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ABSTRACT:  Geodetic networks established for engineering construction (e.g., highways, railways, 
bridges, dams) control typically have coordinates estimated by the method of least-squares and the 
‘goodness’ of the network is measured by a precision analysis based upon the covariance matrix of the 
estimated parameters. When such a network is designed, traditionally this again is based upon measures 
derived from the covariance matrix of the estimated parameters. This traditional approach is based upon 
propagation of random errors. 
 
In addition to this precision analysis, reliability (the detection of outliers/gross errors/blunders among the 
observations) has been measured using a technique pioneered by the geodesist Baarda. In Baarda’s 
method a statistical test (data-snooping) is used. What happens if one or more observations are burdened 
with an outlier? It is clear that these outliers will affect the observations and produce incorrect estimates of 
the parameters. If the outliers are detected by the statistical test then those observations are removed, the 
network re-adjusted, and we obtain the final results.  
 
In the approach described here, traditional reliability analysis (Baarda’s approach) has been augmented 
with geometrical strength analysis using strain into a technique called Robustness analysis. Robustness 
analysis is a natural merger of reliability and strain and is defined as the ability to resist deformations 
induced by the largest undetectable outliers as determined from internal reliability analysis. 
 
This paper addresses the consequences of what happens when outliers are not detected by Baarda’s 
test. This may happen for two reasons (i) the observation is not sufficiently checked by other independent 
observations and (ii) the test does not recognize the gross error. By how much can these undetected 
errors influence the network? If the influence of the undetected errors is small the network is called 
robust, if it is not it is called  weak. 

1. INTRODUCTION 
 
The known earliest published description of strain analysis in English seems to be Terada and Miyabe 
(1929) who used strain to describe real deformation of the earth surface caused by earthquakes. 
According to Pope (1966) in a series of papers in the Bulletin of the Institute for Earthquake Research of 
the University of Tokyo, Terada, Miyabe, Tsuboi and others described these techniques and applied them 
to various areas in Japan and Taiwan. The next scientist interested in strain analysis was Kasahara. In 
Kasahara (1957), (1958a), (1958b) and (1964), the work of Terada, Miyabe and Tsuboi were referrenced 
and the analysis of the earlier workers in some respects were extended. Later Burford (1965) followed 
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Terada and Miyabe. In Burford (1965) the components of strain for an arc of triangulation in Southern 
California was computed. Independently Frank (1965) derived methods for computation of strain 
components and pointed out their advantages and disadvantages. The above authorss are, geologists or 
geophysicists (Pope, 1966). Pope (the first known geodesist to deal with strain analysis) also used this 
technique for application to repeated geodetic surveys to determine crustal movements. 
 
The use of strain to analyse the strength of a geodetic network was attempted at the University of New 
Brunswick, this was performed by Thapa (1980). In this study, the impact of incompatible observations in 
horizontal geodetic networks was investigated using strain analysis. Vaní�ek et al. (1981) elaborated on 
this approach. In Dare and Vaní�ek (1982a) a new method for strain analysis of horizontal geodetic 
networks based on the measurement of the network deformation was presented. Dare (1982b) developed 
a method for the strength analysis of geodetic networks using strain; he also studied the effect of scale 
change, twist or shear. In Craymer et al. (1987) a program package called NETAN for the interactive 
covariance, strain and strength analysis of networks was introduced. Vaní�ek et al. (1991) combined the 
reliability technique introduced by Baarda and the geometrical strength analysis method into one 
technique called “robustness analysis”. Vaní�ek and Ong (1992) investigated the datum independence 
problem in robustness analysis. In Krakiwsky et al. (1993) further developments of robustness analysis 
were given, such as singularities in robustness, precision of robustness measures and interpretation of 
robustness measures. Szabo et al. (1993) described robustness analysis of horizontal geodetic networks. 
Craymer et al. (1993a) and (1993b) presented further findings about robustness analysis. Robustness 
analysis of horizontal geodetic networks was also studied by Ong (1993) and Amouzgar (1994). Craymer 
et al. (1995) tried to reduce the computational burden for large geodetic networks by restricting the 
propagation of the potential biases to points that are within a certain number of connection levels. Vaní�ek 
et al. (1996) describe a more economical algorithm for searching for the most influential observations, a 
more satisfactory definition of the neighborhood in which strain measures are evaluated and a technique 
for network classification that would take into account both the precision and accuracy in point positions. 
Krakiwsky et al. (1999) developed and numerically tested in-context absolute and relative confidence 
regions for geodetic networks. Vaní�ek et al. (2001) summarized the findings about robustness analysis 
and gave and explicit proof for the robustness datum independence. 
 
In this study, further thoughts about robustness analysis are  brought forward. In Vaní�ek et al. (2001) a 
complete and detailed description of the potential network deformation in terms of three independent 
measures representing robustness in scale, in orientation and in configuration are given (these are also 
called ‘robustness primitives’) are given. In practice however, some acceptable threshold values are 
needed. These threshold values are going to enable us to talk about the level of robustness of the 
network. For instance if a geodetic network is being established for an engineering structure, it must  have 
an acceptable level ofrobustness  . If robustness primitives within the network go beyond the threshold 
values, we must redesign the network by changing the configuration until we obtain a network of 
acceptable robustness. 

2. RELIABILITY ANALYSIS 
 
After geodetic networks for engineering construction (e.g., highways, railways, bridges, dams) control are 
physically established they are measured and point coordinates are estimated by the method of least-
squares. What happens if one or more observations are burdened with  gross errors, blunders or outliers? 
It is clear that these outliers will affect the observations and produce incorrect estimates of the 
parameters. Therefore they must be detected and corrected. Generally in practice they are removed and 
the network is re-adjusted. To detect the outliers among the observations Baarda’s method of statistical 
testing (data-snooping) or another equivalent method is used. What happens if outliers are not detected 
by the test? This may happen for two reasons (i) the observation is not sufficiently checked by other 
independent observations and (ii) the test does not recognize the gross error. These situations were first 
investigated by Baarda (1968)  
 
Baarda’s reliability theory is given in (Baarda 1968). By using the null hypothesis (H0) testing a statistical 
decision concerning postulated population parameters (mean � and variance �2 etc.) is made. For every 
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null hypothesis there exists an infinite number of alternative hypothesis (H1), each of which states that the 
population parameters have some other particular values. The probability �0 of rejecting H0 when in fact 
H0 is true (the Type I error) is called the significance level. The complementary probability (1-�0) is called 
the confidence level. Likewise, a situation might arise such  that H0 is false but it is accepted by the test. 
This is called the Type II error. The probability of making this (wrong) decision is �0. (1- �0) is called the 
power of test (Vaní�ek et al. 1991). 
 
By using Baarda’s theory of reliability, �li (the maximum value of the outliers among the observations 
which would not be detected by a statistical test with significance level �0) can be estimated as follows: 
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where �0 is the value of the shift (non-centrality parameter) of the postulated distribution in the alternative 
hypothesis as a function of selected probabilities �0, �0. ilσ is the a priori value of standard deviation of 

the i-th observation, ri is Baarda’s redundancy number, which expresses the degree of influence on the 
estimated positions of the i-th observation (Vaní�ek et al. 1991, Vaní�ek et al. 2001). Figure 1 illustrates 
the relation between �0, �0 and �0. 
 
 

 

 
Figure 1. Relationship between �0, �0 and �0 (from Vaní�ek et al. 2001). 

3. DESCRIPTION OF NETWORK DEFORMATION 
 
To be able to measure the degree of robustness of a network, its degree of potential deformation has to 
be measured. The potential degree of deformation is described by means of displacements of individual 
points of the network. The estimates for displacements caused by outliers are given as follows (Vaní�ek 
and Krakiwsky, 1986). 
 
 
[2] �lCAACAx� 111 )(ˆ −−−= l

T
l

T  
 
 
where A is the design matrix, 1−

lC is the covariance matrix of the observations, �l is the maximum 

undetectable error vector and x�ˆ is the displacement vector. 
 
The problem with displacements is that their estimates are « datum dependent ». That is, these estimates 
depend not only on the geometry of the network, and accuracy of the observations but also on the 
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selection of constraints for the adjustment. However deformation description must reflect only network 
geometry, the type and accuracy of the observations. Therefore the strain technique must be used 
(Vaní�ek et al. 2001). 
 
Let us denote a displacement of a point as follows 
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then the deformation or gradient matrix for the point is given as 
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[6] E = S + A 
 
 
The matrix S describes symmetrical differential deformation and the matrix A (it should not be confused 
with design matrix already introduced) (Mustafa, call it something else.  This looks silly.) describes anti-
symmetrical differential deformation at a point. 
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� describes a differential rotation at the point of interest. As mentioned above, network deformation 
should not depend on the choice of a datum. In Vaní�ek et al. (2001) it is shown that scale change has 
only a second order and thus negligible effect on the deformation matrix, while translations of the datum 
origin and rotations of the coordinate system have no effect at all. 
 

4. COMPUTATION OF DEFORMATION MATRIX AND ROBUSTNESS PRIMITIVES 
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The computation of deformation matrix is given in detail in Vaní�ek et al. (2001). Therefore here only the 
resulting formulae are given. 
 
 
[9] �lCAACATE 111 )( −−−= l

T
l

T
ii  

 
 
If Eq. 1 and Eq. 4 are substituted in Eq. 2, we obtain 
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where Ti is a matrix based upon coordinates of points and connections: -its computation is discussed by  
Vaní�ek et al. (2001). 
 
Then  the primitives are obtained as follows (Vaní�ek et al. 1991; Vaní�ek et al. 2001). 
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5. COMPUTATIONS OF THRESHOLD VALUES FOR ROBUSTNESS PRIMITIVES 
 
After calculating robustness primitives and setting up initial conditions (derivations are not given here) for 
solving the boundary value problem for the network the displacements, the displacement for each point 
can be computed as follows: 
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If we examine the right side of the formula all components of the matrices are known. In this case if we 
assign reasonable values for displacements for the points, and each time set three of the robustness 
primitives to zero, we can calculate a threshold value for each primitive. (Mustafa, this is gibberish!  You 
must describe properly how to set up the BVP and how to solve it.) For example, if we let �=0, �=0 and 
ν=0 and assume the allowable displacement in x (the direction) is10 cm, we can calculate the value for � 
as follows: 
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If we apply the same approach for each primitive, a threshold value for each primitive can be computed. 

6. CONCLUDING REMARKS 
 
To be able to construct and monitor engineering structures (e.g., highways, railways, bridges, dam) 
geodetic networks must be established, measured and evaluated. To obtain reliable results the networks 
has to be  adjusted. For this purpose Baarda’s statistical testing method (data-snooping) or another 
technique is used. To see the effect of outliers that are not detected by Baarda’s test, robustness is 
analysed  is in terms of three independent measures representing robustness in scale, in orientation and 
in configuration called robustness primitives; however, to assess networks properly some acceptable 
threshold values are needed. For this purpose the gradient matrix is defined using robustness primitives 
and initial conditions are formulated. By using these means computing threshold values for robustness 
primitives seems realistic. Calculating threshold values would enable us to talk about the degree of 
robustness of networks. Moreover they should help to design the network. If robustness primitives within 
the designed network go beyond threshold values, we must consider redesigning the network by changing 
the configuration until we obtain a sufficiently robust network. 

7. References 
 
Amouzgar, H. (1994) Geodetic Networks Analysis and Gross Errors, Master of Engineering Thesis, Dept.  
  of Surveying Engineering, University of New Brunswick, Fredericton, Canada. 
Baarda, W. (1968) A testing procedure for use in geodetic networks, Publications on Geodesy,  
  New Series, vol:2, no:5, Netherlands Geodetic Commission, Delft, Netherlands. 
Burford, R.O. (1965) Strain Analysis Across the San Andreas Fault and Coast Ranges of California,  
  Proceedings of the Second Symposium on Recent Crustal Movements, IAG-IUGG, Aulanko, Finland. 
Craymer, M.R., Tarvydas, A. and Vaní�ek P. (1987) NETAN: A Program Package for the Interactive  
  Covariance, Strain and Strength Analysis of Networks, Geodetic Survey of Canada Contract Report 88- 
  003. 
Craymer, M.R., Vaní�ek, P., Krakiwsky, E.J. and Szabo D. (1993) Robustness Analysis: A new method of  
  assessing the strength of geodetic networks, Proc. Surveying and Mapping Conference, 8-11 June,  
  Toronto. 
Craymer, M.R., Vaní�ek, P., Krakiwsky, E.J. and Szabo D. (1993) Robustness Analysis, First Int. Symp.  
  Mathematical and Physical Foundations of Geodesy, 7-9 September, Stuttgart. (Not published, only  
  conference presentation) 
Craymer, M.R., Vaní�ek, P., Ong, P. and Krakiwsky, E.J. (1995) Reliability of Robustness Analysis of  
  Large Geodetic Networks, Proceedings of XXIth General Assembly of the International Union of  
  Geodesy and Geophysics, 3-14 July, Boulder. 
Dare, P. and Vaní�ek, P. (1982) Strength Analysis of Horizontal Networks Using Strain, Proceedings of  
  the Meeting of FIG Study Group 5b, Survey Control Networks, Aalborg University Center, July 7-19, 
  Denmark. 
Dare, P. (1983) Strength Analysis of Horizontal Networks Using Strain, Survey Science Tech. Rep. 2,  
  University of Toronto, Erindale Campus, Mississauga, Ontario. 
Frank, F.C. (1965) On the Deduction of Earth Strains from Survey Data, Unpublished paper. 
Kasahara, K. (1957) The Nature of Seismic Origins as Inferred from Seismological and Geodetic  
  Observations (1), Bull. Earthq. Res. Inst. U. of Tokyo, 35, Part 3, pp.512-530. 
Kasahara, K. (1958a) The Nature of Seismic Origins as Inferred from Seismological and Geodetic  
  Observations (2), Bull. Earthq. Res. Inst. U. of Tokyo, 36, Part 3, pp.21-53. 
Kasahara, K. (1958b) Physical conditions of Earthquake Faults as Deduced from Geodetic Observations,  
  Bull. Earthq. Res. Inst. U. of Tokyo, 36, pp.455-464. 
Kasahara, K. (1964) A Strike-Slip Fault Buried in a Layered Medium, Bull. Earthq. Res. Inst. U. of Tokyo,  
  vol 42, pp.609-619. 
Krakiwsky, E.J., Vaní�ek, P. and Szabo, D. (1993) Further Development and Testing of Robustness  

	�
������computing 

	�
������debugged

	�
������is

	�
������applied and the 
robustness of network is given 

	�
������(are also 

	�
������) are given

	�
������evaluate 



GCI-461-7 

  Analysis, Contract Rep. 93-001, Geodetic Survey Division, Geomatics Canada, Ottowa. 
Krakiwsky, E.J., Vaní�ek, P., Szabo, D. and Craymer, M.R. (1999) Development and Testing of In-Context  
  Confidence Regions for Geodetic Survey Network, Contract Rep. 99-001, Geodetic Survey Division,  
  Geomatics Canada, Ottawa. 
Ong, P.J. (1993) Robustness Analysis for Geodetic Networks, Master of Science Thesis in Engineering,  
  Department of Surveying Engineering, University of New Brunswick, Fredericton, Canada. 
Pope, A. (1966) Strain Analysis of Repeated Triangulation for the Analysis of Crustal Movement, Master  
  of Science Thesis, Department of Geodetic Science, The Ohio State University, Colombus, Ohio, USA. 
Szabo, D., Craymer, M.R., Krakiwsky, E.J. and Vaní�ek, P. (1993) Robustness Measures for Geodetic  
  Networks, Proc. 7th Int. FIG Symp. Deformation Measurements, 3-7 May, Banff, Alberta. 
Thapa, K. (1980) Strain as a Diagnostic Tool to Identify Inconsistent Observations and Constrains in  
  Horizontal Geodetic Networks, Department of Surveying Engineering, Technical Report No:68, UNB,  
  Fredericton, Canada. 
Terada, T. and Miyabe, N. (1929) Deformation of the Earth Crust in Kwansai Districts and its Relation to  
  the Orographic Feature, Bull. Earthq. Res. Inst. U. of Tokyo, 7, Part 2, pp.223-241. 
Vaní�ek, P. and Krakiwsky, E.J. (1986) Geodesy: the concepts, North-Holland, Amsterdam. 
Vaní�ek, P. Krakiwsky, E.J., Craymer, M.R., Gao, Y. and Ong, P. (1991) Robustness Analysis, Contract  
  Rep. 91-002, Geodetic Survey Division, Geomatics Canada, Ottowa. 
Vaní�ek, P., Ong, P., Krakiwsky, E.J. and Craymer M.R. (1996) Application of Robustness Analysis to  
  Large Geodetic Networks, Contract Rep. 96-001, Geodetic Survey Division, Geomatics Canada, Ottowa. 
Vaní�ek, P. and Ong, P. (1992) An Investigation into the Datum Independence Problem in Robustness  
  Analysis, Proceedings of CGU-AGU Joint Annual Meeting, Montreal, Canada. 
Vaní�ek, P., Craymer, M.R. and Krakiwsky, E.J. (2001) Robustness Analysis of Geodetic Horizontal  
  Networks, Journal of Geodesy 75:199-209. 


