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Abstract

Koga and Thakkar's reoptimized (9s5p) and (12s7p) Gaussian basis sets for the atoms Li to Ne are
contracted to [4s2p] and [7s4p), respectively, and their (4s) and (6s) sets for H and He are contracted to
[2s] and [4s], respectively. The basis sets are tested by performing self-consistent-field (SCF) geometry
optimizations on LiH, BeH;, B,Hs, CH,, NH3, H;0, and HF. The equilibrium geometries of hydrogen
peroxide and hydrazine are determined at both the SCF and fourth-order many-body perturbation theory
level. © 1993 John Wiley & Sons, Inc.

Introduction

Most contemporary quantum chemical calculations use basis sets of Gaussian-
type functions (GTF). There are many good reviews and compendia [1-8] of GTF
basis sets. Dunning’s double zeta [4s2p/2s] contractions [9] of Huzinaga’s varia-
tionally optimized (9s5p/4s) GTF sets [10] are among the most popular basis sets
for hydrogen and the first row atoms from B through F. Huzinaga’s basis sets for
H to Ne were variationally reoptimized and larger sets for Li to Ne were constructed
[11] and contracted [12] by van Duijneveldt; these have also been widely used.

Recently, Koga and Thakkar [13] obtained further variational improvements in
(9s5p) and (12s7p) GTF sets for Li to Ne, and (4s) and (6s) sets for H and He. Their
(9s5p) basis sets [13] for Li to Ne are in complete agreement with the very recent
work of Schafer et al. [14], who independently reoptimized Huzinaga’s (9s5p) sets.
Koga and Thakkar’s basis sets for Li to Ne yield atomic energies lower than those
of van Duijneveldt [11] by amounts ranging from 6.1 X 107 to 1.5 X 107 Ey.
These energy improvements are rather small in the context of molecular calculations.
However, the reoptimized exponents of the tight GTF differ by as much as 25%
from the previous ones [11], and this may be of some significance for properties
other than the energy. We report double and quadruple zeta contractions of Koga
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TABLE . Atomic energies, with signs reversed, from various GTF basis sets.

HD? vp® BO® BI® B2¢ (9s5p)?
Li (*P) 7.3647293 7.3647293 7.3647293 7.3647293
Be (°P) 14.509918 14.510791 14.510812 14.510815

B (°P) 24.526415 24.52687 24.526304 24.527471 24.527527 24.527546
CCP) 37.684508 37.68519 37.684687 37.685561 37.685665 37.685700
N (*S) 54.394392 54.39535 54.395093 54.395655 54.395829 54.395885
O (°P) 74.798837 74.80040 74.800333 74.800635 74.800912 74.800995
F (*P) 99.393300 99.39557 99.395769 99.395937 99.396285 99.396402
Ne ('S) 128.52711 128.52752 128.52793 128.52811 128.52827

2 HD is Dunning’s [4s2p] contraction [9] of Huzinaga’s (9s5p) set [10].

b vD is (9s5p)/[4s2p] set of van Duijneveldt [11,12].

¢ B0, BI, and B2, respectively, are [4s2p] contractions of Koga and Thakkar’s (9s5p) set [13] using O,
1, and 2 repeated primitives.

9 (9s5p) is the uncontracted set from Ref. [13].

and Thakkar’s basis sets [13] for use in molecular calculations. The contraction
procedure is described in the next section, and the basis sets are tested in the third
section. Hartree atomic units are used except where explicitly stated otherwise.

Contraction of the Basis Sets

Basis sets of contracted Gaussian type functions (CGTFs) can be of either the
segmented [9] or generalized [15] type. In the elegant general contraction scheme
of Raffenetti [15], the CGTFs can be constructed from atomic calculations in the
parent uncontracted GTF basis set without any further complications. However, a
“primitive”’ GTF will generally appear in many CGTFs, and this will lead to many

TABLE II. Atomic energies, with signs reversed, from various GTF basis sets.

c0® cl? (12s7p)° NHF®

Li (?P) 7.3650363 7.3650363 7.3650363 7.3650697
Be (°P) 14.511439 14.511443 14.511444 14.511502
B (°P) 24.528939 24.528953 24.528953 24.529061
C(P) 37.688397 37.688422 37.688423 37.688619
N (*S) 54.400561 54.400602 54.400603 54.400934
0 (°P) 74.808783 74.808842 74.808846 74.809398
F (°P) 99.408404 99.408490 99.408492 99.409349
Ne ('S)  128.54573 128.54584 128.54584 128.54710

# 0 and cl, respectively, are [7s4p] contractions of Koga and Thakkar’s
(12s7p) set [13] using 0 and 1 repeated primitives.

® (12s7p) is the uncontracted set from Ref. [13].

¢ NHF is the Hartree-Fock limit from Ref. [21].
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TaBLE 1II.  Exponents («) and contraction coefficients (c) of the
(4s)/[2s] CGTF basis sets for H and He.”

H He
o 4 [0 4
13.011 0.033484 38.355 0.040183
1.9623 0.234719 5.7689 0.261395
0.44454 0.813774 1.2399 0.793038
0.12195 1.000000 0.29758 1.000000

2 Dashed lines separate the contracted functions. A scale factor
of 1.2 should be used for H in molecular calculations by multi-
plying the « by 1.44.

unnecessary integral evaluations unless the integral program specifically takes this
into account. Unfortunately, many popular integral programs do not have the
capability to use generalized contractions efficiently.

The alternative is segmented contraction [9] in which primitive GTFs, with the
possible exception of one or two crucial ones, appear in only one CGTF. Ideally,
one should variationally optimize the contraction coefficients, the exponents, and
the grouping pattern. We are not aware of any such work. Segmented CGTF basis
sets with both exponents and contraction coefficients variationally optimized for a
predetermined contraction pattern can be found in Refs. [14,16], for example.
More common are segmented basis sets in which the contraction pattern (splitting)

TABLE IV. Exponents («) and contraction coefficients (c) of
the (6s)/[4s] CGTF basis sets for H and He.®

H He
o (4 a C
82.921 0.022940 234.06 0.024379
12.452 0.175491 35.174 0.184036
2.8330 0.864756 7.9911 0.857623
0.80001 1.000000 22124 1.000000
0.25859 1.000000 0.66707 1.000000
0.089969 1.000000 0.20895 1.000000

2 Dashed lines separate the contracted functions. No scaling
of the H basis set is recommended for molecular calculations.
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TABLE V. Exponents («) and contraction coefficients (¢) of the (9s5p)/[4s2p] CGTF basis sets for
Li,Be,B,and C.?

o C 24 ¢ « ¢ o 4

s 1.4990(+3) 0.001042 2.9330(+3) 0.001046 4.7108(+3) 0.001133 6.7799(+3) 0.001222
2.2491(+2) 0.008024 4.4002(+2) 0.008066 7.0674(+2) 0.008740 1.0172(+3) 0.009430

5.1184(+1) 0.040590 1.0015(+2) 0.041001 1.6088(+2) 0.044488 2.3157(+2) 0.048023
1.4453(+1) 0.150484 2.8304(+1) 0.154551 4.5518(+1) 0.168530 6.5547(+1) 0.182197
4.6303 0.393278 9.1146 0.416999 1.4724(+1) 0.458573 2.1253(+1) 0.496064
1.5900 0.529439 3.1694 0.499759 5.1823 0.440665 7.5339 0.385105
1.5900 0.217740 3.1694 0.316393 5.1823 0.409712 7.5339 0.471311
5.6547(—1) 0.812720 1.1439 0.721799 1.9068 0.632099 2.8031 0.571296

7.3410(-2) 1.000000 1.8648(—1) 1.000000 3.3302(-1) 1.000000 5.2151(—1) 1.000000

2.8042(-2) 1.000000 6.5912(-2) 1.000000 1.0434(—1) 1.000000 1.5957(—1) 1.000000

p 3.2665 0.012169 7.4498 0.014399 1.2053(+1) 0.017293 1.8734(+1) 0.018170
6.5119(—1) 0.067015 1.5796 0.084345 2.6120 0.105484 4.1362 0.112687
1.6963(—1) 0.295830 4.3604(—1) 0.332582 7.4689(—1) 0.365660 1.2004 0.376170

5.5778(-2) 0.745417 1.4436(—1) 0.701899 2.3873(—1) 0.663256 3.8346(—1) 0.648667

2.0500(—2) 1.000000 5.0195(-2) 1.000000 7.7218(—2) 1.000000 1.2129(-1) 1.000000

# Dashed lines separate the contracted functions. A(+#n) means 4 X 10*".

is optimized by trial and error, and the contraction coefficients are either taken
from atomic calculations in the parent set as in Ref. [9], or variationally optimized
as in Ref. [17].

In this work, we examined up to 11 contraction patterns for each basis set, and
the use of 0, 1, and 2 primitive GTFs appearing in two CGTFs. For each pattern,
the contraction coefhicients were variationally optimized to minimize the spin-re-
stricted Roothaan-Hartree-Fock (RHF) atomic energy [18]. The contraction pattern
leading to the lowest energy was chosen with no attempt to impose a uniform
pattern for all first-row atoms. All atomic self-consistent-field (SCF) calculations
were done with the ATOM program [19] modified to allow the optimization of
contraction coefficients by the conjugate direction algorithm of Powell [20].

The lightest atoms pose a few special problems. Hydrogen and helium have only
one occupied atomic orbital (A0), and hence contraction imposes no penalty on
the atomic RHF energy. Thus the contraction coefficients are simply taken from
uncontracted calculations and renormalized. The contraction pattern is chosen so
that the tightest GTFs are grouped in one CGTF and all the other primitive GTFs are
left uncontracted. This procedure is, of course, equivalent to a generalized con-
traction scheme for H and He.

Lithium and beryllium have only s-type AOs occupied in their ground states but
a basis set without p-type GTF would be useless for meaningful molecular calcu-
lations. This problem is solved for Be by contracting wave functions [13] for the
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TABLE VI. Exponents (a) and contraction coefficients (¢) of the (9s5p)/[4s2p] CGTF basis sets for
N, O, F, and Ne.?

a c (24 c o 4 a 4

s 9.1556(+3)  0.001327 1.1852(+4)  0.001445 1.4846(+4)  0.001915 1.8135(+4)  0.001966
1.3736(+3)  0.010240 1.7782(+3)  0.011147 2.2274(+3)  0.014770 2.7210(+3)  0.015165
3.1273(+2)  0.052146 4.0486(+2)  0.056764 5.0714(+2)  0.075268 6.1951(+2)  0.077257
8.8547(+1)  0.197926 1.1466(+2)  0.215473 1.4364(+2)  0.285328 1.7548(+2)  0.292825
2.8756(+1)  0.538041 3.7279(+1)  0.584655 4.6740(+1)  0.710267 5.7133(+1)  0.701811
1.0246(+1)  0.320789 1.3334(+1) 0.246860  --e---- eemee--

-------------- 4.6740(+1)  0.032103 5.7133(+1)  0.045089
1.0246(+1)  0.524498 1.3334(+1)  0.569590 1.6766(+1)  0.634574 2.0538(+1)  0.633958
3.8443 0.517846 5.0385 0.471791 6.3699 0.37901 1 7.8363 0.368695

7.4650(—1) 1.000000 1.0136 1.000000 1.3164 1.000000 1.6548 1.000000

2.2475(—1) 1.000000 3.0250(—1) 1.000000 3.9009(—1) 1.000000  4.8755(—1) 1.000000

p 2.6667(+1) 0.018796 3.4493(+1) 0.020236 4.3907(+1) 0.021053 5.4752(+1) 0.021555

5.9557 0.117689 7.7562 0.126799 9.9298 0.132049 1.2440(+1)  0.135355
1.7440 0.383034 2.2820 0.394680 29313 0.400866 3.6819 0.404588
5.5629(—1)  0.638961 7.1691(—1)  0.624014  9.1433(-1)  0.615513 1.1444 0.610111

1.7315(-1) 1.000000 2.1461(—1) 1.000000  2.6783(-1) 1.000000 3.3084(—1) 1.000000

* Dashed lines separate the contracted functions. 4(+n) means 4 X 10*".

1522s2p (°P) state. The problem is a bit more subtle for Li because the excited 1s*2p
(P) state has no occupied valence s-type AO. In previous work, such as Ref. [1],
the s-GTFs were taken from the ground 1s?2s (%S) state and the p-GTFs from the °P
state. We follow a similar method. The exponents of the s- and p-GTF were taken
from the 2S and 2P states, respectively, and the contraction coefficients and pattern
of the resulting basis set were optimized for the P state.

Results and Discussion
Atomic Energies

Consider the (9s5p)/[4s2p] double zeta sets first. Table I compares atomic RHF
energies predicted by the Huzinaga-Dunning (HD) basis sets [9,10], the van Duij-
neveldt (VD) basis sets [11,12], and our BO, Bl and B2 basis sets which are contractions
of the Koga-Thakkar sets [13] allowing 0, 1, and 2 primitive GTFs to occur in two
different CGTFs. Despite the fact that the uncontracted basis sets of Koga and Thak-
kar always predict lower energies than the uncontracted sets of Huzinaga [10] and
van Duijneveldt [11], the BO sets do not always yield the lowest atomic energy. The
HD set for B and the vD sets for B, C, N, O, and F predict lower energies than BO.
Perhaps this is because the lower energy in the uncontracted sets of Ref. [13] is
achieved by more efficient sharing of the primitive GTFs between AOs. The Bl sets
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TABLE VII. Exponents (a) and contraction coefficients (¢) of the (12s7p)/[7s4p] CGTF basis sets
for Li, Be, B, and C.*

Li

Be

o

c

o

c

a

c

a

c

s 7.2056(+3)
1.0797(+3)
2.4575(+2)
6.9591(+1)
2.2677(+1)

8.1342
3.1007

3.1007
1.2284

4.9392(—1)
9.3051(-2)
4.5938(—2)

2.1487(-2)

0.001377
0.010690
0.055804
0.229711
0.774239
0.399797
0.638965
0.136977
0.880219

1.000000

1.4726(+4)
2.2064(+3)
5.0211(+2)
1.4216(+2)
4.6333(+1)
1.6653(+1)

1.6653(+1)
6.3909

2.5611
1.0431
2.6381(—1)
1.1902(1)

4.9993(-2)

0.000649
0.005039
0.026338
0.108941
0.372164
0.584765
0.175059
0.847351

1.000000

2.3831(+4)
3.5706(+3)
8.1263(+2)
2.3012(+2)
7.5026(+1)
2.7001(+1)

2.7001(+1)
1.0405(+1)

4.2062
1.7351
4.7134(~1)
1.9016(—1)

7.4118(-2)

0.000677
0.005258
0.027495
0.113855
0.390462
0.561959
0.190582
0.833209

3.5088(+4)
5.2574(+3)
1.1965(+3)
3.3884(+2)
1.1048(+2)
3.9785(+1)

3.9785(+1)
1.5366(+1)

6.2406
2.5893
7.4105(—1)
2.9334(-1)

1.1187(—1)

0.000670
0.005202
0.027207
0.112759
0.387704
0.565654
0.188092
0.835353

p 1.1280(+1)
2.5963
7.4764(—1)
2.4245(-1)
9.0648(—2)
3.7362(—2)

1.6037(—2)

0.009365
0.059879
0.226884
0.807339

1.000000

2.5176(+1)
5.8681
1.7584
5.9700(—1)
2.2804(—1)
9.2477(-2)

3.7652(=2)

0.008491
0.058808
0.238068
0.793234

1.000000

3.9999(+1)
9.3406
2.8358
9.9115(-1)
3.7600(—1)
1.4581(—1)

5.6094(—2)

0.008421
0.059974
0.252929
0.776731

6.1636(+1)
1.4444(+1)
4.4412
1.5716
5.9804(—1)
2.3019(~1)

8.6596(—2)

0.008244
0.060288
0.258479
0.770226

2 Dashed lines separate the contracted functions. A(+n) means 4 X 10",

with one duplicated primitive give consistently lower energies than the HD, VD,
and BO sets. The Bl energies are higher than the uncontracted ones by amounts
ranging between 0.02 and 0.47 mhartrees. The B2 energies are lower still. We think
the BI sets are a good compromise and choose them to be our double zeta sets.
Consider the “quadruple” zeta sets next. Table Il compares atomic RHF energies
predicted by the cO and C1 basis sets, which are our [7s4p] contractions of the
Koga-Thakkar sets [13] allowing 0 and 1 primitive GTF to occur in two different
CGTFs, with the uncontracted (12s7p) set [13] and the numerical Hartree-Fock
limits [21]. The C1 energies are within 1 phartree of the uncontracted ones, whereas
the CO energies can be as much as 0.11 mhartrees above the uncontracted ones.
The C1 sets are our chosen quadruple zeta sets.
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Exponents (a) and- contraction coefficients (¢) of the (12s7p)/{7s4p] CGTF basis sets
for N, O, F, and Ne.?

(6}

Ne

23

¢

o

c

[43

4

o

c

s 4.8335(+4)
7.2421(+3)
1.6482(+3)
4.6676(+2)
1.5220(+2)

5.4828(+1)
2.1209(+1)

2.1209(+1)
8.6404

3.5990
1.0622
4.1529(-1)

1.5609(—1)

0.001342
0.010419
0.054507
0.226001
0.778370
0.370936
0.665560
0.106526
0.906538

1.000000

6.3655(+4)
9.5376(+3)
2.1707(+3)
6.1472(+2)
2.0045(+2)
7.2230(+1)

7.2230(+1)
2.7972(+1)

1.1423(+1)
4.7730
1.4400
5.5984(—1)

2.0807(—1)

0.000659
0.005115
0.026762
0.111012
0.382771
0.572099
0.183965
0.838955

1.000000

8.0955(+4)
1.2130(+4)
2.7606(+3)
7.8177(+2)
2.5493(+2)

9.1880(+1)
3.5612(+1)

3.5612(+1)
1.4568(+1)

6.1013
1.8691
7.2310(-1)

2.6649(—1)

0.001338
0.010395
0.054388
0.225664
0.778747
0.372275
0.664141
0.111996
0.901547

1.000000

1.0024(+5)
1.5020(+4)
3.4184(+3)
9.6806(+2)
3.1569(+2)
1.1379(+2)

1.1379(+2)
4.4134(+1)

1.8079(+1)
7.5847
2.3498
9.0531(—1)

3.3148(—1)

0.000652
0.005062
0.026486
0.109907
0.379532
0.576290
0.181356
0.841240

1.000000

p 8.7205(+1)
2.0478(+1)
6.3463
2.2624
8.6191(—1)
3.2978(-1)

1.2205(—1)

0.008156
0.060642
0.262389
0.765702

1.000000

1.1154(+2)
2.6206(+1)
8.1556
2.9196
1.1047
4.1368(—1)

1.4810(—1)

0.008325
0.062300
0.269698
0.757895

1.000000

1.4099(+2)
3.3151(+1)
1.0356(+1)
3.7182
1.4022
5.1932(—1)

1.8225(—1)

0.008401
0.063288
0.274073
0.753122

1.000000

1.7499(+2)
4.1180(+1)
1.2905(+1)
4.6434
1.7483
6.4347(—1)

2.2294(—1)

0.008433
0.063903
0.276881
0.750009

1.000000

2 Dashed lines separate the contracted functions. A(+n) means 4 X 10*".

Molecular Tests

The double and quadruple zeta basis sets for H and He are listed in Tables 111
and IV. The double zeta (DZ) sets for the first row atoms are given in Tables V and
VI whereas the quadruple zeta (QZ) sets are in Tables VII and VIII. Note that the
contraction pattern is not uniform across the first row. Following Dunning [9], we
recommend that in molecular calculations the double zeta set for H be scaled by
factor of 1.2, that is, the exponents for H in Table III be multiplied by (1.2 =
1.44. The quadruple zeta set for H is sufficiently flexible that we recommend it not

be scaled.
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TABLE 1X. Exponents of polarization functions: p-GTF for H,
spherical harmonic (five-membered) d-GTF for first-row atoms.

Pa Pb Pc 2P

H 1.0 1.0 0.727 (1.05, 0.35)
Li 0.18 0.18

Be 0.32 0.32

B 0.70 0.388 0.343 (0.187, 0.822)
C 0.75 0.600 0.550 (0.288, 1.335)
N 0.80 0.864 0.817 (0.412, 1.986)
O 0.85 1.154 1.185 (0.535, 2.704)
F 0.90 1.496 1.640 (0.682, 3.559)
Ne 1.888 2.202 (0.852, 4.550)

Polarization functions are needed in molecular calculations. Dunning and Hay
[1] recommended exponents for a p-GTF in H, and d-GTF in B to F, and d-GTF
exponents for Li and Be can be obtained from a formula of Ahlrichs and Taylor
[2]. This set of polarization functions is listed as Pa in Table IX. A different set of
d-GTF for B to Ne [3], and the same polarization functions for H, Li, and Be are
listed in Table IX as Pb. Dunning’s [22] correlation consistent polarization functions,
listed as Pc, are quite close to the Pb set. Any one of Pa, Pb, and Pc could be used
with the Dz sets. The Qz sets can be supplemented by a pair of p-GTF for H, and
two sets of d-GTF for B to Ne [3] as listed in Table IX under 2P, or by the (2d1f)
or (3d2f1g) correlation consistent sets of Dunning [22].

As a test, self-consistent-field (SCF) geometry optimizations were performed with
Gaussian 90 [23] for seven molecules: LiH, HF, BeH, in D, symmetry, CH, in
T,symmetry, NH; in C;, symmetry, H,O in C,, symmetry, and B,H in D, sym-
metry. The basis sets used are the Huzinaga-Dunning (HD) [9,10] double zeta sets
and our DZ and QZ sets, with and without polarization functions. There are no HD
double zeta sets for Li and Be, and the Dunning-Hay (9s5p)/[3s2p] split valence
sets [1] were used instead.

In all cases, the molecular SCF energies (not tabulated) at the equilibrium ge-
ometry, both experimental and predicted, obeyed the following ordering: HD > DZ >
QZ > HD + Pa > DZ + Pa > Qz + Pb > Qz + 2P. Table X compares the resulting
geometries and dipole moments with experiment [24-29]. Our DZ sets give essen-
tially the same results as the standard HD sets, although in most cases the DZ results
are slightly closer to the largest basis results than the HD ones. As expected, polar-
ization functions affect dipole moments and bond angles much more than bond
lengths. In most cases, the Qz + 2P basis set predicts dipole moments noticeably
closer to the experimental ones than either the HD + Pa or DZ + Pa sets.

Finally, as nontrivial tests of these basis sets, we consider the equilibrium ge-
ometries of hydrogen peroxide (H,O-) and hydrazine (N,H,) assuming C, symmetry.
Both require the determination of dihedral angles that are very sensitive to details
of the basis set, as Table XI shows clearly. Geometry optimizations were also carried
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TaBLE X. SCE equilibrium geometries and dipole moments u for HF, LiH, CH,, BeH,, H,O, NH;,

and B,H¢.?
HF LiH
CH4 BeHz
r(HF) u(HF) r(LiH) w(LiH) r(CH) r(BeH)
HD 0.9196 2.383 1.6318 5.998 1.0834 1.3359
DZ 0.9218 2.391 1.6332 6.034 1.0829 1.3366
Qz 0.9174 2.373 1.6061 6.035 1.0810 1.3306
HD + Pu 0.9032 2.027 1.6236 5.949 1.0846 1.3357
pZ + Pa 0.9037 2.030 1.6265 5.984 1.0844 1.3358
Qz + Ph 0.8985 2.068 1.6061 6.013 1.0831 1.3308
Qz +2p 0.9002 1.927 — — 1.0819 —
Expt 0.9168 1.803 1.5957 5.829 1.085 —
H,0 NH,
+(OH) LHOH u(H,0) +(NH) LHNH w(NH3)
HD 0.9514 112.51 2.530 0.9944 116.28 1.368
Dz 0.9519 112.49 2.526 0.9939 116.26 1.367
oz 0.9502 112.10 2.553 0.9935 115.15 1.429
HD + Pua 0.9439 106.71 2177 1.0011 108.18 1.809
DZ + Pu 0.9438 106.72 2.174 1.0008 108.09 1.803
Qz + Ph 0.9410 106.93 2.246 0.9987 108.68 1.743
Qz +2p 0.9414 106.38 2.010 0.9990 107.88 1.612
Expt 0.9575 104.51 1.847 1.0124 106.67 1.47
B,H,
r(BB) r(BH,) +(BH,) £HBH,
HD 1.8303 1.1826 1.3402 123.00
Dz 1.8209 1.1831 1.3358 122.62
oz 1.8003 1.1802 1.3213 122.30
HD + Pa 1.7944 1.1865 1.3284 122.48
pz + Pu 1.7901 1.1866 1.3263 122.28
Qz + Ph 1.7809 1.1839 1.3209 122.04
Qz + 2P 1.7773 1.1833 1.3180 121.99
Expt 1.743 1.184 1.314 1215

2 Bond lengths (r) are in A, bond angles in degrees, and dipole moments in debyes. The bridging and
terminal hydrogens in B,Hg are denoted H, and H,, respectively. Experimental data are from Refs. [24-
29).

out using fourth-order many-body perturbation theory with triple substitutions
neglected, that is, SDQ-MP4 [30].

First, consider hydrogen peroxide. Inclusion of polarization functions reduces
the dihedral angle 3 by 30-45°! A previous complete MP4/HD + Pa calculation
[31] gave r(O0) = 1.471 A, r(OH) = 0.970 A, ZHOO = 99.3°, and 8 = 116.3° in
reasonable agreement with our SDQ — MP4/DZ + Pa results. An MP2/6-311G(3d,2p)
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TABLE XI. SCF and SDQ — MP4 geometries for H,O, and N H,.?

H,0,
r(00) r(OH) £HOO 8
SCF/HD 1.4438 0.9564 102.77 144.3
SCF/DZ 1.4461 0.9571 102.72 142.9
SCF/QZ 1.4396 0.9542 102.06 163.1
SCF/HD + Pa 1.3922 0.9467 102.73 112.5
SCF/DZ + Pa 1.3931 0.9466 102.69 112.1
SCF/Qz + Pb 1.3888 0.9431 102.74 118.2
SCF/QZ + 2P 1.3966 0.9431 102.68 111.2
SDQ — MP4/DZ + Pa 1.4615 0.9688 99.74 114.2
SDQ — MP4/Qz + 2P 1.4652 0.9630 99.77 113.8
Expt [33] 1.4645 0.965 99.4 111.8
N,H,

r(NN) r(NH,) r(NH,) <HNH, <HNN ZHNN G(H,NNH,)

SCF/HD 1.4064 09952  0.9984 115.13 113.01 116.67 92.1
SCF/DZ 1.4044 09947 0.9978 115.14 113.08 116.72 92.0
SCF/Qz 1.4099 0.9933  0.9967 114.15 112.07 115.77 92.1
SCF/HD + Pa 1.4117 09989 1.0015 108.94 108.53 112.67 89.8
SCF/DZ + Pa 1.4107 09986 1.0013 108.87 108.48 112.64 89.7
SCF/Qz + Pb 14111  0.9963  0.9993 109.25 108.71 112.73 90.2
SCF/QzZ + 2P 1.4166  0.9957 0.9984 108.67 108.24 112.17 90.1
SDQ — MP4/DZ + Pa 14419 10152 10185 106.99 106.51 111.37 89.6
SDQ — MP4/Qz + 2P  1.4476 1.0091  1.0119 107.44 106.58 111.05 90.9
Expt [35] 1.449 1.021 1.021 (106.6) 106 112 91

2 Bond lengths are in A and angles in degrees. 3 is a dihedral angle. The hydrogens on each N in
hydrazine are nonequivalent and are denoted by H, and H,, respectively.

calculation [32] led to #(OO) = 1.450 A, r(OH) = 0.962 A, LZHOO = 99.5°, and
B = 111.1°. Good agreement with an experimental geometry of Koput [33] is ob-
tained by our SDQ — MP4/QZ + 2P calculation: The bond distances agree within
0.002 A, the ZHOO to 0.4°, and the dihedral angle to 2°.

Next consider hydrazine. All calculations show that the two hydrogens, labelled
H, and Hy, on each nitrogen are nonequivalent. A CISD(Q), configuration interaction
with all single and double substitutions approximately corrected for unlinked clus-
ters, calculation [34] in a 6 — 31G* basis led to r(NN) = 1.448 A, r(NH,) = 1.018
A, r(NHy) = 1.021 A, ZH,NH, = 106.64°, LH,NN = 105.94°, ZH NN = 110.82°,
and B(H,NNH,) = 90.05°. An experimental equilibrium structure is not known
but a thermally averaged r, structure has been determined by Kohata et al. [35].
They were unable to match the nonequivalent NH bonds with the corresponding
angles and therefore reported an average r(NH). Moreover, they fixed ZHNH at
106.6° from the CISD(Q) calculation [34]. Our SDQ — MP4/QZ + 2P calculation
may be the best equilibrium geometry available to date.
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We hope the basis sets presented in this paper will be generally useful to the
quantum chemistry community.
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