Line Simplification Under Spatial Constraints

Abstract

A linear feature is a chain of discrete positions or an abstraction of an areal feature (e.g., road centreline, river) or the outline of a boundary (e.g., coastline, administrative boundary). Spatiotemporal positions of a moving object - a person (with a cellphone, hand held GPS), tagged animal (e.g., study of movement and migratory patterns), moving vehicle (e.g., vessel, car, or plane with GPS navigation), robot (e.g., self-driving car or drone) can be represented as an ordered series of discrete positions (trajectory). A polyline L defined by n line segments is an ordered connected chain of $n + 1$ positions (coordinates). L can be simple (with no self-crossings) or complex - with planar or non-planar intersections with itself or other polylines to be simplified. The spatial characteristics of L can also be constrained by other objects (point, lines, or polygons) in an embedding planar space.

Given a polyline L with n segments, the line simplification problem seeks to approximate L as L with m vertices, where $m < n + 1$. The goal is to find vertices of L that represent L "well". In computational graphics, data storage, network transmission, and spatial analysis, it is very beneficial to replace complex geometric objects with simpler ones that capture the relevant features of the original. Out of context simplification of L can lead to topological errors. In this dissertation, given $e > 0$ (e - error of approximating L as L), we restrict the vertices of L to be a subset of L with the following optional constraints: (i) L should preserve planar self-intersection and avoid introducing new self-intersections with itself or other polylines, (ii) consecutive segment of L should not invert the topological relation in L, (iii) L should preserve disjoint, intersect, minimum distance relation with other planar objects, and (iv) L should be homotopic to L in the context of other planar objects.

Simplification of a polyline or group of polylines with these constraints makes finding a polynomial solution hard [Guibas et al. 1993; Estkowski, 1998; Estkowski and Mitchell, 2001]. The outcomes of this research are development of novel geometric heuristics for simplification of arbitrary static and spatiotemporal polylines in the context of other planar objects. Experimental evaluation showed a competitive compression ratio in a reasonable processing time compared to unconstrained simplification. We also develop geometric tools to make practical our algorithms in industry and data processing.
Ph.D. Candidate

Titus Tienaah

Graduate Academic Unit

Geodesy & Geomatics Engineering

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

June 11, 2018

2:00 p.m.

Head Hall

Room E-11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Eximining Board:

Dr. Emmanuel Stefanakis (Geodesy & Geomatics Eng.) Co-Supervisor
Dr. David Coleman (Geodesy & Geomatics Eng.) Co-Supervisor
Dr. Monica Wachowicz (Geodesy & Geomatics Eng.)
Dr. Susan Nichols (Geodesy & Geomatics Eng.)
Dr. Suprio Ray (Computer Science)

External Examiner:

Dr. Eric Guilbert
Département des sciences géomatiques
Université Laval

The Oral Examination will be chaired by:

Dr. John Kershaw, Associate Dean of Graduate Studies

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BIOGRAPHY

Universities attended (with dates & degrees obtained):

2011-2018  PhD Candidate, University of New Brunswick
2008-2011  MSc, GGE, University of New Brunswick, Fredericton, Canada.
2003-2007  BSc, Geomatics Engineering, Kwame Nkrumah University of Science and Technology

Publications:

Tienaah, T., Stefanakis, E., & Coleman, D.(2018). Line Simplification While Keeping it Simple or Complex ... In Review

Tienaah, T., Stefanakis, E., & Coleman, D.(2018). Topologically Consistent Online Trajectory Simplification ... In Review


Conference Presentations & Proceedings:


Research Projects:

