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Transformation of deformation parameters from one coordinate system to another is investigated.

For a robust deformation analysis, in addition to transformation parameters, their covariance

matrix ought to be transformed to the desired coordinate system. This provides a check on the

transformed parameters. For this purpose, a simulated network is employed. Results show that

the outlined approach works well.

Keywords: Geodetic networks, Coordinate systems, Deformation, Strain

Introduction
The principal aim of establishing geodetic networks is to
set up terrestrial coordinate systems. In addition,
geodetic networks are used widely to monitor surface
deformations on the surface of the Earth. To monitor
surface deformations, a geodetic network is surveyed to
gain multiple epochs of data. By comparing the
coordinates which are acquired at different epochs, the
deformations (displacements) at network points are
obtained. As such the deformation parameters in the
area where the geodetic network lies can be calculated.
The outcome of this process yields deformation para-
meters in the coordinate system in which the geodetic
network is defined.

In most cases coordinate systems, which geodetic
networks are referred to, are dictated by the surveying
techniques used for the network observations.
Nowadays the most popular surveying technique uses
the global positioning system (GPS). By using GPS, the
coordinates on the surface of the Earth are determined
in the satellite coordinate system. The satellite coordi-
nates, on the other hand, are defined in the International
Terrestrial Reference Frame (ITRF). As a consequence,
if GPS is utilised, the coordinates of the network points
are determined in ITRF. The satellite coordinates can be
obtained from two different sources: broadcast ephe-
merides or precise ephemerides. The broadcast ephe-
merides (broadcast via the satellites and acquired at the
observation epoch) are tabulated on the ITRF96
solution. The precise ephemerides (which are down-
loadable from IGS website) are always referred to the
most up to date ITRF solution, which is currently
ITRF05. As a result, deformation parameters which are

computed on a network that has been surveyed using
GPS for a long period of time might refer to different
ITRF solutions.

Before GNSS positioning was introduced to geodesy,
geodetic networks used to be surveyed utilising terres-
trial measurement techniques only – terrestrial measure-
ment techniques may still be used today. At that time,
for deformation monitoring networks, the widespread
approach was the constitution of a local topocentric
coordinate system that may be defined with respect to
one of the points in the network. Hence the deformation
parameters which are acquired by the solution of
consecutive periods were referring to the stated local
topocentric systems. Lately, these types of networks
have been surveyed using GPS as well. Thus current
solutions are given in ITRF rather than in a local
topocentric system.

In order to be able to describe the deformation
characteristics of the land on which the geodetic
network lies and to do the following risk analysis, the
deformation parameters ought to be analysed both
temporally and spatially over a long period of time. To
be able to perform this analysis the deformation
parameters must be determined in a common coordinate
system. On the other hand, as it is indicated above, the
coordinate systems in which geodetic networks are
defined may differ in time with regard to the technology
utilised. If this is the case, when these networks are
surveyed again, sometimes it is difficult to get historic
detailed information (i.e. approximate coordinates,
observations and their weights, datum points, etc.)
about these networks. Most of the time only the
deformation parameters, which are the final products
of the deformation monitoring networks, might be
retrieved. Under these circumstances, for long period
temporal and spatial analysis of deformation para-
meters, the practical and perhaps the most logical
approach would be a coordinate transformation of
deformation parameters from one system to another.
Knowing the precise transformation parameters among
different ITRF solutions and having the geographic
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coordinates of the origin of the local topocentric system
make transformations straightforward. Therefore, in
this study, the transformation relations of the deforma-
tion parameters which are determined in different
coordinate systems are investigated.

Relationship between terrestrial
coordinate systems
From the past to the present, different coordinate
systems have been defined and used along with
advancing surveying technologies for different applica-
tions. Nowadays, The International Terrestrial Referen-
ce System (ITRS) is recommended not only for general
use but also for monitoring purposes since today’s most
popular surveying technique, GPS, refers to it.

ITRS is the most up to date Conventional Terrestrial
(CT) Coordinate System which is the ideal coordinate
system for positioning purposes on the Earth. Its
difference from the former description of CT systems
is that ITRS is an Earth-crust fixed CT system and
realised by coordinates and velocities of global tracking
stations in which tidal effects are removed. The
realisation of ITRS is called International Terrestrial
Reference Frame (ITRF) [5,2,4]. Owing to technological
advancements (i.e. computational techniques, reevalu-
ated geodynamical models, improvements in data
quality and an increasing number of the tracking
stations) new solutions for ITRF are produced by The
International Earth Rotation and Reference Systems
Service.

In theory, coordinate transformation between CT
systems is accomplished by six transformation para-
meters (three translations tx, ty, tz and three rotations ex,
ey, ez) as follows

rCT,2~tzRrCT,1 (1)

where r is the position vector, t~

tx

ty

tz

2
4

3
5 and

R~

1 ez {ey

{ez 1 ex

ey {ex 1

2
4

3
5. It should be noted that ex,

ey, ez are small rotations angles.

Note that the equation includes no scale parameter
because the scale difference is induced by the measure-
ments; yet, coordinate systems are defined regardless of
existence of measurements [7]. In this sense, reference
frames such as ITRF cannot exist without measure-
ments; thus, a coordinate transformation between
reference frames needs the scale parameter (k) included
in the rotation matrix as follows

R~

1zk ez {ey

{ez 1zk ex

ey {ex 1zk

2
64

3
75 (2)

Before the advent of satellite techniques, it was difficult
to tie geodetic networks to a CT system using terrestrial
(classical) surveying techniques. Hence, two different
kinds of terrestrial coordinate systems were preferred
for surveying purposes: (i) local geodetic (ellipsoidal)
coordinate systems, defined by an ellipsoidal earth
model positioned with respect to the CT system, and,
(ii) for routine surveying practices, local astronomical

coordinate systems, positioned and oriented with respect
to an arbitrary point of geodetic network, mostly for
deformation monitoring. Coordinates in the first group
of coordinate systems are also transformed to the CT
system or another ellipsoidal coordinate system via
equation (1). In the case of local astronomical coordi-
nate systems, the translation and rotation matrices in
equation (1) are replaced by the following to transform
a local astronomical system to the CT system

t~

Xo

Yo

Zo

2
64

3
75 (3)

and

R~

cos (180{L0) cos (90{Qo) sin (180{L0) { cos (180{L0) sin (90{Qo)

{ sin (180{L0) cos (90{Qo) cos (180{L0) sin (180{L0) sin (90{Qo)

sin (90{Qo) 0 cos (90{Qo)

2
64

3
75

(4)

where (Qo) and (L0) are the astronomical latitude and
longitude of the origin point of the local system, defined
in the CT system, while Xo, Yo, Zo) are its Cartesian
coordinates. The unit for the components of the rotation
matrix is arc-degree.

Transformation of deformation (strain)
parameters
Principally, geodetic networks have been established to
realise terrestrial coordinate systems whose origins and
three axes (x, y, z) are defined with respect to the Earth’s
centre of mass and axis of rotation. In addition, geodetic
networks are used widely to monitor the Earth’s surface
deformations caused by landslides, crustal movements,
etc. A deformation monitoring network is commonly
composed of two groups of points: reference and object
points. Reference points are monumented on stable
ground and used to tie the network to a proper
coordinate system. Whereas object points are for
measuring deformation; therefore, they are established
in the area where the deformation has occurred.

If the deformation network is surveyed at two
different epochs (1 and 2) and if (x1

i ,y1
i ,z1

i ) and
(x2

i ,y2
i ,z2

i ) are the coordinates of these two epochs, the
displacement vector is obtained by

di~

x2
i {x1

i

y2
i {y1

i

z2
i {z1

i

2
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3
75~
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Then the strain matrix is

Ei~

Lui

Lx

Lui

Ly

Lui

Lz
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Lvi

Lz

Lwi

Lx

Lwi

Ly

Lwi

Lz

2
66666664

3
77777775

(6)

It is of interest to note that the following relation holds [6]

di~Eirizc0 (7)

where ri is the position vector and c0 is an arbitrary shift
vector, constant for the network. The strain matrix can be

ð4Þ
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decomposed into two parts as follows

E~
1

2
(EzET)z

1

2
(E{ET) (8)

E~SzA (9)

where the matrix S describes the expansion and contrac-
tion as well as the shearing deformation at a point and the
matrix A describes the twisting deformation at a point – it
is a rigid body motion. For each point S and A are
calculated as follows
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and
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The above process yields deformation parameters in the
coordinate system in which the geodetic network is
defined since it is based on the coordinates of the network
points.

Let the coordinates of the point i at the two epochs be
denoted by (x1

i ,y1
i ,z1

i ) and (x2
i ,y2

i ,z2
i ) respectively. Let us

now consider a second coordinate system in which the
coordinates of the point i are expressed by (x1�

i ,y1�
i ,z1�

i )
and (x2�

i ,y2�
i ,z2�

i ). Based on equation (1), the relationship
between the coordinates in each epoch is established as
follows

r1
i ~tzRr1�

i (12)

r2
i ~tzRr2�

i (13)

where

r1
i ~ x1

i y1
i z1

i

� �T
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i y1�

i z1�
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,

r2
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i y2
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i

� �T
, r2�

i ~ x2�
i y2�

i z2�
i

� �T
:

Using equations (12) and (13), one can write the
following for the displacement vector between the epoch
1 and 2

di~Rd�i (14)

where di~Er1
i zc0 and d�i ~E�r1�

i zc�0. Now let us write

the displacement equation for a second point j under the
effect of the same deformation parameters

dj~Rd�j (15)

where dj~Er1
j zc0 while d�j ~E�r1�

j zc�0. The difference

of equations (14) and (15) reads

dij~dj{di~Er1
j zc0{(Er1

i zc0)~EDrij (16)

d�ij~d�j {d�i ~E�r1�
j zc�0{(E�r1�

i zc�0)~E�Dr�ij (17)

Using equations (16) and (17), one can write the
following for relative displacement vector between the
points i and j as

EDrij~RE�Dr�ij (18)

Based on equation (1), the relationship between the
relative coordinates is given by

Drij~RDr�ij (19)

Substituting this equation into equation (18) leads to

ERDr�ij~RE�Dr�ij (20)

and finally, the resulting transformation equation for the
deformation parameters is obtained as follows

E~RE�RT (21)

Once the strain matrix is transformed from one system
to another the other deformation parameters, i.e.
dilation, shear, differential rotation can be calculated
by means of them (see (1)). Substituting equation (9)
into equation (21), we get

E~R S�zA�ð Þ RT (22)

E~ R S�zR A�ð Þ RT (23)

E~R S� RTzR A� RT (24)

This equation proves that the transformation from first
coordinate system to second coordinate system is
commutative (see also (1)).

Table 1 Coordinates of points in RyeNet

X/m Y/m Z/m

1 851699.0660 24542606.4564 4380848.9293
2 851875.8826 24542531.8097 4380890.2156
3 851988.5184 24542486.9244 4380916.1366
4 852060.8208 24542600.1418 4380781.2129
5 851946.8440 24542650.0483 4380750.3791
6 851777.5913 24542716.4263 4380717.5969
7 851823.9032 24542624.1969 4380802.2016
8 851945.3241 24542592.1050 4380811.8028

1 RyeNet network
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Transformation of covariance matrix
between coordinate systems
For a robust deformation analysis, in addition to
transformation parameters, their covariance matrix
ought to be transformed to the desired coordinate
system. This provides a check on the transformed
parameters.

After deformation, to determine the deformation
parameters covariance matrix, the error propagation
law needs to be applied to equation (21). In order to be
able to apply the error propagation law easily to
equation (21), let us rearrange this equation by multi-
plying both sides by R, hence

ER~RE�RTR (25)

Since the rotation matrix R is orthogonal
(RTR5RRT5I), the following equation is obtained

ER~RE� (26)

Now that the above equation is in a suitable form for
error propagation, the equation is differentiated with
respect to strain matrix parameters

dER~RdE� (27)

If we square this equation, we reach

dERð Þ dERð ÞT~ RdE�ð Þ RdE�ð ÞT (28a)

dERRTdET~RdE�dE�TRT (28b)

Then

dEdET~RdE�dE�TRT (29)

According to the error propagation law the squares of
differentiated strain matrix components are equal to the
covariances of the related matrices [3]. As a result, we
obtain

CEE~RCE�E�R
T (30)

Numerical example
In order to be able to verify the derivations, a simulated
network, shown in Fig. 1, is examined. The coordinates
of the network points are given in Table 1.

To be able to consider this network as a GPS network,
first, the coordinate differences among the points are
calculated. Then, to take these coordinate differences as
observations, normally distributed random errors are
generated using MATLAB. The standard deviations for
GPS instruments were horizontal: 3 mm¡0?5 ppm and
vertical: 6 mm¡0?5 ppm. Note that since this is a GPS
network, standard deviations are transformed into
Cartesian coordinate components from the coordinate
components of horizontal and vertical using the follow-
ing equation

KDXDX~

{ sin w cos l { sin l cos w cos l

{ sin w sin l cos l cos w sin l

cos w 0 sin w

2
664

3
775

s2
DnDn

s2
DeDe

s2
DhDh

2
664

3
775

{ sin w cos l { sin l cos w cos l

{ sin w sin l cos l cos w sin l

cos w 0 sin w

2
664

3
775

T

(31)

Finally, the coordinates and standard deviations of
observations are obtained in Conventional Terrestrial
Reference System (CTRS), these are given in Table 2.

Next, in order to compute their counterparts in LG
system, the coordinates are transformed from CTRS to
LG using (point 6 is arbitrarily chosen as the reference
point)

Table 3 Coordinates of points in LG

x/m y/m z/m

1 30.3893 97.4469 158.3932
2 212.8862 262.5843 263.5504
3 238.9189 2165.0188 328.3801
4 268.9112 2256.9479 164.3687
5 242.8552 2154.1207 92.3982
6 0.0000 0.0000 0.0000
7 27.2623 228.5215 130.1645
8 237.5391 2141.9483 175.8019

Table 2 The observations and their standard deviations in CTRS

From To DX/m sDX/mm DY/m sDY/mm DZ/m sDZ/mm

1 2 176.8165 0.15 74.6470 0.24 41.2865 0.24
2 3 112.6355 0.15 44.8853 0.24 25.9212 0.24
3 4 72.3024 0.15 2113.2174 0.24 2134.9234 0.23
4 5 2113.9768 0.15 249.9067 0.24 230.8336 0.23
5 6 2169.2529 0.15 266.3779 0.24 232.7819 0.23
6 1 278.5251 0.16 109.9696 0.24 131.3321 0.24
2 5 70.9616 0.15 2118.2384 0.24 2139.8365 0.23
1 7 124.8372 0.15 217.7401 0.24 246.7277 0.24
2 7 251.9793 0.15 292.3874 0.24 288.0144 0.23
5 7 2122.9408 0.15 25.8516 0.24 51.8226 0.23
6 7 46.3119 0.15 92.2297 0.24 84.6045 0.23
2 8 69.4416 0.15 260.2957 0.24 278.4125 0.23
3 8 243.1944 0.15 2105.1809 0.24 2104.3340 0.23
4 8 2115.4964 0.15 8.0369 0.24 30.5900 0.23
5 8 21.5199 0.15 57.9432 0.24 61.4238 0.23
7 8 121.4209 0.15 32.0921 0.24 9.6010 0.24

ð31Þ
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(32)

The obtained coordinates in LG system are given in
Table 3.

Using these coordinates, the coordinate differences in
Local Geodetic (LG) are calculated. Next, using these
coordinate differences, the observations in LG are
calculated using the following formulae

Azimuth : a~ arctan
Dy

Dx
(33)

Zenith angle : z~arccos
Dz

s
(34)

Slope distance : s~ Dx2zDy2zDz2
� �1=2

(35)

Again, using MATLAB, random errors are generated.
Specifications for a typical instrument (for distances
2 mm¡2 ppm and for angles 30) are used. In LG system

the observations and their standard deviations are given
in Table 4.

In order to be able to create the coordinates for the
second time period, the deformation matrix of no
rotation (i.e. the matrix A in equation (9) is set to zero)
is assumed as follows

E~S~

exx exy exz

exy eyy eyz

exz eyz ezz

2
664

3
775

~

0:000200 0:000556 0:000556

0:000556 0:000200 0:000556

0:000556 0:000556 0:000200

2
664

3
775

(36)

Then the same approach described above is followed for
the second time period. The observations and their
standard deviations in CTRS are given in Table 5 and
the observations and their standard deviations in LG are
given in Table 6.

The simulated data of the network referred to CTRS
and LG systems are adjusted separately. After the
adjustments the relative coordinates with respect to
point 6 and displacements are determined; these are
given in Table 7.

Using the adjusted coordinates, the deformation
matrix is computed as

Table 5 The observations and their standard deviations in CTRS

From To DX/m sDX/mm DY/m sDY/mm DZ/m sDZ/mm

1 2 176.9165 0.15 74.7832 0.24 41.4343 0.24
2 3 112.6977 0.15 44.9713 0.24 26.0135 0.24
3 4 72.1789 0.15 2113.2751 0.24 2134.9732 0.23
4 5 2114.0445 0.15 249.9969 0.24 230.9310 0.23
5 6 2169.3418 0.15 266.5038 0.24 232.9199 0.23
6 1 278.4073 0.16 110.0209 0.24 131.3765 0.24
2 5 70.8324 0.15 2118.3006 0.24 2139.8907 0.23
1 7 124.8263 0.15 217.7004 0.24 246.6772 0.24
2 7 252.0900 0.15 292.4834 0.24 288.1115 0.23
5 7 2122.9222 0.15 25.8172 0.24 51.7788 0.23
6 7 46.4194 0.15 92.3203 0.24 84.6983 0.23
2 8 69.3782 0.15 260.3125 0.24 278.4234 0.23
3 8 243.3195 0.15 2105.2837 0.24 2104.4372 0.23
4 8 2115.4984 0.15 7.9909 0.24 30.5361 0.23
5 8 21.4541 0.15 57.9879 0.24 61.4674 0.23
7 8 121.4682 0.15 32.1713 0.24 9.6888 0.24

Table 4 Observations and their standard deviation in LG

From To a/deg sa/99 z/deg sz/99 s/m ss/mm

1 2 254.867954 0.15 57.612191 0.15 196.3182 0.12
2 3 255.740724 0.15 58.475473 0.15 123.9897 0.11
3 4 251.930800 0.15 149.477245 0.15 190.3951 0.12
4 5 75.780799 0.15 124.155880 0.15 128.1876 0.11
5 6 74.460762 0.15 120.010917 0.15 184.7355 0.12
6 1 72.679722 0.15 32.799529 0.15 188.4352 0.12
2 5 251.871588 0.15 150.630994 0.15 196.3927 0.12
1 7 253.358716 0.15 102.117861 0.15 134.4713 0.11
2 7 80.624838 0.15 165.488720 0.15 137.7816 0.11
5 7 74.178036 0.15 73.864988 0.15 135.8981 0.11
6 7 255.714598 0.15 12.740871 0.15 133.4505 0.11
2 8 252.743662 0.15 136.556881 0.15 120.8561 0.11
3 8 86.577332 0.15 171.386627 0.15 154.3186 0.12
4 8 74.740880 0.15 84.521272 0.15 119.7489 0.11
5 8 66.407520 0.15 9.048828 0.15 84.4548 0.11
7 8 255.054568 0.15 68.756824 0.15 125.9566 0.11

ð32Þ
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E~(ATQ{1
dd A){1ATQ{1

dd d (37)

where Ai~

DXi6 0 0 DYi6 DZi6 0

0 DYi6 0 DXi6 0 DZi6

0 0 DZi6 0 DXi6 DYi6

2
64

3
75 (38)

and

Qdd~Q1
xxzQ2

xx (39)

where Q1
xx is the cofactor matrix of unknowns for the

first period and Q2
xx is the cofactor matrix of unknowns

for the second period. The deformation matrix compo-
nents in LG and CTRS and their standard deviations are
given in Table 8. Using equation (21) the deformation
matrix is transformed from LG to CTRS and this is also
shown in Table 8.

While transforming the parameters, the parameters are
transformed from LG to CTRS. The reason for that is that
presently GPS is the most utilised measurement technique.
Nowadays deformation analysis with terrestrial techniques

is rarely used. Therefore, the combination ought to be
done in the new system. As can be seen the results in the
third column in this table match closely with the assumed
values given in equation (36). This proves that the outlined
derivations are correct.

Conclusions
Geodetic networks are often surveyed to produce
multiple epochs of data. After adjustment, by comparing
the coordinates at networks points the deformations are
obtained. This process yields deformation parameters in
the coordinate system in which the geodetic network is
defined. For long period temporal and spatial analysis of
deformation parameters, the practical approach would
be coordinate transformation of deformation para-
meters from one system to another. In this study, it is
shown that coordinate transformation of deformation
parameters from one system to another is possible. In
addition, the transformation of the deformation para-
meters covariance matrix is formulated. Numerical
results prove that the outlined approach works well.

Table 7 Relative coordinates with respect to point 6 and displacements

DX d

LG CTRS LG CTRS

1 30.389 278.525 20.018 0.118
2 97.447 109.970 20.107 0.052
3 158.393 131.332 0.082 0.044
4 212.886 98.291 20.016 0.218
5 262.584 184.617 20.180 0.187
6 263.550 172.618 0.295 0.192
7 238.919 210.927 20.015 0.280
8 2165.019 229.502 20.225 0.273
9 328.380 198.540 0.428 0.285
10 268.911 283.229 0.003 0.156
11 2256.948 116.285 20.114 0.216
12 164.369 63.616 0.336 0.235
13 242.855 169.253 0.003 0.089
14 2154.121 66.378 20.064 0.126
15 92.398 32.782 0.196 0.138
16 27.262 46.312 20.008 0.107
17 228.522 92.230 20.089 0.091
18 130.165 84.604 0.144 0.094
19 237.539 167.733 20.004 0.155
20 2141.948 124.321 20.121 0.171
21 175.802 94.206 0.267 0.181

Table 6 The observations and their standard deviations in LG

From To a/deg sa/99 z/deg sz/99 s/m ss/mm

1 2 254.8753030 0.15 57.5708582 0.15 196.4978 0.1195
2 3 255.7472418 0.15 58.4334434 0.15 124.1077 0.1125
3 4 251.9211067 0.15 149.5200422 0.15 190.4394 0.119
4 5 75.7876241 0.15 124.1956300 0.15 128.3317 0.113
5 6 74.4679352 0.15 120.0540575 0.15 184.9027 0.1185
6 1 72.6716129 0.15 32.7584663 0.15 188.4511 0.119
2 5 251.8610887 0.15 150.6745013 0.15 196.4438 0.1195
1 7 253.3608995 0.15 102.0939961 0.15 134.4563 0.1135
2 7 80.6352977 0.15 165.4677899 0.15 137.9875 0.114
5 7 74.1796407 0.15 73.8829453 0.15 135.8705 0.1135
6 7 255.7425840 0.15 12.7641192 0.15 133.6170 0.1135
2 8 252.7394604 0.15 136.5865056 0.15 120.8654 0.112
3 8 86.5652857 0.15 171.3573125 0.15 154.5299 0.1155
4 8 74.7436170 0.15 84.5539970 0.15 119.7499 0.112
5 8 66.3380428 0.15 9.0044291 0.15 84.5241 0.1085
7 8 255.0602393 0.15 68.7097493 0.15 126.0419 0.1125

ð38Þ
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Table 8 Deformation matrix components and their standard deviations

LG CTRS From LG to CTRS

eXX 23.1461024¡0.4061024 2.0161024¡0.0261024 2.0261024¡0.0661024

eyy 0.0361024¡0.0361024 2.1961024¡0.4761024 2.2161024¡0.1561024

ezz 9.5361024¡0.0761025 2.1861024¡0.4261024 2.1961024¡0.2261024

exy 0.2561024¡0.1161024 5.5161024¡0.0961024 5.5161024¡0.0961024

exz 20.7161024¡0.0161024 5.6061024¡0.0961024 5.6061024¡0.1261024

eyz 26.8161024¡0.0161024 25.3761024¡0.4561024 25.3661024¡0.1761024
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