney and Featherstone 
(2003, Section 2.3) discuss the impact of the use of a local ellipsoid as a datum on normal 
gravity values. 
 
According to Somigliana and Pizzetti (Somigliana, 1929) the normal gravitational potential tells 
us nothing about the mass density distribution inside the normal ellipsoid. Hence normal 
ellipsoid is understood to be a body with unspecified density distribution generating the normal 
potential exterior to the ellipsoid (external normal potential). The external normal gravitational 
potential is harmonic.  
 
Normal gravity is the magnitude of the normal gravity vector. Normal gravitation is the 
magnitude of the normal gravitation vector. The normal potential and thus normal gravity is not 
defined inside the normal ellipsoid, unless some normal density distribution is assumed within 
the ellipsoid, which would generate the appropriate external normal gravitational potential. This 
issue will be addressed later on.  
 
The disturbing potential is defined as the difference between the actual and the normal 
potentials  
 

( ) :,Ω∀ h  T   . (3) ),(),(),(),(),( 0 Ω−Ω=Ω−Ω=Ω hVhVhUhWh E

 

FINAL, latest edit  8 November 2004 page 4 



On the removal of the effect of topography on gravity disturbance  as received in CGG 

The disturbing potential thus does not depend on the spin of the earth. It is harmonic outside the 
topo�surface, unless the topographic surface is bellow the ellipsoidal surface. What was said 
about the definition of normal potential below the surface of the reference ellipsoid, applies also 
to the disturbing potential below the surface of the reference ellipsoid. The disturbing potential 
is the fundamental quantity used for deriving anomalous gravity.  
 
Under the term gravitational effect, denoted as A in the sequel, we shall understand the vertical 
component of an attraction vector, where the attraction is attributed to a specific part of the earth 
(a real ( ρ ), constant ( 0ρ ), or anomalous (δρ ) density distribution in a sub�region). Expressed 
in geodetic coordinates in spherical approximation (cf. Vajda et al., 2004, Sections 2.2, 3.2, 
and 4.2) it reads ∀   :)( PPh , Ω
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2.2  Relation between interior masses and external potential 
 
Let us have masses defined by a non�zero density distribution ),( Ωhρ  bound by a closed and 
smooth boundary surface S. These masses generate gravitational potential V , which is 
internal within the boundary and external outside the boundary. The external potential is 
harmonic and can be developed into the series of solid spherical harmonics (e.g. Heiskanen and 
Moritz, 1967; Vaníček and Krakiwsky, 1986). The relation between density distribution and 
gravitational potential (both internal and external) is unique in the direction from density to 
potential. It means that a particular density distribution generates one particular potential. The 
task of computing the potential from a density distribution is known as the direct gravimetric 
problem and is solved by means of the Newton integral for potential. 

),( Ωh

 
This does not hold true the other way round. The relation between an external potential and a 
density distribution is non–unique in the direction from external potential to density. There are 
many density distributions that generate the same external potential. It is known, that the task of 
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computing the density distribution from an external gravitational potential, the so called inverse 
gravimetric problem, is a non�unique task. This is due to the fact, that there are many density 
distributions which generate a zero external potential. Such density distributions are known as 
Schiaparelli’s bodies of �vanishing outer potential� (e.g., Vaníček and Kleusberg, 1985). Any of 
the Schiaparelli�s bodies may be added (following the superposition principle) to the density 
distribution that generates a particular external potential resulting in a different density 
distribution, which also generates the same external potential. Although there are infinitely 
many Schiaparelli�s bodies, not every density distribution is a Schiaparelli�s body, of course.  
 
2.3  Normal density. Normal potential and normal gravity � above and below the reference 

ellipsoid 
 
Normal gravity above the reference ellipsoid can be computed from the external normal 
potential exactly, using either closed formulae (e.g. Heiskanen and Moritz, 1967, Section 6�2) 
or the series expansion with latitude and altitude terms (e.g. Heiskanen and Moritz, 1967, 
Section 6�3). The formulae are based on the four parameters of the reference ellipsoid, such as 
the GRS80 that has been used recently (Moritz, 1980a; Groten, 2004). Both sets of formulae 
make use of the geodetic height above the reference ellipsoid, also called the ellipsoidal height, 
and the geodetic latitude. 
 
Rigorously the normal potential makes sense only outside the ellipsoid. It provides no unique 
knowledge about the interior mass density distribution of the normal ellipsoid. As a matter of 
fact, due to the non�uniqueness of the inverse gravimetric problem even for the normal 
potential, there are infinitely many normal density distributions generating the same external 
normal potential. 
  
Since the normal density is unknown, the internal normal potential  is also unknown, and so is 
the normal gravity inside the ellipsoid. This is an obstacle, which we wish to overcome 
somehow, in order to define the disturbing potential and anomalous gravity inside the ellipsoid. 
We also need to know the normal density inside the ellipsoid in order to define the reference and 
anomalous densities inside the ellipsoid. What we can do is to find one such normal density 
distribution within the ellipsoid that satisfies the external normal potential. This can be done (cf. 
Tscherning and Sünkel, 1980). Once we have the (particular solution to) normal density within 
the normal ellipsoid, we can compute the internal normal potential (via Newton integral for 
potential) and the normal gravity vector inside the normal ellipsoid (as the gradient of the 
normal potential).  
 
2.4  Anomalous gravity 
 
The objective of introducing the normal potential as a selected mathematical model of potential 
field is to produce small anomalous, also called disturbing, quantities by subtracting the normal 
quantities from real quantities. Since the anomalous quantities are by several orders of 
magnitude smaller than the real quantities, they are less susceptible to errors introduced by 
approximations. As a result, they are also easier to handle in computations. Having the pairs 
actual potential and actual gravity, normal potential and normal gravity, we would anticipate to 
encounter the pair disturbing potential and anomalous (disturbing) gravity.  In fact, two such 
anomalous quantities have historically been used, the gravity anomaly and the gravity 
disturbance. Only the gravity disturbance will be discussed in the sequel. 
 
2.5  Definition of the point gravity disturbance using actual gravity 
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The gravity disturbance is defined at any point in space ( )Ω,h  as the difference of actual 
gravity and normal gravity taken at the same point (e.g., Heiskanen and Moritz, 1967, Eq. 2�
142) 
 

:),( Ω∀ h  ),(),(),( Ω−Ω=Ω hhghg γδ  .    (5) 
 
In its nature, gravity disturbance defined by Eq. (5) is a function of location, i.e., a point 
function. It can only be known at the point, where the actual gravity is known � it tells us 
nothing about the spatial behavior of the gravity disturbance, unless we can describe the spatial 
behavior of g. Note, that the definition is not restricted to the topo�surface or the geoid. The 
only requirement is that we know the actual and the normal gravity values at the point of 
interest. Notice, that the normal gravity must be evaluated at the point of interest. That requires 
the use of geodetic height  in the expression for the normal gravity. The knowledge of the 
geodetic height of the evaluation point is thus requisite for obtaining the value of the gravity 
disturbance. Gravity disturbance is a realizable quantity wherever the geodetic height of the 
evaluation point is known. 
 
The observation point may be located at the topo�surface (terrestrial measurements � land and 
ship�borne surveys), below the topo�surface (bore�hole measurements, sea bottom survey), and 
above the topo�surface (air�borne observations). Note, that in the case of air�borne 
observations the meter is not earth�bound and a proper care must be taken of the centrifugal 
acceleration, in order to transform the observed gravitation, after the removal of on�flight 
accelerations, into gravity. 
 
The gravity disturbance is a scalar quantity. We shall not deal with the gravity disturbance 
vector in this paper. We shall just note that the absolute value of the gravity disturbance vector 
is not equal to the gravity disturbance as defined by Eq.(5). In spherical approximation it is the 
vertical (radial) component of the gravity disturbance vector, that is equal to the gravity 
disturbance as defined by Eq. (5).   
 
Notice, that so far there was no need to use any vertical gradient of gravity (�free�air�, 
�Bouguer�, etc.), or the so called �altitude correction�, in defining the gravity disturbance. The 
correction regarding the effect of topographical masses and the continuation of the data to a 
reference surface (if it exists!) are kept separate from this generic definition of the point gravity 
disturbance. 
 
2.6  Definition of the gravity disturbance using disturbing potential 
 
The gravity disturbance at any point ( )Ω,h  can be also defined by means of the disturbing 
potential, (e.g., Heiskanen and Moritz, 1967, Eq. 2�146 and p. 91)  given by Eq. (3), as 
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Rigorously, this definition of gravity disturbance is not identical with the point definition given 
by Eq. (5). It can be shown, making use of Eq. (5), that if neglecting the deflection of the 
vertical at the evaluation point (θ ), i.e., neglecting the angle between the actual gravity vector at 
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the evaluation point and the normal gravity vector at the (Helmert�s) projection of the evaluation 
point onto the reference ellipsoid, as well as neglecting the deflection due to the curvature of the 
normal plumbline between the reference ellipsoid and the point of evaluation ( Nξ ), i.e., 
neglecting the angle between the normal gravity vectors at the reference ellipsoid and at the 
evaluation point, cf. Fig. 1, the two definitions, Eqs. (5) and (6), become compatible. Figure 1 
shows the projection of the directions onto a tangent plane to the unit sphere at the evaluation 
point projected onto the ellipsoid. For altitudes say up to 12 km, covering ground� and air�
borne gravity surveys, the neglect of the first deflection can cause an error in the (point) gravity 
disturbance of about 1 µ Gal (1 µ Gal = 10 nms-2) in flat terrain ( 10��), of up to about 
10 µ Gal in mountainous terrain ( ≈θ 30��), and is estimated to be at most 42 µ Gal ( ≈θ 1�), 
e.g. (Vaníček and Krakiwsky, 1986, p. 96). The neglect of the latter deflection ( Nξ ) can cause 
(for altitudes up to 12 km) an error in the (point) gravity disturbance at most 0.2 µ Gal ).  

-g

≈θ

 
 

 

-γ 

-γ0 

θ 

ξN 

 
Fig. 1. The deflections of actual and  

normal vertical directions. 
 
Note, that the gravity disturbance defined in this section is known wherever the disturbing 
potential is known. The disturbing potential, however, is not an observable quantity 
(disregarding satellite altimetry and satellite tracking). Hence this definition will be useful only 
when working in a model space, where some assumptions about the mass density are made. The 
gravity disturbance (in spherical approximation and multiplied by r) is harmonic in the region 
where the disturbing potential is harmonic (e.g. Heiskanen and Moritz, 1967, Sections 1�18 
and 6�6). 
 
 
3   Topographical corrections to gravity disturbance  
 
Since the generic gravity disturbance is computed as the vertical derivative of the disturbing 
potential, and the disturbing potential is the difference between actual and normal potentials, 
while the normal potential is generated by the normal density distribution of the normal 
ellipsoid, the generic gravity disturbance contains also a signal associated with the terrain 
morphology and the density distribution of the topographical masses. When studying the 
anomalous density underneath the earth�s surface, the mentioned signal becomes unwanted. 
Hence the effect of topography must be corrected for, i.e., subtracted from the generic gravity 
disturbance, forming a  �topographically corrected gravity disturbance�.  
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Now the question arises: How should the topographical correction be applied? We have several 
options to do that, as will be examined  below. Obviously the upper boundary of the 
topographical masses is the topo�surface. The lower boundary is not as obvious � should it be 
the geoid or the reference ellipsoid? We shall seek the answer to this question. Another question 
arises: Should we model the topographical masses using constant density, or should we try to 
evaluate the effect of topography using a model density distribution as close as possible to the 
real topographical density? We will deal with this question below, as well. For this latter point, 
we shall assume, that ideally we know the real topographical density distribution (although in 
reality we do not).  
 
All in all, we will investigate four models of the topographical masses, as shown in Tab. 1, and 
thus four different topographical corrections. The objective of our investigation shall be to 
compare the four types of topo�corrected gravity disturbance, to study their physical meaning in 
terms of interpretation, and to find the right type of topographically corrected gravity 
disturbance that is exactly equal to the gravitational effect of all the anomalous masses inside 
the entire earth (below the topo�surface). 
 
Table 1.  Four models of topographical masses. The upper  

boundary is the topo�surface.  
 

model of  
topo�masses 

lower 
boundary 

density notation 

topography geoid real T 
topography  
of constant density 

geoid constant 
(model) 

TC 

ellipsoidal topography ref. ellipsoid real ET 
ellipsoidal topography  
of constant density 

ref. ellipsoid constant 
(model) 

ETC 

 
The term �topography� has been standardly used in geodesy and geophysics to describe 
topographical density distribution the lower boundary of which is the geoid. This brought us to 
introducing the term �ellipsoidal topography� to describe the topographical density distribution 
the lower boundary of which is the reference ellipsoid, in order to distinguish the two. The 
�ellipsoidal topography� is not to be understood as the topography of the ellipsoid, but as the 
topography reckoned from the ellipsoid. 
 
3.1  Definition of reference (background) density and the anomalous density (density  
 contrast) respective to it 
 
If the gravimetric inverse problem is to be solved in terms of anomalous density (density 
contrast), then the reference (background) density must be defined apriori, to which the 
anomalous density is respective. Inside the normal ellipsoid the best choice is the reference 
density that is equal to the normal density ( )Ω,hNρ , cf. Section 2.3, which generates the normal 
potential. Between the reference ellipsoid and the topo�surface the simplest choice is a 
reference density that is constant, such as 2.6 g/cm3. Of course there are other options for the 
choice of density between the reference ellipsoid and the topo�surface, such as some 
horizontally stratified density, or laterally varying density, etc., but for simplicity we shall stick 
here with the constant density model, cf. Tab. 2 and Fig. 2.  
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The anomalous density is then generally defined as ( )Ω,hδρ  = ( )Ω,hρ  - ( Ω,hR )ρ . As was 
already discussed, our �Real Earth�  is considered void of atmospherical masses, since proper 
atmospherical corrections are assumed to have been applied to observed gravity data. Thus all 
the real (and hence anomalous) mass density shall be distributed below the topo�surface.  
 

 
Fig. 2. Real Earth (schematically) � decomposition of real  

density distribution. 
 
Table 2.  Decomposition of real density into reference and  

anomalous densities. 
 

region of the earth notation reference density 
within reference 
ellipsoid  

E ),( ΩhRρ = ),( ΩhNρ  

between reference  
ellipsoid and geoid 

EG ),( ΩhRρ = 0ρ  

between geoid  
and topo�surface 

GT ),( ΩhRρ = 0ρ  

 
Sometimes we will also talk about the region between the reference ellipsoid and the topo�
surface, denoted as ET, , inside the geoid as a solid body (below the geoid as a 
surface), denoted as G, G , while the earth as a region will be denoted as �Earth�, 

. 

GTEGET ∪=
EGE ∪=

GTEGEEarth ∪∪=
 
3.2  Decomposition of actual gravitational potential and actual gravitation  
 
In order to find which type of the topographical correction to gravity disturbance produces the 
topo�corrected gravity disturbance that is exactly equal to the gravitational effect of all the 
anomalous masses of the entire earth, we will make use of the decomposition of the actual 
gravitational potential of the earth (cf., Vogel, 1982; Meurers, 1992). We will decompose the 
actual potential according to the three regions of the earth as defined by Tab. 2, and within each 
region according to reference and anomalous densities, arriving at six terms (omitting the 
position argument ( PPh )Ω, ) as follows: 
 

GTGTEGEGEE VVVVVVV δδδ +++++= 000  ,    (7) 
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where the meaning of the terms is given by Tab. 3, and their expressions by Tab. 4. 
 
Table 3.  The meaning of the decomposition terms of the actual  

gravitational potential. 
 

term meaning 
EV0  normal gravitational potential 

EVδ  gravitational potential of anomalous masses inside the 
normal ellipsoid 

EGV0  gravitational potential of masses of constant density 
between the reference ellipsoid and the geoid 

EGVδ  gravitational potential of anomalous masses between the 
reference ellipsoid and the geoid 

GTV0  gravitational potential of masses of constant density 
between the geoid and the topo�surface  

GTVδ  gravitational potential of anomalous masses between the 
geoid and the topo�surface 

 
Table 4.  The expressions for the decomposition terms of the actual  

gravitational potential (in spherical approximation), where 
ϑdL 1− ( ) Ω+ΩΩ≡ − ddhhRhhL PP

21 ),,,( . 
 

term definition 
EV0  ( ) ϑρ dLhGhV N

R
PP

E 1
0

0

0

),(, −

Ω−
∫∫∫ Ω=Ω  

EVδ  ( ) ∫∫∫
Ω

−

−

Ω=Ω
0

1
0

),(, ϑδρδ dLhGhV
R

PP
E  

EGV0  ( )
( )

∫∫∫
Ω

−
Ω

=Ω
0

1

0
00 , ϑρ dLGhV

N

PP
EG  

EGVδ  ( )
( )

∫∫∫
Ω

−
Ω

Ω=Ω
0

1

0

),(, ϑδρδ dLhGhV
N

PP
EG  

GTV0  ( )
( )

( )

∫∫∫
Ω

−
Ω

Ω

=Ω
0

1
00 , ϑρ dLGhV

Th

N
PP

GT  

GTVδ  ( )
( )

( )

∫∫∫
Ω

−
Ω

Ω

Ω=Ω
0

1),(, ϑδρδ dLhGhV
Th

N
PP

GT  

 
Realizing that ( )EVV 0−  is the disturbing potential T (Eq. (3)), and changing the order of the 
terms on the right hand side, we can rewrite Eq. (7) as 
 

( ) GTEGGTEGE VVVVVT 00 ++++= δδδ  .    (8) 
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Equation (8) represents the decomposition of the disturbing potential. The sum of the three 
terms in the round brackets is the potential of all the anomalous masses inside the entire earth, 
denoted as .  EarthVδ
 
Now we apply the operator of the negative vertical derivative with respect to the geodetic height 
of the evaluation point ( Ph∂∂− ), to Eq. (8) to arrive at (again omitting the position argument 

 )  ( )PPh Ω,
 

( ) GTEGGTEGE AAAAAg 00 ++++= δδδδ  ,    (9) 
 
where gδ  is the generic gravity disturbance (cf. Sections 2.5 and 2.6), and the meaning of the 
remaining terms is given by Tab. 5, while their expressions are given by Tab. 6. 
 
Table 5.  The meaning of the decomposition terms of the generic gravity 

disturbance. 
 

term meaning 
EAδ  gravitational effect of anomalous masses inside the normal 

ellipsoid 
EGA0  gravitational effect of masses of constant density between 

the reference ellipsoid and the geoid 
EGAδ  gravitational effect of anomalous masses between the 

reference ellipsoid and the geoid 
GTA0  gravitational effect of masses of constant density between 

the geoid and the topo�surface  
GTAδ  gravitational effect of anomalous masses between the geoid 

and the topo�surface 
 
Table 6.  The expressions for the decomposition terms of the generic 

gravity disturbance (in spherical approximation). 
 

term definition 
EAδ  ( ) ∫∫∫

Ω

−

− ∂
∂

Ω−=Ω
0

10

),(, ϑδρδ d
h
LhGhA

PR
PP

E  

EGA0  ( )
( )

∫∫∫
Ω

−Ω

∂
∂

−=Ω
0

1

0
00 , ϑρ d

h
LGhA

P

N

PP
EG  

EGAδ  ( )
( )

∫∫∫
Ω

−Ω

∂
∂

Ω−=Ω
0

1

0

),(, ϑδρδ d
h
LhGhA

P

N

PP
EG  

GTA0  ( )
( )

( )

∫∫∫
Ω

−Ω

Ω ∂
∂

−=Ω
0

1

00 , ϑρ d
h
LGhA

P

h

N
PP

GT
T

 

GTAδ  ( )
( )

( )

∫∫∫
Ω

−Ω

Ω ∂
∂

Ω−=Ω
0

1

),(, ϑδρδ d
h
LhGhA

P

h

N
PP

GT
T

 

 
3.3  The �No Topography� earth model � the NT model space 
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After re�shuffling the terms in Eq. (9) we can write it as 
 

( ) ( ) EGEGEGTGT AAAAAg 00 ++=+− δδδδ  ,    (10) 
 
where ( ) GTGTGT AAA =+ δ0  is the gravitational effect of the real topographical density 
distribution between the geoid and the topo�surface 
 

( )
( )

( )

( )∫∫∫
Ω

−Ω

Ω

Ω+
∂
∂

Ω−=Ω
0

2
1

),(, ddhhR
h
LhGhA

P

h

N
PP

GT
T

ρ  .  (11) 

 
The left hand side of Eq. (10) defines the gravity disturbance in the NT model space (Vaníček et 
al., 2004), i.e., the NT gravity disturbance 
 

( ) ( ) ( ) =Ω−Ω=Ω PP
GT

PPPP
NT hAhghg ,,, δδ   

 
   ( ) ( )PPPP

NT hhg Ω−Ω= ,, γ  ,   (12) 
 
where ( ) ( ) ( )PP

GT
PPPP

NT hAhghg Ω−Ω=Ω ,,,  is the actual gravity corrected for the effect of 
the topography of real density. The removal of the gravitational effect of the �T� from the actual 
gravity (along with the removal of normal gravity), or in other words the application of the NT 
topo correction to the generic gravity disturbance, transforms the �Real Earth� (Fig. 2) into the 
�No Topography� model earth (Fig. 3). The �NT model earth� consists of anomalous density 
below the reference ellipsoid, real density between the reference ellipsoid and the geoid, and 
zero density (no masses) above the geoid. Consequently, the NT gravity disturbance (in 
spherical approximation, multiplied by the geocentric radius r) is harmonic above the geoid. 
 

 
Fig. 3.   The NT model space. 
 
On the right hand side of Eq. (10) the two terms in the round brackets amount to the 
gravitational effect of the anomalous density below the geoid, ( )EGEG AAA δδδ += , expressed 
as 
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( )
( )

( )∫∫∫
Ω

−Ω

−

Ω+
∂
∂

Ω−=Ω
0

2
1

),(, ddhhR
h
LhGhA

P

N

R
PP

G δρδ  .  (13) 

 
Equation (10) finally reads 
 

( ) ( ) ( )PP
EG

PP
G

PP
NT hAhAhg Ω+Ω=Ω ,,, 0δδ  ,    (14) 

 
which tells us that the NT gravity disturbance is equal to the gravitational effect of all 
anomalous masses below the geoid biased by the gravitational effect of masses of constant 
density between the reference ellipsoid and the geoid. 
 
3.4  The �No Topography of Constant Density� earth model � the NTC model space 
 
After re�arranging the terms in Eq. (9) differently, we can write  Eq. (9) as follows 
 

( ) EGGTEGEGT AAAAAg 00 +++=− δδδδ  .     (15) 
 
The left hand side of Eq. (15) defines the gravity disturbance in the NTC model space, i.e., the 
NTC gravity disturbance 
 

( ) ( ) ( ) =Ω−Ω=Ω PP
GT

PPPP
NTC hAhghg ,,, 0δδ   

 
   ( ) ( )PPPP

NTC hhg Ω−Ω= ,, γ  ,   (16) 
 
where ( ) ( ) ( )PP

GT
PPPP

NTC hAhghg Ω−Ω=Ω ,,, 0  is the actual gravity corrected for the effect of 
the topography of constant density. The removal of the gravitational effect of the �TC� from the 
actual (observed) gravity (along with the removal of normal gravity), or, in other words, the 
application of the NTC topo correction to the generic gravity disturbance, transforms the �Real 
Earth� (Fig. 2) into the �No Topography of Constant Density� model earth (Fig. 4). The �NTC 
model earth� consists of anomalous density below the reference ellipsoid, real density between 
the reference ellipsoid and the geoid, anomalous density between the geoid and the topo�
surface, and zero density (no masses) above the topo�surface. Consequently, the NTC gravity 
disturbance (in spherical approximation, multiplied by r) is harmonic above the topo�surface 
only. It is not harmonic between the geoid and the topo�surface due to the presence of 
anomalous density in this region. 
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Fig. 4.   The NTC model space. 
 
On the right hand side of Eq. (15) the three terms in the round brackets amount to the 
gravitational effect of the anomalous density below the topo�surface (inside the entire earth), 

( )GTEGEEarth AAAA δδδδ ++= , expressed as 
 

( )
( )

( )∫∫∫
Ω

−Ω

−

Ω+
∂
∂

Ω−=Ω
0

2
1

),(, ddhhR
h
LhGhA

P

h

R
PP

Earth
T

δρδ  . (17) 

 
Equation (10) finally reads 
 

( ) ( ) ( )PP
EG

PP
Earth

PP
NTC hAhAhg Ω+Ω=Ω ,,, 0δδ  ,   (18) 

 
which makes it clear, that the NTC gravity disturbance is equal to the gravitational effect of all 
anomalous masses inside the whole earth biased by the gravitational effect of masses of constant 
density between the reference ellipsoid and the geoid. 
 
3.5  The �No Ellipsoidal Topography� earth model � the NET model space 
 
After re�arranging the terms in Eq. (9) yet differently, we can write it as 
 

( ) EGTGTEGEG AAAAAg δδδδ =+++− 00  ,    (19) 
 
where ( ) ETGTGTEGEG AAAAA =+++ δδ 00  is the gravitational effect of the real topographical 
density distribution between the reference ellipsoid and the topo�surface 
 

( )
( )

( )∫∫∫
Ω

−Ω

Ω+
∂
∂

Ω−=Ω
0

2
1

0

),(, ddhhR
h
LhGhA

P

h

PP
ET

T

ρ  .  (20) 

 
The left hand side of Eq. (19) defines the gravity disturbance in the NET model space, i.e., the 
NET gravity disturbance 
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( ) ( ) ( ) =Ω−Ω=Ω PP
ET

PPPP
NET hAhghg ,,, δδ   

 
   ( ) ( )PPPP

NET hhg Ω−Ω= ,, γ  ,   (21) 
 
where ( ) ( ) ( )PP

ET
PPPP

NET hAhghg Ω−Ω=Ω ,,,  is the actual gravity corrected for the effect of 
the ellipsoidal topography of real density. The removal of the gravitational effect of the �ET� 
from the actual (observed) gravity (along with the removal of normal gravity), or in other words 
the application of the NET topo correction to the generic gravity disturbance, transforms the 
�Real Earth� (Fig. 2) into the �No Ellipsoidal Topography� model earth (Fig. 5). The �NET 
model earth� consists of anomalous density below the reference ellipsoid, and zero density (no 
masses) above the reference ellipsoid. Consequently, the NET gravity disturbance (in spherical 
approximation, multiplied by r) is harmonic above the reference ellipsoid. 
 

 
Fig. 5.   The NET model space. 
 
On the right hand side of Eq. (19) we have the gravitational effect of the anomalous density 
below the reference ellipsoid. Equation (19) finally reads 
 

( ) ( )PP
E

PP
NET hAhg Ω=Ω ,, δδ  ,     (22) 

 
which claims, that the NET gravity disturbance is equal to the gravitational effect of all 
anomalous masses below the reference ellipsoid. The advantage of the NET gravity disturbance 
is that it is not biased by the gravitational effect of any masses between the reference ellipsoid 
and the geoid. The disadvantage though is that it is blind to any density contrast in the region 
between the reference ellipsoid and the topo�surface. Of course the NET topo correction needed 
for compiling (realizing) the NET gravity disturbance requires the knowledge of real density 
between the reference ellipsoid and the topo�surface, thus there is no need to solve for it. But in 
reality we are far from the satisfactory knowledge of the real topographical density between the 
reference ellipsoid and the topo�surface, so we better assume a background density in this 
region and solve for the anomalous density, as shall be done below.  
 
3.6  The �No Ellipsoidal Topography of Constant Density� earth model �  
 the NETC model space 
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After again re�arranging the terms in Eq. (9), we can write it as 
 

( ) ( )GTEGEGTEG AAAAAg δδδδ ++=+− 00  .    (23) 
 
where ( ) ETGTEG AAA 000 =+  is the gravitational effect of the constant topographical density 
distribution between the reference ellipsoid and the topo�surface 
 

( )
( )

( )∫∫∫
Ω

−Ω

Ω+
∂
∂

−=Ω
0

2
1

0
00 , ddhhR

h
LGhA

P

h

PP
ET

T

ρ  .   (24) 

 
The left hand side of Eq. (23) defines the gravity disturbance in the NETC model space, i.e., the 
NETC gravity disturbance 
 

( ) ( ) ( ) =Ω−Ω=Ω PP
ET

PPPP
NETC hAhghg ,,, 0δδ   

 
   ( ) ( )PPPP

NETC hhg Ω−Ω= ,, γ ,    (25) 
 
where ( ) ( ) ( )PP

ET
PPPP

NETC hAhghg Ω−Ω=Ω ,,, 0  is the actual gravity corrected for the effect of 
the ellipsoidal topography of constant density. The removal of the gravitational effect of the 
�ETC� from the actual (observed) gravity (along with the removal of normal gravity), or in 
other words the application of the NETC topo correction to the generic gravity disturbance, 
transforms the �Real Earth� (Fig. 2) into the �No Ellipsoidal Topography of Constant Density� 
model earth (Fig. 6). The �NETC model earth� consists of only anomalous density below the 
topo�surface. The NETC gravity disturbance (in spherical approximation, multiplied by r) is 
harmonic above the topo�surface only. 
 

 
Fig. 6.   The NETC model space. 
 
On the right hand side of Eq. (23) we have the gravitational effect of the anomalous density 
below the topo�surface (inside the entire earth), ( )GTEGEEarth AAAA δδδδ ++= , given by 
Eq. (17). Equation (23) finally reads 
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( ) ( PP
Earth

PP
NETC hAhg Ω=Ω ,, δδ )  ,     (26) 

 
which proclaims, that the NETC gravity disturbance is exactly equal to the gravitational effect 
of all anomalous masses inside the whole earth. This is the right type of the gravity disturbance 
that we were looking for. The NETC gravity disturbance can be interpreted as the gravitational 
effect of all underground anomalous masses.  
 
 
4   NETC model space � Negative topography 
 
So far we have been ignoring the fact that the geoidal heights are negative in some areas over 
the globe, where the geoid dips below the reference ellipsoid, and also the geodetic heights of 
the topo�surface are negative in some areas over the globe, where the topo�surface dips below 
the reference ellipsoid. This fact must be treated properly in global applications or when 
working in areas with negative geodetic heights. In the sequel we shall focus on the NETC 
gravity disturbance only, and will try to handle the NETC topo correction properly, taking into 
account the negative ellipsoidal topography.  
 
In order to treat the negative heights of the topo�surface, we introduce another reference surface 
� the surface of the inner quasi�ellipsoid (Fig. 7). This surface is defined as the surface the 
depth of which below the surface of the reference ellipsoid is constant ( ) and as such is not 
an ellipsoidal surface � hence the name. The value of  is chosen equal to the maximum dip 
of the topo�surface below the reference ellipsoid over the entire globe. The reference ellipsoid 
and the surface of the inner quasi�ellipsoid make up the quasi�ellipsoidal layer of constant 
thickness . The reference density within this layer is chosen constant and equal to that used 
for topographical masses of constant density, 

*h
*h

)
*h

0,( ρρ =ΩhR

0
, while the normal density within 

this layer is chosen as zero density, ),( =ΩhNρ . Recall, that the reference density is used for 
defining the anomalous density (that is being solved for by means of inverting or interpreting 
the anomalous gravity data), while the normal density generates the normal potential and the 
normal gravity. Henceforth the normal potential external to the reference ellipsoid is generated 
by a new normal mass density inside the inner quasi�ellipsoid. The argument, that was put forth 
in Section 2.3 for finding a particular solution to the normal density inside the normal ellipsoid 
may be extended to this new normal density inside the inner quasi�ellipsoid. The zero normal 
density in the quasi�ellipsoidal layer extends also the validity of the closed form or series 
expansion formulae for normal gravity for the realm of negative geodetic heights from the 
interval ( )*; hh −0∈ .  
 
 topo�surface reference 

ellipsoid

inner 
quasi�ellipsoid 

h* 

 

FINAL, latest edit  8 November 2004 page 18 



On the removal of the effect of topography on gravity disturbance  as received in CGG 

Fig. 7.   The inner quasi�ellipsoid and the quasi�ellipsoidal layer 
of constant thickness . *h

 
Now the role of the lower boundary of the topographical masses that was played by the 
reference ellipsoid in the case of the NETC model space is played by the surface of the inner 
quasi�ellipsoid, and the NETC topo correction becomes (with respect to Eq. (24) only the lower 
integral boundary changes from 0 to *h− ) 
 

( )
( )

( )∫∫∫
Ω

−Ω

−

Ω+
∂
∂

−=Ω
0

*

2
1

00 , ddhhR
h
LGhA

P

h

h
PP

ET
T

ρ  .   (27) 

 
For numerical aspects of evaluating the  given by Eq. (27) refer to (Vajda et al., 2004). 
Note, that the presence of the quasi�ellipsoidal layer slightly modifies the reference density 
model of the earth used in Section 3.6 and given by Tab. 2. It will now become as specified in 
Tab. 7.  

ETA0

 
Table 7.  Reference and normal densities used for defining the NETC 

space accounting for negative ellipsoidal topography. 
 

region of the earth reference density 
inner quasi�ellipsoid ),( ΩhRρ = ),( ΩhNρ  
between the surfaces of the 
inner quasi�ellipsoid   
and the reference ellipsoid 

),( ΩhRρ = 0ρ  
),( ΩhNρ  = 0 

between the surfaces of the 
reference ellipsoid   
and the topo�surface 

 
),( ΩhRρ = 0ρ  

 
Everything else remains the same as in Section 3.6. The approach that we just described assures 
that the NETC gravity disturbance (in spherical approximation, multiplied by r) remains 
harmonic everywhere above the topo�surface, even in areas, where the topo�surface dips below 
the reference ellipsoid. This is due to the fact, that the real density as well as the normal density 
is zero in the region between the reference ellipsoid and the topo�surface in the area of negative 
ellipsoidal topography. 
 
 
5. Discussion, summary, and conclusions 
 
We have investigated four types of the topographical correction to gravity (and hence to gravity 
disturbance), as shown in Tab. 8. 
 
Table 8.  Four topographical corrections to gravity (to gravity 

disturbance) in a notation, where ( ) Ω+≡ ddhhRd 2ϑ . 
 

topo correction 
to gravity 

definition 

NT 
( )

( )

( )

∫∫∫
Ω

−Ω

Ω ∂
∂

Ω=Ω−
0

1

),(, ϑρ d
h
LhGhA

P

h

N
PP

GT
T

 

FINAL, latest edit  8 November 2004 page 19 



On the removal of the effect of topography on gravity disturbance  as received in CGG 

NTC 
( )

( )

( )

∫∫∫
Ω

−Ω

Ω ∂
∂

=Ω−
0

1

00 , ϑρ d
h
LGhA

P

h

N
PP

GT
T

 

NET 
( )

( )

∫∫∫
Ω

−Ω

∂
∂

Ω=Ω−
0

1

0

),(, ϑρ d
h
LhGhA

P

h

PP
ET

T

 

NETC 
( )

( )

∫∫∫
Ω

−Ω

∂
∂

=Ω−
0

1

0
00 , ϑρ d

h
LGhA

P

h

PP
ET

T

 

 
These topo�corrections applied to the (generic) gravity disturbance, through their application to 
actual gravity (a topo�correction has no impact at all on the normal gravity), define four types of  
�topo�corrected gravity disturbance�.  
 
In global studies, or if working in areas with negative ellipsoidal heights of the topo�surface, the 
NETC topo correction must be computed by means of Eq. (27). In such cases the NETC gravity 
disturbance must be interpreted (inverted) in the light of Section 4, i.e., the density contrast is 
defined with respect to the reference density given by Tab. 7. 
 
We have investigated the four types of topo�corrected gravity disturbance with the objective of 
finding which one would be equal exactly to the gravitational effect of all anomalous masses 
within the whole earth (below the topo�surface). We have used the reference density 
distribution below the topo�surface, given by Tab. 2 (or Tab. 7), to define the anomalous 
density. The method of our study was the decomposition of the actual potential and gravitation 
of the real earth. The results of the investigation are summarized in Tab. 9. Table 10 presents the 
regions of harmonicity of the four types of gravity disturbance. 
 
Table 9.  The meaning (interpretation in terms of gravitational effects) 

of the four types of the topo�corrected gravity disturbance. 
 

relation between the  
gravity disturbance and  
the gravitational effect 

 
conclusion 

 
 

EGGNT AAg 0+= δδ  

NT gravity disturbance is equal to the 
gravitational effect of all anomalous 

masses below the geoid biased by the 
gravitational effect of masses of constant 

density between the reference ellipsoid and 
the geoid 

 
 

EGEarthNTC AAg 0+= δδ  

NTC gravity disturbance is equal to the 
gravitational effect of all anomalous 

masses inside the whole earth biased by 
the gravitational effect of masses of 

constant density between the reference 
ellipsoid and the geoid 

 
ENET Ag δδ =  

NET gravity disturbance is equal to the 
gravitational effect of all anomalous 
masses below the reference ellipsoid 

 
EarthNETC Ag δδ =  

NETC gravity disturbance is equal to the 
gravitational effect of all anomalous 

masses inside the whole earth 
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The gravitational effect of masses of constant density between the reference ellipsoid and the 
geoid ( ) is found as an unwanted systematic bias when interpreting a topo�corrected 
gravity disturbance. To have a perception of its magnitude and spatial behavior, we give a 
numerical example of  estimated for the area of Eastern Alps in Fig. 8. The illustrated  
was computed using a flat earth approximation and the FFT. The constant model topo�density 
used was 2.67 g/cm

EGA0

EGA0
EGA0

3. This bias is a fairly long�wavelength signal. Perhaps in some local studies 
 may be neglected as a trend of no interest.  EGA0
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Fig. 8.  An estimate of the  systematic bias (mGal) for the area of 
the Eastern Alps. The border line of Austria is indicated.  

EGA0

 
Table 10.  Harmonicity of the four types of  

gravity disturbance (in spherical  
approximation, multiplied by r). 

 

quantity is harmonic in the region 
NTgrδ  above the geoid 

NTCgrδ  above the topo�surface 
NETgrδ  above the reference ellipsoid 

NETCgrδ  above the topo�surface 
 
The effort of topo�correcting the anomalous gravity quantities such as the gravity disturbance or 
gravity anomaly has historically been associated with the name �Bouguer�. If we were to link 
this name with the topo�corrected gravity disturbance, it would fit best the NT topo�correction 
to gravity. Then the NT gravity disturbance would be referred to as the �Bouguer gravity 
disturbance�.  
 
A similar study could be performed for the gravity anomaly. Note, that in the case of gravity 
anomaly, the application of a topographical correction (to actual potential and/or to actual 
gravity) affects not only gravity, but also the vertical displacement (via the disturbing potential 
in the Bruns equation) used for evaluating the normal gravity needed for compiling the gravity 
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anomaly (e.g. Vaníček et al., 1999; Vaníček et al., 2004). For a detailed investigation regarding 
the NT�gravity anomaly the interested reader is referred to (Vaníček et al., 2004). 
 
 
References 
 
Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge 

University Press, New York 
 
Bomford, G., 1971. Geodesy, 3rd edn. Clarendon Press, Oxford. 
 
Grant, F.S. and G.F. West, 1965. Interpretation Theory in Applied Geophysics, McGraw-Hill 

Book Co., New York 
 
Groten, E., 2004. Fundamental Parameters and Current (2004) Best Estimates of the Parameters 

of Common Relevance to Astronomy, Geodesy, and Geodynamics. In Andersen O. B. 
(editor): The Geodesist�s Handbook 2004, J Geod 77 No. 10�11, pp 724�731 

 
Heiskanen, W.A., Moritz, H., 1967. Physical geodesy. Freeman, San Francisco. 
 
Kellogg, O.D., 1929. Foundations of potential theory. Springer, Berlin, Heidelberg, New York. 
 
MacMillan, W.D., 1930. Theoretical Mechanics Vol. 2: The Theory of the Potential. New York, 

McGraw-Hill (New York, Dover Publications, 1958) 
 
Meurers, B., 1992: Untersuchungen zur Bestimmung und Analyse des Schwerefeldes im Hoch-

gebirge am Beispiel der Ostalpen. Österr. Beitr. Met. Geoph., 6, 146 S. 
 
Molodenskij, M.S., Eremeev, V.F., Yurkina, M.I., 1960. Methods for study of the external 

gravitational field and figure of the earth. Translated from Russian by Israel Program for 
Scientific Translations, Office of Technical Srvices, Dpt. of Commerce, Washington, DC, 
1962 

 
Moritz, H., 1980a. Geodetic reference system 1980, Bull. Géodés., 54, 395�405. 
 
Moritz, H., 1980b. Advanced physical geodesy. Abacus Press, Tunbridge Wells 
 
Novák, P. and E.W. Grafarend, 2004. The ellipsoidal representation of the topographical 

potential and its vertical gradient. Submitted to J Geod. 
 
Pick, M., J. Pícha and V. Vyskočil, 1973. Theory of the earth’s Gravity Field. Elsevier 
 
Somigliana C (1929) Teoria generale del campo gravitazionale dell� ellisoide di rotazione, 

Mem. Soc. Astron. Ital., Vol. IV. 
 
Tscherning, C.C. and H. Sünkel, 1980. A method for the construction of spheroidal mass 

distribution consistent with the harmonic part of the earth�s gravity potential. Proceedings 
4th International Symposium �Geodesy and Physics of the earth�, Zentralinstitut für Physik 
der Erde, Report 63/II, pp. 481�500. 

 

FINAL, latest edit  8 November 2004 page 22 



On the removal of the effect of topography on gravity disturbance  as received in CGG 

FINAL, latest edit  8 November 2004 page 23 

Vajda, P., P. Vaníček, P. Novák, and B. Meurers. 2004. On evaluation of Newton integrals in 
geodetic coordinates: Exact formulation and spherical approximation. Contributions to 
Geophysics and Geodesy, Vol. 34, No. 4, pp. xxx�xxx 

 
Vaníček, P. and E.J. Krakiwsky, 1986. Geodesy: The Concepts, 2nd rev. edition, North-Holland 

P.C., Elsevier Science Publishers, Amsterdam 
 
Vaníček, P. and A. Kleusberg, 1985.  What an external gravitational potential can really tell us 

about mass distribution. Bollettino di Geofisica Teorica ed Applicata, Vol. XXVII, 
No. 108, pp. 243-250 

 
Vaníček, P., Huang, J., Novák, P., Pagiatakis, S., Véronneau, M., Martinec, Z., and 

Featherstone, W.E., 1999. Determination of the boundary values for the Stokes-Helmert 
problem. J Geod 73: 180-192 

 
Vaníček, P., R. Tenzer, L.E. Sjöberg, Z. Martinec, and W.E. Featherstone, 2004. New views of 

the spherical Bouguer gravity anomaly. Geoph. J. Int. (In press). 
 
Vogel, A., 1982: Synthesis instead of reductions - New approaches to gravity interpretations. 

earth evolution sciences, 2 Vieweg, Braunschweig, 117-120. 
 


