Fish Farming News

Alltech Symposium • 5
Diving into the future of aquaculture

Fish Health Notes • 6
Carbon dioxide contributes to cod cataracts

From the Field • 10
Visiting the Hales at Boatcycle, Inc. in TX

Fish Farming Business Profile • 14
Growers Supply does structures, systems, more

Systems Engineering • 16
Megatrends, Part Deux

HBOI at FAU Report • 20
Close-up look at IMTA in RAS project
Taking a close-up look at land-based recirculating IMTA system development at Florida’s HBOI-FAU

by Paul S. Wills

FT. PIERCE, FL – Harbor Branch Oceanographic Institute at Florida Atlantic University (HBOI-FAU) has recently embarked on a two-year project designed to advance the technology available for sustainable land-based aquaculture by incorporating the concept of Integrated Multi-Trophic Aquaculture (IMTA) into a recirculating aquaculture system (RAS).

The development of integrated multi-trophic aquaculture (IMTA) will be a key tool for enhancing the sustainability of aquaculture products.

IMTA is defined as “...the practice which combines, in the appropriate proportions, the cultivation of fed aquaculture species (e.g., finfish and shrimp) with organic extractive aquaculture species (e.g., mussels and macroalgae) ...”

IMTA is distinguished from traditional polyculture in that the individual species being cultured do not need to share the same living space, but rather require the sharing or transport of nutrients between “fed” and “extractive species.”

In this model of IMTA, “extractive species” provide bioremediating functions for the waste generated by the “fed species,” thereby reducing nutrients in water destined either for discharge or reuse.

This is in contrast to monoculture systems that discharge directly into receiving systems using filtration for pollution mitigation.

The leveling off of commercial fisheries catch in recent decades, in the face of growing seafood demand, will continue to fuel the need for increased aquaculture output.

The Global Aquaculture Alliance has recently Continued on next page
projected the need for a doubling of aquaculture output in the next decade to meet global seafood product demand (W. Stevens, pers. comm.).

Among the varied aquaculture systems used, tank-based RAS provide a level of control of discharge unavailable for many aquaculture systems. RAS’s tend to require less water and have higher output per unit area, but have high energy requirements.

Much effort worldwide is being directed to maximizing efficiency and productivity of RAS designs. They are recognized by “watchdog” groups to have a high likelihood for environmental sustainability. The discharge of the water from a RAS can be seen as wasting a valuable resource, namely water carrying a high nutrient load.

It would be better to consider the “waste” a resource, as in an IMTA system.

The logical next step in RAS design is the adaptation of an IMTA scheme whereby the nutritive waste stream is used to produce additional crops rather than being discharged (Fig. 1).

The IMTA concept in a closed recirculating design would use extractive and assimilative processes (e.g., extraction of particulate waste by filter feeders, and assimilation of nitrogenous and phosphorus wastes by plants) to enhance the crop diversity of a land-based farm.

Typical land-based IMTA systems being proposed use a single-loop serial flow regime whereby all of the culture water flows through each of the culture cells (fed and assimilative) with ammonia reduction ultimately accomplished by assimilative culture of plants (either phytoplankton or macrophytes, Fig. 1).

This design presents some potential difficulties for integration. For instance, waste water with high ammonia concentrations is delivered to an extractive culture component likely reducing productivity. Solids from the extractive culture move through the assimilative culture component causing fouling, plus full water flow potentially reduces assimilative efficiency by the plants.

A new concept in closed system IMTA being proposed by researchers at HBOI-FAU (the HBOI-IMTA system) uses a centralised filtration system that delivers controlled volumes of selected treated waste streams to each system component (Fig. 2), potentially resolving water quality and flow distribution issues related to the traditional closed system IMTA scheme.

The decision of which fed aquaculture species, filter feeding species, and plant species will be critical to the successful integration for a practical IMTA farming system, however, a wide variety of fed and extractive species combinations is conceivable.

See HBOI REPORT, next page

Tanks, Chiller Units and The “Living Stream” System

Rectangular Tanks

Available in various sizes or custom built to your requirements.

Circular Tanks

Available in various sizes from 3” to 5” diameters, internal or non-recessed depending on your temperature requirements.

Frigid units, Inc.

5072 Lewis Ave., Toledo, Ohio 43605 Ph: 419/478-4000 Fax: 419/478-2019

www.frigidunits.com

Monitor Oxygen 24/7

Automated oxygen monitoring and control with the In-Situ Aquaculture System.

- Reduce risk
- Eliminate calibrations
- Reduce energy costs by up to 30%
- Qualify for USDA grants—25% funding through 2011

Now offering financing and product trial programs.

Call David Chance at 501-553-2293 or 1-800-446-7488.

For more information, visit us at www.in-situ.com

In-Situ Aquaculture

Healthy water
Healthy fish
Healthy profits
HBOI Report

Continued from previous page

There are examples of the application of IMTA to open-ocean and extensive pond-based systems, but due to the complexity of applying the IMTA concept—there are few examples of fully integrated, land-based, closed recirculating systems of any design—HBOI-FAU has a ready resource of scientists, researchers and engineers who possess the breadth of knowledge and experience with each of the proposed system components to complete an HBOI-IMTA design system with a high likelihood for success in development and integration.

The team has designed and contracted a prototype system to assess engineering and biological challenges for a system capable of having various fed, assimilative, and extractive components added to it in a "plug-and-play" manner.

Over the next year the team will:

- Characterize solid wastes (sludge) and filtered waste streams being produced by a fed fish culture module attached to the prototype HBOI-IMTA system.
- Determine and refine methods for moving various waste streams between the central filtration system and each of the culture modules under operational conditions.
- Develop models of nutrient cycling within the HBOI-IMTA prototype for predictive modeling and scaled-up system design.

This project is fully funded by the Florida Aquaculture Specialty License Plate Program. *ffn*

Paul S. Wills, PhD, is associate research professor at HBOI-FAU.

Fig. 1. Traditionally proposed land-based integrated multi-trophic aquaculture system (IMTA).

HBOI-FAU graph.

Fig. 2. Components of the proposed HBOI land-based integrated multi-trophic aquaculture system (HBOI-IMTA).

HBOI-FAU graph.

AQUATIC ENTERPRISES, INC.

Materials available: PVC, ABS, Fiberglass, and Aluminum
Cost Effective CO2 Removal
Flow Ranges from 6 - 1000 GPH
Counter Current Design
No-slug Hoziers
Cross-flow Packaged Media or Loose Media
Pre-engineered units available complete w/media and blower
Custom manufactured towers to your engineering specifications

"Bringing Your Environments to Life Since 1990"

Check out our newly redesigned website

www.AquaticEnterprises.com 206.937.0392

Netting Protection

Above & Below Water

Predator Exclusion • Pens & Cages

- UV resistant plastic • Easy to Fabricate
- Rolls, sheets and tubes custom cut-to-size in 24 hours

INDUSTRIAL NETTING

1-800-323-6458 www.industrialnetting.com

22 • FISH FARMING NEWS • ISSUE 3 • 2012
More for Fish Health

Virkon® Aquatic Disinfectant
Tricaine-S® Fish Anesthetic
Ovacide® Fish Egg Disinfectant
Ovaprim® Spawning Aid

More info at:
www.wchechemical.com

Western Chemical Inc. • 1269 Lattimore Rd., Ferndale WA 98248 • Ph: 1-800-283-5292
World Leader in Fish Health • An Aquatic Life Sciences Company

Your Future in Aquaculture Starts Here!

2012 Workshops

Fish Culture Techniques
October 15-16

Recollecting Aquaculture Systems
October 17-18

Aquaponics and Hydroponics
Cornell University & FAU
October 19-20

www.aquaculture-online.org
www.hboi.fau.edu

HARBOR BRANCH
FLORIDA ATLANTIC UNIVERSITY

Proceeds from the Harbor Aquaculture License plate help fund research and education programs conducted by Harbor Branch’s Center for Aquaculture