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Abstract: After geodetic networks are established, relevant measurements are made and point coordinates are estimated by the least-
squares method. However, the least-squares method does not give any information about the robustness of networks. To measure
robustness of a network, the degree of deformation of individual points of the network is measured by strain. Furthermore, threshold
values are needed to evaluate networks. These threshold values will enable us to evaluate the robustness of the network. If the displace-
ments of individual points of the network are worse than the threshold values, we must redesign the network by changing the configu-
ration or improving the measurements until we obtain a network of acceptable robustness. This paper describes how to obtain the
displacements at individual points of a network, employs the specifications of the Geodetic Survey Division, and shows the power of the
technique on different geodetic networks.
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Introduction

Reliability of geodetic control networks �the detection of outliers/
gross errors/blunders among the observations� can be measured
using a technique pioneered by the geodesist Baarda and reported
in Baarda �1968�. Subsequent studies about Baarda’s approach
can be found in Proszynski �1994, 1997�. In Baarda’s method, a
statistical test �data snooping� is used to detect outliers. What
happens if one or more observations are burdened with an error?
It is clear that these outliers will affect the observations and pro-
duce incorrect estimates of the parameters. If the outliers are de-
tected by a statistical test then those contaminated observations
are removed, the network is readjusted, and we obtain the final
results.

In the approach described here, traditional reliability analysis
�Baarda’s approach� has been augmented with geometrical
strength analysis using strain to create a technique called robust-
ness analysis. In statistical literature, robustness is a measure of
the insensitivity to outliers in the data. Robustness analysis is a
natural merger of reliability and strain and is defined as the ability
to resist deformations induced by the largest undetectable outliers
as determined from internal reliability analysis.

This paper addresses the consequences of outliers not being
detected by Baarda’s test. This failure may happen for two rea-
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sons: �i� the observation is not sufficiently checked by other
independent observations or �ii� the test does not recognize the
gross error. By how much do these undetected errors influence
the network? If the influence of the undetected errors is small, the
network is called robust; if it is not, it is called a weak network.

The maximum undetectable errors �l among the observations
that would not be detected by a statistical test are given by Baarda
�1968� as

�li = ��0

�li

�ri

�1�

where ��0�value of the shift �noncentrality parameter� of the
postulated distribution in the alternative hypothesis. Calculation
of ��0 is given in Vaníček et al. �2001�. �li

�a priori value of
standard deviation of the ith observation; and ri�redundancy
number of the ith observation.

The estimate for the displacements �x caused by the maxi-
mum undetectable errors �l in the observations is given by

�x = �ATPA�−1ATP�l �2�

where A�design matrix; and P�weight matrix.
Nonetheless, the problem with the displacements is that their

estimates are datum dependent. This means that these estimates
depend not only on the geometry of the network and the accuracy
of the observations but also on the selection of constraints for the
adjustment; this has nothing to do with the network deformation.
Robustness of a network should depend only on the network ge-
ometry and accuracy of the observations. Therefore, we use the
strain technique as it is independent of adjustment constraints and
reflects only the network geometry and accuracy of the observa-
tions. Traditional reliability analysis has been augmented with,
strain technique termed robustness analysis; this is outlined in the

following section.
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Robustness Analysis of Two-Dimensional Networks

Robustness analysis of two-dimensional �2D� networks is out-
lined in Vaníček et al. �2001� as follows. Let us denote the
displacement of a point Pi by

�xi = ��xi

�yi
� = �ui

vi
� �3�

where u�displacement in the x direction; and v�displacement in
the y direction. Then, the tensor gradient with respect to position
is

Ei = �
�ui

�x

�ui

�y

�vi

�x

�vi

�y
� �4�

For ∀j=0,1 , . . . , t �t�number of connection�s�� the displace-
ments u and v can be calculated as follows:

ai + � �ui

�x
	�Xj − Xi� + � �ui

�y
	�Y j − Yi� = uj

bi + � �vi

�x
	�Xj − Xi� + � �vi

�y
	�Y j − Yi� = v j �5�

where all the partial derivatives as well as the absolute terms ai,
bi, and the coordinates Xi, Yi refer to points Pi, and Pj is con-
nected �by an observation� to the point of interest, point Pi. In
matrix form

∀i in the network Ki�
ai

�ui

�x

�ui

�y
� = ui �6�

∀i in the network Ki�
bi

�vi

�x

�vi

�y
� = vi �7�

where Ki= �1 �Xj −Xi� �Y j −Yi��. If these equations are solved
using the least-squares method, we get

∀i in the network �
ai

�ui

�x

�ui

�y
� = �Ki

TKi�−1Ki
Tui = Qiui �8�

∀i in the network �
bi

�vi

�x

�vi

�y
� = �Ki

TKi�−1Ki
Tvi = Qivi �9�
Assembling Eqs. �8� and �9� into a hypermatrix, we get
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∀i in the network �
ai

�ui

�x

�ui

�y

bi

�vi

�x

�vi

�y

� = �Qi 0

0 Qi
��ui

vi
� �10�

Since we are looking for the relation between the displacement
vector and the strain matrix, absolute terms are of no interest to
us. So, we can eliminate the first row of the Qi matrix. If we show

Table 1. Values of Factor C for Different Order of Geodetic Networks

Order

Average
length
�km� Factor C

First 20 2

Second 15 5

Third 10 12

Fourth 5 30

Fig. 1. Displacements in HOACS2D network
L OF SURVEYING ENGINEERING © ASCE / NOVEMBER 2006 / 169



the reduced matrix with T and substitute from Eqs. �3� and �4�,
we obtain

∀i in the network vec�Ei� = Ti�xi �11�

Substituting Eq. �2� into Eq. �11�

Table 2. Relative Displacements and Threshold Values for HOACS2D
Network

Points
�rij

�m�
rij

�m�

1–2 0.40 1.59

1–3 0.35 2.82

2–3 0.07 1.43

2–4 0.13 1.34

3–4 0.08 1.51

3–5 0.10 1.45

4–5 0.09 0.88

4–6 0.06 0.99

4–7 0.12 0.79

5–6 0.04 1.82

6–7 0.18 0.84

6–8 0.20 0.57

6–9 0.22 0.42

7–8 0.03 0.97

8–9 0.02 1.33

8–10 0.08 0.76

8–11 0.13 0.62

9–10 0.08 0.59

10–11 0.10 0.76

Fig. 2. Displacem
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∀i in the network vec�Ei� = Ti�ATPA�−1ATP�l �12�

To determine the displacements of point Pi, we introduce the
“initial conditions” X0 and Y0. Initial conditions are the coordi-
nates that are obtained minimizing the norm of the displacement
vectors at all points in the network. This means that to calculate
X0 and Y0, the displacements in the network points should be
minimized. Since the formulas to do this are bulky they are not
given here but can be seen in Berber �2006�. Once X0 and Y0 have
been determined ūi and v̄i are determined from

�ūi

v̄i
� = �

�ui

�x

�ui

�y

�vi

�x

�vi

�y
��Xi − X0

Yi − Y0
� �13�

After computing the displacements ū and v̄ for each point in the
network, we can calculate the total displacement at each point
from

Dispi = �ūi
2 + v̄i

2 �14�

Determination of Threshold Values

In this paper we use the specifications given by the Geodetic
Survey Division �GSD� to compute threshold values. The GSD
specifications are given in GSD �1978�. These threshold values
are going to enable us to evaluate the robustness of the network.
The specifications are:

Realnet network
ents in
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Table 3. Relative Displacements and Threshold Values for Realnet
Network

Points
�rij

�m�
rij

�m�

1–27 0.20 0.88

1–12 0.34 1.43

1–14 0.42 1.79

1–21 0.33 0.50

1–13 0.11 1.13

1–38 0.23 0.66

1–36 0.33 1.60

1–37 0.34 1.49

1–9 0.30 0.57

1–2 0.45 0.98

1–5 0.31 0.63

1–3 0.21 1.03

1–6 0.18 0.60
*2–4 0.76 0.65

2–3 0.65 0.92

2–5 0.14 0.57

2–9 0.19 0.70
*3–10 2.24 1.78
*3–11 2.54 2.38

3–12 0.54 2.08

3–6 0.33 0.55
*3–5 0.52 0.51
*3–4 1.39 0.91
*4–5 0.88 0.50
*6–8 0.68 0.64

6–48 0.56 0.67

6–29 0.43 0.45

6–27 0.07 0.47

7–47 0.92 0.92
*7–46 0.80 0.42

7–49 0.04 2.59

7–48 0.79 0.48

7–8 0.50 0.84

8–33 0.69 3.04

8–49 0.51 0.82
*8–46 1.28 0.58

8–34 0.47 1.39
*8–48 1.23 0.81

9–37 0.63 0.81
*9–36 0.64 0.48

9–21 0.44 0.86

9–38 0.47 0.68

9–13 0.19 1.10
*10–12 2.75 2.60
*11–12 2.99 2.20
*12–17 1.38 0.71
*12–56 1.20 0.89
*12–45 1.72 1.56

12–53 0.44 1.61

12–15 0.47 0.92

12–44 0.27 1.61

12–16 1.77 1.97

12–18 0.21 0.59

12–14 0.11 1.11
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Table 3. �Continued.�

Points
�rij

�m�
rij

�m�

12–42 0.27 0.45

12–13 0.23 1.58

12–40 0.40 0.50

12–28 0.59 0.95

12–30 0.31 0.61

12–41 0.35 0.44
*12–58 1.11 0.87

13–38 0.31 0.48

13–39 1.12 0.51

13–14 0.31 1.11

14–15 0.39 1.59

14–50 0.53 0.61

14–43 0.27 0.42
*14–16 1.66 1.45

14–39 0.42 0.88

14–42 0.37 0.67

15–18 0.66 0.80
*17–56 2.35 0.92
*17–57 0.66 0.45

20–51 0.39 0.93

20–44 0.28 0.91

20–53 0.22 0.88

21–22 0.19 1.50

21–40 0.36 0.64

21–14 0.51 1.29

21–39 0.38 0.46

21–38 0.20 0.44

21–27 0.20 0.55

21–31 0.22 0.47

22–31 0.09 0.81

22–39 0.19 0.52

22–27 0.14 0.53

24–26 0.48 0.76

24–51 0.69 0.92
*24–52 1.12 0.53

26–51 0.41 1.79

27–28 0.25 0.95

27–31 0.07 1.71

27–29 0.37 0.45

28–58 0.58 0.92

28–30 0.43 0.89

28–31 0.31 0.78

28–3 0.54 1.13

28–29 0.54 1.51
*28–48 0.53 0.45

29–48 0.28 1.78
*30–58 0.84 0.83

30–41 0.47 2.62

30–40 0.10 0.62

30–31 0.13 0.45

31–40 0.15 0.63

32–49 0.24 1.85

32–35 0.23 0.57

32–48 0.83 1.49

32–34 0.09 1.59
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A survey point of a network is classified according to whether
the semimajor axis of the 95% confidence region, with respect to
other points of the network, is less than or equal to

rij = C�dij + 0.2� �15�

where rij is in centimeters, dij�distance in kilometers between
points Pi and Pj; and C�factor assigned according to the order of
survey as given in Table 1.

In robustness analysis the effect of the maximum undetectable
errors which would not be detected by the statistical test on the
network is searched. The GSD specifications are given for ran-
dom errors, this means that by definition some certain amount of
error is accepted in the GSD networks. Here, a tacit acceptance
has been made of certain values as “acceptable,” random or sys-
tematic. In this paper these specifications are used as an example
but they might vary from country to country.

As the GSD specifications relate to pairs of points, in this

Table 3. �Continued.�

Points
�rij

�m�
rij

�m�

32–33 0.30 2.93

33–49 0.25 2.11

33–34 0.29 2.04

33–48 0.56 0.84

34–49 0.30 2.33

34–48 0.77 1.28

35–49 0.29 2.32

36–37 0.17 1.30

38–39 0.28 0.52

39–40 0.06 0.59

39–42 0.18 0.81

40–42 0.19 1.00
*40–41 0.57 0.55
*41–57 1.13 0.42
*41–56 1.02 0.51

42–44 0.06 0.48

42–50 0.19 0.41

43–50 0.40 0.43

44–45 1.60 2.61

44–53 0.38 2.56

44–51 0.14 0.43

44–50 0.17 0.55

46–47 0.21 0.48

46–49 0.81 1.68

46–48 0.19 0.46

48–58 0.31 0.84

48–49 0.81 0.88

50–15 0.69 0.99

50–51 0.04 0.42
*50–52 0.55 0.46
*51–52 0.56 0.56

53–54 0.37 0.41

53–56 1.19 1.50
*54–56 1.23 0.89

57–58 1.70 1.74

Note: *�pairs of points.
study we implement the following formula:
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�rij
= ��uj − ui�2 + �v j − vi�2 �16�

where Pi and Pj�points in question; and �rij
�relative displace-

ment between points Pi and Pj.
Here we calculate the relative displacements using Eq. �16� to

be able to compare them with the specifications determined by
GSD. We also compute the absolute displacements at network
points using Eq. �14� for help in the interpretation and graphical
display.

We calculate �rij
and compare it with rij. If for ∀ij in the

network �rij
�rij, this means that the network is robust. If

�rij
�rij, the network is weak. Examples are shown in the fol-

lowing section.

Examples

To be able to show the power of the technique we have examined
three different networks. The first network is the HOACS2D net-
work. It is a synthetic horizontal network, shown in Fig. 1. The
network consists of 11 points, one of which �Point 1� is fixed, 38
directions, 19 distances, and 1 azimuth from Point 6 to Point 5.
The distances were assigned a realistic standard deviation of
3 mm+2 ppm while the directions were assigned a standard de-
viation of 0.5�. The datum orientation was defined by the azimuth
with a standard deviation of 1�.

In this network all directions and distances are measured. On
the other hand, as can be seen from Fig. 1, the geometry of the
network is not good as the controllability �number of connections�
of the points at the edge of the network are low compared to the
other points in the network. Hence we get bigger displacements at
edge points.

From the detailed analysis of the original observations we find
out that since the distances between Points 8–10, 8–11, 9–10, and
10–11 are longer than the other distances in the network their
standard deviations are larger compared to the other distance ob-
servations in the network. Hence we get bigger displacements at
these points.

We computed the displacements using Eq. �14� and plotted

Fig. 3. Displacements in Northwest Territories network
them in Fig. 1. We then calculated relative displacements using
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Eq. �16� and compared them with the specifications; the compari-
sons are given in Table 2. In this network for ∀ij in the network
�rij

�rij so it is a robust network.
The second network is called Realnet and is shown in Fig. 2.

This an example of a real horizontal terrestrial network in south-
ern Quebec consisting of 58 points, one of which �Point 1� is
fixed, 307 directions, 125 distances, and 1 azimuth observation
from Point 1 to Point 3. The ranges of the standard deviations for
the direction observations are 0�.6–2�.0 for the distance observa-
tions 1–34 cm and the standard deviation for the azimuth obser-
vation is 1�. Note that the robustness of 4 points �Numbers 19, 23,
25, 55� is undefined. This is due to a singularity as these points
are linked to the rest of the network by only one observation.
Singularity cases are addressed in Vaníček et al. �2001�.

As can be seen from Fig. 2, the geometry of the network is
not good and there are some very low controlled points such as
Points 10, 11, and 16. Moreover, most of the distances in the
network are not measured. Therefore, the controllability of these
points is rather low. Hence we obtain very big displacements at
these points. Therefore, in this network for some pairs of points
�rij

�rij; these pairs of points are identified in Table 3 by the *
symbol.

We computed the displacements again using Eq. �14� and
plotted them in Fig. 2 and then we again calculated relative dis-
placements using Eq. �16� to be able to compare them with the
specifications; the comparisons are given in Table 3.

As can be seen in Fig. 2, the identified pairs of points have a
big displacement at least at one of the points. The reasons for
these displacements are, first, the distances are not measured �dis-
covered from detailed analysis of the original observations� and,
second, the points are not well controlled.

However, if the controllability increases the displacements get
smaller. For example, although the distances from Point 17 to the
connected points are not measured, the controllability is higher at
Point 17 compared to Points 10, 11, and 16. This causes the
displacement at Point 17 to be smaller than the displacements at
Points 10, 11, and 16, and similarly for Points 24, 56, and 57.

The third network is called Northwest Territories network; it
is shown in Fig. 3. It is an example of a real GPS network.
It consists of 33 points, one of which �Point 1� is fixed, and
402 coordinate differences. The range of the baseline component
standard deviations are 8–774 mm since it is a rather old GPS
network. Note that although GPS networks are intrinsically three-
dimensional �3D� only the horizontal two-dimensional �2D� com-
ponent of the network is analyzed here.

As can be seen from Fig. 3, generally the displacements are
bigger at the edge of the network since the controllability of these
points is rather small compared to the other points in the network.
However, as soon as the controllability increases the displace-
ments get smaller. For example, at Point 9 there are three con-
nections, whereas at Point 20 there are 4 connections and the
displacement is smaller at Point 20 than at Point 9. Nevertheless,
Points 8, 10, 13, and 33 have some observations that have large
standard deviations �see Table 4�. Therefore, we get centimeter
level displacements at these points. However, at Point 2, standard
deviations of the observations are smaller compared to the maxi-
mum standard deviations at Points 8, 10, 13, and 33. Similar
situations also occur at Points 31 and 32.

We computed the displacements using Eq. �14� and plotted
them in Fig. 3 and then we calculated relative displacements
using Eq. �16�, allowing us to compare them with the specifica-
tions; the comparisons are given in Table 5. In this network for

∀ij in the network �rij

�rij so it is a robust network.
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Conclusion

In order to be able to calculate the displacements in 2D networks,
the initial conditions must be computed. Furthermore the thresh-
old values are needed to evaluate the networks. These threshold
values enable us to assess the robustness of networks. In this
study, the specifications given by the Geodetic Survey Division
are used to compute the threshold values. The numerical results
prove that this approach works well.

Robustness analysis is a very powerful technique capable of
providing a picture of the analyzed network. If a network has
some defects, the robustness analysis technique reveals them and
portrays them.

When the controllability of the network points are lower we
obtain bigger displacements. If a network has some deficiency
�such as if the distances are not measured� we can determine the
weakness of the network for these points. This lack of measure-
ment also lowers the controllability of the network for these
points. However, if the controllability increases the displacements
get lower. The observations with large standard deviations cause
bigger displacements at the connected points. This technique can
also be used for GPS networks, although only the horizontal com-
ponent of the GPS networks is analyzed here.

It seems that the robustness of a planned network, a robustness

Table 4. Standard Deviations of Some of the Observations in Northwest
Territories Network

Points
��X

�mm�
��Y

�mm�

2–5 82.66 63.42

2–3 59.56 41.84

2–31 50.52 18.48

2–22 33.61 26.67

8–20 27.91 17.75

8–11 151.91 71.76

8–10 67.70 63.86

8–9 82.84 53.74

8–7 24.22 11.93

13–31 38.42 25.22

13–26 78.63 73.35

13–33 92.78 52.93

13–32 73.42 53.04

13–22 49.55 44.06

13–17 53.58 67.49

13–10 110.63 77.52

13–5 121.46 66.60

33–32 147.18 100.06

33–13 94.66 46.38

33–6 125.07 91.07

33–10 35.95 40.62

33–26 71.62 68.52

33–17 59.99 76.54

33–13 92.78 52.93

10–32 109.54 97.13

10–33 35.95 40.62

10–6 87.68 103.26

10–7 122.63 99.28

10–8 67.70 63.86

10–20 104.06 93.71
preanalysis, may prove to be more important than a postanalysis
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Table 5. Relative Displacements and Threshold Values for Northwest
Territories Network

Points
�rij

�m�
rij

�m�

1–15 0.05 1.55

1–16 0.06 1.44

1–17 0.07 1.28

1–26 0.08 1.68

1–27 0.07 2.52

l–6 0.09 2.95

2–22 0.03 2.37

2–3 0.12 2.28

2–31 0.03 1.84

2–5 0.06 3.67

3–31 0.14 2.84

3–5 0.07 2.20

3–22 0.14 2.13

3–27 0.13 3.28

3–28 0.09 3.64

3–30 0.04 1.48

4–25 0.24 1.71

4–27 0.16 1.84

4–28 0.11 1.15

4–29 0.06 2.59

4–30 0.05 3.49

5–13 0.05 2.43

5–17 0.07 2.14

5–26 0.07 2.45

5–33 0.04 3.64

5–22 0.08 1.67

5–31 0.08 2.93

5–32 0.07 3.51

5–27 0.06 1.58

5–28 0.05 2.61

5–30 0.07 2.13

6–14 0.05 1.85

6–7 0.04 1.68

6–10 0.08 2.14

6–21 0.05 2.86

6–17 0.09 2.96

6–26 0.09 2.53

6–33 0.02 2.39

6–32 0.08 3.69

7–11 0.06 1.72

7–14 0.03 3.16

7–19 0.10 2.14

7–20 0.02 2.27

7–8 0.05 2.14

7–9 0.34 2.79

7–21 0.07 2.55

7–10 0.09 2.70

8–11 0.01 3.69

8–20 0.05 2.97

8–10 0.15 1.85

8–9 0.29 1.97

9–11 0.29 3.56

10–32 0.08 2.44

10–33 0.11 1.58
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Table 5. �Continued.�

Points
�rij

�m�
rij

�m�

10–20 0.11 4.46

10–13 0.13 2.97

11–14 0.08 3.62

11–19 0.14 1.99

11–21 0.13 1.56

11–20 0.05 2.10

12–23 0.03 1.94

12–24 0.04 1.48

12–18 0.13 2.49

12–16 0.14 3.01

12–14 0.12 2.93

12–21 0.09 1.67

13–26 0.12 1.76

13–33 0.02 1.43

13–31 0.13 2.12

13–32 0.11 1.13

13–17 0.11 2.16

13–22 0.13 1.74

14–15 0.05 2.94

14–16 0.04 1.83

14–17 0.04 2.25

14–19 0.08 1.69

14–21 0.05 2.66

14–24 0.08 1.91

15–17 0.01 2.17

15–16 0.01 1.80

15–18 0.14 3.25

15–25 0.10 2.06

15–27 0.02 1.56

16–23 0.12 3.30

16–24 0.09 1.54

16–17 0.01 2.71

16–18 0.13 1.84

16–25 0.09 2.49

17–26 0.01 0.63

17–27 0.01 2.27

17–33 0.10 2.48

18–23 0.15 1.70

18–24 0.10 1.62

18–25 0.07 2.61

19–21 0.10 1.06

21–24 0.08 2.39

22–31 0.01 1.27

22–32 0.05 2.46

23–24 0.05 2.26

25–28 0.14 2.84

26–33 0.10 1.86

27–28 0.06 1.28

27–30 0.13 2.42

28–29 0.17 1.65

28–30 0.07 2.35

29–30 0.11 1.81

31–32 0.06 2.22

32–33 0.09 1.30
06



of an already established network. In this case we must redesign
the network by changing the configuration or improving the mea-
surements until we obtain a network of acceptable robustness.

It is planned to further develop the technique to analyze all
three dimensions of 3D networks.
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Notation

The following symbols are used in this paper:
A � design matrix;
E � strain matrix;
P � weight matrix;
r � redundancy number;

rij � semimajor axis of the confidence region;
u � displacement in the x direction;

� displacement in the y direction;
v

JOURNA
�l � maximum undetectable error;
�x � displacement;
�rij

� relative displacement;

��0 � noncentrality parameter; and
� � standard deviation.
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