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Abstract. When regional gravity data are used to
compute a gravimetric geoid in conjunction with a
geopotential model, it is sometimes implied that the
terrestrial gravity data correct any erroneous wave-
lengths present in the geopotential model. This assertion
is investigated. The propagation of errors from the low-
frequency terrestrial gravity ®eld into the geoid is
derived for the spherical Stokes integral, the spheroidal
Stokes integral and the Molodensky-modi®ed spheroi-
dal Stokes integral. It is shown that error-free terrestrial
gravity data, if used in a spherical cap of limited extent,
cannot completely correct the geopotential model. Using
a standard norm, it is shown that the spheroidal and
Molodensky-modi®ed integration kernels o�er a prefer-
able approach. This is because they can ®lter out a large
amount of the low-frequency errors expected to exist in
terrestrial gravity anomalies and thus rely more on the
low-frequency geopotential model, which currently of-
fers the best source of this information.

Key words. Geoid determination �Modi®ed
kernels �Error propagation �High-pass ®ltering

1 Introduction

Formally, Stokes's integral must be evaluated over the
whole Earth using gravity anomalies that have been
downward-continued to the geoid, which is assumed to be
spherical, to give the gravimetric geoid height (N ) at a
single point. This is

N � j
Z 2p

0

Z p

0

S�w�Dg sinw dw da �1�

wherej � R=�4pc�,R is themeanEarth radius, c is normal
gravity on the reference ellipsoid, �w; a� are the spherical
distance and azimuth, respectively, of each gravity
anomaly (Dg)1 from each computation point, and S�w�
is the spherical Stokes kernel, which is given by an in®nite
Fourier series of Legendre polynomials, Pn�cosw�, as

S�w� �
X1
n�2

2n� 1

nÿ 1
Pn�cosw� �2�

The orthogonality relations between Legendre polyno-
mials over the sphere allow Eq. (1) to be expressed in its
spectral form as

N � c
X1
n�2

2

nÿ 1
Dgn �3�

where c � R=�2c� and Dgn is the n-th degree surface
spherical harmonic of the gravity anomalies. In practice,
these are computed using a set of fully normalised
potential coe�cients that de®ne a global geopotential
model, such that

DgG
n �

GM
r2

a
r

� �n
�nÿ 1�

Xn

m�0
�dCnm cosmk� Snm sinmk�

� P nm�cos h� �4�
where GM is the product of the Newtonian gravitational
constant and mass of the Earth, a is the equatorial radius
of the reference ellipsoid, (r; h; k) are the geocentric polar
coordinates of each computation point, dCnm and Snm are
the fully normalised potential coe�cients of degree n and
order m, which have been reduced by the even zonal
harmonics of the reference ellipsoid, and P nm�cos h� are
the fully normalised associated Legendre functions.

Using Eq. (4) in Eq. (3) for the region 2 � n � M
gives the low-frequency contribution of the potential
coe�cients to the geoid as

1The derivation or exact kind of gravity anomalies are not dis-
cussed in this paper.
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NM � c
XM
n�2

2

nÿ 1
DgG

n

� GM
rc

XM
n�2

a
r

� �nXn

m�0
�dCnm cosmk

� Snm sinmk�P nm�cos h�

�5�

where M is the degree of some spherical harmonic
expansion of the geopotential model.

The incomplete global coverage of terrestrial gravity
data has driven the use of a geopotential model in the
determination of the geoid. This has been called the
generalised Stokes scheme by VanõÂ cÏ ek and SjoÈ berg
(1991). Such an approach reduces the e�ect of not using a
global coverage of terrestrial gravity data and also re-
duces the impact of the spherical approximations inher-
ent to Stokes's formula (Heiskanen and Moritz 1967, p.
97). The latter is achieved because most of the geoid's
power is contained within the low frequencies; see Eq. (3).

However, the combination of a geopotential model
with terrestrial gravity data in a spherical cap of limited
extent via Stokes's integral is sometimes presented in a
way that implies that the terrestrial gravity data improve
any errors present in the geopotential model (e.g. Sideris
and Schwarz 1987). This assertion is examined in this
paper by comparing three implementations of Stokes's
integration when combined with a geopotential model.
These comprise the use of the spherical Stokes kernel
(Eq. 2), the spheroidal Stokes kernel and the Moloden-
sky modi®ed Stokes kernel (VanõÂ cÏ ek and Kleusberg
1987). Other modi®cations to Stokes kernel exist, such
as those of Meissl (1971), SjoÈ berg (1984, 1986, 1991),
Heck and GruÈ ninger (1987), VanõÂ cÏ ek and SjoÈ berg
(1991), and Featherstone et al. (1998), but they will not
be discussed here for lack of space. However, they will
be discussed in a sequel to this paper, which is currently
in preparation.

By transforming these Stokes's integrals to the fre-
quency domain, in terms of surface spherical harmonics,
it will be shown that when the terrestrial gravity
anomalies are used from a region of limited extent, they
can only correct the low-frequency errors present in the
geopotential model to a limited extent. It will also be
shown that the impact on the geoid of the low-frequency
errors, known to be present in the terrestrial gravity
anomalies, can be reduced when the spheroidal or Mo-
lodensky-modi®ed forms of Stokes's integral are used.

2 The spherical Stokes kernel

Many authors combine a global geopotential model ±
typically to maximum degree and order M � 360 ± with
regional gravity data using the spherical Stokes kernel,
Eq. (2). In this instance, the geoid is estimated via

N1 � NM � j
Z 2p

0

Z wo

0

S�w�DgM sinw dw da �6�

where the Stokes integration is performed over a limited
surface spherical cap bound by wo. This also uses only the

high-frequency gravity anomalies (DgM ), which are ter-
restrial gravity anomalies (DgT ) that have been reduced by
the gravity anomalies implied by a geopotential model
(DgG) of spherical harmonic degree and order (M)
according to

DgM � DgT ÿ
XM
n�2

DgG
n �7�

One objective of this paper is to express Eq. (6) completely
in a spectral form, using spherical harmonics, so that the
propagation of errors into the geoid from the two sources
of gravity ®eld information may be investigated. In order
to achieve this in a straightforward manner, the spherical
Stokes kernel, Eq. (2) as used in Eq. (6) is expressed as

S�w;wo� � S�w� for 0 � w � wo
0 for wo < w � p

�
�8�

As with Eq. (2), Eq. (8) can be expressed as an in®nite
Fourier series of Legendre polynomials by

S�w;wo� �
X1
n�2

2n� 1

2
sn�wo�Pn�cosw� �9�

where sn�wo� are coe�cients which will be derived later in
this section.

Using Eq. (8) in Eq. (6) yields an identical relation-
ship to Eq. (6), except that the integration domain is
now over the whole Earth (sphere), viz.

N1 � NM � j
Z 2p

0

Z p

0

S�w;wo�DgM sinw dw da �10�

Equations (5) and (9) are substituted in Eq. (10), and then
using the orthogonality relations to replace the integral
term yields

N1 � c
XM
n�2

2

nÿ 1
DgG

n � c
XM
n�2

sn�wo�DgM
n

� c
X1

n�M�1
sn�wo�DgM

n

�11�

The preceding mathematical development has disre-
garded the fact that all the gravity anomaly harmonics
used are only estimates of their true values, due to the
existence of measurement and data reduction errors, for
instance. Therefore, the gravity anomalies used in
Eq. (11) must be replaced by their estimates from the
geopotential model (DĝG

n ) and the terrestrial gravity
observations (DĝT

n ). As the terrestrial gravity data have
already been reduced by the geopotential model [ac-
cording to Eq. (7)], this gives the estimate of the geoid as

N̂1 � c
XM
n�2

2

nÿ 1
DĝG

n � c
XM
n�2

sn�wo��DĝT
n ÿ DĝG

n �

� c
X1

n�M�1
sn�wo�DĝT

n

�12�
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From Eq. (12), it is evident that the propagation of
errors into the geoid from the geopotential model and
terrestrial gravity data is controlled, in part, by the co-
e�cients sn�wo�. Therefore, it is important to have a
knowledge of their magnitudes. This can be achieved
through a rearrangement of Eq. (9) using the orthogo-
nality relations over the sphere, such that

sn�wo� �
Z p

0

S�w;wo�Pn�cosw� sinw dw �13�

Introducing the spherical (Molodensky et al. 1962)
truncation coe�cients

Qn�wo� �
Z p

wo

S�w�Pn�cosw� sinw dw �14�

and using these, together with the relation of Eq. (8), in
Eq. (13) yields

sn�wo� �
Z p

0

S�w�Pn�cosw� sinw dwÿ Qn�wo�

� 2

nÿ 1
ÿ Qn�wo� 8n � 2

�15�

Substituting this result in Eq. (12) produces

N̂1 � c
XM
n�2

Qn�wo�DĝG
n �

2

nÿ 1
ÿ Qn�wo�

� �
DĝT

n

� �

� c
X1

n�M�1

2

nÿ 1
ÿ Qn�wo�

� �
DĝT

n

�16�

Next, the degree-errors in the geopotential model-
derived gravity anomalies (�G

n ) and the terrestrial gravity
anomalies (�T

n ) are introduced into Eq. (16) to yield

N̂1 � c
XM
n�2

h
Qn�wo�fDgG

n � �G
n g

� 2

nÿ 1
ÿ Qn�wo�

� �
DgT

n � �T
n

� 	i
� c

X1
n�M�1

2

nÿ 1
ÿ Qn�wo�

� �
DgT

n � �T
n

� 	 �17�
where the superscripts G and T are retained simply to
indicate the source of the gravity anomalies. Subtract-
ing Eq. (3) from Eq. (17) 8n � 2 leaves the error that
occurs in the geoid (�N1) when terrestrial gravity
anomalies and geopotential coe�cients are combined
to compute the geoid using the approach given in
Eq. (6). This is

�N1 � c
XM
n�2

2

nÿ 1
�T

n � Qn�wo� �G
n ÿ �T

n

ÿ �� �

� c
X1

n�M�1

2

nÿ 1
�T

n ÿ Qn�wo�DgT
n ÿ Qn�wo��T

n

� �
�18�

For convenience during the subsequent comparisons,
Eq. (18) is rewritten so as to distinguish the error
contribution to the geoid from the errors in the ter-
restrial gravity data, errors in the geopotential coe�-
cients, and the truncation error associated with the
limited integration domain (wo) in Eq. (6), respectively.
This gives

�N1 � c
X1
n�2

2

nÿ 1
ÿ Qn�wo�

� �
�T

n � c
XM
n�2

Qn�wo��G
n

ÿ c
X1

n�M�1
Qn�wo�DgT

n

�19�

The truncation error, or remote zone contribution,
comprises the last term in Eq. (19), and represents a bias
that must be considered when using Eq. (6) to compute
the geoid. It results from the neglect of high-frequency
(n > M) gravity anomalies in the remote zones outside the
integration domain (wo < w � p). As this discussion is
only concerned with the question of how the terrestrial
gravity data can attenuate any errors in the geopotential
model, the truncation error term need not be considered
as it only a�ects the high-frequency gravity ®eld.

Figure 1a shows the magnitudes of the coe�cients
that control the propagation of the degree-errors from
the geopotential model (�G

n ) and the terrestrial gravity
anomalies (�T

n ) through Eq. (19) in relation to the ge-
neric 2=�nÿ 1� term [cf. Eq. (3)]. This generic term
shows how the errors propagate if the original Stokes
integral, Eq. (1), is used to compute the geoid. The
spherical truncation coe�cients, Eq. (14), were com-
puted using the recursive routines of Paul (1973). The
values of M � 360 and wo � 6� were chosen as they
provide a representative example to show the relative
magnitude of the terms in Eq. (19).

In Fig. 1a, the dominance of the generic 2=�nÿ 1�
term, which is asymptotic, tends to obscure the be-
haviour of the coe�cients in the high degrees. There-
fore, a normalisation has been used to produce Fig. 1b,
where each coe�cient is multiplied by �nÿ 1�=2; the
inverse of the so-called generic term. In Fig. 1b, the
generic term becomes unity, the spherical truncation
coe�cients that apply to error in the geopotential
model (�G

n ) oscillate about zero, and the coe�cients that
apply to the terrestrial gravity data errors (�T

n ) oscillate
about unity. This form of presentation allows a clearer
comparison among the three approaches investigated
(see later).

2.1 Special cases of Eq. (19)

Next, three special cases of Eq. (19) are considered. The
®rst is for integration of Eq. (6) over the whole Earth (i.e.
wo � p), where the spherical truncation coe�cients re-
duce to Qn�p� � 0, 8n � 2. This can be proven from
Eq. (14) using the orthogonality relations between Leg-
endre polynomials over the sphere. Thus,Eq. (19) reduces
to
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�N1 � c
X1
n�2

2

nÿ 1
�T

n �20�

Equation (20) shows that when terrestrial gravity data are
used over the whole Earth in Eq. (6), the resulting error in
the geoid is controlled entirely by the generic 2=�nÿ 1�
term, as if the original Stokes formula, Eq. (1), had been
used over thewholeEarth [cf. Eqs. (20) and (3)].Note also
that the truncation error reduces to zero in this instance,
as would be expected. Curiously, this result is equivalent
to completely disregarding the geopotential model during
the geoid computations.

In the case of no Stokes integration [i.e. wo � 0 in
Eq. (6)], the spherical truncation coe�cients attain their
maximum value of Qn�0� � 2

nÿ1, 8n � 2. Again, this can
be proven from Eq. (14) in conjunction with the or-
thogonality relations between Legendre polynomials
over the sphere. Thus, Eq. (19) becomes

�N1 � c
XM
n�2

2

nÿ 1
�G

n ÿ c
X1

n�M�1

2

nÿ 1
DgT

n �21�

where the truncation error [second term on the right-hand
side of Eq. (21)] attains its maximum value, and the error
from the geopotential passes undiminished into the geoid
according to the generic 2=�nÿ 1� term. This result gives
an error equivalent to using only the geopotential model
to compute the geoid [cf. Eqs (21) and (5)]. Also, the
truncation error term in Eq. (21) is equal to the omission
error of the geopotential model.

When an error-free geopotential model is considered
(i.e. �G

n � 0 for 2 � n � M), together with the Stokesian
integration over a cap bound by wo, Eq. (19) reduces to

�N1 � c
X1
n�2

2

nÿ 1
ÿ Qn�wo�

� �
�T

n

ÿ c
X1

n�M�1
Qn�wo�DgT

n

�22�

Equation (22) shows that the terrestrial gravity data
errors propagate into the geoid 8n � 2, and are controlled
by the coe�cients 2=�nÿ 1� ÿ Qn�wo�� �; see Fig. 1a, b.
Therefore, even if the geopotential model is error-free, the
inclusion of terrestrial gravity data via Eq. (6) allows low-
frequency (2 � n � M) terrestrial gravity anomaly errors
to leak into the solution and thus degrade the geoid in this
region.

3 The spheroidal Stokes kernel

The spherical Stokes kernel, Eq. (2), used inEq. (6) is now
replaced by its spheroidal counterpart. This is referred to
as the spheroidal Stokes kernel byVanõÂ cÏ ek andKleusberg
(1987) and VanõÂ cÏ ek and SjoÈ berg (1991). In this approach,
the low-degree Legendre polynomials (2 � n � M) are
removed from the spherical Stokes kernel to yield

SM �w� � S�w� ÿ
XM
n�2

2n� 1

nÿ 1
Pn�cosw�

�
X1

n�M�1

2n� 1

nÿ 1
Pn�cosw�

�23�

Using this spheroidal kernel gives the estimate of the
geoid as

N2 � NM � j
Z 2p

0

Z wo

0

SM �w�DgM sinwdwda �24�

Note that in Eq. (24), the degree of the spheroidal kernel
has been chosen to equal the degree by which the
terrestrial gravity anomalies have been reduced
[Eq. (7)]. In this discussion, the spheroidal kernel is used
as the intrinsic kernel for the combination of a global
geopotential model of degree M with terrestrial gravity
data (cf. VanõÂ cÏ ek and SjoÈ berg 1991). Thus, the spheroidal
kernel should not be regarded as a modi®ed kernel.

Fig. 1. a The generic 2=�nÿ 1� term 8n � 2 (solid line), the spherical
truncation coe�cients Qn�6�� for 2 � n � 360 (dashed line), and their
di�erence 2=�nÿ 1� ÿ Qn�6��� � for n � 2 (dotted line). b The
normalised spherical truncation coe�cients ��nÿ 1�=2�Qn�6��� for
2 � n � 360 (dashed line), and their normalised di�erence
��nÿ 1�=2� 2=�nÿ 1� ÿ Qn�6��� � for n � 2 (dotted line)
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However, this does not preclude the use of a di�erent
degree L �� M� in Eq. (23), which could then be
considered as a spheroidally modi®ed kernel (e.g. Wong
and Gore 1969).

Using an approach similar to that applied to Eq. (2),
the spheroidal Stokes kernel, Eq. (23), is rewritten as

S
M�w;wo� � SM �w� for 0 � w � wo

0 for wo < w � p

�
�25�

or as an in®nite Fourier series of Legendre polynomials by

S
M�w;wo� �

X1
n�2

2n� 1

2
sM

n �wo�Pn�cosw� �26�

where sM
n �wo� are coe�cients associated with the spheroi-

dal kernel, which will be determined later in this section.
Using the de®nition in Eq. (25), the spheroidal

Stokes integral in conjunction with the geopotential
model, Eq. (24), is now given by the following integra-
tion over the whole Earth.

N2 � NM � j
Z 2p

0

Z p

0

S
M �w;wo�DgM sinw dw da �27�

Substituting Eqs. (5) and (26) in Eq. (27), then using the
orthogonality relations over the sphere, gives its spectral
form as

N2 � c
XM
n�2

2

nÿ 1
DgG

n � c
XM
n�2

sM
n �wo�DgM

n

� c
X1

n�M�1
sM

n �wo�DgM
n

�28�

which is analogous with Eq. (11).
The estimates of the spectral components (surface

spherical harmonics) of the gravity anomalies implied by
the geopotential model (DĝG

n ) and the terrestrial gravity
data (DĝT

n ) are inserted into Eq. (28) to give

N̂2 � c
XM
n�2

2

nÿ 1
ÿ sM

n �wo�
� �

DĝG
n � sM

n �wo�DĝT
n

� �
� c

X1
n�M�1

sM
n �wo�DĝT

n

�29�

For the spheroidal Stokes integral, Eq. (24), the propa-
gation of errors into the geoid from the terrestrial gravity
data and geopotential model are now governed by the
coe�cients sM

n �wo�. These are therefore derived by
rearranging Eq. (26), in conjunction with the orthogo-
nality relations, to give

sM
n �wo� �

Z p

0

S
M �w;wo�Pn�cosw� sinw dw �30�

The spheroidal truncation coe�cients [cf. Eq. (14)] are
de®ned by VanõÂ cÏ ek and Kleusberg (1987) as

QM
n �wo� �

Z p

wo

SM �w�Pn�cosw� sinw dw

� Qn�wo� ÿ
Z p

wo

XM
k�2

2k � 1

k ÿ 1
Pk�cosw�

� Pn�cosw� sinwdw

�31�

The relations given by Eqs. (23), (25) and (31) are then
used in Eq. (30) to yield

sM
n �wo� �

X1
n�M�1

2n� 1

nÿ 1

Z p

0

�Pn�cosw��2 sinw dw

ÿ QM
n �wo�

or

sM
n �wo� � ÿQM

n �wo� for 2 � n � M
2

nÿ1ÿ QM
n �wo� for M < n <1

�
�32�

when using the orthogonality relations.
Inserting this result in Eq. (29), together with the de-

gree-errors in the geopotential model-derived gravity
anomalies (�G

n ) and terrestrial gravity anomalies (�T
n ), gives

N̂2 � c
XM
n�2

"
2

nÿ 1
� QM

n �wo�
� �

DgG
n � �G

n

� 	
ÿ QM

n �wo� DgT
n � �T

n

� 	#

� c
X1

n�M�1

2

nÿ 1
ÿ QM

n �wo�
� ��

DgT
n � �T

n

�
�33�

Again, the superscripts G and T are retained to show the
origin of the gravity anomalies used. A comparison of
Eq. (33) with Eq. (3) indicates the error in the geoid that
now occurs when using the spheroidal Stokes integral in
conjunction with a global geopotential model [Eq. (24)].
This is

�N2 � c
XM
n�2

2

nÿ 1
�G

n � QM
n �wo� �G

n ÿ �T
n

ÿ �� �
� c

X1
n�M�1

2

nÿ 1
�T

n ÿ QM
n �wo�DgT

n ÿ QM
n �wo��T

n

� �
�34�

As was done for Eq. (19), Eq. (34) is divided among
the error contributions from the geopotential model, the
terrestrial gravity data, and the truncated integration
domain, respectively, to give

�N2 � c
XM
n�2

2

nÿ 1
� QM

n �wo�
� �

�G
n

ÿ c
XM
n�2

QM
n �wo��T

n � c
X1

n�M�1

2

nÿ 1
ÿ QM

n �wo�
� �

�T
n

ÿ c
X1

n�M�1
QM

n �wo�DgT
n �35�
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Figure 2 shows the numerical values of the coe�-
cients in Eq. (35) that control the propagation of the
degree-errors from the geopotential model (�G

n ) and the
terrestrial gravity anomalies (�T

n ). All coe�cients have
been normalised by the �nÿ 1�=2 term. Again, the val-
ues of M � 360 and wo � 6° have been chosen to show a
representative case of the coe�cients' behaviour, and to
allow for a direct comparison with Figs. 1b and 4.

An important point to observe from Fig. 2 is that the
numerical values of the QM

n �wo� coe�cients become
unstable in the vicinity of M � 360. This is a conse-
quence of the Gibbs phenomenon, where the spherical
Stokes kernel is made discontinuous by the removal of
the Legendre polynomials. This e�ect is actually quite
small, but has been enhanced by the normalisation of
�nÿ 1�=2 used purely for the sake of the presentation of
the ®gures.

The truncation error [the last term on the right-hand
side of Eq. (35)] must clearly also be considered when
the spheroidal Stokes integral, Eq. (24), is used to
compute the geoid. However, the impact of this term is
reduced because jQM

n �wo�j < jQn�wo�j for most of the
degrees n > 360 (cf. Figs. 1b, 2, and also see Fig. 3).
Therefore, one of the bene®ts of using the spheroidal
Stokes kernel is that it reduces the magnitude of the
truncation error.

There are also other di�erences between Eqs. (35)
and (19), which can be seen by comparing Figs. 1b and
2, as follows.

1. The propagation of errors from the geopotential
model (�G

n ) is attenuated less than for the spherical
kernel because���1� nÿ 1

2
QM

n �wo�
��� > ��� nÿ 1

2
Qn�wo�

���
for most degrees in the region 2 � n < � 320. As
such, the errors pass from the geopotential model into

the geoid with a greater magnitude for the spheroidal
kernel than for the spherical kernel. This provides the
rationale for using a low-degree geopotential model
when computing the geoid.

2. Conversely, the low- and medium-frequency errors in
the terrestrial gravity data are attenuated to a greater
extent when using the spheroidal kernel than for the
spherical Stokes kernel. This is because

��� nÿ 1

2
QM

n �wo�
��� < ���1ÿ nÿ 1

2
Qn�wo�

���
for most degrees in the region 2 � n <�320. As such,
the low-frequency errors in the terrestrial gravity data
pass into the geoid with a lower magnitude for the
spheroidal kernel than for the spherical kernel.

It is argued that this combination o�ers a preferable
scenario because the low-frequency errors in the geo-
potential model are expected to be smaller in magnitude
than those in the terrestrial gravity anomalies. This is
because the low-frequency geopotential coe�cients are
determined from the perturbations of arti®cial Earth
satellites, which are the best source of this information
available. On the other hand, terrestrial gravity data
su�er from the existence of inconsistencies between
vertical datums, systematic errors in geodetic levelling
networks used to reduce the gravity observations, and
irregular data coverage with some large areas devoid of
data. These and other systematic, low-frequency e�ects
on the accuracy of terrestrial gravity anomalies are de-
scribed in more detail by Heck (1990).

3.1 Special cases of Eq. (35)

As was done for Eq. (19), three special cases of Eq. (35)
are considered as follows. When the spheroidal Stokes

Fig. 2. The normalised spheroidal truncation coe�cients
��nÿ 1�=2�Q360

n �6�� for 2 � n � 360 (dashed line), the sum
1� ��nÿ 1�=2�Q360

n �6��
ÿ �

for 2 � n � 360 (dotted line), and the
di�erence 1ÿ ��nÿ 1�=2�Q360

n �6��
ÿ �

for n > 360 (solid line)

Fig. 3. The normalised truncation coe�cients in the region
360 � n � 720 for the spherical Stokes kernel Qn�6�� (solid line),
the spheroidal Stokes kernel Q360

n �6�� (dotted line) and the L � 20
Molodensky-modi®ed spheroidal Stokes kernel Q360�

n �6�� (dashed
line)
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integration is performed over the whole Earth [i.e. wo � p
in Eq. (24)], the spheroidal truncation coe�cients
QM

n �wo� � 0, 8n � 2, and Eq. (35) becomes

�N2 � c
XM
n�2

2

nÿ 1
�G

n � c
X1

n�M�1

2

nÿ 1
�T

n �36�

This result shows that the errors in the geopotentialmodel
and the terrestrial gravity data both pass undiminished
into the geoid, for the low and high frequencies, respec-
tively. When Eq. (36) is compared with Eq. (20), this
clearly shows the high-pass ®ltering property of the
spheroidal kernel, where the spheroidal kernel is insensi-
tive to the low frequencies in the terrestrial gravity ®eld.
However, this ability of the kernel to completely ®lter out
the low frequencies breaks down when using a spherical
cap of limited radius wo due to the presence of the QM

n �wo�
coe�cients in Eq. (35).

As argued earlier, the low-frequency errors in the
geopotential model are expected to be smaller than those
in the terrestrial gravity anomalies. This provides a clear
rationale for the use of at least a low-degree spheroidal
Stokes kernel, such that the undesirable e�ect of low-
frequency errors in the terrestrial gravity data on the
geoid is suppressed as much as possible.

For the case of no integration [i.e. wo � 0 in Eq. (24)],
the spheroidal truncation coe�cients QM

n �wo� � 0,
8n � 2, and Eq. (35) becomes

�N2 � c
XM
n�2

2

nÿ 1
�G

n � c
X1

n�M�1

2

nÿ 1
DgT

n �37�

where the truncation error reaches itsmaximumvalue (i.e.
it is equal to the omission error of the geopotentialmodel),
and the error in the geopotential coe�cients again passes
undiminished into the geoid. Equation (37) is identical to
Eq. (21) and is equivalent to using only the geopotential
model to compute the geoid.

When an error-free geopotential model is considered
(i.e. �G

n � 0 for 2 � n � M), together with the spheroidal
Stokesian integration over a limited spherical cap bound
by wo, then Eq. (35) becomes

�N2 � c
XM
n�2

QM
n �wo� �T

n ÿ c
X1

n�M�1

2

nÿ 1
ÿ QM

n �wo�
� �

�T
n

ÿ c
X1

n�M�1
QM

n �wo�DgT
n �38�

In this result, the low-frequency errors in the terrestrial
gravity data also leak into the low-frequency geoid.
However, their e�ect is now attenuated by the coe�cients
QM

n �wo�. This represents a greater amount of attenuation
than for the spherical Stokes integral [cf. Eqs. (38) and
(22)] because��� nÿ 1

2
QM

n �wo�
��� < ���1ÿ nÿ 1

2
Qn�wo�

���

for most degrees in the region 2 � n <�320. This is
evident by comparing Figs. 1b and 2, and again illustrates
that it is preferable to use a spheroidal Stokes's integral in
the presence of low-frequency errors in the terrestrial
gravity data (see earlier arguments).

4 The Molodensky-modi®ed spheroidal Stokes kernel

Equation (6) is now used in conjunction with the
Molodensky-modi®ed spheroidal Stokes kernel [SM��w�]
according to the generalised scheme described byVanõÂ cÏ ek
and SjoÈ berg (1991), such that

N3 � NM � j
Z 2p

0

Z wo

0

SM��w�DgM sinw dw da �39�

where SM��w� is the Molodensky-modi®ed spheroidal
Stokes kernel given by VanõÂ cÏ ek and Kleusberg (1987).
This type of kernel modi®cation was designed speci®cally
to reduce the upper bound of the truncation error in a
least-squares sense (VanõÂ cÏ ek and SjoÈ berg 1991).

The degree of modi®cation to the kernel (L) can be
less or equal to the degree of spheroid used (M).
However, it can never be greater than the degree of the
spheroid, since this violates the boundary value prob-
lem and thus requires the inclusion of an additional
term. This term will not be discussed in this paper.
Therefore, the degree of modi®cation (L � M) is in-
troduced to give

SM��w� � SM �w� ÿ
XL

k�2

2k � 1

2
tk�wo�Pk�cosw� �40�

where tk�wo� are the coe�cients that are used to apply the
spheroidal Molodensky modi®cation. These are deter-
mined for 2 � n � L using the following linear system of
equations (VanõÂ cÏ ek and Kleusberg 1987):XL

k�2

2k � 1

2
tk�wo�enk�wo� � QL

n�wo�

� Qn�wo� ÿ
XL

k�2

2k � 1

k ÿ 1
enk�wo�

�41�
where the coe�cients

enk�wo� �
Z p

wo

Pn�cosw�Pk�cosw� sinw dw �42�

Also note that in the region 2 � n � L;Eq. (41) is equal to
Eq. (31). It is therefore acknowledged that the expression
for the tk�wo� coe�cients shown by VanõÂ cÏ ek and SjoÈ berg
(1991) has a typographical error in the denominator,
where 2 is used instead of �k ÿ 1�. However, the de®nition
derived herein and the original de®nition shown in
VanõÂ cÏ ek and Kleusberg (1987) are correct.

As for the previous two implementations of Stokes's
integral, the Molodensky-modi®ed spheroidal Stokes
kernel in Eq. (40) is rewritten as
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S
M��w;wo� � SM��w� for 0 � w � wo

0 for wo < w � p

�
�43�

and the corresponding Fourier series of Legendre poly-
nomials is

S
M��w;wo� �

X1
n�2

2n� 1

2
sM�

n �wo�Pn�cosw� �44�

where sM�
n are the coe�cients associatedwith thismodi®ed

kernel, and will be de®ned later in this section.
Using the same procedures as for the spherical and

spheroidal Stokes kernels, Eq. (39) is transformed to a
spectral form, then the estimates of the gravity anoma-
lies as implied by the geopotential model (DĝG

n ) and
terrestrial gravity data (DĝT

n ) are inserted, to give

N̂3 � c
XM
n�2

h 2

nÿ 1
ÿ sM�

n �wo�
� �

DĝG
n

� sM�
n �wo�DĝT

n

i
� c

X1
n�M�1

sM�
n �wo�DĝT

n

�45�

Equation (45) shows that the propagation of errors
through Eq. (39) is now controlled by the coe�cients
sM�

n �wo�. Therefore, these coe�cients are derived by re-
arranging Eq. (40) in conjunction with the orthogonality
relations to give

sM�
n �wo� �

Z p

0

S
M��w;wo�Pn�cosw� sinw dw �46�

The Molodensky-modi®ed spheroidal truncation coe�-
cients [QM�

n �wo�] are de®ned by VanõÂ cÏ ek and Kleusberg
(1987) as

QM�
n �wo� �

Z p

wo

SM��w�Pn�cosw� sinw dw �47�

[cf. Eqs. (14) and (31)]. Inserting Eqs. (47) and (43) in
Eq. (46) gives

sM�
n �wo� �

Z p

0

SM��w�Pn�cosw� sinw dwÿ QM�
n �wo�

�48�
Then, substituting Eq. (40) for theMolodensky-modi®ed
Stokes kernel, recalling that L � M , gives

sM�
n �wo� �

Z p

0

SM�w�Pn�cosw� sinw dw

ÿ
XM
k�2

2k � 1

2

Z p

0

tk�w0�Pk�cosw�Pn�cosw�

� sinw dw

ÿ QM�
n �wo� �49�

Using the de®nition in Eq. (23) and the orthogonality
relations to replace the integral terms in Eq. (49), then
separating the low- (2 � n � L), medium- (L < n � M)
and high-frequency (M � n <1) components, gives

sM�
n �wo� �

ÿtn�wo� ÿ QM�
n �wo� for 2 � n � L

ÿQM�
n �wo� for L < n � M

2
nÿ1ÿ QM�

n �wo� for M < n <1

8>><>>:
�50�

By de®nition, the Molodensky-modi®ed spheroidal
truncation coe�cients QM�

n �wo� are zero in the region
2 � n � L [cf. Eqs. (41) and (47) herein, or Eqs. (38) and
(22) of VanõÂ cÏ ek and SjoÈ berg (1991)]. Therefore, the
sM�

n �wo� coe�cients are given by

sM�
n �wo� �

ÿtn�wo� for 2 � n � L

ÿQM�
n �wo� for L < n � M

2
nÿ1ÿ QM�

n �wo� for M < n <1

8>><>>: �51�

Using this result and dividing the contribution among the
three frequency bands, Eq. (45) becomes

N̂3 � c
XL

n�2

"
2

nÿ 1
� tn�wo�

� �
DĝG

n ÿ tn�wo�DĝT
n

#

� c
XM

n�L�1

"
2

nÿ 1
� QM�

n �wo�
� �

DĝG
n ÿ QM�

n �wo�DĝT
n

#

� c
X1

n�M�1

2

nÿ 1
ÿ QM�

n

� �
DĝT

n �52�

Next, the degree-errors in the geopotential model-
derived gravity anomalies (�G

n ) and the terrestrial gravity
anomalies (�T

n ) are introduced into Eq. (52), the terms
expanded, and Eq. (3) subtracted. As before, the error is
then divided among the contribution from the geopo-
tential model, the terrestrial gravity data and the trun-
cation error. This leaves the error in the geoid that
occurs when using the Molodensky-modi®ed spheroidal
Stokes formula [Eq. (39)] as

�N3 � c
XL

n�2

2

nÿ 1
� tn�wo�

� �
�G

n

� c
XM

n�L�1

2

nÿ 1
� QM�

n �wo�
� �

�G
n

ÿ c
XL

n�2
tn�wo��T

n ÿ c
XM

n�L�1
QM�

n �wo��T
n

� c
X1

n�M�1

2

nÿ 1
ÿ QM�

n �wo�
� �

�T
n

ÿ c
X1

n�M�1
QM�

n �wo�DgT
n

�53�
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The last term on the right-hand side of Eq. (53)
comprises the truncation error. Its impact has been
minimised by VanõÂ cÏ ek and Kleusberg (1987) according
to the Molodensky et al. (1962) argument. This is be-
cause jQM�

n �wo�j < jQM
n �wo�j < jQn�wo�j for most of the

degrees n > �400 (see Fig. 3), and is supported further
by the numerical results shown later in Table 1.

Figure 4 shows the behaviour of the coe�cients that
control the error propagation when using the Mo-
lodensky-modi®ed spheroidal Stokes kernel [Eq. (40)].
The values of wo � 6� and M � 360 have been used for
consistency, and the value of L � 20 has been used for
the degree of Molodensky modi®cation. The rationale
for this degree of kernel modi®cation has already been
given by VanõÂ cÏ ek and Kleusberg (1987), and will not be
duplicated here. Theoretically, however, it does not
matter what degree of kernel modi®cation is used to
produce Fig. 4, provided that L is never greater than M .

From Fig. 4, the low-frequency (2 � n � 20) errors in
the geopotential model (�G

n ) now pass into the geoid with
a slightly greater magnitude than for the spherical kernel
because���1� nÿ 1

2
tn�wo�

��� > ��� nÿ 1

2
Qn�wo�

���
(cf. Figs. 1b and 4 for 2 � n � 20). Conversely, the
amount of error propagation is less than that associated
with the spheroidal Stokes kernel because���1� nÿ 1

2
tn�wo�

��� < ���1ÿ nÿ 1

2
Qn�wo�

���
(cf. Figs. 2 and 4 for some of the degrees in the region
2 � n � 20). Based on the earlier arguments, this is not
critical because the geopotentialmodel is currently always
the best source of low-frequency gravity ®eld information.

Also from Fig. 4, the very low-frequency terrestrial
gravity data errors are also attenuated more when using
the Molodensky-modi®ed spheroidal kernel compared
to the spherical Stokes kernel. This is because��� nÿ 1

2
tn�wo�

��� < ���1ÿ nÿ 1

2
Qn�wo�

���
(cf. Figs. 1b and 4 for 2 � n � 20). However, the amount
of attenuation is not as great as that for the spheroidal
Stokes kernel, because jtn�wo�j > jQn�wo�j (cf. Figs. 2 and
4 for 2 � n � M). This is a direct consequence of
minimising the truncation error using the Molodensky
approach, and allows for more leakage of very low-
frequency terrestrial gravity data errors into the geoid.
Nevertheless, the amount of leakage is still much less than
that associated with the spherical Stokes kernel.

Next, it is interesting to see what e�ect the L � 20
Molodensky modi®cation has on the medium frequen-
cies (2 � n � 360) in the geopotential model and the
terrestrial gravity data. Compared to the spherical ker-
nel, the Molodensky-modi®ed spheroidal kernel atten-
uates more of the geopotential model error. This is
because

��� nÿ 1

2
QM�

n �wo�
��� < ���1ÿ nÿ 1

2
Qn�wo�

���
(cf. Figs. 1b, 4). Similarly, the Molodensky-modi®ed
spheroidal kernel attenuates more of the geopotential
model error because��� nÿ 1

2
QM�

n �wo�
��� < ���1� nÿ 1

2
QM

n �wo�
���

(cf. Figs. 2, 4).
When considering the propagation of medium-fre-

quency terrestrial gravity data errors (21 � n � 360), the
Molodensky-modi®ed spheroidal kernel attenuates
more error than the spherical Stokes kernel. This can be
seen by comparing Figs. 1b and 4. Conversely, the
Molodensky-modi®ed spheroidal kernel attenuates less
error than the spheroidal Stokes kernel, because
jQM�

n �wo�j > jQM
n �wo�j for most degrees in the region

21 � n < �320 that is una�ected by the Gibbs phe-
nomenon in the spheroidal kernel (cf. Figs. 2, 4). A
numerical comparison of these e�ects will be given later
in the paper, that supports the statements made here.

Another interesting point is that the Molodensky-
modi®ed spheroidal kernel is less a�ected by the Gibbs
phenomenon about M � 360. This is because the ap-
plication of the modi®cation makes the kernel a more
continuous function that is very much less sensitive to
this e�ect.

4.1 Special cases of Eq. (52)

When integration of Eq. (39) is performed over the whole
Earth (i.e.wo � p), the coe�cients tn�wo� � QM�

n �wo� � 0,
8n � 2. Thus, Eq. (53) becomes

�N3 � c
XM
n�2

2

nÿ 1
�G

n � c
X1

n�M�1

2

nÿ 1
�T

n �54�

which is an identical result to Eq. (36), where the errors in
the geopotential model and terrestrial gravity data pass
undiminished into the geoid. Based on the earlier
arguments that j�T

n j > j�G
n j for the very low frequencies,

it is thus preferable to use a low-degree geopotential
model to provide the low-frequency component of the
geoid.

In the case of no integration [i.e. wo � 0 in Eq. (39)],
tn�wo� � QM�

n �wo� � 2
nÿ1, 8n � 2. This yields the same

result as Eqs. (21) and (37), speci®cally

�N3 � c
XM
n�2

2

nÿ 1
�G

n � c
X1

n�M�1

2

nÿ 1
DgT

n �55�

Again, this is equivalent to using only the geopotential
model to compute the geoid. Therefore, if the integration
is not used in each of the three cases discussed, it becomes
immaterial just what form of kernel is used. The second
term on the right-hand side of Eq. (55) is the truncation
error, which is identical to the omission error of the
geopotential model.
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When using an error-free geopotential model (i.e.
�G

n � 0 for 2 � n � M), and integration over a limited
spherical cap, the error in the geoid is contaminated by
the terrestrial gravity data errors in both the high and
low frequencies. This is given by

�N3 �ÿ c
XL

n�2
tn�wo��T

n ÿ c
XM

n�L�1
QM�

n �wo��T
n

� c
X1

n�M�1

2

nÿ 1
ÿ QM�

n �wo�
� �

�T
n

ÿ c
X1

n�M�1
QM�

n �wo�DgT
n

�56�

In this special case, the very low-frequency errors in the
terrestrial gravity data are attenuated to a greater extent
than for the spherical Stokes formula because��� nÿ 1

2
tn�wo�

��� < ���1ÿ nÿ 1

2
Qn�wo�

���
(cf. Figs. 1b and 4 for 2 � n � 20). However, the amount
of error attenuation is less than that experienced with the
spheroidal Stokes integral because jtn�wo�j > jQM

n �wo�j
(cf. Figs. 2 and 4 for 2 � n � 20). As stated, this is a
consequence of minimising the truncation error.

In the medium frequencies, the terrestrial gravity data
errors are attenuated more by the Molodensky-modi®ed
spheroidal kernel than for the spherical or spheroidal
kernels. For the spherical kernel, this is because��� nÿ 1

2
QM�

n �wo�
��� < ���1ÿ nÿ 1

2
Qn�wo�

���
(cf. Figs. 1b and 4 for 21 � n � 360). For the spheroidal
kernel, this is because

��� nÿ 1

2
QM�

n �wo�
��� < ���1� nÿ 1

2
QM

n �wo�
���

(cf. Figs. 2 and 4 for 21 � n < 360). This result is a
bene®cial by-product of the Molodensky modi®cation,
which was designed speci®cally to minimise the trunca-
tion error and hence QM�

n �wo�.

5 How do terrestrial gravity data improve
the geopotential model?

Now that themathematical descriptors have been derived
for the propagation of errors from the geopotential model
(�G

n ) and terrestrial gravity data (�T
n ) into the geoid, the

question originally posed in this paper can be addressed.
Speci®cally, the claim that the terrestrial gravity data
(DgT ) attenuate errors present in the geopotential model,
and towhat extent this is true for each of the three kernels,
will be considered. An empirical estimation of this e�ect
has already been considered by Sideris and Schwarz
(1987) for the spherical Stokes kernel, but it is important
to know how this compares with other implementations
of Stokes kernel.

5.1 An error-free terrestrial gravity ®eld

First, the performance of the three kernels is now
investigated using the special case of an error-free
terrestrial gravity ®eld (i.e. �T

n � 0 for 2 � n � M). The
truncation error term will be ignored, which is justi®ed
because this only a�ects the high-frequency geoid and
thus gives no answer to the question in hand. Neverthe-
less, the in¯uence of the truncation error is reduced by
both the spheroidal andMolodensky-modi®ed kernels, as
shown in Fig. 3, and this will be discussed further in the
next section.

Inserting the above conditions in Eq. (19) gives the
error originating from the geopotential model that re-
mains in the geoid when computed by means of the
spherical Stokes function. This is

�N1 � c
XM
n�2

Qn�wo��G
n �57�

Equation (57) clearly shows that even error-free terrestrial
gravity data, when used in a cap, can never completely
correct the errors present in the geopotential model. This
is due to the presence of the spherical truncation
coe�cients Qn�wo�. If terrestrial gravity data were to
completely correct the geopotential model, then the
Qn�wo� coe�cients would have to be zero in the region
2 � n � M . This is clearly not the case, as shown in Fig. 1,
except for the points at which the coe�cient curve passes
through zero. The Qn�wo� coe�cients will only become
zero 8n if and only if wo � p (i.e. an integration over the
whole Earth). Moreover, the smaller the radius of
integration (wo), the larger the magnitude of the spherical
truncation coe�cients, and thus the less the terrestrial

Fig. 4. The normalised Molodensky-modi®cation coe�cients tn�6��
for 2 � n � 20 (dot±dashed line), the sum 1� ��nÿ 1�=2�tn�6��� � for
2 < n � 20 (solid line), the normalised Molodensky-modi®cation
coe�cients tn�6�� for 21 � n � 360 (dotted line), the sum
1� ��nÿ 1�=2�Q20�

n �6��
ÿ �

for 21 � n � 360 (dashed line), and the
di�erence 1ÿ nÿ 1=2Q20�

n �6o�ÿ �
for n > 360 (solid line)
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data can begin to account for any error in the geopotential
model.

When an error-free terrestrial gravity ®eld is used in
Eq. (35), and the truncation error neglected, the error
originating in the geopotential model and remaining in
the geoid when computed by the spheroidal Stokes
kernel is given by

�N2 � c
XM
n�2

2

nÿ 1
� QM

n �wo�
� �

�G
n �58�

Once again, Eq. (58) shows that the terrestrial gravity
data, when used in a cap, cannot completely correct the
low-frequency errors in the geopotential model. In this
case, the errors generated by the geopotential model
remain, almost unaltered, in the geoid because the
coe�cients QM

n �wo� << 2=�nÿ 1� (see Fig. 2 for
2 � n < �320). In fact, the errors are diminished more
e�ectively close to M � 360 courtesy of the Gibbs
phenomenon. However, this must be balanced against
the e�ect that the Gibbs phenomenon will have on the
propagation of the gravity signal into the geoid.

Equation (58) also illustrates the (partial) high-pass
®ltering property of the spheroidal Stokes kernel, where
the contribution of the terrestrial gravity data to the
geoid is attenuated according to the coe�cients
(2=�nÿ 1� � QM

n �wo�). If the terrestrial gravity data were
to completely correct the geopotential model, then the
QM

n �wo� coe�cients would have to be equal to
ÿ2=�nÿ 1�, which again can only be satis®ed by a global
integration.

When using an error-free terrestrial gravity ®eld in
the Molodensky-modi®ed spheroidal Stokes integral,
(Eq. 40), and again neglecting the truncation error, the
geoid error originating from the geopotential model,
Eq. (53), becomes

�N3 � c
XL

n�2

2

nÿ 1
� tn�wo�

� �
�G

n

� c
XM

n�L�1

2

nÿ 1
� QM�

n �wo�
� �

�G
n

�59�

Equation (59) also shows that the terrestrial gravity data
from within a cap cannot completely correct the low-
frequency errors in the geopotential model. In this case,
the error in the geoid propagating from the geopotential
model is diminished more than for the spheroidal Stokes
kernel, because jtn�wo�j < jQM

n �wo�j (cf. Figs. 2 and 3 for
2 � n � 20) and jQM�

n �wo�j < jQM
n �wo�j (cf. Figs. 2 and 3

for 21 � n �320). The same arguments apply to the
spherical kernel. Once again, this illustrates that the
Molodensky-modi®ed spheroidal Stokes kernel attenu-
ates the low frequencies in the terrestrial gravity data.
However, the high-pass ®lter is imperfect and some low-
frequency errors leak into the low frequencies of the geoid.
This is a price thatmust bepaid for theminimisationof the
truncation error.

It is clear from these three very special cases that even
error-free terrestrial gravity data cannot correct the er-

rors in a geopotential model. This applies when they are
used within a limited spherical cap surrounding the ge-
oid computation point, due to the truncated integration.
However, given that the low-frequency errors in the
terrestrial gravity data are expected to be larger than the
low-frequency errors in the geopotential model, this
raises some question as to the appropriateness of using
the spherical Stokes kernel in Eq. (6). In the presence of
low-frequency terrestrial gravity data errors, it is there-
fore preferable to use one of the spheroidal kernels be-
cause they can attenuate a larger amount of these errors.

5.2 Numerical comparisons of the kernel ®ltering
properties

Next, it is informative to quantify just how e�ective each
form of Stokes's kernel is at correcting the errors in the
geopotential model. In order to answer this question
properly, the error characteristics of each of the two
sources of information (i.e. �G

n for the geopotential model
and �T

n for the terrestrial gravity data) would have to be
known. Unfortunately, however, �T

n are largely unknown
for the terrestrial data. Of course, some error character-
istics could be postulated, but any such postulation would
be speculative and subject to criticism and maybe even
controversy. Instead, a less controversial approach is
takenwhereby theM � 360 geopotential model is divided
into three frequency bands, as follows.

1. Spherical harmonic degrees 2 � n � 20, for which the
geopotential model is considered to be the best source
of gravity ®eld information (because of the satellite-
derived contribution) and the terrestrial data are a
much poorer source of this information (for the rea-
sons explained earlier).

2. Spherical harmonic degrees 20 < n � 120, for which
the geopotential model gives a reasonable accuracy
almost everywhere on Earth, and where the terrestrial
data may o�er an improvement in certain parts of the
world, only if these data are of good quality.

3. Spherical harmonic degrees 120 < n � 360, for which
the geopotential model may not be the best source of
gravity ®eld information, and an improvement from
terrestrial data should thus be sought. The degrada-
tion of the geopotential model in this region can be
seen from the error degree variances which are usually
greater than 50% of the signal strength.

The performance of each of the three kernels discussed
here is investigated separately for each of the above
frequency bands.However, an appropriatemeasure of the
relative performance of each kernel must be devised.
Firstly, the following general criteria should be satis®ed.

(a) The total contribution of all errors should be as small
as possible,

(b) Whatever the errors in the geopotential model may
be, how much of the error in the terrestrial gravity
data is going to leak into the combined solution,

(c) Conversely, whatever the errors are in the terrestrial
gravity data may be, how much of the error in the
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geopotential model is going to remain in the combined
solution.

Given this, the question ``to what extent can terres-
trial gravity data correct errors in a high-degree geo-
potential model?'' should be posed in terms that can
more readily be translated into mathematical expres-
sions. Therefore, the question is rephrased as ``which
kernel gives the least �N and the best balance between �G

n
and �T

n for the 2 � n � 360 contribution to �N ?''. This
formulation automatically eliminates the truncation er-
ror from the following deliberations. It also obviates the
investigation of the e�ect of �T

n for n > 360. Neverthe-
less, the truncation error will be brie¯y discussed at the
end of this section.

A plausible way of measuring the contribution of the
terrestrial data errors (�T

n ) and geopotential model errors
(�G

n ) is now devised, given that these errors are not ac-
tually known. The error (��N ) in the ®rst M � 360 terms
of the combined geoid can be written as

��N � c
XM
n�2

f G
n �

G
n � c

XM
n�2

f T
n �

T
n

� chfG; �Gi � chfT ; �T i
�60�

where f is the vector of ®lter values fn which multiplies the
vector of the (unknown) error values �n in either the
terrestrial data (T ) or geopotential model (G), and h; i
denotes a scalar product in the space F of real functions
de®ned for integer arguments in the region 2 � n � M (i.e.
F 2 f�2; . . . ;M� ! <g). The values of the ®lters fG and fT

for the three kernels under discussion are simply those
derived inEqs. (19), (35) and (53).Not only are these ®lter
vectors di�erent for di�erent n, but also they are di�erent
for the three integration kernels. This will be shown later.

Next, the relative contributions of the two scalar
products in Eq. (60) are measured for each of the three
frequency bands (1 to 3 above). Each band can be
thought of as corresponding to three di�erent spaces in
F. These are F1 2 f�2; . . . ; 20� ! <g,
F2 2 f�21; . . . ; 120� ! <g and
F3 2 f�121; . . . ; 360� ! <g. Consequently, the relative
contributions are measured separately in each space as
follows. First, the Schwarz inequality

ha; bi � kak kbk �61�
is used to give the upper bound for the scalar product.
Using the notation given earlier for the ®lter and error
vectors yields

hf; �i � kfk k�k �62�
Therefore, for an arbitrary vector (�) of errors (whether
they reside in the geopotential model or terrestrial gravity
data), the upper bound of its contribution to the geoid is
measured by the value of the norm kfk. Taking this
approach allows for an objective assessment of the
®ltering properties of each kernel, since the errors in each
data source (whatever they may be) will be common to
each estimation of the geoid.

The norm adopted in this study is the Euclidean
norm, which is given by the following expression:

kfk �
�������������Xj

n�i

f 2
n

vuut �63�

where the summation is taken over the jÿ i spherical
harmonic degrees within each space. Speci®cally, for
F1; i � 2 and j � 20, for F2; i � 21 and j � 120, and for
F3; i � 121 and j � 360. Other choices of norm are, of
course, available.

In order to be able to compare the adopted norms
among the three spaces (F1, F2 and F3), Eq. (63) should
be standardised by jÿ i (the dimension of each space).
This gives

kfk� � 1

jÿ i

�������������Xj

n�i

f 2
n

vuut �64�

An alternative way of interpreting the standardised norm
in Eq. (64) is that it gives the average value of the upper
bound of the degree contribution between i and j when
multiplied by a degree-error (i.e. �T

n or �G
n for i � n � j).

Next, the expressions for the individual ®lter values
are recalled for the three kernels. For the spherical
Stokes kernel, Eq. (57) yields

8n � 2; . . . ;M : f G
n � Qn�wo�;

f T
n �

�
2

nÿ 1
ÿ Qn�wo�

� �65�

For the spheroidal Stokes kernel, Eq. (35) yields

8n � 2; . . . ;M : f G
n �

2

nÿ 1
� QM

n �wo�
� �

;

f T
n � ÿQM

n �wo�
�66�

For the Molodensky-modi®ed spheroidal Stokes kernel,
Eq. (53) yields

8n � 2; . . . ; L : f G
n �

2

nÿ 1
� tn�wo�

� �
;

f T
n � ÿtn�wo�

8n � L; ::;M : f G
n �

2

nÿ 1
� QM�

n �wo�
� �

;

f T
n � ÿQM�

n �wo�
�67�

The ®lter de®nitions in Eqs. (65), (66) and (67) are then
used in Eq. (64) to compute the standardised norms for
each space. These are shown in Table 1 for the values of
M � 360, L � 20 and wo � 6�.

Obviously, the most desirable performance of a ker-
nel would be to have all three norms equal to zero for
both the terrestrial and geopotential data errors. This is
impossible to achieve when using terrestrial gravity data
in a cap, but should be borne in mind when judging the
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relative performance of the three kernels. Therefore, a
kernel that is deemed to behave well is one that has the
smallest relative value where the input data are expected
to contain the largest errors.

The numerical results in Table 1 are now used to
consider the relative performance of each kernel in each
space in view of the three criteria (a, b and c) set out
above.

1. For the space F1 (spherical harmonic degrees
2 � n � 20), the spheroidal kernel appears to perform
the best because it ®lters out the long-wavelength error
contribution from the terrestrial data
(jjfT jj�1 � 3:69� 10ÿ4), whereas the spherical kernel
performs the worst (jjfT jj�1 � 2:10� 10ÿ1). Recall that a
large amount of low-frequency ®ltering of the terrestrial
data is considered to be a desirable feature due to the
expected presence of larger errors in this band.

On the other hand, the spherical kernel (jjfGjj�1 �
4:58� 10ÿ1) reduces the existing long wavelength errors
in the geopotential model marginally better than for the
modi®ed spheroidal kernel (jjfGjj�1 � 5:79� 10ÿ1), with
the spheroidal kernel performing the worst
(jjfGjj�1 � 5:15� 10ÿ1). However, this consideration is
less critical since the geopotential model is the best
source of this information in this band. Therefore,
considering this and the earlier arguments of the error
spectra, the modi®ed spheroidal kernel is judged to
perform the best overall.

2. For the space F2 (21 � n � 120), it is assumed that
the errors from both sources are roughly equal. Given
this, both the spheroidal and modi®ed spheroidal ker-
nels are judged to be performing worse than the spher-
ical kernel. This is because they ®lter out less errors in
the geopotential model than the spherical kernel, whilst
at the same time ®ltering out more errors in the terres-
trial data.

However, the relative merits of the three kernels in
this band can only ever be decided upon when the rel-
ative errors in the two data sources are known in a
particular region. For instance, in areas where the ter-
restrial data are good, the spherical kernel is preferable
and, conversely, where the data are poor. However, this
becomes a circular argument for a combined geopoten-
tial model since the model is also expected to have
similar errors to the data used in its computation. It also
leads to the unpleasant correlations between the errors
of the terrestrial data which are used in the contributions
from the geopotential model and terrestrial data.

3. For the space F3 (121 � n � 360), the spherical
kernel ®lters out the errors in the geopotential model
better than the other two kernels. On the other hand, the
spheroidal and modi®ed spheroidal kernels ®lter out the
errors in the terrestrial data better than the spherical
kernel. This leads to the question of how these two
perspectives be reconciled.

In order to do this, Table 1 is now viewed from the
perspective of the overall performance of the three ker-
nels. Most importantly, the error contributions from
each band have a progressively smaller e�ect on the
geoid for increasing degree. This is by virtue of the re-

lation in Eq. (3), where most of the geoid's power is
contained in the low frequencies, so errors in these fre-
quencies will have the most dramatic e�ect on the ac-
curacy of the geoid. This indicates that more weight
should be placed upon the interpretation of the low-
frequency band, and less should be placed upon the
high-frequency band. All kernels yield quite reasonable
results in the high-frequency band as far as the magni-
tude of errors that each will allow into the geoid solution
is concerned. Therefore, their relative performance
should not be interpreted with the same weight as in the
low-frequency band.

To summarise, the modi®ed spheroidal kernel is
judged to be performing the best when considering the
above argument and the three criteria (a, b and c) out-
lined earlier.

5.2.1 The truncation error
In addition to the more desirable high-pass ®ltering
performance of the Molodensky-modi®ed spheroidal
Stokes kernel, there is the additional advantage of its
reduction of the truncation error. It should be pointed out
that this kernel was designed to reduce the truncation
error, and its preferable ®ltering properties are a discovery
of this paper. Although the size of the truncation error
(synonymously called the far-zone contribution) has not
been considered in this paper, it may well be a more
important criterion than the ®ltering properties investi-
gated. Therefore, for the sake of interest, the standardised
norm has been computed for the truncation error using

jjfjj�4 �
1

359

���������������X720
n�361

q2n

vuut �68�

where qn denotes the respective truncation coe�cients
shown in Eqs. (19), (35) and (53). As in the case of the
errors, these norms can be multiplied by the norm of the
high-frequency gravity anomalies (i.e. jjDgM jj for
360 < n <1. The series in Eq. (68) has been limited to
spherical harmonic degree 720 because the relative
contributions remain the same for a further summation.
Equation (68) is, therefore, used in the region
360 < n � 720 to show how e�ective each kernal is at
reducing the truncation error. The results are given in
Table 2.

From the results in Table 2, it is clear that the Mo-
lodensky-modi®ed spheroidal Stokes kernel satis®es its
objective of reducing the truncation error. This can also

Table 1. The numerical values of the standardised norms calcu-
lated for the three spaces using Eqs. (65), (66) and (67) with
L � 20;M � 360 and wo � 6� where appropriate

Spherical Spheroidal Molodensky spheroidal

kf Gk�1 4:58� 10ÿ1 5:79� 10ÿ1 5:15� 10ÿ1
kfT k�1 2:10� 10ÿ1 3:69� 10ÿ4 1:04� 10ÿ1
kf Gk�2 1:58� 10ÿ2 4:17� 10ÿ2 4:19� 10ÿ2
kfT k�2 5:12� 10ÿ2 1:26� 10ÿ4 1:90� 10ÿ3
kf Gk�3 1:46� 10ÿ3 9:64� 10ÿ3 9:66� 10ÿ3
kfT k�3 9:95� 10ÿ3 4:47� 10ÿ3 1:52� 10ÿ4
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be seen in Fig. 3, which shows the relative size of the
truncation coe�cients. In Table 2, the smaller number
for the modi®ed spheroidal kernel in relation to the
spherical and spheroidal kernels shows that the contri-
bution of the high-frequency gravity anomalies in the
remote zones outside the integration cap is indeed re-
duced by one order of magnitude.

6 Conclusions

From the theoretical developments and numerical inves-
tigations shown in the present paper, it is clear that the
question as to whether terrestrial gravity data can correct
a global geopotential model has been answered with a
``no''. This applies to the spherical, spheroidal and
Molodensky-modi®ed spheroidal kernels to a varying
degree. Of note, the spherical kernels allows low-frequen-
cy terrestrial gravity data errors to pass, almost undimin-
ished, into the geoid. The spheroidal and spheroidal
Molodensky kernels attenuate these errors to a greater
extent, with the spheroidal kernel being the most e�ective
attenuator. The Molodensky-modi®ed spheroidal kernel
is slightly less e�ective than the spheroidal kernel because
this is the price that must be paid for minimising the
truncation error. However, this must be balanced against
the artefact introduced by the Gibbs phenomenon that
a�ects the spheroidal kernel.

It should be pointed out that these results only hold
for the case when terrestrial gravity data are used in a
spherical cap about the computation point, as is indeed
customary in modern regional geoid computation. If the
integration is performed over the whole Earth with any
Stokes-type kernel and error-free terrestrial gravity data,
then the geopotential model is always completely cor-
rected. This holds because each approximation reduces
to the original Stokes integral.

An important result is that the spheroidal and mod-
i®ed Stokes kernels o�er a preferable approach to the
spherical Stokes kernel in the presence of low-frequency
terrestrial gravity data errors. These are strongly sus-
pected to exist because terrestrial gravity data su�er
from the existence of vertical datum inconsistencies be-
tween countries, systematic errors in geodetic levelling
networks used to reduce the gravity observations, and
irregular data coverage with some large areas devoid of
data. On the other hand, the low-frequency potential
coe�cients that de®ne the geopotential model are de-
termined from the perturbations of arti®cial Earth sat-
ellite orbits, which are the best available source of this
information. Therefore, because these low-frequency
errors are not completely removed during the compu-
tation of residual gravity anomalies, it is sensible to use a
low degree of modi®ed spheroidal kernel in order to
attenuate the detrimental e�ects of these low-frequency
errors in terrestrial gravity data.
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