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Synonyms 

 

 Geoidal height, a.k.a. geoid undulation; 

 Moho surface, a.k.a. compensation level for the Airy-Heiskanen 

isostatic hypothesis; 

 Depth of Moho surface is the same as the thickness of the lithosphere; 

 Schiaparelli’s body, a.k.a. body of nil external potential;  

 Stokes’s integral truncated to the spherical distance of 0, a.k.a. inner 

zone contribution to Stokes’s integral;  

 spectral transfer function, a.k.a. admittance;  

 sea surface topography (SST), a.k.a. dynamic topography; 

 

Definitions 
 

 Direct gravimetric problem is defined as follows: “Given the 

distribution of density within the Earth, derive the (external) gravity 

field the density generates”.   

 The  inverse gravimetric problem (GIP) reads: “Given the external 

gravity field of the Earth, derive the distribution of density implied by 

the field.” 

 

Introduction 

 

The main goal of geophysics is to learn about the physical processes as well 

as properties of the material within the Earth.  These are studied by means of 

measurements (data) collected on the surface of the Earth and above it and, 

to a very limited degree, also in very shallow probes inside the Earth.  The 

discussion of the data to be collected and the techniques to be used to study 

the physical processes and material properties within the earth are what this 

book is all about.   

 

The focus of this section is on gravity field, the geoid in particular, to the 

exclusion of all other, such as seismological, magnetic, electrical, heat flow 

data.  The only attribute of the Earth that can be studied by means of gravity, 

are the mass density variations as gravity is the acceleration caused by mass 



attraction.  Three aspects of gravity field can be used for these studies: 

gravity acceleration, the deflection of the vertical and gravity potential.  

Gravity acceleration, in the guise of gravity anomalies, are discussed in 

section #15, the deflections of the vertical are introduced in section #7 and 

for an in depth view of the definition of geoid the reader is advised to 

consult section #9.   

 

One of the general properties of the gravity filed is that deep-seeded density 

anomalies have long wavelength signature in the gravity field while shallow 

density anomalies have short wavelength signature, cf., section #25.  

Consequently, if one wishes to study shallow density features, one looks at 

the short wavelength part of gravity field and if one wishes to study deep-

seeded features, one looks at the longer wavelength part.  This is, of course 

true only as a general principle as there exist also shallow features of large 

lateral extent that have long wavelength signatures. 

  

When it comes to the interpretation of gravity field, the data of choice by 

exploration geophysicists, i.e., people looking for ore, hydrocarbon and 

other deposits, are gravity anomalies.  The reason for this is that these data 

are bountiful on land, relatively cheap and they contain all the short 

wavelength information.  Observed deflections of the vertical as supplied by 

national geodetic offices are less popular as a source of information as they 

are not very accurate, and they are few and far apart.  But we may live to see 

this situation change with the advent of Digital Zenith Cameras (Hirt et al., 

2010). 

 

Gravity potential data, such as the values of disturbing potential - divided by 

the value of gravity to convert them to the geoid - are much smoother than 

the first two kinds.  This means that the short wavelength content is missing.  

We know, cf., section #19, that all three descriptors of gravity field we 

discuss here are functionally related: gravity acceleration at a point is a total 

gradient of the potential at that point, the deflection of the vertical at a point 

is a horizontal gradient of the equipotential surface passing through that 

point.  Thus, there is nothing to stop us from using the potential data, the 

geoid, in such a way as to evaluate either the gravity anomalies or the 

deflections of the vertical and use these for the interpretation, is there? 

 

That can be done of course, but this procedure cannot reconstitute the high 

frequency content as it has not been there to begin with.  Thus the 

conversion would not help and it is better to use the geoid as is; this is the 



thesis of the book (Vaníček and Christou, 1993).  The direct use of the geoid 

has caught an interest of interpreters as the marine geoid data from satellite 

altimetry, see section #9, became quite reliable and freely available in the 

past 25 years. 

 

Direct problem 

 

Suppose we know the density distribution (r) within the Earth.  Then we 

can determine the potential V(r) outside the earth in two different ways.  We 

can use the well known Newton’s integral to get the gravitational potential 

in a spatial form at any point external to the Earth as (Vaníček and 

Krakiwsky, 1986, Eq.(20.48)) 
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where G is Newton’s gravitational constant, r is the radial distance from the 

centre of the Earth,   is the geocentric direction composed of co-latitude  

and longitude , 0 is the full geocentric solid angle,  rt is the distance from 

the centre of the Earth to the topographical surface of the Earth.   

 

Alternatively, the reciprocal distance 1
'r r
 can be developed into a series 

of fully normalised spherical harmonic complex functions Yjm to yield 
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where M is the mass of the Earth, a is the major semi-axis of the best fitting 

Earth ellipsoid and Ajm are the gravity potential coefficients.  The potential 

coefficients can be evaluated from the known density (r) = (r, ) = 

(r,,)   within the Earth as 
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where the integration kernel Gjm is given by Martinec in (Vaníček and 

Christou, 1993, Ch. 7, Eqs.(13) and (14)) 
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Here * denotes a complex conjugate.  This is the spherical harmonic form of 

potential V, a dual form to the spatial form (Eq.1 above) – these two forms 

can be transformed into each other, back and forth any time.  The relation 

between potential V and the geoid undulation N is explained in section # 7. 

The direct approach can be used for solving some geophysical problems.  

Notably, it can be used to determine the depth of Mohorovicic’s surface (cf., 

section #1, the surface that divides the astenosphere (density about 3.2 g cm
-

3
) from the lithosphere (density about 2.67 g cm

-3
). The Moho surface is also 

the compensation level for the Airy-Heiskanen isostatic hypothesis.  The 

depth of the Moho surface, or the lithospheric (crustal) thickness derived this 

way, assuming the most realistic astenospheric density and described by a 

spherical harmonic series of a limited degree and order is shown on a web 

page http://geology.com/articles/mohorovicic-discontinuity.shtml.  The 

displayed map was compiled by US Geological Survey in 1999. 

 

Inverse problem 

 

The determination of density (r) as a function of position r from any of the 

gravity field attributes, i.e., gravity anomaly g(r), the components of the 

deflection of the vertical ((r),(r)), or the geoidal height N(r), is known as 

the inverse gravity problem (GIP).  The non-uniqueness of GIP was known 

already to Schiaparelli, who in (1875-76) was speaking of “gravitationally 

transparent bodies”, specific distributions of density that do not generate any 

gravitational attraction outside the Earth.  A complete mathematical 

description of a Schiaparelli’s body was formulated by Vaníček and 

Kleusberg (1985) as follows: for arbitrary values of coefficients ( )i

jkc  the 

following “body”: 

 

   ( )

2 2
00 0 0

, , 0,2 , 0,1 : ( ) ( )
ji

i

jk ijk

i j k

j

r c     
 

  



       r r ,      (5) 

   

where 

 

http://geology.com/articles/mohorovicic-discontinuity.shtml


, 0,1,..., : ( ) (3,3, )[ ( ), ( )]c s

ijk i jk jki j k j J r Y Y     r ,  (6) 

 

Ji are normalized Jacobi polynomials (Abramowitz and Stegun, 1964) and 

,c s

jk jkY Y  are the cosine and sine parts of spherical harmonic functions, has a nil 

external potential outside the ball of radius 1.  The consequence of this 

behaviour is that if one tries to interpret the external gravity potential in 

terms of internal density distribution, any distribution that conforms to 

Eq.(5) can be randomly and legitimately added to the solution. 

 

If the GIP does not have a unique solution, does it make any sense to even 

think about using gravity in studying the density distribution?  True, it is not 

possible to take the gravity field outside the Earth and invert it uniquely into 

the density distribution within the Earth.  But the external gravity field, 

particularly the geoid in our context here, can be used together with other 

data to get useful information on density. 

Truncated geoid 

There is a variety of techniques used in geophysical exploration to interpret 

gravity information obtained on the surface of the Earth in terms of 

anomalous density.  One interesting approach uses the truncated geoid to 

determine the depth of a spherical density anomaly, where by “truncated 

geoid” we understand the following integral 
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that represents the contribution of gravity to the geoid within the spherical 

cap C of a radius 0.  It can be viewed as the Stokes integral over the whole 

Earth, truncated to the spherical distance 0 , where P is the point of interest, 

Q is the dummy point in the integration, S(P,Q)=S() is the Stokes spherical 

kernel, cf., section #9, and d is the surface element of the integration sphere 

of radius R. 

It is the change of the truncated geoid with respect to the truncation 

parameter 0 , 
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that is of real interest.   At the location of the density anomaly, the sequence 

of surfaces or profiles 
0

0

dN
d




displays a dimple for a specific value of 0  

– see Fig.1 (from Vajda and Vaníček, 1999).  This specific value of 0  is  

 

Figure 1. Sequence of profiles of the change of the truncated geoid with 

 respect to the truncation parameter 0  that shows the onset of the 

 dimple for a value of 0 = 2.5°. 

almost linearly related to the depth of the anomaly. 

In Fig. 2, geoid from an area in Southern Slovakia is shown.  Just north-east 

of the geographical center of the area, there is a local geoid low, known as 

“Kolarovo anomaly”, that has been intriguing geophysicists for some time. It 

has been postulated by several authors that the centre of mass of the density 

anomaly responsible for the shown pattern is about 9.5 km bellow the Earth 

surface.  The application of the truncated geoid technique shows an estimate 

of 8.7 km (Vajda et al., 2002).  

 



 

Figure 2. Geoid in the area of "Kolarovo anomaly" in Southern Slovakia 

(courtesy of J. Janak, Slovak University of Technology) 

 

Some other applications 

 

In addition to the above discussed applications, geoid can be used in many 

other applications; one of those applications is studying tectonic forces.  

Interested reader may read about the involved concepts in section #10.  In 

another application, studies by Bowin (1991) show that the 4 to 10 degree 

geoid undulations are consistent with the present zones of subducted tectonic 

slabs.  Bowin also speculated (1983) that the deepest Earth’s mass anomalies 

cause geoid undulations only of degrees 2 to 10. 

 

Casenave in (Vaníček and Christou, 1993, Ch. 13) discusses the use of the 

geoid in studying different isostatic compensation models using the spectral 

transfer function, a.k.a. admittance in the “theory of systems” parlance.  She 

studies the mechanical behaviour of oceanic tectonic plates (flexure under 

seamount loading) and thermal evolution of oceanic lithosphere.  She also 

argues that the signatures of oceanic hotspots in the geoid are in the medium 

wavelength of n  (5, 20) and in 1 to 10 metres in range. 

 

It may be worth mentioning that meteorite craters are often clearly 

discernable in detailed geoid maps.  The Manicouagan crater in Eastern 

Canada (location: N 51° 23' and W 68° 42') makes a very clear imprint on 

the geoidal map. 



 

 

The last application of the geoid we want to show here concerns physical 

oceanography.  A very good overview of this topic by Nerem and Koblinsky 

is in (Vaníček and Christou, 1993, Ch. 16).  Geoid, being an equipotential 

(level) surface, should be represented by the mean sea level if sea water 

were homogeneous, which it is not.  As a result, the mean sea level is not in 

equilibrium and currents develop.  Some time after the initiation of the 

motion, these currents reach a steady state, called geostrophic, and swirl 

around the globe in a perpetual motion attenuated only by friction.   

 

The equation that describes the geostrophic motion is ascribed to Navier and 

Stokes, and it reads as follows 
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where V is the flow velocity vector,  is the rotation vector of the Earth, p is 

the hydrostatic pressure,  is the sea-water density, g is the gravitation 

vector and F is the vector representing frictional forces (ibid.Eq.(1)).  This 

equation, together with measurements taken at sea, is then used to derive the 

height of the sea surface above the geoid, which is called the “dynamic 

topography”.  

 

As discussed above, the instantaneous sea surface has been monitored by a 

technique called satellite altimetry (cf., section #9) for years.  This surface 

reflects, of course, the sum of the geoid and the dynamic topography.  

Subtracting the geoid from the measured sea surface yields the dynamic 

topography that can be easily converted into information about currents.  

Conversely, subtracting the dynamic topography from the measured surface, 

yielod the geoid.  Interested reader can refer to following URL 

http://www.aviso.oceanobs.com/en/data/products/auxiliary-

products/index.html for more detailed information.  

 

Summary 

 

The geoidal height (geoid undulation) is a quantity that can be quite readily 

interpreted in terms of density distribution within the Earth.  The main 

application is in studying the processes that take place deep within the Earth, 

but even shallower density anomalies have an impact on a geoid map.  

http://www.aviso.oceanobs.com/en/data/products/auxiliary-products/index.html
http://www.aviso.oceanobs.com/en/data/products/auxiliary-products/index.html


Nowadays, when sea surface height measured by satellite altimetry is freely 

available, marine geoid has become particularly handy tool to use. 
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Cross-references 

 

In this section the following other sections are referred to: 1, 7, 9, 10, 15, 19,   

25.  


