

Using Quasars to Measure the Earth

Bill Petrachenko, Nov 5, 2007, University of New Brunswick

Natural Resources Ressources naturelles Canada Canada

The Three Pillars of Geodesy

Canada's Natural Resources – Now and for the Future

What is a geodetic reference system?

- It is an idea, a set of rules used to assign coordinates to points
- In general, it includes:
 - Location of an origin
 - Orientation of axes
 - Definition of scale
- In practice, it also requires:
 - Definition of physical constants
 - Definition of physical models
- A simple example is a 2-d Cartesian system.

What is a geodetic reference frame?

- It is a realization, in other words, it is the way we gain access to a reference system
- In practice, it is the coordinates of a set of points determined from specific observations analyzed with appropriate models.

Historical Progression

- Historically, reference systems progressed from:
 - Iocal -> regional -> national -> continental
- Since classical surveying requires line of sight measurements the continents couldn't be connected
- As a result, each continent eventually had a separate reference frame with different:
 - Ellipticity, origin, and orientation
- The oceans could only be bridged using less precise positional astronomy

Launch of Sputnik I, the Dawn of the Space Age

- On Oct 4 1957, the USSR launched the first ever man-made object into orbit, Sputnik I.
- Although not intended for geodesy, the new orbital capability allowed the continents to be connected through the mutual observation of satellites
- This heralded the era of space geodesy, and as a result, globally consistent geodetic reference systems could now be envisioned!
- Geos-A was launched in 1965.

Space Geodesy Techniques

- The four main space geodesy measurement techniques (not including those related to gravity) are:
 - Global Navigation Satellite Systems (GNSS)
 - Satellite and Lunar Laser Ranging (SLR and LLR)
 - Very Long Baseline Radio Interferometry (VLBI)
 - DORIS

Microwave Satellite Systems (GNSS)

- TRANET
- GPS
- GLONASS
- GALILEO
- DORIS

Laser Ranging

- Satellite Laser Ranging (1976)
- Lunar Laser Ranging (1969)

Very Long Baseline Interferometry (VLBI)

- Invented by Canadian Astronomers in 1967
- Required the invention of:
 - Atomic clocks
 - Broadband tape recorders.

- On the global level, space geodesy (not including gravity) has three main components:
 - International Terrestrial Reference Frame (ITRF)
 - International Celestial Reference Frame (ICRF)
 - Earth Orientation Parameters (EOP)

International Terrestrial Reference System (ITRS)

- Origin -> Centre of mass of the whole earth
 - Determined by satellite systems only, mainly SLR
- Orientation -> Equatorial system, given by the BIH orientation at 1984.0
- Scale -> Unit of length, metres
 - Determined by VLBI, SLR?
- Time evolution
 - No-net-rotation
 - Geophysical models

Restless Planet

Canada's Natural Resources – Now and for the Future

International Terrestrial Reference Frame (ITRF) – coordinates and rates

Precision of best sites: 1-3 mm position; 0.1-0.3 mm/yr Most recent ITRF produced in 2005

International Celestial Reference System (ICRS)

- Origin -> Solar System Barycentre
- Orientation -> Equatorial system, given by
 - Mean equator of J2000.0
 - Origin at dynamical equinox of J2000.0
- Time evolution?
 - Required regular monitoring

Source Jet Model

- Positionally stable point is the dense Black hole at the core
- Only the jets are visible to VLBI
- Unfortunately for geodesy, the jets are dynamic.

Canada's Natural Resources – *Now and for the Future*

International Celestial Reference Frame (ICRF)

90°

- Over 700 sources, 212 of them are defining sources
- New ICRF expected in 2009

Earth Orientation Parameters

- Why do we care?
 - Dynamical equations expressed in a non-rotating frame
- UT1, rotation angle
 - VLBI only
- Precession and nutation, orientation in space
 - VLBI
- Pole position, geographic location
 - All techniques

Restless Planet

Canada's Natural Resources – Now and for the Future

What is VLBI's role in space geodesy?

- Definition of the Celestial Reference Frame (ICRF)
 - 212 Quasars
- Determines all Earth Orientation Parameters (EOP)
 - Unique for UT1 and nutation
- Definition of the Terrestrial Reference Frame
 - Especially Scale

40104S001 7282 Residuals

40104M002 ALGO Residuals

GMT 2007 Jan 25 16:19:13

ITRF2005 Residuals analysis

GMT 2007 Jan 25 11:02:40

ITRF2005 Residuals analysis

How does VLBI work?

- The delay between the time of arrival of a signal at two antennas is measured
- Using the speed of light, c, this can be interpreted as a distance.
- That distance is the component of the baseline in the direction of the source
- If many sources are observed, the full 3-D vector baseline can be determined

$$\tau = \frac{\vec{b} \cdot \hat{s}}{c} + \Delta \tau_c + \Delta \tau_I + \Delta \tau_{atm}$$

Components of a VLBI system

Canada's Natural Resources – Now and for the Future

Basic VLBI System

Canada's Natural Resources - Now and for the Future

Antenna, Feed, Front End

- Antenna collects and focuses weak signals from Quasars
- Feed converts EM waves to electrical signals in wires.
- Front end amplifies the signal and reduces its frequency
- Photo: Antenna at Algonquin Park

GGAO antenna at **GSFC**

Canada's Natural Resources – Now and for the Future

Composite antenna

- Approximately 15% of the weight of an equal size and stiffness Patriot antenna
- Kevlar and carbon fibre composites are about 10 times more thermally stable than steel and 30 times more thermally stable than aluminum.

Components of a VLBI system

Canada's Natural Resources – Now and for the Future

Digital Back End – digitizer, baseband converter

iBob/DBE1

Sampler boards

(two iBOB bds per chassis)

iBOB

Disk Record Unit – Mk5B

- Can record 1 Gbps data continuously for 24 h
- Mk5C is in design and will record at 4 Gbps
- Data rate has increased by nearly an order of magnitude per decade since 1967,

eVLBI (Data Transmission by Internet)

- Required for quick turnaround to initial products
- Last km to antennas solved for many sites
- Sustained data rates near 1 Gbps achieved, but require vigilant monitoring of the light pathways
- 10 gige infrastructure expected to be widely available in the mid future -> achieves 8 Gbps VLBI2010 rates
- Risks
 - Cost and availability of research networks not known and definitely not guaranteed

Components of a VLBI system

Canada's Natural Resources – Now and for the Future

How does a VLBI correlator work?

- Signals are offset by a model delay to account for the interferometer geometry
- Signals are multiplied and accumulated (correlated) at different sample delays
- Positive correlation occurs when the two noise signals are aligned
- The offset of maximum correlation is added to the model delay to produce the output delay observable.

Mk4 Correlator in Bonn Germany

The VLBI Delay Observable

$$\tau_{\vec{b},\hat{s}}(t,f) = \frac{\vec{b}(t)\cdot\hat{s}}{c} + \Delta\tau_c + \Delta\tau_{Inst} + \Delta\tau_{atm} + \frac{K_{ion}}{f^2} + \Delta\tau_{\hat{s}}$$

- Major error sources are:
 - Neutral Atmosphere
 - Ionosphere
 - Instrumentation
 - Clocks
 - Source structure

Error Source: Ionosphere

- Since the ionosphere is dispersive, i.e. changes with frequency, it can be calibrated by observing at two widely space frequencies, e.g. Sband (2.3 GHz) and X-band (8.5 GHz)
- K is proportional to total line-of-sight electron content

$$\hat{\tau}_{S} = \tau_{non} + \frac{K}{f_{S}^{2}} \qquad \hat{\tau}_{X} = \tau_{non} + \frac{K}{f_{X}^{2}}$$
$$\tau_{non} = \frac{\hat{\tau}_{X} \cdot f_{X}^{2} - \hat{\tau}_{S} \cdot f_{S}^{2}}{f_{X}^{2} - f_{S}^{2}}$$

Canada's Natural Resources – Now and for the Future

 $\frac{K_{ion}}{f^2}$

Error Source:

Neutral Atmosphere and Clocks

- Neutral Atmosphere has two components:
 - Dry atmosphere
 - Wet atmosphere
- The dry atmosphere is corrected using:
 - Accurate dry mapping function
 - The use of numerical weather data
 - On-site pressure measurements
- The wet atmosphere
 - Water vapour radiometers

 $\Delta \tau^{D}_{atm} + \Delta \tau^{W}_{atm}$

Error Source:

Neutral Atmosphere and Clocks

- The wet atmosphere is handled by estimating it from the VLBI delay data itself. This requires:
 - Accurate wet mapping functions
 - Clever scheduling to make the error sources separable, i.e.:
 - Geometry changes abruptly as the source changes
 - Atmosphere changes as elevation angle changes
 - Clocks change smoothly and continuously
 - Schedules switch rapidly between sources to vary geometry and elevation angle, making parameters seperable.

 $\frac{\vec{b}(t)\cdot\hat{s}}{dt} + \Delta\tau_c + \Delta\tau_{atm}^W$

Error Source: Instrumentation

- Instrumental errors are handled through phase calibration:
 - A very short pulse is injected early into the signal path
 - Since the pulse follows the same path as the signal, the delay of the signal through the electronics can be calibrated.
 - The limitations are:
 - It is only as stable as the calibration pulse
 - Not all of the system is calibrated

Error Source: Source Structure

- To make matters worse, their structure changes with time.
- Lists have been carefully made of the best, most point-like and stable, sources
- If enough observations could be made, source structure could be corrected for.

Thanks for being interested in VLBI and Geodesy!!!

Questions?

Canada's Natural Resources - Now and for the Future

Please come to my talk tomorrow at 10:30 on the future directions of VLBI

Canada's Natural Resources - Now and for the Future